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Abstract	
Electric	vehicles	are	growing	at	a	significant	rate	in	the	world	and	that	makes	it	essential	
for	modern	 day	 electricity	 networks	 to	 be	 prepared	 for	 their	 integration.	 A	 common	
approach	of	preparing	 the	network	 for	any	kind	of	demand	 is	 to	be	able	 to	predict	or	
estimate	the	same	based	on	data	and	simulations	using	optimization	techniques.	
	
This	work	was	aimed	at	the	same	in	two	distinct	parts.	In	the	first	part,	game	theoretic	
methods	 were	 tried	 to	 be	 applied	 to	 an	 existing	 multi	 agent	 probabilistic	 model	
estimating	net	demand	from	electric	vehicle.	Owing	to	the	complexity	of	the	undertaking,	
it	 was	 decided	 to	 only	 include	 a	 payoff	 based	 allocation	 of	 electric	 vehicle	 charging	
scenarios	to	estimate	electric	vehicle	demand	which	accounted	for	all	scenarios	rather	
than	all	vehicles	charging	in	a	single	scenario.	In	the	second	part,	a	smaller	scenario	of	an	
affluent	 household	 with	 two	 electric	 vehicles	 and	 typical	 mobility	 pattern	 was	
formulated.	Game	theory	solution	concept	of	Nash	Equilibrium	was	used	to	optimize	the	
charging	of	both	electric	vehicles	over	a	week	of	usage.	
	
The	results	from	the	first	part,	displayed	an	overall	reduction	in	maximum	loads	while	
there	were	certain	shifts	in	loads	observed	as	well.	As	an	exercise	without	any	inherent	
optimization	mechanism	 the	overall	 results	 from	this	 segment	were	 inconclusive.	The	
results	 from	the	second	part,	demonstrated	needs	 for	charging	the	EVs	shifting	to	off-
peak	hours	and	charging	of	vehicles,	a	maximum	of	1-2	times	per	week	based	on	user	
range	 anxiety,	 game	 theoretic	 competition	 and	mobility	 needs.	 Further,	 savings	 from	
charging	at	off-peak	tariffs	based	on	time	of	use	electricity	tariffs	were	also	evaluated.	
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1. Preface	
 
This	project	came	about	as	a	master	thesis	based	on	available	positions	at	CITCEA-	UPC	
for	master	thesis	students	in	the	field	of	electric	vehicles.	A	need	was	felt	to	predict	the	
net	 demand	 from	 Electric	 Vehicles	 (EV)	 as	 the	 same	 can	 help	 the	 grid	 prepare	 for	
scenarios	in	which	electric	vehicles	are	the	norm	and	wide	scale	EV	penetration	can	thus	
be	facilitated.	Previous	attempts	had	been	made	to	estimate	the	net	load	from	privately	
owned	EVs	and	the	motivation	behind	undertaking	this	study	is	to	see	if	the	application	
of	a	new	approach	namely	game	theoretic	methods	can	better	help	in	simulating	the	load	
from	EVs	and	present	results	which	are	closer	to	the	actual	data.	It	was	decided	to	utilize	
data	 and	 algorithms	 from	 [1]	 to	 run	 simulations	 and	 compare	 results	 to	 obtain	 an	
understanding	as	to	which	method	is	better	suited	and	delivers	results	closer	to	real	life	
scenarios.	While	that	does	form	a	part	of	this	work,	the	complete	implementation	of	the	
estimation	 of	 the	 electric	 vehicle	 demand	 using	 the	 previous	work	 by	 applying	 game	
theory	to	the	agent	based	probabilistic	model,	could	not	be	possible	due	to	reasons	of	
complexity.		
	
Further	discussions	with	 the	supervisor	resulted	 in	 the	project	evolving	 to	a	 two-step	
undertaking.	In	the	first	step,	it	was	decided	that	the	model	from	[1]	would	be	modified	
to	account	for	all	kinds	of	charging	strategies	simultaneously.	In	the	second	step,	it	was	
decided	to	formulate	a	household	scenario	comprising	of	two	EVs	and	using	game	theory	
to	predict	the	schedule	and	demand	of	electric	vehicle	charging.	
	
Topics	which	were	studied	as	part	of	this	endeavor	to	apply	game	theoretic	methods	to	
electric	 vehicle	 charging	 include,	 types	 of	 games,	 game	 theory	 logic	 and	 algorithms,	
solution	concepts	including	Nash	equilibrium,	pareto	optimality	amongst	other.	It	will	be	
attempted	to	use	Nash	equilibrium	as	the	solution	concepts	to	identify	optimal	strategies	
which	suit	all	players	in	the	given	scenario.	
	
Initial	studies	during	the	internship	carried	out	previously	involved	research	on	electric	
vehicles	and	game	theory	 to	build	a	 foundation	 for	 the	master	 thesis.	This	research	 is	
presented	in	part	to	give	the	reader	an	understanding	and	background	on	the	necessary	
technical	aspects	of	this	work.	
	
Thus,	 in	 totality,	 this	 master	 thesis	 work	 brings	 together	 electric	 vehicle	 technology,	
demand	modeling	and	game	theory	under	a	single	umbrella	to	obtain	useful	 insight	in	
this	domain.	
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2. Introduction	
At	the	outset	of	this	project	it	was	decided	to	attempt	to	utilize	game	theory	to	model	the	
net	electric	vehicle	charging	demand	from	privately	owned	EVs.	In	the	technical	section	
of	this	report,	we	will	at	first	go	through	the	basics	of	electric	vehicle	technology,	the	state	
of	art	of	the	technology	and	infrastructure	pertaining	to	EVs,	identify	all	the	stake	holders	
in	the	EV	scenario	and	look	at	regulations	and	initiatives	in	different	countries	regarding	
EVs.	Thereafter,	we	will	proceed	to	survey	technical	aspects	which	are	involved	in	this	
study	 and	 are	 necessary	 to	 formulate	 the	 algorithms	 for	 this	 work.	 This	 will	 include	
details	on	the	electric	vehicles	used,	research	on	demand	models,	applications	of	game	
theoretic	concepts	in	the	electric	power	sector	and	more	specifically	to	electric	vehicles	
and	 their	 charging	 and	 game	 theoretic	 modeling	 concepts.	 Post	 this	 we	 present	 an	
approach	to	create	models	and	simulations	based	on	our	learning	and	available	data.	First	
up,	in	the	next	sections	we	go	through	the	basics	of	electric	vehicle	technology.	

2.1. Introduction	to	Electric	Vehicles	
An	electric	vehicle	 is	an	automobile	which	uses	electric	motors	or	 traction	motors	 for	
propulsion	of	the	vehicle.	EVs	technically	 include	both	rail	and	road	transport,	surface	
and	underwater	vessels	as	well	as	air	 transport	mediums	but	 for	 this	report	 the	 term	
electric	vehicle	or	EV	will	refer	to	just	road	transport.	The	electrification	of	all	modes	of	
transportation	 is	one	of	 the	key	approaches	 to	 tackle	 the	 issue	of	climate	change.	The	
continual	 adoption	of	 EVs	 into	markets	worldwide	 involves	multiple	 aspects	 bringing	
together	 impacts	on	the	power	grid,	development	of	powertrain,	battery	and	charging	
technologies,	as	well	as	policy	and	regulation	in	different	part	of	the	globe.	In	this	section,	
we	will	look	at	these	multiple	aspects	in	detail	and	understand	the	current	state	of	affairs	
in	these	aspects.		
	
The	 focus	 on	 EV	 development	 has	 been	 on	 powertrains,	 batteries	 and	 charging	
equipment	 or	 electric	 vehicle	 supply	 equipment	 (EVSE).	 In	 order	 to	 meet	 various	
requirements	 of	 the	 automobile	 industry	 such	 as	 fuel	 economy,	 different	 powertrain	
setups	 are	 tried	 for	 hybrid	 vehicles	 such	 as	 series,	 parallel	 and	 series-parallel	
configurations.	Advances	have	also	been	made	on	the	electric	motor	used	to	drive	the	
vehicle	or	to	support	operations.	All	these	developments	have	resulted	in	vehicles	with	
better	 fuel	economy	and	higher	efficiency.	Battery	technology	meanwhile,	has	evolved	
from	lead	acid	to	nickel	based	and	now	to	lithium	ion	based	batteries	in	a	quest	to	develop	
batteries	 which	 have	 higher	 energy	 density	 and	 higher	 power	 density	 along	 with	
properties	of	being	lightweight	and	durable.	Similarly,	charging	stations	have	progressed	
from	slow	chargers	 to	 fast	chargers	 to	address	 the	 limitation	of	 low	range	on	EVs.	All	
these	developments	in	EV	technology	have	resulted	in	a	faster	adoption	of	EVs	globally,	
more	so	in	developed	nations	and	nations	which	are	leading	the	way	in	implementation	
of	 EVs.	 This	 can	 be	 seen	 in	 Fig.	 1	 from	 the	 Global	 EV	 Outlook	 2016	 report	 by	 the	
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International	 Energy	 Agency	 which	 is	 an	 autonomous	 energy	 consortium	 with	 29	
member	countries.	

	
Figure	1:	Global	Growth	of	Electric	Vehicle	Stock	from	2010	to	2015	[2]	

In	the	following	sections,	we	will	cover	the	aspects	of	basic	EV	technology,	categories	of	
EVs,	 batteries,	 charging	 infrastructure	 and	 EVSE,	 and	 policy	 and	 regulation	 regarding	
EVs.	To	get	some	better	perspective	and	understanding	of	the	EV	scenario	globally,	we	
will	 also	 look	 at	 some	number	 and	progression	 of	 different	 parameters	 over	 years	 of	
research	and	development.	Let	us	now	look	at	the	different	categories	of	EVs	and	their	
characteristics.	

2.1.1. EV	Technology	Basics	
	
In	 terms	 of	 EV	 technology,	 there	 is	 a	 distinct	 differentiation	 between	 the	 technology	
employed	 in	 traditional	 internal	 combustion	 engine	 (ICE)	 powered	 vehicles	 and	 the	
different	types	of	EVs	i.e.	hybrid	electric	vehicles	(HEVs),	plug-in	hybrid	electric	vehicles	
and	battery	electric	vehicles	 (BEVs).	 It	 is	assumed	 that	 the	reader	 is	 familiar	with	 the	
operation	of	traditional	ICE	powered	vehicle	and	in	this	section,	we	will	only	describe	the	
additional	 technology	 that	 goes	 into	 EVs.	 While	 HEVs	 and	 PHEVs	 retain	 the	 ICE	
components	but	add	certain	electric	drive	components,	BEVs	 include	only	 the	electric	
drive	components.	In	this	section,	we	will	discuss	the	components	of	BEVs	as	these	will	
be	more	or	 less	applicable	 to	 the	other	types	of	EVs.	The	other	types	of	EVs	and	their	
functioning	and	layout	is	described	in	the	next	section.	
	
A	 Battery	 Electric	 Vehicle	 or	 BEV	 (also	 called	 a	 pure	 electric	 vehicle)	 consists	 of	 the	
following	three	component	systems:	
	
1. The	drive	system:	A	traction	motor	forms	the	central	part	of	the	drive	system	of	an	EV.	
The	most	efficient	design	is	to	place	the	motors	directly	at	the	wheel.	These	are	then	
referred	 to	 as	wheel	motors.	 Three	 types	 of	motors	 are	 primarily	 used	 for	 the	 EV	
applications.	These	are:	DC	brush	type	motor,	DC	brushless	permanent	magnet	motor	
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and	AC	induction	motor.	A	detailed	discussion	of	these	types	of	motors	is	beyond	the	
scope	of	this	report.	
	

2. The	battery	 system:	An	electric	 vehicle's	battery	determines	 its	 range,	 acceleration	
capability	and	recharge	specifications.		
	

3. The	control	system:	The	control	system	is	responsible	for	overlooking	the	operation	
of	 the	electric	vehicle.	 It	 comprises	of	a	microprocessor	 just	 like	a	computer	and	 is	
often	referred	to	as	the	on-board	computer.	Based	on	feedback	signals	and	employing	
a	whole	 range	 of	 power	 electronics	 the	 control	 system	 controls	 the	 functioning	 of	
different	components	of	the	EV.		

