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1 Introduction  

The evacuation plan for different buildings, ships and all kind of public spaces 

is hard to define, at least, if you want it to be the most efficient plan, thus the safest 

and the fastest. There are also laws (United States Code sections, 2016; United 

States Departament of Labor, 2017) related to these plans. That fact, in 

combination with the latest technologies related to virtual reality, that came to live, 

made us think about improving the creation and design of these plans, not with real 

tests which are hard to simulate and expensive, but using immersive technology, 

“Virtual Reality”. 

There are already some experiments related to crowds (Pelechano & Badler, 

2006) and evacuations but they are done in simple 3D, shown on computers which 

make it a bit hard to feel it real, thus to react as you would do in a real situation. 

The advantage of VR is that the visual and auditory senses are covered. In a near 

future, more haptic sensors will come to light, such as AxonVR (Rubin & Crockett, 

2012) and others (Stone, 2001; van der Meijden & Schijven, 2009; Carlin, 1997; 

Burdea, 1996; Robertson, 2014). Therefore, the idea is to merge this topic (crowd 

simulation and evacuation plans) with virtual reality. 

1.1 Project Formulation 

The project idea is about simulating a realistic environment where the user 

(we understand user as the person who is going to run the application) will 

experience a situation of danger in virtual reality. That way, we can make him feel 

like the experience he is living is true thus we can get more realistic results when 

using this project as an experiment. 

There are already some experiments trying to simulate those environments in 

a realistic fashion (Pelechano Gómez, 2006) but most of them are in simple 3d 

where you have to use your keyboard and/or other controllers to move around, 

while you see the simulation on a window. 

In order to accomplish that simulation in VR, we have to study and simulate 

the behavior of random people to add some autonomous avatars into the 

simulation, which will increase the overall realism of the virtual scenario. On the 

other hand, such simulations are computationally expensive, not only because of 
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the scenario but the simulation of many rigged avatars, as well as their behavior. 

Therefore, we also have to study and find some optimization techniques to make it 

runnable on a head mounted display like Gear Vr, and to decide whether run it on 

this hardware or choose another alternative like the HTC Vive (HTC Corporation, 

2017) or Oculus Rift (Oculus VR, LLC., 2017). 

On this document we will be describing a complete project. The project will 

be considered minimally completed once we have a working environment with a 

few agents (could be 10 or 15), with an announcement of the dangerous situations 

and there is a goal (a safe place) where the user has to go in order to finish the 

application. This will represent the setup of an experiment, and we will run a pilot 

test to determine the degree of realism and the naturalness of the navigation and 

interaction with the environment and other agents. The result of this work could be 

then used for a longer experiment to evaluate human behavior in such a 

dangerous situation. From there, anything else is considered an improvement. 

1.2 Project Structure 

In chapter 2 there are explanations about the project's design, and more 

specifically, how the models were created, and how we modeled the ship using 

Blender (Blender Foundation, 2017) and Unity (Unity Technologies, 2017), as well 

as the reasons for every choice in the modeling process. There are also 

explanations about how the avatars were created. Chapter 3 is used to explain 

how the application was programmed, starting from crowd AI (“Artificial 

Intelligence”), up to application running pipeline. Chapter 4 is mainly focused on 

explaining the applied optimizations on this project and possible improvements for 

a better performance. The proper way to use this project as an experiment is 

explained on chapter 5. Chapter 6 is used to explain how this project was 

managed, such as developing expenses and sustainability related issues. It also 

includes the relation between the project and Computational branch in Computer 

Science. Finally, chapter 7 is used to explain the summary and recommendations 

for further studies and own conclusions. 
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2 Design 

The events on this application are set on a ship, which is sailing in the ocean, 

with people inside. At some point, there must be a danger situation and people 

should be running, searching the closest safe place to be. These events should 

happen in a realistic fashion, therefore, there should be different floors, including 

the deck of the boat, some rooms per floor and stairs to connect the different floors. 

To make it look a bit more like a maze, we added different rooms in the middle of 

each floor, and also different stairs to move through floors. This helps, not only 

because it adds complexity to the path that needs to be followed to get to a safe 

place, but also because there are several ways to get there, thus the programmer 

can “play” blocking one of the paths to make the user change its exit path. These 

things belong to a structural design but, in this application, there is another must 

have: “Crowd”. This is where the avatars come to life. 

Avatars, on the other side, represent the crowd (from ship's crew to 

passengers). These avatars are there to make it feel more realistic, not only 

because of the realism in the fact that there should be more people on a ship other 

than you, but also because of the human factor and “embodiment” (Nurislamovich 

Latypov & Nurislamovich Latypov, 1999). Embodiment attribute is used to 

represent the feeling of thinking that the virtual body is your body. It can also be 

used to represent how real you feel the virtual environment. The avatars, in this 

application, will help you to feel more embodied or to feel the virtual environment 

more real, boosting the visual and auditory senses. 

2.1 Ship 

To begin, we will start showing two pictures, Figure 1, Figure 2, to indicate the 

names of the different parts of a ship. 

 

 

 

 

  

 

Figure 1: Deck names 

 

 
 

Figure 2: Locations and directions aboard ship 
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The figures are a close representation to the ship model, being used on this 

project. The process of modeling this ship is the following: 

• Getting a simple model of a ship. 

• Split the model into smaller parts to be able to control it easier, this is, the 

materials for every part of the model and, to be able to enable/disable 

different parts with an occlusion algorithm implemented specifically for the 

purpose of this project. 

• Model all the missing parts of the ship, this is, the complete interior: 

◦ Rooms 

◦ Stairs 

◦ Floors 

◦ Decoration: Piano, water … 

• Optimize model, this is, reduce the number of polygons. 

• Add different materials for the different parts of the ship. 

Everything but the last step, is going to be done with blender, which is a 

modeling software designed for that purpose. The model was downloaded from a 

3D assets website (CadNav.com, 2017), but it has only the hull. Therefore, we had 

to design everything else and the materials, because it did not come with the 

correct materials. 

A few commands from Blender that helped me to do all the modeling where the 

following: 

• Alt + B + selecting square → Clipping border, used to select the part of the 

model you want to see, and hide the rest, so it helps you to model inside 

the geometry. (Figure 3). 

• In edit mode (vertex selection instead of objects): 

◦ P + Selection → To separate different parts of the model. 

◦ X + Limited Dissolve → Used to decimate the mesh, which means to 

reduce the number of polygons in the geometry. (Figure 4). This is a 

very important feature toward reducing the complexity of the model and 

thus gaining performance during rendering time.  
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Commands representation 

 

 

 

 

 

 

 

Thanks to all the previous shortcuts and some other tools that Blender offers to 

create new shapes and all kind of geometries, we could design and create all the 

floors, rooms, stairs and decoration, as well as separating the ship into smaller 

parts. 

The way we separated the ship is by levels and sides. It is, the whole ship is 

being divided into 4 different levels of height, plus two sides per level. That way, we 

ended up having 8 main parts of the ship. That was not enough when it came to 

rendering performance, therefore we decided to divide hammocks, pipes, windows 

and other smaller components such as chairs or tables. All this process, in 

combination to mesh decimation, helped me to reduce the ship as we see in the 

Table 1. 