The	above	components	can	be	said	to	be	common	to	both	PHEVs	and	BEVs	however	their	
placement	and	functioning	maybe	significantly	different.	Let	us	now	proceed	to	look	the	
different	 types	 of	 EVs	mentioned	 previously	 and	 understand	 the	 differences	 between	
them.	

2.1.2. Types	of	Electric	Vehicles	
	
EV	classification	depends	primarily	on	the	extent	to	which	electricity	is	their	main	energy	
source.	Based	on	this	premise	EVs	are	broadly	categorized	as	follows:	
	

2.1.2.1. Hybrid	 Electric	 Vehicles	 (HEVs):	 HEVs	 are	 powered	 by	 both	 a	 fossil	 fuel	 and	
electricity	but	the	electricity	in	this	case	is	generated	by	a	certain	function	of	the	
vehicle	itself	such	as	regenerative	braking.	A	typical	mode	of	operation	involves	the	
HEV	operating	through	the	electric	motor	and	then	the	engine	takes	over	once	the	
load	on	the	vehicle	increases.	The	overall	pattern	of	drive	control	i.e.	electric	or	ICE	
based	is	governed	by	an	onboard	computer	which	is	programmed	to	optimize	the	
switches	from	electric	to	ICE	and	vice	versa	for	best	fuel	economy	and	optimum	
performance.	Examples	of	these	kind	of	vehicles	includes	the	HONDA	Civic	Hybrid	
and	the	Toyota	Camry	Hybrid.	

	
Note:	As	this	kind	of	EV	has	no	scope	of	connection	to	the	grid,	it	is	not	important	for	our	
studies.	It	has	been	mentioned	here	to	just	give	the	reader	a	wholesome	overview	of	the	
electric	vehicle	technology.	
	

2.1.2.2. Plug-in	Hybrid	Electric	Vehicles(PHEVs):	PHEVs	as	the	name	suggest	can	charge	the	
battery	through	both	a	function	of	the	vehicle	i.e.	regenerative	braking	as	well	as	by	
connecting	to	a	charging	outlet.	These	vehicles	are	also	sometimes	referred	to	as	
range	extended	EVs	as	the	ICE	can	recharge	the	battery	as	it	gets	low,	thereby	by	
extending	its	range.	These	EVs	may	chose	electricity	as	the	primary	energy	source	
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or	the	fossil	fuel.	A	good	example	of	the	same	is	the	Toyota	Prius	which	uses	petrol	
as	the	primary	energy	source	while	the	Mitsubishi	Outlander	utilizes	electricity	as	
the	primary	energy	source.	

	
Note:	As	mentioned	earlier,	hybrid	vehicles	(both	normal	and	plug-in)	have	experimented	
with	different	 kinds	of	 powertrain	 layouts	 over	 the	 years.	These	different	 layouts	 are	
shown	below	in	an	image	from	[3]	just	to	give	a	basic	understanding	to	the	reader.	These	
will	not	be	discussed	in	detail	in	this	report	as	the	they	are	not	important	for	estimating	
the	net	charging	demand.		
	

	
	

Figure	2:	Series,	Parallel	and	Series-Parallel	HEVs(a,b,c)	and	PHEVS(d,e,f)	[3]	

2.1.2.3. Battery	Electric	Vehicles(BEVs):	Battery	electric	vehicles	are	fully	powered	by	their	
onboard	batteries	which	can	be	charged	by	plugging	into	charging	outlets.	These	
vehicles	also	employ	techniques	like	regenerative	braking	to	charge	the	battery	but	
aren’t	primarily	dependent	on	it	and	depend	solely	on	grid	energy	for	charging	the	
batteries.	 Fig	 3.	 sourced	 from	 [3]	 demonstrates	 the	 layout	 of	 a	 BEV.	 Common	
examples	of	BEVs	include	the	Tesla	Model	S,	Nissan	Leaf	and	the	BMW	i3.	

	

Figure	3:	Typical	powertrain	layout	for	BEVs	[3]	
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2.1.3. Battery	Technology	
	
The	battery	is	the	central	component	of	an	EV	and	the	increasingly	the	primary	energy	
source	in	PHEVs	and	the	primary	energy	source	in	BEVs	most	definitely.	The	technology	
for	energy	storage	and	batteries	has	posed	a	lot	of	technical	challenges	to	researchers	and	
it	 has	 been	 a	major	 barrier	 in	 the	widespread	 adoption	 of	 EVs.	 	 There	 are	 still	 some	
constraints	on	present	EV	battery	technology,	which	becomes	the	barrier	for	wider	EV	
uptake.	 The	 present	 EV	 battery	 technology	 has	 relatively	 low	 energy	 density	 which	
affects	the	overall	range	of	the	EV	and	thus	making	EVs	a	less	favorable	option	compared	
to	 traditional	 ICE	 powered	 vehicles.	 Additionally,	 the	 cost	 of	 batteries	 is	 high	 which	
results	in	BEVs	and	PHEVs	being	considerably	more	expensive	than	an	ICE	vehicle.	Apart	
from	this	there	are	also	concerns	about	the	degradation	of	the	battery	over	its	life	cycle	
and	 certain	 safety	 features.	 Research	 and	 development	 over	 the	 past	 years	 has	 been	
focusing	on	 increasing	energy	density	and	 reducing	battery	 cost	while	addressing	 the	
above	concerns.	The	following	chart	from	the	Global	EV	Outlook	2016	demonstrates	the	
evolution	of	energy	density	of	EV	batteries	and	how	they	have	gotten	cheaper	over	the	
years.	

	

Figure	4:	Battery	Density	and	Cost	Evolution	[2]	

The	 reason	 for	 the	 increase	 in	 energy	density	 and	 fall	 in	 prices	 of	 EV	batteries	 is	 the	
tremendous	 advancements	 which	 have	 been	 made	 in	 battery	 technology	 in	 order	 to	
achieve	an	end	goal	of	a	battery	with	high	energy	density,	high	power	density,	cheap	and	
durable.	The	evolution	of	battery	technology	started	from	the	use	of	lead-acid	battery	in	
automotive	 applications.	 These	 were	 soon	 replaced	 by	 nickel	 based	 batteries	 which	
included	 nickel-cadmium(Ni-Cd)	 and	 nickel-metal	 hydride(Ni-MH)	 which	 had	 much	
higher	 energy	 density	 than	 the	 lead-acid	 battery.	 However,	 these	 batteries	 had	
drawbacks	such	as	poor	charge	and	discharge	rates	and	efficiency,	which	are	essential	for	
EV	applications.	Furthermore,	the	Ni-Cd	batteries	were	found	to	be	toxic	and	harmful	for	
the	environment.	Around	the	same	time	the	ZEBRA	battery	(sodium-nickel	chloride)	was	
introduced	into	the	EV	industry.	These	batteries	have	high	energy	and	power	density	but	
can	only	operate	at	very	high	temperatures.		
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Post	the	era	of	these	batteries,	lithium	based	batteries	were	introduced	as	EV	batteries	
and	marked	 the	 beginning	 of	 a	 new	 era	 in	 EVs.	 These	 batteries	 are	 one	 of	 the	most	
promising	in	this	field	with	high	energy	and	power	density,	lightweight,	cheap	and	non-
toxic	and	with	fast	charge	rates.	Due	to	these	characteristics,	Lithium	based	batteries	are	
the	most	common	choice	amongst	EV	manufacturers	currently.	For	instance,	lithium	ion	
battery	 packs	 are	 used	 in	 the	 Tesla	 Model	 S,	 Nissan	 Leaf,	 Mitsubishi	 i-MiEV	 and	 the	
Chevrolet	 Volt,	 the	 most	 preferred	 EV	 choices	 currently	 amongst	 customers.	 Some	
categories	of	Lithium-based	batteries	are	lithium-ion(Li-ion),	lithium-ion	polymer(LiPo)	
and	lithium-iron	phosphate(LiFePO4).	It	is	widely	acknowledged	that	the	lithium	based	
battery	 technology	 holds	 the	 potential	 to	 be	 the	 ideal	 battery	 for	 all	 future	 EV	
applications.	
	
Other	battery	technologies	currently	in	experimental	phases	but	known	to	have	promise	
are	lithium-sulfur(Li-S),	zinc-air(Zn-air)	and	lithium-air(Li-air)	of	which	Li-air	and	Zn-air	
have	very	high	energy	densities	and	are	currently	in	prototype	stages	of	development	in	
research.	Fig.	5	illustrates	the	evolution	of	different	EV	battery	technologies	overtime.	
	

	
	

Figure	5:	Development	timeline	of	EV	battery	[3]	

In	the	next	section,	we	will	look	at	EV	charging	infrastructure	and	the	state	of	the	art	in	
the	technologies	pertaining	to	EV	charging	and	different	modes	of	charging.	

2.1.4. EV	Charging	Infrastructure	and	Charging	Technologies	
	
An	EV	charger	or	EVSE	forms	the	essential	interface	between	an	EV	and	the	electric	grid.	
A	charger	is	necessary	because	the	grid	supply	is	in	alternating	current	(AC)	form	while	
the	onboard	electronics	and	battery	are	in	direct	current	(DC)	form.	The	EV	charger	is	
thus	designed	to	rectify	the	high-power	levels	in	AC	to	a	suitable	DC	level	which	can	then	
be	used	to	charge	the	battery.	It	is	often	designed	as	an	AC/DC	converter	or	rectifier.	In	
certain	modern	applications	 such	as	 fast	 charging,	 a	DC/DC	converter	 is	 added	 to	 the	
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design	for	enhanced	energy	conversion.	Based	on	their	power	levels	and	how	quickly	they	
can	charge	a	vehicle,	chargers	are	often	very	plainly	categorized	as	slow	and	fast	chargers	
which	includes	private	and	public	charging	points.	In	Fig.	6	the	charts	sourced	from	the	
Global	EV	Outlook	2016	show	the	number	of	charging	stations	in	different	countries	to	
give	an	idea	about	how	established	the	EV	infrastructure	is	in	various	countries.		
	

	

Figure	6:	Global	Charging	Infrastructure	Overview	

For	a	more	thorough	categorization	we	look	to	established	international	standards	such	
as	the	SAE	EV	standard	with	reference	to	SAE	Electric	Vehicle	Conductive	Charge	coupler	
standards	SAE	J1772.	These	divide	the	EVSE	into	three	levels	(Level	1,	Level	2	and	Level	
3)	each	for	AC	and	DC.	With	reference	to	this	standard	AC	charging	utilizes	the	on-board	
charger	 of	 the	 vehicle	while	DC	 charging	 is	 performed	with	off	 board	 equipment.	 For	
example,	AC	Level	1	is	applicable	to	slow	charging	for	overnight	durations	from	a	120	VAC	
single	phase	network.	AC	Level	2	is	rated	at	240	VAC.	Similarly,	DC	Level	1	and	DC	Level	2	
operate	at	200-450	VDC	with	charging	powers	of	36	kW	and	90kW	respectively.	Most	of	
these	standards	 function	at	a	charging	current	of	up	to	80A.	DC	chargers	are	the	ones	
more	commonly	known	as	fast	chargers	and	can	charge	a	BEV	to	up	to	80	percent	State	
of	Charge(SOC)	in	30	minutes.	AC	Level	3	and	DC	Level	3	are	not	standardized	yet,	but	
proposed	power	levels	for	these	are	20kW	and	240	kW	respectively	[4].	While	the	SAE	
J1772	 is	 more	 applicable	 for	 North	 America,	 in	 Europe	 the	 standard	 referred	 to	 for	
European	specifications	is	IEC	61851.	
	
Chargers	adhering	to	different	standards	and	developed	by	different	manufacturers	have	
different	plugs	and	need	adapters	and	standards	to	be	able	to	switch	from	one	form	to	
another.	Besides	referring	to	standards	such	as	above,	EV	manufacturers	have	come	up	
with	their	own	patented	technologies	which	operate	at	different	power	levels.		
	
A	prime	example	of	the	same	is	the	Tesla	Supercharger.	Tesla	supercharging	stations	can	
charge	with	up	to	145	kW	of	charging	power	which	is	distributed	between	two	adjacent	
cars,	 with	 a	 maximum	 allocation	 of	 120	 kW	 per	 car.	 These	 hi-tech	 charging	 stations	
provide	direct	current	at	high	charging	power	straight	to	the	battery	bypassing	the	on-
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board	 charging	 power	 supply.	 The	 high	 charging	 power	 of	 the	 Tesla	 supercharger	
network	allows	a	charge	of	up	to	100%	SOC	in	75	minutes.	
	
Other	common	charging	stations	include	the	CHAdeMO	standard	which	is	a	 level	3	DC	
fast	charging	station	which	was	developed	by	the	CHAdeMO	Association	formed	by	the	
Tokyo	Electric	Power	Company,	Nissan,	Mitsubishi	and	Fuji	Heavy	Industries.	These	are	
primarily	 utilized	 by	 Japanese	 cars	 such	 as	 the	 Nissan	 Leaf	 and	 Mitsubishi	 i-MiEV.	
Currently	the	CHAdeMO	chargers	have	a	max	power	output	of	50	kW.	
	
The	 SAE	 developed	 its	 own	 level	 3	 DC	 fast	 charger	 termed	 the	 SAE	 Combo	 Charging	
System	(CCS)	which	is	the	preferred	type	for	German	and	US	automobile	manufacturers.	
The	BMW	i3	and	VW	e-Golf	use	these	type	of	charger	connections.	The	CCS	allows	for	
slow	and	fast	charging	from	a	single	charging	inlet	as	opposed	to	the	CHAdeMO	which	
required	separate	inlets	for	slow	and	fast	charging.	The	current	max	power	output	level	
for	SAE	CCS	chargers	is	also	50	kW.	
	
Before	moving	on	to	the	next	section,	we	briefly	look	at	the	different	techniques	that	can	
be	used	to	charge	an	EV	battery.	These	are	important	as	they	can	help	understand	the	
load	profile	over	the	entire	charge	duration	of	an	EV.	
	
There	are	several	charging	methods	that	can	be	used	to	charge	the	battery	of	an	EV.	Some	
charging	 techniques	 studied	 in	 the	 academia	 and	 used	 conventionally	 are	 constant	
current	 (CC),	 constant	 voltage	 (CV),	 constant	 power	 (CP),	 taper	 charging	 and	 trickle	
charging	[5].	Additionally,	advanced	charging	techniques	include	combination	of	one	or	
more	of	 the	above	methods	resulting	 in	 techniques	such	as	constant	current/constant	
voltage	(CC/CV).	Some	other	advanced	techniques	include	Pulse-charging	and	negative	
pulse-charging	which	are	 considered	good	modes	of	operation	 for	 fast	 charging	of	EV	
batteries	[5].	
	
CC	uses	constant	charging	current	 flow	 to	 the	battery	 till	 the	battery	attains	a	 certain	
voltage	level	where	as	CV	applies	a	constant	voltage	across	the	battery	terminals	while	
constantly	adapting	the	charging	current	till	 it	 falls	to	almost	zero[6]	 .	CP	as	the	name	
suggests	uses	constant	power	while	taper	charging	is	done	via	an	unregulated	constant	
voltage	source	and	there	is	no	control	over	the	drop	of	charging	current	as	cell	voltage	of	
the	 charge	 builds	 up[6].	 This	 can	 tend	 to	 damage	 the	 battery	 in	 case	 an	 overcharge	
happens.	 Trickle	 charging	 uses	 small	 currents	 to	 account	 for	 battery	 self-discharge.	
CC/CV	 charging	 is	 the	 preferred	 mode	 of	 operation	 for	 fast	 charging	 of	 lithium-ion	
batteries.	This	kind	of	charging	uses	constant	current	up	to	a	certain	predefined	voltage	
for	the	battery	post	which	it	switches	to	constant	voltage.	So.	while	majority	of	the	charge	
is	done	at	constant	current,	 the	remaining	time	constant	voltage	 is	used	with	reduced	
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charging	current	to	top-off	the	battery.	The	CC/CV	charge	profile	is	illustrated	in	the	Fig	
8.	

	
Figure	7:	CC/CV	charging	profile	[6]	

Pulse-charging	profile	uses	a	pulse	based	charge	current	to	charge	the	EV	battery.	This	
utilizes	 a	 short	 rest	 period	 between	 pulses	which	 can	 help	 stabilize	 battery	 chemical	
actions	[5].	This	rest	period	is	supposed	to	allow	the	chemical	processes	in	the	battery	to	
keep	up	with	the	charging	process	thereby	avoiding	gas	formation	at	the	electrodes[6].	
Negative	pulse	charging	follows	an	opposite	profile	to	pulse	charging	in	addition	to	the	
pulse	charging	profile	by	applying	a	short	discharge	pulse	during	the	rest	period	of	the	
pulse	charging	profile.	This	is	done	to	depolarize	the	battery	thus	clearing	gas	bubbles	
which	 might	 have	 formed	 on	 the	 electrode	 during	 pulse-charging[5].	 This	 kind	 of	
charging	 is	 said	 to	 improve	 the	efficiency	of	 the	overall	 charging	process	and	prolong	
battery	life.	Fig	9.	offers	demonstrates	pulse	and	negative	pulse	charging	techniques.	
	

	
Figure	8:	Pulse	charging	and	negative	pulse	charging	

2.1.5. EV	regulation	and	policy	
	
An	EV	offers	much	lower	running	costs	when	compared	to	traditional	ICE.	It	is	estimated	
in	the	Global	EV	Outlook	2016	[2]	that	a	100	km	trip	in	an	EV	would	cost	about	1/4th	to	
1/5th	of	the	cost	of	using	an	ICE	powered	vehicle.	 	Over	a	period	of	five	years,	if	these	
savings	are	aggregated,	fuel	savings	exceeding	USD	3000	may	be	achieved.	Even	in	the	
light	of	such	savings	there	are	potential	obstacles	in	the	way	of	wide	scale	EV	deployment	
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including	but	not	limited	to	high	cost	of	battery	technology,	access	to	EV	infrastructure,	
installation	and	costs	of	such	infrastructure	as	well	as	general	awareness	and	interest	in	
this	kind	of	technology.	However,	the	identified	benefits	in	terms	of	pollution	reduction,	
higher	integration	of	renewables,	climate	change	mitigation	as	well	as	reduced	cost	of	the	
technology	 over	 the	 past	 decade	 trigger	 support	 mechanisms	 based	 on	 policy	 and	
regulation	 to	 increase	 the	 penetration	 of	 EVs	 while	 overcoming	 the	 aforementioned	
obstacles.	In	this	section,	we	will	go	over	some	of	these	policy	support	mechanisms.		
	
These	policy	support	mechanisms	can	broadly	be	classified	into	3	categories	[2]:	
	

• Regulatory	measures:	These	include	regulations	on	vehicle	emissions	regulations	
and	fuel	economy	requirements	and	homologation,	which	may	include	credits	in	
favor	of	electric	vehicles		

• Financial	Levers:	These	include	differentiated	vehicle	taxation	which	maybe	based	
on	fuel	economy	or	greenhouse	gas(GHG)	emissions	per	kilometer		

• Other	measures:	These	can	include	waivers	on	parking	fees	and	tolls,	as	well	as	
lifting	 off	 access	 restrictions	 (e.g.	 access	 to	EVs	 on	bus,	 taxi	 or	 high-occupancy	
vehicle	[HOV]	lanes).	

In	the	following	sections,	we	will	look	at	some	examples	of	EV	purchase	incentives,	EV	
use	and	circulation	incentives,	lifting	of	access	restrictions	and	emission	standards	and	
examine	how	different	policies	are	aimed	at	increasing	the	adoption	of	EVs.	
 
EV	Purchase	 Incentives:	 As	mentioned	 in	 [7],	 purchase	 incentives	 are	 one	 of	 the	most	
motivating	of	incentives	to	produce	a	shift	for	consumers	from	conventional	ICE	based	
vehicles	 to	EVs.	 In	2013,	France	 started	offering	purchase	 incentives	of	EUR	6300	 for	
BEVs	(defined	as	emitting	 less	 than	20	grams	of	CO2	per	kilometer	and	EUR	1000	for	
PHEVs	(defined	as	emitting	between	20	gram	CO2/km	and	60	gram	CO2/km).	Since	2016	
the	Netherlands,	exempt	cars	emitting	zero	CO2	at	the	tailpipe	from	registration	tax.	For	
other	vehicles	and	EVs,	they	implemented	a	sectionalized	taxation	scheme	with	five	levels	
of	CO2	emissions	while	progressively	increasing	taxation	per	gram	CO2/km.	For	example,	
PHEVs	which	qualify	for	the	first	level	(below	80	g	CO2/km)	pay	EUR	6	per	gram	CO2/km.	
Compared	 to	 traditional	 ICE	based	vehicles	 this	offer	a	 significant	 rebate	 to	BEVs	and	
PHEVs,	 as	 vehicles	with	 ICE	have	emissions	 ratings	 above	106	g	CO2/km.	 In	 Sweden,	
vehicles	with	emissions	levels	lower	than	50	gram	CO2/km	are	granted	40000	kronor	as	
rebate.	 Fig	 10.	 demonstrates	 the	 scale	 of	 monetary	 incentives	 offered	 in	 different	
countries	for	different	types	of	EVs.	
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Figure	9:	Scale	of	Purchase	incentives	for	EVs	[2]	

EV	Use	and	Circulation	Incentives:	Let	us	now	look	at	some	examples	of	incentives	based	
on	 the	 use	 and	 circulation	 of	 EVs.	 BEVs	 and	 PHEVs	 in	 Germany	 are	 exempt	 from	
circulation	tax	 for	a	period	of	 ten	years	 from	the	date	of	 their	 first	registration.	 In	the	
Netherlands,	 zero-emission	 cars	 do	 not	 have	 to	 pay	 any	 road	 taxes.	 Japan	 has	
implemented	exemptions	from	annual	tonnage	tax	and	reductions	for	automobile	tax	for	
EVs.	In	Sweden,	EVs	are	exempt	from	road	tax	based	on	CO2	emissions.	
	
Access	 Restrictions	 Waiver:	 Some	 examples	 of	 this	 are	 access	 to	 EVs	 to	 bus	 lanes	 in	
Ontario,	in	HOV	lanes	in	Spain,	and	also	in	some	cities	in	France,	the	United	Kingdom	and	
Norway.	 In	 China,	 there	 have	 been	 trials	 with	 restricting	 license	 plates	 and	 giving	
preferential	allotment	to	EVs.	
	
Emissions:	 The	 deployment	 of	 EVs	 is	 favored	 by	 increasingly	 stringent	 fuel	 economy	
requirements	 and	 tailpipe	 carbon	 dioxide	 (CO2)	 emission	 standards	 as	 well	 on	 the	
emission	of	other	local	pollutants.	BEVs	which	have	zero	tailpipe	emissions	and	very	good	
energy	 efficiency,	 and	 PHEVs	 which	 have	 reduced	 emissions,	 benefit	 from	 these	
regulations	in	a	big	way.	In	terms	of	climate	change	mitigation,	EVs	can	deliver	only	if	
there	are	net	CO2	emissions	when	considering	the	electricity	generation	used	to	charge	
the	vehicle	which	is	challenge	for	countries	which	are	primarily	dependent	on	fossil	fuel	
based	energy	sources	for	their	electricity	production.	
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Figure	10:	Summary	of	policy	support	mechanisms	for	EVSE	deployment	[2]	

2.1.6. EVs	in	Spain	
	
The	following	table	shows	the	EVs	and	list	out	their	energy	related	technical	parameters.	
It	is	to	be	noted	that	autonomy	here	refers	to	the	range	of	the	listed	vehicles	and	has	no	
reference	to	autonomous	electric	vehicles.	
	

	
Figure	11:	Technical	data	(energy)	for	EVs	sold	in	Spain	[8]	

According	to	the	Global	EV	Outlook	2016,	Spain	has	an	EV	stock	of	6000	vehicles	as	of	
2015,	with	a	2020	target	of	200,000	EVs.	Of	the	current	6000	EV	stock,	around	4500	are	
BEVs	 and	 1500	 are	 PHEVs.	 Let	 us	 now	 look	 at	 some	 incentives	 and	 policy	 related	
information.	 Spain’s	 national	 government	 formulated	 the	 “Integral	 Plan	 for	 the	
Promotion	 of	 Electric	 Vehicles”,	 which	 comprised	 of	 the	 “Integrated	 Strategy	 for	 EVs	
2010–2014”	initiative	in	Spain	that	included	the	target	of	1	million	hybrid	and	electric	
vehicles	on	road	in	Spain	by	the	year	2014	[9].	The	following	section	summarizes	some	
of	the	provisions	under	this	initiative	to	promote	EVs.	
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According	to	[10],	the	maximum	limit	for	total	amount	of	monetary	grants	for	vehicles	
that	are	driven	by	batteries	which	may	be	fully	or	partially	charged	by	electricity	from	
the	grid	and	whose	maximum	price	does	not	exceed	32,000	euros,	is	specified	as	follows:	
	
- 2,700	euros	for	vehicles	with	range	not	exceeding	40	km	and	but	greater	than	15	km.	
- 3,700	euros	for	vehicles	with	range	greater	than	40	km	and	less	than	or	equal	to	90	
km.	