 

 

 

 

The rest of the ship optimizations will be explained in chapter 4, along with the 

other optimizations that were made in the application. The remaining tasks of the 

modeling process were done inside Unity. On Blender we created some default 

walls, doors, furniture and textures, and then, from there, we created a few 

prefabs1 on Unity to speed up level design, creating similar rooms or, for instance, 

the ceiling lamps.  

                                                      
1 Prefab: Set of geometry or unity Game Objects, which share the same attributes thus are saved as a predefined object. 

 
Figure 4: Limited dissolve 

 
Figure 3: Clipping border 

Table 1: Comparison between original and optimized ships 

 
Original Ship Optimized Ship 

Vertices 650.000 353.000 

Triangles 1.200.000 550.000 

File Size 26.5Mb 15Mb 
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Add different materials for the different parts of the ship  

When all the model was already defined, created and decorated, I started 

creating materials for all the geometry. A material consist on a color or texture, with 

some extra attributes such as receive or cast shadows, use specular light and/or 

reflections and some other attributes. For instance, the material used on glass 

geometry has the attributes seen on Figure 5. There we can see that specular light 

and reflections are enabled but, the remarkable attribute here is the one that 

makes the glass transparent. 

 

 

 

 

 

 

 

 

 

 

 

 

On Figure 6 we can see the following settings: Rendering Mode: Transparent, 

and Albedo color. The color is selected carefully, with an alpha of 165 out of 255, 

that way, in combination with the transparent attribute, makes you capable to see 

through. 

 

 

 

  

 

Figure 5: Example of window and material attributes 

 

 

Figure 6: Glass material settings 
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Finally, the ship's design per floor is almost the same for every floor, with small 

differences such as rooms distribution. It could have been more complex to make 

the user get lost easily thus get a bigger variation on the experiment's results but, 

at the moment, this is a first approach. 

On Figure 7 and Figure 8 we have a floor example, we can appreciate the 

walls and rooms of that floor. We can also notice that there are no roofs on the 

rooms. This is not true, there are roofs on the rooms but they have “Backface-

culling2” activated. The second reason is that the upper floor is disabled to capture 

the photo, otherwise, it would be activated. Therefore, the user would be able to 

see the roof of each floor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                                                      
2 Backface-culling: Its an algorithm used in graphics to determine whether a face should be drawn/seen or not. 

 

Figure 7: Floor view corresponding to one of the ship's floors 

 

 

Figure 8: Elevation view corresponding to one floor 
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Finally, we can see all the ship, from the outside, in Figure 9. For this first 

approach, this ship is not close to the beach at the beginning, and it does not have 

water on the outside because for the current experiment setup, the user would not 

be able to see through windows nor from the ship's deck. However we have 

included the sound of the ocean, to boost the realism of the environment. There 

are not any life saver boats either, because it would drastically increase the amount 

of work involved in this project and, considering this is just a first approach and an 

attempt to see how embodied do people feel inside the application, it could be 

used for a future version. 

 

 

 

 

 

 

 

 

2.2 Avatars 

2.2.1 Customizing Avatars 

This step consists on creating avatars whose are going to represent the crowd. 

These avatars can be created in several ways but, the easiest, fastest and 

cheapest is through Adobe Fuse (Adobe Systems Incorporated, 2017) due to its 

very intuitive software to model avatars or choose between already existing body 

components. Last but not least, it is associated with Mixamo (Adobe Systems 

Incorporated, 2017), which is an on line software that gives you the rigging3 for 

your character, automatically, depending on the character's UV's4. On Figure 10 

and Figure 11 we can see the process of creating an avatar with Adobe Fuse.   

                                                      
3 Rigging: process of attaching bones to each vertex of the character. 
4 UV: texture coordinates, U corresponds to X, V corresponds to Y. 

 

Figure 9: Complete ship from the outside 
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On the other hand, these avatars are a bit heavy in term of polygons, but 

thanks to decimation techniques, we can reduce the output character with around 

11.000 vertices, to another character, very similar, with around 3.500 vertices. 

Therefore, my avatars will be decimated to speed up the application. It is, not only 

because of the number of vertices to draw but because of the number of 

operations needed to perform. It will be explained with more detail on chapter 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 10: Customizing avatar's body with adobe fuse 

 

Figure 11: Customizing cloths for the avatar with adobe fuse 
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Previous techniques are used for common avatars but, we wanted to add a 

special avatar, an avatar for the user and we decided to create one, similar to 

Wentworth Miller, customized the same way he was, as an actor, on Prison break. 

This is because of the analogy, he tried to escape from prison, and the user is 

going to try to escape from the sinking ship. This avatar had to be customized in a 

different way, therefore, the steps to create it were the following: 

Get his face in 3D 

Thanks to existing free software Faceworkx (Looxis GmbH, 2017), giving two 

photos, after a bit of work, you can get the 3D face as seen in Figure 12. To get 

face photos, it was a bit tricky as we had to get screen shoots of different scenes, 

clean them with Gimp2 (The GIMP Team, 2017) as seen in Figure 13, and then, 

add them into the software. 

 

 

 

 

 

 

 

 

 

 

 

 

First step was to get his face, then, thanks to another private and confidential 

software, designed to do “non rigid registration”, in other words, it works modifying 

original mesh, keeping vertices number, to a given mesh. That way, we could get 

one of the previous avatars and modify his face to become this one, keeping its 

character rigging.  

 

Figure 12: Faceworx software, creating Wentworth Miller's face 
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Finally, we have his body but, we wanted to make him look even more realistic 

and closer to the roll he plays on that TV Serie. Therefore, we had to add the 

tattoos the actor wear on the show, to this avatar. For that step, we used blender. 

We got a few photos of his tattoos and then, thanks to some techniques that we 

have learnt with Blender, we could unwrap the avatar's mesh into a plane, 

representing the character's UV mapping, and then, we painted this texture, 

representing the character's texture with the correct UV mapping. A small example 

can be seen on Figure 14, resulting into a finished rigged avatar. 

 

 

 

 

 

 

 

 

 

 

 

 

The process of painting textures into the avatar consist on creating different UV 

maps, an UV map example is the right side of Figure 14. We created an UV map 

for every arm, torso and legs. Then, we selected the vertices of the model that we 

wanted to represent on this map, clicked on U → Unwrap from projection. That 

way, we could get different parts of the body into the texture. After that, we selected 

which texture to use to clone the color from, and started painting the body, while 

the UV map was being painted. 

  

 

Figure 13: Cleaning photo with Gimp 
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2.3 Additional Features 

The ship itself is not enough to create a good realism effect, this is where this 

additional content or features come to light, to improve the feeling of belonging to 

this situation. We could distinguish between visual and sound effects. For the 

sound effects we have: 

• Chattering sound in the background, as if the people were talking. 

• Ocean sound, on both sides of the ship, with 3D sound effect enabled, to 

increase the feeling of being there. 

• Music sound. There is a piano player, playing a piano song, which also has 

the 3D sound effect. It also helps the user to orientate himself around the 

ship, depending on how loud does he listen the music. 

On the other hand, we have visual effects, such as: 

• Pictures on the bathroom. 

• Beds and other dorm furniture. 

 

Figure 14: Painting avatar's texture with Blender 
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• Ceiling lamps all around the ship, not only to increase the light but to 

create the effect of different light spots, as we would see in real life. 

• Piano with an avatar playing it (Figure 15). 

• Furnished rooms, with decoration such as a bowl with apples. 