- 5,500	euros	for	vehicles	with	range	of	more	than	90	km.	

It	is	to	be	noted	that	range	above	means	electric	range	if	the	vehicle	is	a	hybrid.	
	
In	 the	 case	 of	 charging	 points	 for	 electric	 vehicles	 in	 publicly	 accessible	 areas,	 the	
maximum	amount	of	aid	can	be	40%	of	the	total	eligible	cost	with	the	following	limits	in	
place:	
	
- 15,000	euros	per	quick	recharge	point	installed.	
- 2,000	euros	per	semi-fast	refueling	point	installed.	

After	a	brief	overview	of	electric	vehicle	technology	and	some	insights	on	regulation	and	
policy,	as	well	as	looking	at	the	EV	scene	in	Spain,	we	will	now	explore	the	field	of	Game	
Theory,	the	basic	concepts	and	its	applicability	to	the	purpose	of	our	studies.	

2.2. Introduction	to	Game	Theory	
Game	 theory	provides	mathematical	 frameworks	 to	analyze	 situations	of	 ‘conflict	 and	
cooperation’	(as	described	by	Roger	B.	Myerson	in	his	publication	Game	Theory:	Analysis	
of	 Conflict)	 between	 players	 who	 can	 operate	 on	 strategies	 which	 may	 or	 may	 not	
influence	the	strategies	of	other	players.	It	is	essential	to	note	here	that	the	terms	‘players’	
and	 ‘strategies’	 are	 used	 in	 this	 regard	 to	 indicate	 a	 model	 or	 a	 scenario	 and	 not	
recreational	or	sports	activities.	
	
Game	 theory	 over	 the	 years	 has	 seen	 several	 classifications:	 co-operative	 and	 non-
cooperative;	symmetrical	and	asymmetrical;	zero-sum	and	non-zero-sum;	to	name	a	few.	
For	the	purposes	of	this	study	the	classification	of	importance	is	co-operative	and	non-
co-operative	 game	 theory.	 As	 mentioned	 in	 [11],	 Non-cooperative	 game	 theory	 is	 of	
importance	to	analyze	the	strategic	decision	making	processes	of	 independent	players	
who	 have	 conflicting	 interests	 over	 the	 result	 of	 a	 decision	making	 process	which	 is	
influenced	 by	 their	 actions.	 It	 is	 to	 be	 noted	 that	 the	 term	 non-cooperative	 does	 not	
essentially	imply	that	the	players	do	not	co-operate,	but	it	means	that,	any	co-operation	
is	observed	arises	 from	self-interest	without	any	co-ordination	and	communication	of	
strategies	 between	 different	 players.	 Thus,	 it	 can	 be	 said	 that	 non-cooperative	 game	
theory	may	be	used	to	model	a	distributed	process	to	optimize	an	overall	goal	which	is	a	
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result	 of	 player	decisions	without	 any	 communication	 and	 co-ordination	between	 the	
strategies	of	individual	players.	
	
Co-operative	game	theory	on	the	other	hand	consider	incentives	for	individual	players	to	
collaborate.	There	 are	 two	major	 frame	works	which	 form	co-operative	 game	 theory:	
Nash	bargaining	and	coalitional	game	theory.	Nash	bargaining	employs	agreement	based	
on	terms	and	conditions	between	individual	players	while	coalitional	game	theory	takes	
into	account	formation	of	groups	or	coalitions.	
	
Let	us	now	proceed	to	look	at	some	of	the	mathematical	basics	of	Game	Theory.	To	follow	
a	consistency	of	notation	and	representation	we	will	be	following	the	style	from	[12]	in	
order	to	have	a	coherent	presentation	of	the	concepts.	
	
[12]	describes	strategic	games	as	a	model	of	interacting	decision	makers.	It	further	goes	
on	to	define	strategic	games	as	one	which	consists	the	following:	
	

-	a	set	of	players	
-	a	set	of	actions	for	each	individual	player	
-	a	preference	profile	over	the	set	of	action	profiles	

	
A	set	A	is	assumed	to	be	consisting	of	all	the	actions	that,	under	certain	conditions,	are	
available	to	a	player.	In	any	specific	condition	the	player	is	faced	with	a	subset	of	A	and	
chooses	a	single	element	therein.	The	next	element	which	constitutes	a	strategic	game	
model	is	the	notion	of	the	player	preferences.	Player	preferences	are	represented	in	the	
form	of	payoff	functions	which	associates	a	number	to	the	outcome	of	each	action	in	a	
way	 such	 that	 actions	with	higher	numbers	 are	more	 favorable	 to	 the	player	 and	 are	
hence	preferred.	Mathematically	for	any	two	actions	a	and	b	in	the	action	set	A,	and	u(a)	
is	said	to	represent	the	payoff	function,	then	u(a)	>	u(b)	implies	that	the	player	prefers	
action	a	over	b.	It	must	be	noted	that	the	payoff	function	only	conveys	ordinal	information	
[12].	This	means	that	the	payoff	function	can	only	suggest	if	an	action	is	preferred	over	
another	and	not	the	intensity	with	which	it	maybe	preferred.		
	
Before	proceeding	further	with	the	notion	of	strategic	games,	it	is	essential	to	mention	
here	the	concept	of	the	theory	of	rational	choice	which	as	described	in	[12]	states	that	the	
action	 taken	 by	 a	 decision-maker	 or	 player	 in	 a	 specific	 situation	 is	 at	 least	 as	 good,	
according	to	the	player’s	preferences,	as	every	other	available	action.	This	theory	is	very	
essential	to	define	why	a	player	would	choose	a	certain	action	in	a	certain	condition	and	
thus	enhances	the	understanding	of	any	situation.	
	
Moving	on	from	the	theory	of	rational	choice	we	must	examine	what	actions	will	be	taken	
by	a	player	in	a	strategic	game.	As	the	theory	of	rational	choice	implies	a	player	would	
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choose	the	best	available	action.	However,	in	a	game	the	best	available	action	will	depend	
on	the	actions	of	other	players.	Thus,	a	player	must	form	an	opinion	about	the	actions	of	
other	 players	 and	 then	 base	 his/her	 action	 on	 the	 same.	 In	 basic	 game	 theory,	 it	 is	
assumed	that	each	player’s	opinion	of	other	players’	actions	is	derived	from	their	past	
experience	 of	 playing	 the	 game.	 Furthermore,	 it	 is	 assumed	 that	 this	 experience	 is	
sufficiently	 extensive	 that	 he/she	 knows	 is	 sure	 of	 how	 their	 will	 act.	 In[12],	 it	 is	
suggested	to	view	of	this	scenario	in	the	following	idealized	manner.	Each	player	in	the	
game	is	faced	with	a	population	of	different	players	who	may,	on	any	occasion,	by	means	
of	rotations	take	that	player’s	role.	For	every	play	of	the	game,	players	are	picked	from	
each	population	 randomly.	Therefore,	 each	player	participates	 in	 the	game	against	an	
ever-changing	pool	of	opponents.	Their	experience	helps	them	form	an	opinion	about	a	
typical	set	of	opponents,	not	any	specific	set	of	opponents.	Based	on	this	background	we	
will	now	proceed	to	understand	the	concept	of	Nash	equilibrium	which	is	an	essential	
concept	in	understanding	strategic	games.	We	will	borrow	the	definition	from	[12]	which	
states	that:	
	
“A	Nash	equilibrium	is	an	action	profile	a∗	with	the	property	that	no	player	i	can	do	better	
by	choosing	an	action	different	from	ai∗,	given	that	every	other	player	j	adheres	to	aj∗”		

	
What	this	essentially	implies	is	that	for	any	given	play	of	the	game	in	which	the	players	
are	randomly	drawn	from	a	collection	of	populations,	the	Nash	equilibrium	corresponds	
to	a	steady	state.	In	simple	terms	if	a	game	is	played	at	a	certain	point	of	time	with	an	
action	 profile	 corresponding	 to	 the	 Nash	 equilibrium	 profile	 a*,	 then	 no	 player	 has	 a	
reason	to	choose	any	action	outside	their	component	in	a*.	This	concept	will	be	further	
demonstrated	as	it	will	form	the	backbone	of	forming	the	solution	of	our	given	case.	The	
discussion	on	the	same	will	be	taken	up	in	Chapter	4.	
	
The	above	concept	of	a	steady	state	 is	essential	 in	studying	strategic	games	as	we	can	
apply	to	real	life	scenarios	where	actions	can	follow	rational	choice	and	it	can	be	assumed	
that	players	are	more	or	less	sure	of	the	actions	of	other	players	and	will	act	only	in	self-
interest.	Testing	out	the	applicability	of	Nash	equilibrium	in	real	life	situations	takes	up	a	
significant	part	of	game	theory	applied	to	real	life	problems	and	the	notion	of	equilibrium	
has	now	been	expanded	to	different	forms	of	game.	When	the	modelling	of	electric	vehicle	
charging	demand	is	attempted,	this	will	also	be	taken	into	consideration.	
	
In	the	following	section,	we	examine	some	cases	where	in	Game	Theory	was	employed	in	
related	domains	and	study	what	approaches	and	methodologies	were	used	therein.	This	
will	be	helpful	in	identifying	techniques	which	can	be	useful	in	carrying	out	this	project.	
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2.3. Game	Theory	Applications	in	Related	Fields	
In	this	section,	will	look	at	how	researchers	and	mathematicians	have	tried	to	apply	game	
theoretic	 concepts	 and	 formulations	 to	 the	 electric	power	 sector	 especially	 looking	at	
smart	 grids,	 decentralized	 electricity	 markets	 and	 electric	 vehicles	 integration	 and	
optimizations	to	understand	better	the	possibility	and	scope	of	applying	similar	concepts	
and	 formulations	 to	 determine	 the	 net	 electric	 vehicle	 charging	 demand	 of	 privately	
owned	EVs.	
	
In	[11]	the	authors	envision	the	future	smart	grid	to	be	a	scaled	up	cyber-physical	system	
with	built	in	state-of-the	art	power,	control,	communications	and	computing	technology.	
The	 paper	 analyses	 the	 potential	 of	 applying	 game	 theoretic	 solutions	 to	 address	 the	
challenge	of	integrating	these	technologies	into	the	Smart	Grid.	The	authors	explore	three	
emerging	technology	areas	in	the	Smart	grid	namely	micro-grid	systems,	demand-side	
management,	 and	 advanced	 communications	 systems	 and	 study	 the	 contributions	 of	
different	 mathematical	 game	 theory	 modelling	 systems	 can	 have	 in	 simulating	 the	
respective	behavior	of	these	technologies.	The	authors	discuss	on	how	game	theory	can	
help	in	processing	and	optimizing	the	various	parameters	in	each	of	these	technologies	
and	suggest	further	applications	of	the	same.		
	

	
Figure	12:	Game	Theoretic	techniques	for	Micro	Grid	Applications	[11]	

The	main	technical	challenges	in	each	of	these	technology	areas	are	identified	and	then	it	
is	 discussed	 how	 specific	 game	 theory	 approaches	 can	 be	 applied	 to	 mitigate	 these	
challenges.	The	authors	also	suggest	future	directions,	such	as	implementing	more	robust	
and	 fool	 proof	 strategies	 amongst	 other	 measures,	 to	 ensure	 that	 the	 gap	 between	
theoretical	simulations	and	practical	implementation	of	Smart	Grids	is	reduced.	This	is	
illustrated	in	the	above	table	from	[11]	which	delineates	the	above	mentioned	analysis	
for	the	micro	grids	technology	area.	
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It	 is	 also	noted	 that	most	 current	 and	past	work	 is	 focused	on	 static	 non-cooperative	
games	and	it	is	suggested	that	these	be	also	analyzed	from	a	dynamic	perspective	as	a	lot	
of	parameters	related	 to	 the	grid	such	as	generation	and	demand	are	 time	variable	 in	
nature.	There	is	also	mention	of	Bayesian	games	which	is	a	type	of	non-cooperative	game	
in	which	different	players	have	very	limited	knowledge	of	the	actions	and	strategies	of	of	
other	 players.	 The	 authors	 say	 that	 given	 the	 large-scale	 nature	 of	 the	 grid	 it	 can	 be	
interesting	 to	 see	 how	 Bayesian	 games	 can	 overcome	 the	 technical	 difficulties	 in	
estimating	the	exact	strategies	of	a	large	number	of	players.	
	