 

 

 

 

 

 

 

 

 

 

 

 

We have also played with textures, to create the effect of deep, for example, on 

the ground, made of wood, it looks like there are tiny horizontal holes but, actually, 

it is achieved with bump mapping5. This is used to avoid modifying the real mesh, 

because it would mean to increase the number of vertices and total polygons, 

decreasing the performance. The animation for the piano player was downloaded 

from Mixamo. Animations are usually created with tools where you select where 

every bone of the avatar should be on every frame, but you can also record any 

human doing the same movements, with any tracking system such as the one that 

comes with vive or perception neuron. That way, you record all the user's gestures 

and movements, resulting into a smoother and more realistic animation. 

Animations from Mixamo are produced using the second methodology. 

                                                      
5 Bump mapping: is a technique used to simulate bumps and wrinkles on the surface of an object. This is 

achieved by perturbing the surface normals of the object and using the perturbed normal during lighting 
calculations 

 

Figure 15: Piano with an avatar playing a song 
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3 Context Programming 

The application itself, has a set of events, driving the user from a peace and 

exploration instance, to a danger situation. These events are going to happen for 

you and some other avatars, who represent the crowd. These avatars and you are 

going to be influenced by the environment and the perception of danger, but also 

by the walkable or explorable places, this is where Navigation Mesh comes into 

place. All these components, with the application logic, are going to work in 

harmony to create the application flow. 

3.1 Crowd Artificial Intelligence 

There are a few remarkable points regarding crowds AI (Reynolds, Red3D, 

1997; 2001). First of all, path-finding algorithm. Unity uses his own path-finding 

algorithm, which is optimized enough for the uses we will give. There are lots of 

algorithms for path-finding, such as A* or IDA*, all of them are very efficient but, 

unity already implemented their own path-finding which is easily compatible with 

their navigation meshes, therefore, it is highly recommended to use their own path-

finding. Crowds will use path-finding for one main purpose: find the way to get to 

the next step. 

On Figure 16, we can see an example of how to configure paths for the crowd. 

 

 

 

 

 

 

 

 

 

   

Figure 16: Example of steps to go, for crowds 

 



3. CONTEXT PROGRAMMING 

22 

Every red square means that an avatar could appear there at the beginning of 

the application. If it is connected, it also means that an avatar can walk on this 

direction. Mainly, it is a directed graph. Blue squares are used for special cases, 

such as giving different chances of going there, or appearing there as an avatar. 

We have implemented this system of placing squares, with an intuitive interface on 

Unity, to make it easier to create new paths and to decide where should the avatars 

appear when the application is running. 

The avatars need to have, not only this path attached but a script to manage all 

its behaviors, such as deciding whether to run, walk or stay idle, as well as the 

corresponding speeds for walking and running. With the script on the Figure 17, 

the one on the left, you can even select the speed to use when the avatar is 

scared, or the gender (used for voices). The Character Controller on the right, and 

Nav Mesh Agent scripts, are used to specify the avatar's dimensions, to be 

compatible with the navigation mesh. The Obstacle Avoidance section inside “Nav 

Mesh Agent” script, is used in combination with the navigation mesh, to decide if 

the user fits into a specific hall or place. For instance, the character's height had to 

be reduced from 2.5 (initial value) to 1.7. Otherwise, the avatars were not able to 

go downstairs because the stairs have kind of looping shape, and the algorithm 

would think that the user would not fit on the stairs. We can see an example of the 

navigation mesh on the stairs, on the next section. 

 

 

 

 

 

 

 

 

 

   

Figure 17: Scripts attached to every avatar 
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Safe Zones 

The avatars had to have another behavior for the emergency situation, 

therefore, we have created what we call “Safe Zones”. A safe zone, basically, is a 

trigger that gets called when an avatar gets inside the working distance. If an 

avatar needs to find a safe zone, they will choose between one of the existing safe 

places. To make it more realistic, we placed safe zones at different spots inside the 

ship, even if they are not really safe, so the user can get confused about who to 

follow or not. Those safe zones can also be linked between them. For instance, 

there is a big safe zone where almost all other safe zones are linked to. On the 

Figure 18 we can see the general safe zone, and Figure 19 is an example of an 

interim safe zone, linked to the general one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 18: General safe zone, at main deck of the ship 

 

 

Figure 19: Simple safe zone, at ship's main deck, with the general safe zone behind 
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3.2 Navigation Mesh 

Navigation Mesh is a data structure which describes the walkable surfaces of 

the game world and allows to find path from one walkable location to another in the 

game world. The data structure is built, or baked, automatically from your level 

geometry. There are some configurable settings before baking your world's 

navigation mesh. On Figure 20 we can see some of them. A summary of the basic 

attributes would be the following: 

• Agent radius: it sets to walkable any surface wider than this radius, as we 

expect the avatar/agent to have that radius. 

• Agent height: similar to previous attribute but for the height. If the distance 

between two floors were lower than this height, that part would not be 

walkable or baked. 

• Max Slope: used to determine how big the slope can be, to be considered 

into baking. 

• Step height: it refers to the difference in height between two surfaces, you 

would let the user to step. 

 

 

 

 

 

 

 

 

 

 

Unity's default navigation mesh system also allows you to set costs to different 

surfaces. For instance, you could let an avatar to walk inside a swimming pool but, 

on the other hand, it would slow it down, so, you can set a higher cost to the 

 

Figure 20: Settings to bake navigation mesh 
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swimming pool surface, that way, when calculating path-finding, this path will be 

taken into account but also its cost, so, if there is a better way to get to the desired 

spot, it will use the alternative. 

To get the stairs working with the navigation mesh, it was a bit tricky because if 

the stairs design (Figure 21). The height between the stairs on the corner and the 

roof was not high enough so, the workaround was to make the upper floor tinier in 

order to increase the distance between both surfaces. We can see the same stairs 

with navigation mesh painted on them on Figure 22. The blue shape belongs to 

the walkable surface, this is why it does not get too close to the railing, because 

the agents are supposed to be 0.2 units wide. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 21: Stairs between floors 

 

 

Figure 22: Stairs between floors with navigation mesh drawn 
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This navigation mesh is applied to the whole ship, floor by floor, even inside 

every room, so every avatar knows where to walk. We can see an example of the 

navigation mesh's step height parameter on Figure 23. The circles on the ground 

are the limit of the plane surface, and those lines moving to the top of the higher 

surface, are calculating the distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3 Application Logic 

The expected flow of the application was to simulate the whole boarding 

process, until you get to your room, then, you would find a room mate, take a walk 

around the ship before the action begins, and then, the alarm. To make it simpler 

and to be able to focus on optimization processes, we avoided the first steps of the 

pipeline, leaving it to the last step. The application will begin at your stateroom. You 

will be inside a body that does not react to any of your movements, there is no 

tracking at all but, you will be able to walk pressing a button from your hand device, 

from the HTC Vive. 

There are different avatars on the ship, on different floors, and some 

decoration, such as a pianist and some people listening to him. The ship is divided 

 

Figure 23: Example of navigation mesh's step height parameter 
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by floors, therefore, we can just focus on the user's current floor to avoid 

unnecessary computation and also to increase the activity on your current floor, 

with details such as increasing the number of avatars on current floor or opening all 

the room's doors of that floor. In order to accomplish that, we needed to check 

whether the user changed floor or not and we had to track the user's movement to 

see if he went upstairs or downstairs at any moment. There was an easier way to 

trace the user's floor change, this is, detecting whether the user stepped into any 

stairs and stepped out on a different floor. That could be achieved adding triggers 

on every stairs, at the top and the bottom so, when the user gets into any of these 

triggers, we save the Y coordinate and then, when he gets into another of these 

triggers, we check whether the Y coordinate changed or not. This is done to make 

sure the user is not getting in and out of the same trigger and also to know the floor 

change, this is, if the user went up or down. That system also helped to boost the 

performance of the application and will be explained with more detail on next 

chapter. 