In	[6],	the	authors	undertake	an	analysis	of	the	economic	aspects	of	the	integration	of	EVs	
in	 the	smart	grid	by	developing	a	mean	 field	game	model.	They	develop	a	 framework	
which	enabled	an	analysis	of	the	variation	of	electricity	price,	of	the	hourly	demand,	and	
the	possibility	of	energy	reserves	in	the	Smart	Grid	when	EV	owners	choose	to	buy/sell	
energy	based	on	their	selfish	but	rational	 interests	aimed	at	maximizing	their	benefits	
under	the	restraint	of	different	electricity	pricing.	The	authors	go	on	to	say	that	since	the	
number	of	players	 is	 large	and	alike,	 the	pricing	policy	becomes	a	consequence	of	 the	
action	of	all	the	players,	and	thus	the	problem	was	the	formulated	as	a	mean	field	game	
and	the	fundamental	differential	equations	for	which	was	solved	to	obtain	conclusions.	
From	this	paper,	it	is	interesting	to	observe	the	use	of	a	mean	field	game	analysis.	Unlike	
traditional	N	player	games	where	the	objective	is	to	follow	the	state	of	each	player,	in	a	
mean	field	game	analysis	the	objective	is	to	obtain	the	optimal	distribution	for	all	players	
to	be	at	a	certain	state	X	at	an	instant	of	time	t.	Thus,	in	such	a	case	it	allows	the	simulation	
to	follow	the	state	of	all	users	at	the	same	time.	A	detailed	description	of	the	notion	of	
Nash	 equilibrium	 in	mean	 field	 games,	 which	 is	 termed	 as	mean	 field	 equilibrium	 is	
outside	 of	 the	 scope	 of	 this	 report,	 and	 the	 original	 publication	 cited	 here	 should	 be	
referred	for	detailed	understanding.	However,	in	essence	the	concept	of	the	equilibrium	
representing	a	steady	state	is	similar	to	that	of	a	Nash	Equilibrium	as	has	been	discussed	
in	the	section	explaining	the	basics	of	game	theory.	
	
In	[13],	the	authors	formulate	an	energy	management	game	which	exploits	the	potential	
of	 electric	 vehicles	 as	 the	 most	 shiftable	 load	 to	 achieve	 residential	 demand	 side	
management	 in	 the	 future	 smart	 gird.	 The	 utilize	 game	 theory	 to	 come	 up	 with	 an	
autonomous	energy	management	system	for	residential	users	who	want	to	sell	energy	
back	to	the	grid	by	discharging	the	battery	of	their	EVs.	 In	this	case	the	players	of	the	
game	are	the	residential	users	and	their	strategies	are	their	profiles	of	daily	usage	of	their	
household	appliances.	The	further	demonstrate	that	the	Nash	equilibrium	of	their	game	
theory	 implementation	 results	 in	 optimization	 of	 energy	 costs	 even	 including	 the	
depreciation	 cost	 and	adverse	effects	on	 the	 life	of	 the	battery	as	 a	 result	of	 frequent	
discharging	and	selling	energy	back	to	the	grid.	The	application	of	game	theory	to	their	
energy	management	model	results	in	reduction	of	total	energy	costs	and	individual	utility	
bills.	They	do	conclude	in	the	end	by	saying	that	considering	the	depreciation	costs	of	the	
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battery	the	utility	company	might	need	to	provide	incentivized	special	prices	to	promote	
residential	users	to	store	and	sell	energy	back	to	the	grid	at	appropriate	times.		
	
Another	novel	approach	to	our	study	of	game	theory	implementation	can	be	the	approach	
used	 by	 [14]	 using	 a	 non-cooperative	 Stackelberg	 game	 which	 is	 a	 type	 of	 non-
cooperative	game	that	works	with	a	multi-tiered	strategy	based	decision	making	process	
involving	 number	 of	 independent	 decision	 makers	 or	 players	 (called	 followers)	 in	
response	to	the	strategy	of	a	main	leading	player	(the	leader).	They	model	the	smart	grid	
as	the	leading	player	which	decides	its	pricing	by	striking	a	balance	between	optimizing	
revenue	 and	 encouraging	 participation	 of	 EVs.	 The	 EVs	 on	 the	 other	 hand	 decide	 on	
charging	strategies	to	optimize	the	balance	of	charging	the	battery	and	the	cost	incurred	
to	do	so.	The	authors	further	find	an	equilibrium	for	the	game	which	in	this	case	is	called	
the	Stackelberg	equilibrium	in	which	for	an	optimum	grid	pricing	strategy	there	are	EVs	
with	preferred	equilibrium	strategies.	They	further	formulate	a	distributed	algorithm	to	
achieve	 this	 equilibrium	 and	 run	 simulations	 on	 the	 same.	 Their	 model	 is	 further	
expanded	to	time	variable	model	which	can	take	into	account	slowly	varying	conditions.	
Their	simulations	demonstrate	 improved	performance	gains	 in	 terms	of	utility	per	EV	
compared	to	other	optimization	techniques.	
	
The	 above	 approach	 may	 be	 applied	 to	 our	 attempt	 to	 model	 charging	 demand	 of	
privately	owned	electric	vehicles	in	a	case	where	there	is	dynamic	pricing.	In	such	a	case,	
the	pricing	strategy	can	be	assumed	to	be	a	leading	strategy	while	the	charging	strategies	
of	the	EV	user	will	result	as	the	followers.	This	is	a	suggestion	at	this	point	and	may	or	
may	not	lead	to	delivering	optimum	results.		Overall	the	above	approaches	to	employing	
game	theory	in	fields	related	to	our	domain	of	study	has	helped	identify	methodologies	
and	 approaches	 which	might	 be	 possible	 to	 implement	 in	 trying	 to	 estimate	 the	 net	
charging	demand	from	privately	owned	electric	vehicles.	
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3. Literature	Review	and	Technical	Background	
In	this	chapter,	we	will	build	background	on	relevant	aspects	of	this	project.	In	the	first	
section,	we	will	cover	electric	vehicles	and	their	features	which	will	later	be	used	for	this	
project.	Thereafter,	we	will	take	a	look	at	certain	urban	mobility	concepts,	followed	by	a	
study	of	demand	models.	In	the	final	section	of	this	chapter	we	will	take	a	look	at	concepts	
essential	to	game	theory	modeling	which	will	be	employed	in	this	work.	

3.1. Electric	Vehicles	
In	this	section,	we	will	cover	the	electric	vehicles	which	were	considered	to	be	applicable	
to	this	project.	These	include	two	of	the	highest	selling	electric	vehicles	in	the	world,	the	
Tesla	Model	S	and	Nissan	Leaf.	
	
The	 Tesla	 Model	 S	 was	 first	 introduced	 by	 Tesla	 Inc.,	 in	 2012.	 The	 vehicle	 is	 most	
renowned	for	having	extensive	range	of	up	to	539	kms	for	the	2017	top	end	model	which	
comes	 equipped	 with	 100	 kWh	 battery	 pack.	 The	 top	 end	Model	 S	 (performance)	 is	
powered	by	a	3	phase	four	pole	AC	induction	rear	mounted	motor	with	310	kW	of	power	
and	600	N.m	of	torque.	The	base	model	which	is	considered	for	this	study	uses	a	motor	
which	produces	270	kW	and	440	N.m	of	torque.	The	battery	contains	lithium-ion	battery	
cells	in	modules	which	are	wired	in	series.	It	is	guaranteed	for	8	years	or	200,000	kms	for	
the	base	model.	The	standard	European	charger	accepts	single	phase	230	V	at	7.6	kW	and	
3	phase	230V	or	400	V	at	up	to	11	kW.	
	
The	 Nissan	 leaf	 is	 a	 five-door	 hatchback	 electric	 car	manufacture	 by	 Nissan	 and	was	
introduced	for	the	first	time	in	the	Japan	and	United	States	in	2010.	This	was	followed	by	
its	introduction	in	the	European	market	as	well	as	Canada	in	the	year	2011.	The	2016	
model	year	LEAF	with	the	30	kWh	battery	is	expected	to	have	a	range	of	172	km	while	
there	is	a	lower	spec	model	with	a	24	kWh	battery	which	is	expected	to	give	a	range	of	
135	kms.	The	LEAF	uses	a	front	mounted	synchronous	electric	motor	which	can	deliver	
90	kW	of	power	and	280	N.m	of	torque.	Models	are	usually	equipped	with	an	on-board	
3.6	kW	charger	that	can	be	fully	charged	in	around	8	hours	from	a	220/240	V	30	A	supply.	

3.2. Demand	Models	
[1]	uses	a	bottom	up	approach	utilizing	process	data	with	stochastic	variables	and	them	
implementing	repeated	random	sampling	using	the	Monte	Carlo	technique	to	emulate	the	
parameters.	This	model	is	therefore	termed	as	a	 ‘Probabilistic	Agent-Based	Model’.	The	
model	includes	the	concept	of	an	EV	agent	which	comprises	of	the	driver	plus	vehicle.	The	
agent	 has	 associated	 variables	 such	 as	 type	 of	 vehicle,	 battery	 power,	 energy	
consumption,	autonomy	of	operation	etc.	The	EV	 types	uses	a	probability	distribution	
function	to	define	the	probability	of	different	types	of	passenger	cars	EVs	used	in	Spain	
and	a	similar	model	will	be	used	to	for	this	paper.	The	authors	further	go	on	to	define	
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mobility	pattern	for	the	agents	based	on	trips	per	day,	distance	per	trip,	destination,	time	
and	day,	and	velocity.	Social	variables	are	such	as	GDP	and	population	density	are	taken	
into	account	to	determine	the	likelihood	of	a	number	of	agents	to	be	charging	at	a	location.	
The	agent	based	model	employs	a	time	loop	which	updates	the	environment	and	inside	
there	is	an	agent	loop	which	updates	the	state	of	the	agent.	This	update	is	based	on	the	
stochastic	variables	thus	relating	to	a	certain	probability.	
	
[15]	presents	a	spatial	and	temporal	model	of	EV	charging	demand	for	a	single	charging	
station	located	very	close	to	a	highway	exit.	While	this	is	different	from	the	goals	of	our	
study,	 it	 is	 interesting	 note	 the	 approach	 and	 certain	 specific	 findings.	 The	 authors	
suggest	 a	mathematical	model	 of	 electric	 vehicle	 charging	 demand	 for	 a	 single	 rapid	
charging	station.	They	base	the	model	on	traffic	flow	based	on	a	fluid	dynamics	model	
and	the	M/M/s	queueing	theory.	The	traffic	model	is	utilized	to	determine	an	arrival	rate	
for	EVs	in	need	of	charging	to	the	charging	station	and	then	the	queueing	theory	is	added	
to	forecast	a	charging	demand	for	the	given	station	enabling	distributors	and	operators	
to	plan	for	the	same.	The	run	a	simulation	using	a	numerical	example	through	which	they	
claim	that	the	model	captures	the	spatial	and	temporal	dynamics	of	a	highway	charging	
station.	
	
[16]	 applies	 probabilistic	 power	 flow	 (PPF)	 to	 analyze	 the	 impact	 of	 Plug-in	 Hybrid	
Electric	 Vehicles	 (PHEVs)	 on	 the	 electricity	 grid.	 The	 authors	 assert	 that	 since	 the	
charging	patters	of	PHEVs	is	determined	by	several	uncertain	parameters,	PPF	is	a	good	
approach	to	study	the	same.	They	propose	a	methodology	which	starts	by	employing	a	
single	PHEV	charging	demand	model	and	thereafter	employs	queueing	theory	to	model	
the	 behavior	 of	 multiple	 vehicles.	 The	 further	 apply	 this	 model	 to	 compute	 the	 net	
charging	demand	at	an	EV	charging	station	as	well	as	from	a	residential	community.	The	
results	obtained	from	the	model	are	then	put	on	a	test	case	by	using	IEEE	30	bus	test	
system	and	the	results	of	the	PPF	were	compared	against	Monte	Carlo	simulations.	The	
authors	mention	that	while	their	methodology	yields	good	results,	in	future	it	would	be	
imperative	 to	 take	 into	 account	 a	 scenario	with	 controlled	 charging	 of	 EVs	 including	
measures	such	smart	charging.	
	