3.3.1 Alarm and Beginning of Danger 

At this point, we will simulate an alarm, to give feedback to the user, so he 

knows he is in danger. There could be some other methods such as moving 

another avatar to your room, and yelling you to run. There is a wide number of 

choices but we will stick to the alarm sound. The alarm starts beeping quite strong 

and then, it lowers its volume, so it does not annoy the user. The alarm does not 

have 3D sound effect, so you can hear it from all the ship, as if you had a lot of 

speakers all around the ship. 

When the alarm starts, the panic begins on all the avatars, who try to find one 

safe zone, randomly, and they switch from idle or walk states to running scared 

states, trying to avoid collisions and other obstacles. At the same time than the 

alarm begins beeping, the floors from the doors of your current floor get opened. 

They get rotated 90 degrees to stay open and let any avatar who could be inside 

that room, to leave. 

Avatars, when running, can collide with you. In that case, they will, sometimes, 

yell you one sentence, such as: “Follow me to the exit” or “The exit is this way”. 

This is done to analyze user's response depending on avatar's behavior.  
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3.3.2 Representations of Danger 

The logic of the application regarding this point, is to activate, randomly, some 

danger spots on the ship, to alter the user and avatar's behavior. The danger spot 

is marked as a navigation obstacle, which makes the avatars not to be able to walk 

through that place, and it also has a collider, which blocks the user if he wants to 

go through it. These danger places or events would be also connected to the 

avatar's phrases or communication, so an avatar who has seen a danger place or 

spot, would suggest you not to go on that direction because of that. There are, on 

this prototype of application, two kinds of danger, one of them is fire, there could be 

fire in the middle of any stairs, but it will not get propagated all around. The other 

kind of danger we can see on the application is water, as seen on Figure 24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ship is supposed to be sinking, therefore, randomly, the lowest floor could 

be filled with water and, consequently, no avatars will come from that floor, thanks 

to the programmed scripts. 

 

 

Figure 24: Water filling the lowest floo 
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4 Optimizations 

4.1 Preamble 

The application had to be run on any virtual reality system. We had different 

options to choose but, once we saw the size of the application, not only because of 

the total amount of meshes and polygons but also because of the big amount of 

computation needed to perform on runtime, we discarded Gear Vr system, leaving 

the choice between Oculus Rift and HTC Vive. Both run with a desktop computer 

doing all the computation thus we decided to use HTC Vive because it can run up 

to 90 FPS instead of Oculus's 60 FPS. From there, we could have taken the best 

current desktop computer to run the application and it would have worked but the 

purpose of this project, aside from running an experiment to measure the user's 

behavior regarding the environment, was to get it runnable on average computers. 

From this preamble, we had been profiling the application and determining the 

most efficient ways of optimizing it. The way we optimized it requires to know a few 

concepts: 

• Draw call: To draw a Game Object on the screen, the engine has to issue 

a draw call to the graphics API (such as OpenGL or Direct3D). Draw calls 

are often resource-intensive, with the graphics API doing significant work 

for every draw call, causing performance overhead on the CPU side. 

• Batches: A batch is a group of draw calls to be drawn together. Batching 

objects to be drawn together, minimizes the state changes needed to draw 

each object inside the batch. This is turn leads to improved performance by 

reducing the CPU cost of rendering the objects. There are two kinds of 

batching. 

◦ Dynamic batching: For small enough Meshes, this transforms their 

vertices on the CPU, groups many similar vertices together, and draws 

them all in one go. 

◦ Static batching: Combines static (not moving) Game Objects into big 

Meshes, and renders them in a faster way.  
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• SetPass Calls: This is just a measure of how many times the scene needs 

to switch shader passes. To reduce SetPass calls, it is recommended to 

reuse materials or to find ways to allow Unity to batch your rendered 

objects. 

4.2 Graphics Pipeline 

This section is intended to summarize the reasons for some of the performed 

optimizations, because most of them rely on OpenGl's and Unity's rendering 

pipeline. Figure 25 is a compressed representation of this pipeline. From there, we 

should remark some steps. Primitive Assembly step includes the process of “Face 

Culling6”. Later on, close to the end of the pipeline, at Per-Sample Operations step, 

there are also a lot of tests that the incoming fragment from previous step has to 

pass. If it does not pass these tests, the fragment is discarded, thus it is not 

painted. Some of this tests, which have relation to some of the optimizations, are 

the following: 

• Scissor Test: When enabled, the test fails if the 

fragment's pixel lies outside of a specified 

rectangle of the screen. 

• Depth Test: When enabled, the test fails if there 

was another fragment on top of it with a value of 

depth showing it closer. There is a depth buffer 

to check it. 

The rest of the steps are useful on the pipeline but 

they do not have any remarkable influence on our 

optimizations. They are shown, mainly to give an idea of 

how many processing is applied to every vertex thus the 

need to reduce the number of vertices, even if it is only 

temporally. 

  

                                                      
6 Face Culling: Triangle primitives can be culled (I.E.: discarded without rendering) based on the triangle's 

facing in window space. This allows you to avoid rendering triangles facing away from the viewer. 

 

Figure 25: Diagram of the 
rendering pipeline. The blue 
boxes are programmable 
shader stages 
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4.3 Summary of Optimizations 

Crowd – Pedestrians 

The crowd simulation implies a lot of computation. It has relationship with 

different components of the application: 

• AI: The relation here is very tight because every avatar needs a small AI to 

decide where to go and what to do. To choose its next position and to get 

there, he needs to use the navigation mesh and Unity's native path-finding. 

Therefore, if the avatar is not going to be seen, we should not be using 

computational time on this avatar. 

• Rigging: Every avatar is being animated every frame. That means, every 

vertex is changing its position depending on the avatar's bones. Every 

avatar has an average of 33 bones, except for the user's avatar who has 

51 bones. To get every vertex position that belongs to every avatar, Unity 

has to multiply every bone's transform (this includes position, rotation and 

scale) per vertex. For performance reasons, every vertex is only affected 

by 4 bones, that is, 4 matrix multiplications to know every vertex positions. 

In summary, these are a lot of calculations for every frame. 

Because of the previous reasons, we can disable all the avatars except those 

who are on the same floor than the user. That would be a bit weird because you 

would not be able to see any avatar coming from any lower or higher floor. 

Therefore, we decided to enable avatars in range of +1 and -1 floors. Thanks to the 

piece of the script seen on Figure 26, the attribute “Height Working Range” let's us 

parametrize that. When the application starts, the X (minimum value of Y 

coordinate) and Y (maximum value of Y coordinate) are set to the proper values of 

floors +1 and -1. Every time the user changes floor, those values are updated. 

 

 

 

 

 

  

 

Figure 26: Piece of the script to handle avatars 
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Regarding crowd optimization, there is another optimization done. This one is 

simpler. We can also configure how many avatars update per frame. This is, if we 

have, for instance, 50 avatars and we update 10 per frame, avatars will calculate a 

path and keep moving or whatever they were doing for the next 4 frames. Then, we 

will calculate again the path to see whether there is an obstacle in the path or 

some other thing that changes avatar's behavior. 

Lightning Performance 

In a standard forward rendering pipeline, the lighting calculations have to be 

performed on every vertex and on every fragment in the visible scene, for every 

light in the scene. 

If you have a scene with 100 geometries, and each geometry has 1,000 

vertices, then you might have around 100.000 polygons (a very rough estimate). 

Video cards can handle this pretty easily. But when those polygons get sent to the 

fragment shader, that's where the expensive lighting calculations happen and the 

real slowdown can occur. 

The expensive lighting calculations have to execute for each visible fragment of 

every polygon on the screen, regardless if it overlaps or is hidden by another 

polygon's fragments. If your screen has a resolution of 1024x768 (which is, by all 

means, not very high-res) you have nearly 800.000 pixels that need to be 

rendered. You could easily reach a million fragment operations every frame. Also, 

many of the fragments will never make it to the screen because they were removed 

with depth testing, and thus the lighting calculation was wasted on them. 

If you have a million of those fragments and suddenly you have to render that 

scene again for each light, you have jumped to [number of lights] x 1.000.000 

fragment operations per frame! Imagine if you had a town full of street lights where 

each one is a point-light source... 

The formula for estimating this forward rendering complexity can be written, in 

big O notation, as O (number_geometry_fragments * number_lights). You can see 

here that the complexity is directly related to the number of geometries and number 

of lights. 

Previous calculations work for forward rendering. There is another approach 

which could solve this performance problem, deferred rendering. The complexity of 
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deferred rendering, in big O notation, is: O (screen_resolution * number_lights). 

The way it work is, every geometry is rendered, but without light shading, to 

several screen space buffers using multiple render targets. In particular, the depth, 

the normals, and the color are all written to separate buffers (images). These 

buffers are then combined to provide enough information for each light to light the 

pixels. You can see a comparison on Figure 27. 

 

 

 

 

 

 

 

 

 

Deferred rendering is not always usable, though, because it requires a powerful 

graphics card with enough memory to store, on buffers, all the geometry. 

Therefore, in this application it is not convenient. There is a third approach which is 

to bake the light. To get the lightning effects we can create light maps for all the 

geometry and then, use them on runtime. The advantage of using light maps is that 

the computational cost is negligible, it takes the color from the light map as it would 

do from a texture. The problem comes when you have to mix dynamic objects with 

static objects. Light maps work only with static objects but they do not work casting 

shadows between dynamic and static objects because they can not predict which 

will be the lightning at that point. There is a workaround which is to have mixed 

lights. We have light maps for static objects but one real time light that cast 

shadows. It is not the most realistic approach but gives a big boost on performance 

as we can see on Figure 28 and Figure 29. The first one shows the number of 

batches and SetPass calls of the real time lightning with forward rendering, and the 

last one shows the same stats with forward rendering with one real time light but all 

the other lights, baked.  

 

Figure 27: Forward rendering on the left and deferred rendering on the right 
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Occlusion Algorithm 

The decision of making an occlusion algorithm became when we analyzed the 

environment structure. This is a floor based design, with large floors but also a lot 

of levels. From every level, you can only see the immediate upper and lower floors. 

Taking this information and graphics pipeline into account, we decided to disable 

ship parts depending on user's floor. This is, if user is at 4th floor, the only active 

floors will be 5th and 3rd, reducing this way, the number of vertices to process in 

the pipeline. We have a comparison of the number of batches and SetPass calls 

between occlusion script activated and disabled, on Figure 29 and Figure 30. We 

could improve even more the algorithm, disabling parts of the current floor 

depending on the user's position, but it would increase the complexity of the 

algorithm too much for this project and, the already existing optimization in 

combination with the other ones, will be enough to run the application. 

 

 

 

 

 

 

 

 

  

 

Figure 30: Performance on runtime, with baked lights and own occlusion gorithm 

 

Figure 29: Performance with baked lights 

 

Figure 28: Performance before baking lights 
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Hammocks on Navigation Mesh 

This optimization is quite simple but helped to reduce the complexity of the 

navigation mesh. As we can see on Figure 31, there are much less black lines 

than on Figure 32. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Black lines represent the triangles on the navigation mesh, used to predict the 

walkable surfaces. The thing is, there are a lot of hammocks on this ship and they 

are walkable, as the ground is, and they are always on top of floor surface, 

therefore, they should be always walkable. Removing them before performing the 

bake and enabling them right after, makes the baking algorithm not to take them 

into account, leading to a reduction in complexity.  

 

Figure 31: Navigation mesh without hammocks included 

 

Figure 32: Navigation mesh with hammocks included 
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Backface-Culling 

Backface-culling algorithm is used to avoid painting hidden faces. By default, 

the standard shader applied to the materials in Unity, have it activated but, it is not 

like the backface-culling from graphics pipeline, which processes the fragment and 

then decides whether to paint it or not, the backface-culling implemented on Unity's 

default shader works independently of the user's camera. This one only draws the 

mesh if you are seeing it in the normal's direction. The problem comes when you 

have to place walls for the rooms, because you need to see those walls from both 

sides, but the shader just draws the face in one direction. To avoid this optimization 

on some cases, we had to rewrite the shader and apply it in some cases. The only 

needed line was this one: “Backface Off”. We could see an example on Figure 33.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We are only seeing the walls whose normal is pointing to the camera but we do 

not see the other walls. 

  

 

Figure 33: Example of backface-culling 
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Visual Optimizations  

At this point, we have to think about how big a ship can be. That means, a lot of 

floors and staterooms, as well as bathrooms, furniture, pictures and all kind of 

common decoration. Having this statement into consideration, we have to count 

how many polygons a room could have, including all kind of furniture and 

decoration. For example, the main room of the application, the one with bedroom 

and bathroom, has around 4 rectangular walls per room, 4 rectangular pieces for 

the roof per room as well as doors, door joints and window. Two out of those 4 

walls per room, have even more triangles and vertices than the rest because they 

need to leave a hole for the door like the one of Figure 34. 

 

 

 

 

 

 

 

 

 

 

 

Each one of those rectangles has an average of 50 triangles, taking into 

account the special squares. Then, we have to include door's triangles and all the 

furniture such as lamps, apples, night tables and bed. Then, we have the shower, 

water and all the typical furniture from bathrooms such as closets. Adding all these 

vertices, it gives a sum of more than 3.500 vertices. This problem made us think 

about which is the goal of the application's user when we decided to reduce the 

number of details on most of the rooms.   

 

Figure 34: Wall with door hole. 
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The goal is to get to a safe zone, therefore, users will not spend too much time 

inside any room as there will not be any way out. Therefore, the optimization 

consists on removing all the bathrooms from all the rooms except for the main 

room. To simulate a bathroom on all other rooms, there is a closed door inside 

each room. That way, it looks like there could be the bathroom but there is nothing, 

actually. A similar optimization was performed in a bigger scale. This is, there are 

some furnished rooms and some others which are empty. 

The way we proceeded is the following, the empty rooms have double door, 

this is, you get into a very small room which has another door inside that would 

lead you to the real room but this second door is always closed. That is useful to let 

some avatars leave this fake room and let the user think there are a lot of rooms 

even though there are just a few real rooms. We left the ship with about 100 

furnished rooms and 150 empty ones. 