In	 [17],	 the	 authors	 try	 to	 model	 and	 analyze	 the	 load	 demand	 from	 an	 EV	 battery	
charging	in	a	typical	U.K.	distribution	system.	 	Their	approach	is	to	create	a	stochastic	
formulation	which	 takes	 into	 account	 the	 randomly	 distributed	 nature	 of	 the	 battery	
charging	times	of	EV	users	and	the	initial	SOC	of	each	battery.	They	further	formulate	four	
EV	charging	scenarios	taking	into	account	future	trends	in	electricity	prices	in	the	market	
and	regulations	pertaining	to	EV	battery	charging	and	do	comparative	analysis	between	
the	 four.	 The	 time-based	 charging	 load	 for	 the	 EV	 battery	 is	 considered	 for	 the	most	
common	battery	used,	the	Li-ion	battery.		The	paper	further	comes	to	a	conclusion	that	a	
10%	deployment	of	EVs	in	terms	of	market	share	in	the	distribution	system	under	study	
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can	result	in	an	increase	of	17.9%	in	the	daily	peak	demand	and	consequently	a	20%	EV	
penetration	may	result	in	an	increase	in	daily	peak	demand	of	around	36%	for	a	scenario	
without	any	external	controls	imposed	on	the	charging	of	EVs.	Scenarios	such	as	off-peak	
charging	demonstrate	an	increased	demand	only	during	night	with	no	effect	on	the	daily	
peak	 demand.	 The	 paper	 also	 suggests	 that	 the	 distribution	 of	 the	 start	 times	 of	 EV	
charging	can	have	significant	impact	on	the	load.	As	a	consequence,	the	authors	suggest	
smart	 charging	 scenario	wherein	 the	 cheapest	 hour	of	 electricity	prices	 is	 selected	 to	
begin	 charging.	 However	 simultaneous	 start	 of	 multiple	 EV	 charging	 may	 lead	 to	
significant	increase	in	off-peak	loads	which	may	lead	to	the	creation	of	a	new	peak	in	off-
peak	demand	profile.	The	authors	finally	suggest	that	the	load	from	EVs	to	be	analyzed	in	
detail	must	be	segregated	into	residential,	industrial	and	commercial	to	asses	correctly	
the	 impact	 of	 EVs	 on	 the	 demand	 load	 profile.	 This	 is	 advice	 which	 is	 taken	 into	
consideration	for	our	further	studies	thus	restricting	the	study	to	estimating	the	energy	
demand	from	charging	only	privately	owned	EVs.	

3.3. Game	Theory	Modelling	
When	talking	about	game	theory	and	situations	to	which	it	can	be	applied,	we	often	talk	
about	the	participants	of	that	game	in	terms	of	players	or	agents.	Please	note	that	in	this	
text	both	these	terms,	players	and	agents,	have	been	used	interchangeably.	To	consider	
solving	problems	using	game	theory	it	is	helpful	to	think	of	games	in	the	following	basic	
classification:		
	

1) Simultaneous	play	games	or	normal	form	games:	
The	 payoffs	 for	 a	 game	 where	 each	 player	 plays	 simultaneously	 without	
knowledge	of	previous	historical	moves	and	of	other	players	moves	i.e.	games	of	
the	normal	 form,	can	be	and	are	usually	represented	 in	a	matrix	 form.	For	a	2-
player	game	it	is	can	be	indicated	in	a	2D	matrix	while	multidimensional	matrices	
may	be	required	to	form	the	play	off	matrix	of	for	multiple	player	games.	
	

2) Sequential	play	games	or	extensive	games:	
For	a	sequential	play	scheme	where	every	player	is	aware	of	its	previous	historical	
moves	and	has	arrived	at	a	state	based	on	previous	decisions	and	strategies,	i.e.	an	
extensive	form	game	is	usually	represented	in	a	tree	form	where	each	node	in	the	
tree	indicates	a	certain	players	state.	

In	 the	 following	 sections,	 we	 will	 go	 through	 certain	 representations	 of	 games	 and	
methods	of	solving	them	which	are	termed	as	solution	concepts.	These	were	essential	in	
implementing	the	game	theory	modelling	in	this	project.	The	representation	presented	
herein	is	inspired	by	the	format	in	[18].	
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Representation	of	Normal	form	or	Simultaneous	games	–	Matrix	Representation	
A	game	with	finite	number	of	players	also	called	a	n-person	game	can	be	represented	in	
the	following	manner.	The	set	N	is	used	to	represent	all	agents	or	players.	Thus	Agent	1,	
Agent	2,	Agent	3	and	so	on	up	till	Agent	n	are	represented	by	the	following	set:	
	
	 𝑁 = {1,2, …… , 𝑛}	 (1)	
	
Now	for	every	player	or	agent	i	there	exists	a	finite	set	of	all	possible	actions	𝐴+ .	The	set	
of	all	possible	actions	which	can	be	taken	by	a	player	or	agent	is	called	an	action	profile	
and	is	represented	as:	
	
	 𝑎-, 𝑎. …… , 𝑎/ ∈ 𝐴-×𝐴.×……×𝐴/	 (2)	
	
An	action	profile	is	in	essence	a	choice	of	action	or	decision	for	each	agent.	Now,	for	each	
Agent	i,	we	can	create	a	real	valued	function	which	will	assign	utility	payoffs	based	on	the	
action	selected	by	the	agent.	
	
	 𝑢-:	𝐴-×𝐴.×……×𝐴/ → 	ℝ	 (3)	
	
A	 natural	way	 to	 represent	 a	 normal-form	 game	 is	with	 an	 n-dimensional	 payoff	 (or	
utility)	matrix	that	shows	every	agent’s	utility	for	every	action	profile.	Each	cell	 in	the	
matrix	becomes	the	position	of	a	utility	for	a	certain	action	profile.	For	the	famous	game	
theory	example	problem,	the	prisoner’s	dilemma	which	is	a	two	person	comply/defect	
game,	this	can	be	represented	as	follows:	

Table	1:	Prisoner's	Dilemma	payoff	matrix	

1/2	 C	 D	

C	 -1,	-1	 -4,	0	

D	 0,	-4	 -3,	-3	

	
The	above	representation	is	explained	as	follows.	The	first	row	corresponds	to	player	2’s	
strategies,	and	the	first	column	corresponds	to	the	strategies	of	player	1.	The	first	number	
in	each	cell	is	the	payoff	obtained	by	player	1	for	that	mix	of	players’	strategies	and	the	
second	is	the	payoff	available	to	player	2.	In	the	above	table,	C	stands	for	Comply	and	D	
stands	 for	Defect.	These	 strategies	will	be	 further	discussed	at	 the	end	of	 this	 section	
when	the	above	game	is	solved.	
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Representation	of	Extensive	form	or	Sequential	games	
Extensive	form	can	be	converted	to	normal	form	and	thus	basic	nomenclature	regarding	
representation	remains	similar.	However,	 there	 is	an	 inherent	 temporal	structure	 in	a	
sequential	 game	 and	 thus	 the	 representation	 is	 not	 possible	 in	 a	matrix	 form.	 A	 tree	
structure	is	used	to	represent	sequential	games.	This	is	demonstrated	in	the	following	
image:	
	

	
Figure	13:	Representation	of	Sequential	games	[18]	

It	is	essential	to	note	here	that	all	sequential	games	can	be	reduced	to	normal	form	or	
simultaneous	games	and	that	at	each	node	in	the	above	tree	representation	corresponds	
to	a	simultaneous	move	or	normal	form	game.	
	
Before	proceeding	with	 the	discussion	of	different	kinds	of	 strategies	as	applicable	 to	
games,	we	will	briefly	examine	a	categorization	of	games	which	might	be	useful	in	our	
study.	This	categorization	is	based	on	the	sum	of	payoffs	obtained	for	each	action	profile.	
If	for	all	action	profiles,	the	sum	of	the	payoff	is	the	same	and	is	a	constant,	it	is	called	a	
constant	sum	game.	
	
	 𝑢- 𝑎-, 𝑎. …… , 𝑎/ +		……+ 𝑢/ 𝑎-, 𝑎. …… , 𝑎/ = 𝐶			 (4)	
	
If	the	sum	of	payoffs	is	a	constant,	the	game	can	be	transformed	into	what	is	commonly	
known	as	a	zero-sum	game	by	subtracting	C/n	from	each	pay	off.	These	games	are	purely	
competitive	(win/lose)	in	nature.	This	is	illustrated	in	the	following	payoff	matrix	in	the	
game	of	matching	pennies.	

Table	2:	Matching	Pennies	payoff	matrix	

1/2	 Heads	 Tails	

Heads	 1,	-1	 -1,	1	

Tails	 -1,	1	 1,	-1	
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On	 the	 other	 hand	 if	 the	 sum	 𝑢- 𝑎-, 𝑎. …… , 𝑎/ +		……+ 𝑢/ 𝑎-, 𝑎. …… , 𝑎/ 	 is	 not	 a	
constant	or	zero	and	is	different	for	different	action	profiles,	the	game	is	called	a	non-zero	
sum	game.	The	unique	feature	of	these	games	is	that	they	can	feature	co-ordination	and	
co-operation.	
	
Strategies	in	Games	
In	games,	there	can	be	in	essence	two	kinds	of	strategies	which	players	can	adopt	and	
these	are	classified	based	on	surety	or	probability	of	the	players	taking	a	certain	action.	
While	in	one	set	of	strategies	each	action	is	fully	certain,	in	the	other	certain	probability	
is	associated	with	each	action	profile.	These	two	kinds	of	strategies	are	Pure	Strategy	and	
Mixed	Strategy.	
	
Pure	strategy	is	defined	as	a	single	action	that	a	player	or	agent	can	take	in	a	game.	It	
comprises	of	a	single	action	on	part	of	each	of	the	agents	or	players.	Each	row	and	column	
of	a	payoff	matrix	represent	a	pure	strategy.	A	set	of	all	such	strategies	is	termed	as	pure	
strategy	action	profile.	
	
A	mixed	strategy	is	one	which	has	a	certain	probability	attached	to	each	of	the	actions	
that	an	agent	can	take.	A	mixed	strategy	when	represented	as	𝑠+ ,	implies:	
	
	 𝑠+ 𝑎+ =	probability	that	action	𝑎+ 	will	be	played	under	mixed	strategy	𝑠+ 	 	(5)	
	
Both	these	kinds	of	strategies	will	be	better	explained	in	the	section	on	solving	games,	
where	with	 the	 help	 of	 simple	 games,	 examples	would	 be	 provided	 of	 these	 kinds	 of	
strategies.	
	
Since	a	payoff	matrix	or	game	tree	represents	only	payoffs	or	utility	obtained	from	pure	
strategy	 profiles,	 there	 is	 need	 to	 introduce	 a	 concept	 regarding	 the	 utility	 for	mixed	
strategy	profiles.	
	
Expected	Utility	
In	a	payoff	matrix,	each	row	and	column	represents	a	pure	strategy	and	each	cell	gives	
the	payoff	for	a	certain	strategy	based	on	the	actions	of	all	the	players.	However,	when	
the	case	is	generalized	to	include	mixed	strategies,	we	have	to	introduce	the	concept	of	
expected	utility.	The	key	here	is	to	calculate	the	probability	of	each	outcome	based	on	the	
strategies	of	all	agents	and	then	calculate	the	average	payoff	for	agent	i	weighted	by	the	
probabilities.	For	a	strategy	profile	 𝑠-, 𝑠. …… , 𝑠/ 	the	expected	utility	is	
	
	

𝑢+ 𝑠-, 𝑠. …… , 𝑠/ = 𝑢+ 𝑎-, 𝑎. …… , 𝑎/
:;,:<……,:= ∈>

	 𝑠? 𝑎?

/

?@-

	 (6)	
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This	will	be	demonstrated	numerically	in	the	latter	part	of	the	next	section.	
	