On furnished rooms without bathroom we are saving around 1.700 vertices and 

we are saving around 3.000 vertices on empty ones, giving it a save of around 

620.000 vertices. Into visual optimizations we could include those relative to 

textures such as bump mapping, also called normal maps. 

That consists on adding a normal texture to any material and then, adding an 

additional texture called normal map, which is usually drawn in black and white 

colors. The darker or closer to black the color is, the deeper the surface is 

supposed to be. That way, you can avoid creating circular (or any other shape 

which is not straight) thus saving a lot of vertices getting the same visual effect. 
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5 Experimenting 

The idea of the project was to run an experiment with a limited number of 

users, to analyze different behaviors depending on application's setup. This 

experiment will be run right after the project ends, thanks to the developing made 

during the project's time. To run this experiment we will require at least 30 

participants, because we will have three different setups, resulting into 10 different 

users per setup. This is a small amount but will be useful to see and analyze 

different behaviors depending on the application's settings. In order to compare the 

results between the three setups, we had to take different marks whose we can 

measure. Those marks are: Total distance, number of loops and total timing. First 

two marks depend on a concept called mind map. 

5.1  Mind Map 

A mind map (mindmapping.com, 2017; Inspiration Software, Inc., 2017) is a 

diagram used to visually organize information. A mind map is hierarchical and 

shows relationships among pieces of the whole. It is often created around a single 

concept, drawn as an image in the center of a blank page, to which associated 

representations of ideas such as images, words and parts of words are added. 

Major ideas are connected directly to the central concept, and other ideas branch 

out from those. 

The easiest way to determine the user's mind map was to trace the user's 

movement while the application is running. The way to achieve that, was to add 

triggers on every corner of the ship, on every floor and also at the beginning and 

ending of every stairs, as well as at the middle of long halls. That way, every time 

the user stepped into any of those triggers, we keep add this number to the steps 

array, saving this way the user's path. Figure 35 shows an example of the triggers 

location on floor 2 

 

.   
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Thanks to this implementation of mind map, we can create a directed graph at 

the end of the play, knowing the total traveled distance by the user, as well as the 

amount of loops the user has done. With those two parameters plus the total 

timing, we can evaluate different users with different application's setup. 

5.2 Experiment Setups 

The application itself was designed and chosen to run an experiment. This 

experiment consist on trying different settings when evacuating the ship, to 

compare different timings and also to compare the resulted mind map between 

different executions with different settings. We have chosen three different setups 

for the experiment. All the experiments will begin with the user at his stateroom and 

the alarm beeping. The difference between the different setups are the following: 

1. There will be no interaction between the user and the other avatars. You will 

see them walking and running when they perceive danger, but there will not 

be any kind of audible or visible communication between the crowd and the 

user. 

2. On this setup, the user will be walking around the ship, as he would do on 

first case, but avatars will be randomly yelling something like: “Come, this is 

the way out” or “The exit is here!” to the user if they are close to each other. 

With this setup, we want to experience if the user gets influenced by the 

crowd or not and we want to see if the user follows those users who tell him 

where is the exit.  

 

Figure 35: Mind points representation of floor 2 
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3. The third case scenario will be similar to the second one except for one 

thing: avatars who will be yelling things to the user when they get close, will 

be only those with staff's cloths, which means they belong to the ship's staff 

thus they are more trustable. This case was designed to analyze whether 

the user follows those instructions with higher chances if they come from 

ship's staff rather than normal people. This setup will require us to create 

another kind of avatar who will be wearing shining cloths, with any 

watermark showing that they belong to the ship's staff. To change the 

avatar's cloth we will use Adobe Fuse again to edit it and, to change cloth's 

color and to add those ship's brand watermark, we will edit the texture 

manually. 

 

 

 



 

46 

 

 

 

  



 

47 

 

 

 

 

 

 

 

 

 

 

 

6. PROJECT MANAGEMENT 

 

 

 

  



 

48 

 

 

 



6. PROJECT MANAGEMENT 

49 

6 Project Management 

6.1 Social Impact 

The project itself does not have a direct social impact but, if we consider the 

objective of this project, we could say that this project can be useful for future 

experiments and tests to improve evacuation plans, to increase the chances of 

surviving on an accident like this one, which already happened in real life, where 

Titanic is the most known example. With the base of this project, it would be very 

easy to modify it or adapt it to another environment or situation, or even change the 

parameters like the map's locations (if any), the blocked rooms or floors, or the 

ship's staff behavior, to find out better evacuation plans and strategies. 

About sustainability, this project is sustainable because it will not require any 

real environment like a big ship. All the problems like breaking the ship, will only 

happen virtually, therefore, there will not be any real impact on that side. It only 

requires hardware to run the experience and the software which is being 

developed by me. We could take into consideration, the effect that my hardware 

produces on the environment when recycling or not those items, but this discussion 

would be large enough for another thesis. Therefore, we only took into account the 

predictable facts. 

6.2 Timing Planning 

The estimated project duration is approximately 6 months. The project started 

on January 7th, 2017 and the deadline is on June, between 16th and 21st, 

depending on presentation date. 

6.2.1 Project Iterations Planning 

The main objective of this phase is to predict, as accurate as possible, the 

timings, so we can predict how will be looking the finished project and how many 

things we will be able to include on it. 

The timings are hard to predict because of all the possible setbacks, therefore, 

the planning will consist on several iterations, this is, we will detail the basic phases 
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and, from there, we will keep improving all the project. The iterations, sorted by 

relevance, are the following: 

1. Initial setup: This phase consists on getting a 3D model describing the 

environment. In this case, a 3D ship model. We also need to design all 

the hallways of each floor of the ship, which rooms will be visible or not 

(because of resources limitation, to get a proper performance). 

2. Setting up all the avatars: The project itself consists on several avatars 

to generate the crowd simulation. On this phase we should get low 

polygon avatars (3D models representing real people, made with few 

triangles to increase performance). We should get or create some 

animations to simulate the movement of those avatars. 

3. Basic crowd simulation: On this phase we should start creating a 

basic algorithm to give each avatar a basic artificial intelligence to avoid 

colliding with other avatars, walls and so on (also called Path Finding 

algorithm). We will also create an algorithm that enables or disables 

different floors and other visual elements of the ship, depending on your 

location, to improve the performance, reducing the amount of geometry 

the hardware has to process. 

4. Movement: At this point we will implement the user's movement. You 

will be able to move using a small joystick and looking around. We will 

implement the “mind map” representation to store the user's mental map 

when doing the simulation. 

5. Adding floors: Once all the previous steps are complete, we will add at 

least two more floors (from the start one to the surface), and adapt the 

previous algorithms for this improvement, so avatars will be able to go 

upstairs and downstairs as well as the user. 

6. Background history: This step is about adding sense to the 

application. This is, from the beginning, you will be explained how to 

move (kind of tutorial inside the application), then you will be able to 

move around with another avatar which will be supposed to be your 

friend. Then, at some point, an alarm will start beeping and the 
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simulation will begin. We will check real evacuation process to make it 

more realistic. 

7. Finishing all details: This is a long step but it’s only important and 

related to how beautiful the application will get. This is, adding all the 

remaining floors, adding some good looking textures to the walls, roof 

and floor (images to simulate the wood of the ground or the walls of the 

ship). 

6.2.2 Estimated Time per Iteration 

Planning, writing and checking correctness          60h 

Iteration 1                         60h 

Iteration 2                         35h 

Iteration 3                         90h 

Iteration 4                         45h 

Iteration 5                         25h 

Iteration 6                         45h 

Iteration 7                         100h 

Running some tests, debugging and getting everything ready 70h 

Total: 530 Hours. 

6.2.3 Possible Obstacles and Workarounds 

We might find problems when building the application. Those problems might 

be related to different points. One of the main potential problems is the efficiency 

problem. The simulation we want to build relies on a lot of resources and Samsung 

S7 Edge (Samsung Electronics, 2016) in combination of Gear VR might not be 

enough to run such experiment. The possible solutions in this scenario would 

consist on reducing the complexity of the application to make it lighter. This 

reduction could be, for example, reduce the total polygons of the scene or the 

number of simulated avatars. Other possible solution to avoid these reductions 

could be switching to another platform, like Oculus Rift or HTC Vive. 
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There might appear bugs too but thanks to the current debugging tools, there 

should not be any bug that slows me down for too long. If it happened, we would 

try to find a workaround. Of course, there will be some problems that will make me 

lose more time than expected, if that problem gives me a very big delay, thanks to 

the iterations way of working, we could take some hours from the last iteration and 

use them in previous iterations for fixing problems. The way we have ordered the 

priorities, it means that the project would not be that perfect but it would be 

complete. 

6.3 Development Tools 

This project needs several tools. The selected tools are not the only available 

to accomplish what we wanted or needed but, after evaluating different softwares, 

the following are my choices: 

• Unity3D: This is the main tool. Most part of the project is going to be 

developed with this platform. We had different game engines such as 

Unreal Engine or CryEngine (Epic Games, Inc, 2017; Crytek GmbH, 2017), 

to compare and, actually, unity is not considered the most efficient but, this 

is the one we feel most comfortable with and, thanks to the optimizations 

that we will be applying, it should be efficient enough. 

• Blender: This is the modeling software. It is used to model the ship, as 

well as dividing the ship parts into smaller pieces and creating small 

structures or items to decorate the ship, for instance, the stairs that 

connect the different floors. This modeling software is probably not the best 

one but, compared to other software such as Maya or 3dMax, which are 

not free (although they have free version for students), this one is free and 

Open Software, which makes it more attractive. 

• Visual Studio 2015: This tool helps me writing and compiling scripts for 

the application. It is the most recommended code editor to work with unity, 

because of the compiler and the debugger (Microsoft Corporation, 2017). 

• Adobe Fuse and Mixamo: These tools are going to be very useful to get 

rigged avatars and animations. They are free, yet, and very easy to use. 
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• Github: This tool will help me to keep the project safe and always 

accessible (Github, 2017). 

6.4 Budget Monitoring 

6.4.1 Hardware and Software Budget 

The required or used hardware in order to develop this project is the following: 

Hardware: 

• Samsung Galaxy S7 Edge – 590€ 

• Gear VR – 40€ 

• Oculus Rift / HTC Vive – 700€ for the first, 900€ for the second 

• Desktop Computer with the following components (plus the basics, mother 

board, monitor...) – 1650€ 

◦ Processor: Intel i7-6700 

◦ Graphics card: Gigabyte GTX 1070 with 8GB dedicated 

◦ RAM: 2x 8GB 2133Mhz, DDR4 

◦ SSD Disc: Kingston UV400 

Software: 

• Visual Studio 2015 – Free (student version) 

• Unity3D – Free (if less than 200.000$ of income per year) 

• Android SDK – Free  

• Oculus SDK – Free 

• Adobe Fuse – Free 

• Blender – Free 

• Github account – Free 

• Open Apache Office – Free (The Apache Software Foundation, 2017) 
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6.4.2 Human Resources Budget 

For the human resources economic management, we will evaluate the amount 

of money paid, in average, to a computer science student. We will also take into 

account the expected project length, which is 530h. The average payment for an 

employee who is about to finish his degree, could be 18€/h7 (12€ of income for the 

employee plus 6 of cost to the enterprise for Social Security fees), therefore, we 

have this calculation: 530 * 18 = 9540€. 

6.5 Relation to Computation Branch 

6.5.1 Relation to Computer Science 

The project is based on graphics and efficiency. We had to evaluate different 

hardware systems to decide which one could fit better for our purpose. We also 

had to evaluate the complexity of adding different components such as path-

finding, 3D sounds, and some other features, to decide whether it was viable or not 

to add them. We also had to choose between different game engines such as 

Unity3D or Unreal Engine, depending on their features and efficiency. There is a 

huge part of the project that relies on AI, from avatar's behavior to algorithms to 

improve performance such as the occlusion algorithm. It also has an important 

dependence of graphics and 3D modeling, as the project itself is visual, more 

specifically, Virtual Reality. We also had to analyze the objective hardware to use it 

when implementing some of the application's features, such as deciding whether to 

use forward or deferred rendering, as it depends on the graphics card. Overall, this 

project was possible thanks to the knowledge acquired on computer science 

degree.  

                                                      
7 Source: http://www.pagepersonnel.es/sites/pagepersonnel.es/files/er_tecnologia16.pdf 

http://www.pagepersonnel.es/sites/pagepersonnel.es/files/er_tecnologia16.pdf
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6.5.2 Related Competences 

• CCO1.1: “Avaluar la complexitat computacional d'un problema, conèixer 

estratègies algorísmiques que puguin dur a la seva resolució, i recomanar, 

desenvolupar i implementar la que garanteixi el millor rendiment d'acord 

amb els requisits establerts [Bastant]”. 

• CCO1.2: “Demostrar coneixement dels fonaments teòrics dels llenguatges 

de programació i les tècniques de processament lèxic, sintàctic i semàntic 

associades, i saber aplicar-les per a la creació, el disseny i el 

processament de llenguatges [Bastant]”. 

• CCO1.3: “Definir, avaluar i seleccionar plataformes de desenvolupament i 

producció hardware i software per al desenvolupament d'aplicacions i 

serveis informàtics de diversa complexitat [Una mica]”. 

• CCO2.1: “Demostrar coneixement dels fonaments, dels paradigmes i de 

les tècniques pròpies dels sistemes intel·ligents, i analitzar, dissenyar i 

construir sistemes, serveis i aplicacions informàtiques que utilitzin 

aquestes tècniques en qualsevol àmbit d'aplicació [Bastant]”. 

• CCO2.2: “Capacitat per a adquirir, obtenir, formalitzar i representar el 

coneixement humà d'una forma computable per a la resolució de 

problemes mitjançant un sistema informàtic en qualsevol àmbit d'aplicació, 

particularment en els que estan relacionats amb aspectes de computació, 

percepció i actuació en ambients o entorns intel·ligents [En profunditat]”. 

• CCO2.6: “Dissenyar i implementar aplicacions gràfiques, de realitat virtual, 

de realitat augmentada i videojocs [En profunditat]”. 

• CCO3.1: “Implementar codi crític seguint criteris de temps d'execució, 

eficiència i seguretat [En profunditat]”. 

• CCO3.2: “Programar considerant l'arquitectura hardware, tant en 

asemblador com en alt nivell [Bastant]”. 
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7 Summary and Recommendations for Further 

Studies 

The project can be considered complete after all the work done on it. To 

summarize it, we could say that the experiment is ready to run once we find the 

users and it was efficient enough to run it at a decent frame rate on HTC Vive. It 

required some optimizations to make it runnable as it was running very slow 

without any of the optimizations.  