Solving	games:	
When	we	are	dealing	with	a	single	agent	the	optimal	strategy	can	be	based	on	maximizing	
the	payoff	 in	 the	 field	 the	decision	 theory	 is	being	applied	 to.	However,	with	multiple	
agents,	 the	best	strategy	can	and	will	usually	depend	on	other	agents’	 choices.	This	 is	
solved	by	 trying	 to	 identify	certain	 logical	outcomes	defined	by	different	game	 theory	
texts	and	literature	and	are	called	solution	concepts.	
	
In	 the	 following	 section,	 we	will	 briefly	 go	 through	 the	most	 important	 game	 theory	
solution	 concepts	 and	 see	 in	detail	 through	examples	 the	 solution	 concept	we	will	 be	
applying	to	the	problem	at	hand,	the	Nash	Equilibrium.	
	
Dominance	
A	strategy	𝑠+ 	is	said	to	dominate	strategy	𝑠+A,	if	the	former	gives	the	agent	a	better	payoff	
than	the	latter	for	every	strategy	profile	𝑠B+of	other	agent.	Thus,	this	solution	concept	is	
based	on	Iterated	elimination	of	strictly	dominated	strategies	(IESD)	or	other	ways	of	find	
strategies	 dominated	 by	 other	 strategies	 as	 by	 the	 theory	 of	 rational	 choice	 and	 to	
maximize	payoff	no	agent	would	ever	play	a	dominated	strategy.	This	method	is	based	on	
iterating	repeatedly	to	check	if	a	certain	strategy	dominates	other	for	a	certain	agent.	

Pareto	optimality	
A	strategy	profile	S	is	said	to	Pareto	dominate	strategy	profile	S’	if	no	agent	i	gets	a	payoff	
which	is	worse	by	playing	with	profile	S	over	profile	S’	for	all	i.	While	this	implies	that	the	
payoffs	maybe	equal,	 there	 is	an	additional	clause	which	states	that	at	 least	one	agent	
should	have	a	better	payoff	with	strategy	S	than	with	S’.	
	
The	concept	of	Pareto	optimality	is	based	on	the	above	definition	of	Pareto	dominance.	A	
strategy	 profile	 S	 is	 said	 to	 be	 Pareto	 Optimal	 if	 there	 is	 no	 profile	 S’	 which	 Pareto	
dominates	S.	 It	 is	also	known	that	every	game	must	have	at	 least	 	one	Pareto	Optimal	
profile	 and	 there	 always	 exists	 one	 Pareto	 Optimal	 profile	 wherein	 all	 strategies	 are	
pure.[18]	

Nash	equilibrium	
While	the	concept	of	Nash	Equilibrium	was	briefly	mentioned	in	the	introduction	to	game	
theory	in	chapter	2,	here	we	will	delve	deeper	into	the	concept.	It	is	essential	to	state	here	
that	most	solution	concepts	are	interrelated	in	one	way	or	the	other	and	this	particular	
solution	concept	was	chosen	for	this	project	as	a	Nash	equilibrium	represents	a	steady	
and	 stable	 state	 for	 a	 given	 system	where	no	 agent	has	 an	 incentive	 to	 shift	 from	his	
actions.	As	for	a	multi	agent	system	at	which	this	project	was	originally	aimed	the	goal	is	
to	find	the	final	state	of	the	system	which	is	stable	this	concept	was	chosen	for	solving	the	
problem	at	hand	using	game	theory.		
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To	 understand	 the	 concept	 of	 Nash	 equilibrium	 it	 is	 essential	 to	 know	 first	 of	 best	
response.	 A	 best	 response	 for	 a	 given	 player	 is	 an	 action	 profile	where	 in	 the	 player	
cannot	gain	more	utility	by	shifting	to	another	action	profile.	In	essence	drawing	from	the	
definition	in	chapter	2,	it	can	be	said	when	each	player	is	playing	best	responses	to	other	
players	best	responses,	the	system	is	said	to	be	in	Nash	Equilibrium.	

	
Mathematically	this	can	be	explained	as	follows.	Let	𝑆B+be	the	set	of	all	strategies	without	
the	strategy	of	agent	i.	

	 𝑆B+ = 𝑠-, 𝑠. … 𝑠+B-𝑠+D- … , 𝑠/ 	 (7)	
	
Thus	𝑆B+ 	is	the	strategy	profile	S	with	the	strategy	of	agent	i.	Let	𝑠+ 	be	by	strategy	for	agent	
i.	Then,	

	 (𝑠+, 𝑆B+) = 𝑆	 (8)	
	
Let	𝑠+A	be	the	best	response	to	𝑆B+ ,	then	for	all	strategy	𝑠+ 	available	to	agent	i:	

	 𝑢+ 𝑠+A, 𝑆B+ 	≥ 𝑢+(𝑠�, 𝑆B+)	 (9)	
	
Now	coming	back	to	Nash	Equilibrium,	a	strategy	profile	𝑠 = 𝑠-, 𝑠., …… , 𝑠/ 	 is	a	Nash	
equilibrium	 if	 for	every	 i,	𝑠+ 	 is	 the	best	 response	 to	𝑆B+ ,	 that	 is	no	agent	or	player	can	
benefit	from	deviating	from	his	strategy.	

	
A	Nash	Equilibrium	is	said	to	be	strict	if	𝑠+ 	 is	the	only	best	response	to	𝑆B+ ,	 that	is	any	
deviation	from	the	equilibrium	strategy	will	result	in	the	player	doing	worse.	If	there	are	
multiple	best	responses	to	𝑆B+ ,	then	each	of	them	will	form	weak	Nash	equilibrium.	Pure	
strategy	 nash	 equilibria	 can	 be	 both	 wear	 or	 strict	 where	 as	 mixed	 strategy	 nash	
equilibria	are	always	weak.	The	reason	for	mixed	strategy	Nash	equilibria	being	weak	is	
because	if	there	are	more	than	2	pure	strategies	that	are	best	responses	to	𝑆B+ ,	then	any	
mixture	of	them	is	also	a	best	response.	

If	a	strictly	dominant	strategy	exists	for	one	player	in	a	game,	that	player	will	play	that	
strategy	in	each	of	the	game's	Nash	equilibria.	If	both	players	have	a	strictly	dominant	
strategy,	 the	 game	 has	 only	 one	 unique	 Nash	 equilibrium.	 However,	 that	 Nash	
equilibrium	 is	 not	 necessarily	 Pareto	 optimal,	 meaning	 that	 there	 may	 be	 non-
equilibrium	outcomes	of	the	game	that	would	be	better	for	both	players.		
	
Please	note	here,	that	solving	games	is	not	being	discussed	extensively	with	respect	to	
sequential	games,	as	for	our	study	the	scenario	reduces	to	multiple	charge/not	charge	
simultaneous	games	at	every	time	step	of	the	day	which	is	essentially	a	sequential	game.	
And	the	method	to	solve	a	sequential	game	often	involves	reducing	it	to	normal	form	and	
then	 proceeding	 with	 a	 solution	 concept.	 While	 talking	 of	 solving	 sequential	 games	
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without	converting	to	normal	form,	two	concepts	are	often	discussed	sub-game	perfect	
equilibrium	 and	 backward	 induction.	 Subgame	 perfect	 equilibrium	 deals	 with	 an	
equilibrium	 situation	 in	 a	 certain	 branch	 of	 the	 game	 where	 a	 certain	 agent	 has	 no	
incentive	to	follow	a	certain	path	based	on	the	outcomes.	Backward	induction	is	a	method	
of	solving	games	by	starting	at	the	end	of	tree	branch	retracing	steps	to	see	the	logical	
solution	of	the	game	often	identifying	subgame	equilibria	as	well.	
	
After	 discussing	 the	 above	 strategies,	 we	 will	 now	 proceed	 to	 see	 some	 numerical	
examples	where	it	will	be	demonstrated	on	how	Nash	Equilibria	are	found	in	different	
cases.	Let	us	 first	 look	at	 the	prisoner’s	dilemma	game	to	understand	solving	 for	pure	
strategy	Nash	equilibrium.	
	
Let	us	set	the	premise	of	the	game	first.	There	are	two	prisoners	in	police	custody	in	two	
separate	rooms.	For	each	prisoner,	the	police	are	trying	to	get	them	to	testify	against	the	
other	prisoner	and	in	return	for	testifying	against	the	other	prisoner,	the	prisoner	who	
testifies	will	be	offered	a	reduced	sentence.	The	scenario	boils	down	to	the	fact	that	if	they	
both	testify	against	each	other	i.e.	defect/betray	with	the	other	prisoner,	they	both	get	
sentence	of	3	years	each.	 If	 they	on	 the	other	hand	both	refuse	 to	 testify	against	each	
other,	thereby	cooperating	with	each	other	and	remain	silent,	the	police	has	less	evidence	
and	can	only	put	them	both	away	for	1	year.	However,	if	one	betrays(defect)	and	other	
remains	silent(co-operate),	the	one	who	betrays	goes	free	while	the	other	is	sentenced	to	
4	years	of	prison	time.	These	 jail	 times	are	represented	as	their	negatives	to	 form	the	
payoff	matrix	in	Table	1	so	that	higher	jail	time	is	a	lower	payoff.	
	
If	 we	 analyze	 the	 game,	 let	 us	 see	 the	 outcomes	when	 player	 1	 either	 defects	 or	 co-
operates.	If	player	1	co-operates	but	player	2	defects,	player	1	gets	a	jail	time	of	4	years	
and	player	2	goes	free.	However,	if	player	2	co-operates	both	get	a	jail	time	for	1	year.	So,	
if	player	1,	goes	with	co-operation	its	always	in	player	2’s	interest	to	defect.	Now,	if	player	
1	choses	to	defect,	player	2	will	still	prefer	to	defect	as	3	years	is	less	jail	time	than	4.	And	
this	will	hold	true	the	other	way	around.	Thus,	the	defect,	defect	strategy	profile	becomes	
a	strict	Nash	equilibrium.	Here	it	can	be	noticed	that	defection	always	results	in	a	better	
outcome	 and	 hence	 it	 is	 the	 dominant	 strategy	 and	 co-operation	 is	 the	 dominated	
strategy	and	hence	can	be	eliminated.	Any	unilateral	deviation	from	the	equilibrium	is	
worse	for	each	player	and	this	is	core	of	the	algorithm	which	will	be	used	to	determine	
the	existence	of	pure	strategy	Nash	equilibrium	in	our	project.	
	
Let	us	now	explore	another	game	called	the	Battle	of	the	Sexes	to	demonstrate	how	to	
find	mixed	strategy	Nash	equilibrium.	The	premise	of	the	game	is	as	follows.	A	man	and	
a	woman	 in	 a	 couple	want	 to	 go	out	one	evening	 for	 entertainment	but	 they	have	no	
means	of	communication	and	co-ordination.	The	man	wants	to	go	to	watch	a	fight	while	
the	woman	prefers	to	go	to	the	ballet.	Moreover,	they	both	prefer	being	together	than	
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ending	up	alone	at	their	preferred	form	of	entertainment.	The	payoff	matrix	for	this	game	
is	demonstrated	in	the	following	table.	

Table	3:	Battle	of	the	sexes	payoff	matrix	

Man/Woman	 Ballet	 Fight	

Ballet	 1,2	 0,0	

Fight	 0,0	 2,1	

	
As	can	be	observed	the	woman	has	a	higher	payoff	of	2	over	the	man’s	1,	 if	 they	both	
attend	the	ballet	while	the	man	has	the	higher	payoff	if	they	both	attend	the	fight.	Incase,	
they	attend	any	form	of	entertainment	alone	both	receive	no	payoffs.	It	is	easy	to	observe	
that	ballet,	ballet	and	 fight,	 fight	are	both	pure	strategy	Nash	equilibria	as	 there	 is	no	
unilateral	deviation	for	either	player	in	either	case	to	be	able	to	obtain	a	better	outcome.	
Let	us	now	move	on	to	explore	the	method	of	finding	mixed	strategy	Nash	equilibrium.	
The	way	to	do	that	is	to	employ	a	mixed	strategy	algorithm	for	each	player.	We	begin	here	
by	applying	it	for	player	1,	the	man	in	this	case.	Automatically	player	2	is	the	woman.	The	
concept	is	to	equate	expected	utilities	for	player	2,	when	player	2	plays	either	ballet	or	
fight,	based	on	what	player	1	plays.	As	mentioned	earlier	the	expected	utility	is	a	function	
of	the	players	mixed	strategy	probability.	Let	us	denote	this	as	follows:	
	
	 𝑢.H = 𝑓 𝜎-H = 𝜎-H 2 + 1 − 𝜎-H ∗ 0	 (10)	
	 𝑢.N = 𝑓 𝜎-H = 𝜎-H 0 + 1 − 𝜎-H ∗ 1	 (11)	
	 𝑢.H = 𝑢.N 	 (12)	
	
The	 above	 equations	 numerically	 illustrate	 the	 expected	 utilities	 of	 player	 2	 playing	
ballet,	when	player	1	plays	ballet	with	a	probability	𝜎-H .	Thus	in	eq.	10	when	player	1	
plays	ballet	with	a	probability	𝜎-H ,	player	2	gets	a	payoff	of	2	for	playing	ballet	while	the	
rest	of	the	time	player	1	plays	fight	with	a	probability	1 − 𝜎-Hand	then	player	2	receives	
0	payoff.		Eq.	11	does	the	same	for	player	2	playing	fight.	When	these	are	equated	in	eq.	
12	and	solved	for	𝜎-H ,	we	get	𝜎-H = 1/3.	
	