This project helped a lot to study Unity3D programming system and 3D in 

general. We found some difficulties optimizing the lights because Unity3D released 

a new system to bake lights on their latest version. This is called progressive 

baking. Initially, the baking of the lights was very slow even on a desktop computer 

with latest available hardware but it was worth it as we found out that lightning was 

the most noticeable optimization, this is, the one that increased the most the 

frames per second, as well as the one that lowered the most the number of draw 

calls. 

We had some other issues implementing scripts and programming all the 

triggers, but we found easy ways to fix the problems or to find a workaround, 

making it possible to finish the project on time. 

On the other hand, we could have implemented some other impressive 

features such as to simulate boarding before the alarm begins or better 

communication between avatars and the user. 

Some other realistic features that will take the user closer to the reality, would 

be to simulate some furniture floating, and water raising while the time passes. 

7.1 Future Work 

Future work would be related to improve the realism of the application, increase 

the interaction with the avatars and also to create the embodiment effect with body 

tracking. There are already some labs doing research on this field, to make the 

user feel the virtual reality more real, but that topic was out of our scope as it would 

require much more time to study human reactions with different kind of 

embodiments. 
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Another point to improve would be to create a story before the danger begins. 

That way, the user would be capable of getting used to the environment before he 

has to find the way out. Finally, to make more profitable experiments, the number 

of different setups for the experiment should grow, adding different parameters and 

different marks to compare each setup and execution. 

This project is useful to study questions like “Do you belief in other people?”. 

But, it can be also the beginning of any other project to study several questions 

such as: 

• At what point do you perceive the danger? When Do you realize there’s an 

emergency situation? 

• How long does a human to realize he has to leave the place because there 

is a real danger? 

• What is the average first reaction when the alarm sounds? 

• Do you react according to your mental map? Are you influenced by 

noises? 

The overall is that the project was successful even though we had not run the 

experiment yet, because we will be able to study and analyze people's behavior 

once we run it. 

7.2 Personal and Academic Endings 

This project helped me to work on a current topic. That way, I could see from 

own point of view the gratification of creating a personal and unique project, where 

the obtained results will become part of scientific knowledge in our society. 

On the other hand, this project will be useful to study different evacuation plans, 

making it possible to improve the current system thus to make it safer. 

This project also helped me to find out how it feels to work on a research 

project and, even if it is not close enough to a PhD, that helped me to get a small 

idea of it.  

Overall, I can say that my assessment of the project was positive and it was 

satisfying to work on that. 

 



 

61 

 

 

 

 

 

 

 

 

 

 

 

8. REFERENCES 

 

 

  



 

62 

 

 

 

 

 



8. REFERENCES 

63 

8 References 

Adobe Systems Incorporated. (2017). Mixamo. Obtained at 
https://www.mixamo.com/ 

Adobe Systems Incorporated. (2017). Mixamo. Obtained at 
https://www.mixamo.com/fuse 

Blender Foundation. (2017). Blender. Obtained at 
https://www.blender.org/foundation/ 

Burdea, G. (1996). Haptic Feedback for Virtual Reality. The State University of 
New Jersey, 1-11. 

CadNav.com. (2017). 3DCadNav. Obtained at http://www.cadnav.com/3d-
models/model-26583.html 

Carlin, A. (February of 1997). Virtual reality and tactile augmentation in the 
treatment of spider phobia: a case report. Behaviour Research and Therapy, 
35(2), 153-158. 

Crytek GmbH. (2017). CryEngine. Obtained at https://www.cryengine.com/ 

Epic Games, Inc. (2017). Unreal Engine. Obtained at 
https://www.unrealengine.com/what-is-unreal-engine-4 

Giga-Byte Technology Co., Ltd. (2017). Gigabyte. Obtained at 
https://www.gigabyte.com/Graphics-Card/GV-N1070G1-GAMING-8GD#kf 

Github. (2017). Github. Obtained at https://github.com/ 

HTC Corporation. (2017). HTC. Obtained at https://www.vive.com/eu/product/ 

Inspiration Software, Inc. (2017). Inspiration Software. Obtained at 
http://www.inspiration.com/visual-learning/mind-mapping 

Intel Corporation. (2017). Intel. Obtained at 
https://www.intel.es/content/www/es/es/products/processors/core/i7-
processors.html 

Kingston Technology Europe Co LLP. (2017). Obtained at 
http://www.kingston.com/es/ssd/consumer/suv400s3 

LOOXIS GmbH. (2017). Looxis Faceworx. Obtained at 
http://www.looxis.de/de/looxis-faceworx-tool 

Microsoft Corporation. (2017). Visual Studio. Obtained at 
https://www.visualstudio.com/es/ 



8. REFERENCES 

64 

Mindmapping.com. (2017). Mindmapping. Obtained at 
http://www.mindmapping.com/mind-map.php 

Nurislamovich Latypov, N., & Nurislamovich Latypov, N. (december of 1999). 
Obtained at https://www.google.com/patents/US6005548 

Oculus VR, LLC. (2017). Oculus Rift. Obtained at https://www.oculus.com/rift/ 

Pelechano Gómez, N. (2006). Modeling realistic high density autonomous agent 
crowd movement: social forces, communication, roles and psychological 
influences. Pennsylvania: University of Pensnsylvania. 

Pelechano, N., & Badler, N. (January of 2006). Modeling Crowd and Trained 
Leader Behavior. Obtained at 
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1288&context=cis_p
apers 

Reynolds, C. (1997). Red3D. Obtained at http://www.red3d.com/cwr/steer/ 

Reynolds, C. (2001). Red3D. Obtained at http://www.red3d.com/cwr/boids/ 

Robertson, A. (June of 2014). The Verge. Obtained at 
https://www.theverge.com/2014/6/13/5805628/at-e3-virtual-reality-goes-
beyond-goggles 

Rubin, J., & Crockett, R. (2012). AXONVR. Obtained at http://axonvr.com/ 

Samsung Electronics. (2016). Samsung. Obtained at 
http://www.samsung.com/es/smartphones/galaxy-s7-g930f/SM-
G930FZKAPHE/ 

Stone, R. (2001). Haptic feedback: a brief history from telepresence to virtual 
reality. (S. Brewster, & R. Murray-Smith, Edits.) Berlin. 

The Apache Software Foundation. (2017). Apache Open Office. Obtained at 
https://www.openoffice.org/ 

The GIMP Team. (2017). Obtained at https://www.gimp.org/ 

United States Code sections. (2016). Emergency Evacuation Plan. En Navigation 
and Navigable Waters (págs. 140-146). United States: DEPARTMENT OF 
HOMELAND SECURITY, Coast Guard. Obtained at 
https://www.law.cornell.edu/cfr/text/33/146.140 

United States Departament of Labor. (2017). Occupational Safety and Health 
Administration. Obtained at 
https://www.osha.gov/SLTC/etools/evacuation/evac.html 

Unity Technologies. (2017). Unity 3D. Obtained at https://unity3d.com/es 



8. REFERENCES 

65 

van der Meijden, O., & Schijven, M. (2009). The value of haptic feedback in 
conventional and robot-assisted minimal invasive surgery and virtual reality 
training: a current review. Surgical Endoscopy, 23: 1180. 

 

 

 



 

66 

 

 

 

 

 

 

 

 

 

 