Thus	player	1’s	mixed	strategy	Nash	equilibrium,	is	(Ballet	=1/3|Fight=2/3).	However,	
this	is	not	sufficient	representation	and	we	need	to	find	the	corresponding	mixed	strategy	
for	player	2.	On	solving	similarly	as	above,	we	obtain	𝜎.H = 2/3.	Thus	player	2’s	mixed	
strategy	 component	 for	 these	 equilibria	 is	 (Ballet	 =2/3|Fight=1/3).	 Thus	 (Ballet	
=1/3|Fight=2/3,	Ballet	=2/3|Fight=1/3)	is	the	mixed	strategy	Nash	equilibrium	for	this	
game.	
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To	 calculate	 the	 payoff	 for	 each	 player	when	 playing	 the	 above	mixed	 strategy	 Nash	
equilibrium,	we	multiply	the	individual	probabilities	of	the	players	for	a	certain	outcome	
and	then	in	turn	multiply	with	each	players	payoff	and	the	sum	of	all	these	numbers	is	
the	individual’s	playoff	for	playing	the	mixed	strategy	equilibrium.	This	is	demonstrated	
through	the	table	below.	

Table	4:	Mixed	strategy	Nash	Equilibrium:	Battle	of	the	Sexes	

Man/Woman	 Ballet	(2/3)	 Fight	(1/3)	

Ballet	(1/3)	 1,	2	(2/9)	 0,	0	(1/9)	

Fight	(2/3)	 0,	0	(4/9)	 2,	1	(2/9)	

	
Thus	 player	 1’s	 utility	 can	 be	 calculated	 as	 1× .

Q
+ 0× -

Q
+ 2× .

Q
+ 0× R

Q
= S

Q
= .

T
.	 When	

calculated	for	player	2,	it	comes	to	the	same.	Thus,	it	is	interesting	to	note	that	for	both	
player	the	pure	strategy	Nash	equilibria	mentioned	earlier	offer	higher	payoffs	than	the	
mixed	strategy	ones.	
	
After	having	covered	the	required	topic	for	carrying	out	game	theory	modeling	for	our	
project,	we	will	now	proceed	to	make	an	outline	of	the	process	followed	to	achieve	the	
results.	

3.4. Proposed	Methodology	
As	has	previously	been	mentioned,	the	proposed	outline	for	the	project	was	supposed	to	
be	 based	 on	 the	 utilization	 of	 the	 algorithm	 in	 [1]	 and	 thereafter	making	 the	 agents	
compete	amongst	themselves	using	game	theory	to	formulate	a	scenario	where	all	the	
charging	 strategies	 which	 were	 formulated	 by	 the	 author	 are	 chosen	 based	 on	
competition	 and	 to	 check	 if	 the	 system	 had	 any	 equilibria.	 However,	 as	 the	 work	
progressed,	due	to	lack	of	expertise	in	the	domain	of	game	theory	modeling	it	was	agreed	
and	the	complexity	of	modeling	an	extensive	n	person	game,	it	was	decided	to	narrow	the	
scope	of	the	project.	Through	discussions	with	the	supervisor,	it	was	concluded,	that	in	
the	interest	of	time	and	owing	to	the	lack	of	expert	guidance	on	the	subject	matter,	it	was	
best	to	reduce	the	given	problem	to	a	smaller	scope	and	apply	game	theory	to	it	to	better	
understand	 the	 theory	 and	 observe	 its	 performance	 on	 a	 simple	 system	 before	
attempting	to	employ	it	in	a	large	system.	Thus,	this	project	was	restricted	to	a	two-step	
undertaking;	in	the	first	part,	it	was	attempted	to	employ	game	theory	to	a	multi-agent	
system	but	due	 to	 the	complexity	of	 the	system,	 it	was	reduced	 to	a	 form	of	 selecting	
strategies	based	on	weightage	assigned	to	a	certain	strategy	for	a	single	agent	which	in	
turn	was	based	on	a	payoff	assigned.	The	second	step	employs	game	theory	to	a	smaller	
scenario	at	hand	of	a	household	with	2	electric	vehicles	with	different	mobility	patterns	
and	to	see	if	these	electric	vehicles	were	made	to	compete	using	game	theory,	what	kind	
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of	 load	 profile	 was	 to	 be	 observed	 for	 the	 electric	 vehicle	 charging.	 A	 flow	 diagram	
indicating	the	process	flow	for	the	second	part	is	demonstrated	below:		
	

	
Figure	14:	Flowchart	illustrating	algorithm	and	interaction	of	data	
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4. Methodology	
As	mentioned	in	the	previous	chapter,	the	central	thought	behind	this	undertaking	was	
to	employ	the	existing	setup	from	[1]	and	employ	game	theory	to	the	selection	of	charging	
strategies	by	users.	In	the	simplest	of	terms,	the	procedure	will	allow	for	payoffs	to	be	
associated	with	each	agent’s	charging	needs	based	on	the	time	of	day,	electricity	price	
and	 charging	price	 and	 an	 agent	 is	more	 likely	 to	 charge	his	 electric	 vehicle	 if	 higher	
payoff	is	associated	at	a	certain	point	of	time.	Here,	it	becomes	difficult	to	consider	the	
influence	of	the	remaining	agents	on	the	behavior	of	the	said	agent.	It	can	be	assumed	
that	an	agent’s	behavior	will	be	completely	driven	by	his	own	selfish	intent	and	as	there	
is	no	reasonable	way	of	the	agent	to	know	of	the	actions	of	other	agents,	he	will	act	solely	
with	the	purpose	of	maximizing	his	pay	off.	
	
While	 at	 the	 outset	 it	 was	 planned	 to	 employ	 game	 theory	 to	 a	 previous	 work,	 the	
complexity	of	solving	multi-agent	n	player	games	was	 found	to	be	substantial	and	the	
necessary	expertise	in	game	theory	modeling	was	not	available	and	it	was	deemed	that	
the	required	expertise	could	not	be	acquired	within	the	time	frame	of	the	master	thesis.		
	
As	such	it	was	decided	to	undertake	this	study	in	the	following	two	parts:	
	

1. To	use	the	existing	work	and	allot	weightage	to	different	charging	strategies	based	
on	SOC,	price	of	electricity	and	time	of	day	and	evaluate	how	the	load	profile	from	
electric	vehicles	would	change	as	a	result	that	
	

2. To	stay	true	to	the	initial	aim	of	employing	game	theory,	it	was	decided	to	reduce	
the	problem	to	the	scope	of	a	single	household	and	simulate	a	game	of	two	players	
in	the	same	household-	a	scenario	was	built	where	a	family	household	had	two	
distinct	EVs	for	different	purposes	and	thus	different	mobility	patterns	and	they	
would	compete	amongst	themselves	to	charge	or	not	charge	at	a	given	time	in	the	
day.	The	game	could	be	treated	as	multiple	simultaneous	move	games	at	every	
time	step	of	the	day	or	one	single	sequential	move	game	to	determine	optimum	
equilibrium	strategy	for	each	player.	

In	the	following	sections,	we	will	go	through	the	steps	carried	out	to	implement	the	above	
parts.	

4.1. Part	1:	Modification	of	existing	EV	demand	prediction	model-	
All	charging	strategies	

For	 this	 part	 it	 is	 essential	 to	 understand	 the	methodology	 applied	 in	 [1].	 A	 detailed	
review	of	the	publication	in	[1]	is	necessary	to	fully	understand	the	approach	applied	and	
the	steps	taken	to	estimate	the	electric	vehicle	charging	demand.	In	this	section,	we	will	
briefly	go	through	the	approach	and	the	modifications	made	to	obtain	a	different	charging	
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demand	 at	 the	 37-node	 system	 as	 considered	 in	 the	 original	 publication.	 A	 short	
description	 of	 the	 model	 is	 mentioned	 in	 Section	 3.2.	 Hereafter	 we	 will	 list	 certain	
necessary	 details	 of	 the	 model	 which	 are	 required	 to	 understand	 the	 modifications	
carried	out	in	this	study:	
	
1. Agent	 based	 modelling	 details:	 Six	 groups	 of	 agents	 were	 defined	 in	 this	 study	

considering	mobility	and	their	residence.	Mobility	reasons	were	based	on	personal	
or	 professional	 functions.	 Three	 different	 areas	 of	 residence	 were	 identified	 and	
formed	the	basis	of	start	and	end	of	trips	and	additionally	need	for	charging	within	
the	network	being	examined.	These	6	agent	groups	are	enlisted	here:	

	
- Group	1:	Residents	of	the	network	
- Group	2:	Non-Residents	but	will	charge	once	their	trip	is	over	and	will	stop	within	

network	
- Group	3:	Private	individuals	from	the	metropolitan	
- Group	4:	Professionals	-	resident	of	the	network	
- Group	5:	Professionals	-	non-residents	of	the	network	
- Group	6:	Metropolitan	area	professionals	

These	different	groups	have	an	 inclination	 to	charge	at	different	 times	 for	examples	a	
resident	of	the	network	prefers	to	charge	at	the	completion	of	his	trips	where	as	someone	
travelling	 from	 urban/metropolitan	 areas	 can	 charge	 between	 consecutive	
displacements.	The	number	of	these	groups	is	sourced	from	open	data	and	considers	that	
38%	 of	 all	 vehicles	 [19]	 in	 Barcelona	 are	 driven	 every	 day.	 Additionally,	 an	 EV	
penetration	factor	of	10%	-	40%	can	be	applied	to	evaluate	different	results.	For	the	sake	
of	this	study	we	have	used	an	EV	penetration	factor	of	10%	which	implies	that	10%	of	all	
vehicles	being	driven	in	Barcelona	
	
2. The	 test	 network	 is	 a	 37-node	 IEEE	 test	 feeder	MV	 network	which	 is	 adapted	 to	

Barcelona	network	characteristics	of	25	kV	MV	and	 the	geographic	distribution	 is	
adapted	to	Barcelona’s	mobility	data.	High,	medium	and	low	inhabitants	per	house	
and	vehicles	per	inhabitant	are	identified	and	a	distribution	of	branches	and	nodes	is	
carried	out.	More	details	on	the	same	are	available	in	[1].	

	
3. The	author	in	[1]	has	created	4	charging	scenarios	between	which	we	will	be	mixing	

in	this	study	to	obtain	a	modified	charging	demand.	These	are	described	in	brief	here:	
- Scenario	A-	Intensive	Charge	–	User	charges	as	soon	as	possible	whenever	possible	
- Scenario	B-	Plug-And-Play	–	User	charges	at	home	when	SOC	is	less	than	20%	
- Scenario	C-	Off-Peak	Tariff	–	User	has	a	Time-of-Use	(TOU)	tariff	specially	for	EVs	
based	 on	 Spanish	 Regulation	 with	 the	 cheapest	 hour	 of	 electricity	 pricing	
beginning	at	1:00	AM	
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- Scenario	D-	Smart	Charging-	Realized	by	the	aggregator	who	manages	all	EVs	to	
consume	minimum	power	at	a	certain	transformer	

	
Based	on	this	back	ground	we	will	now	proceed	to	understand	the	modifications	required	
to	the	model	to	implement	a	scenario	in	which	agents	can	charge	using	all	of	the	first	3	
charging	scenarios.	
	
The	methodology	and	steps	followed	here	were	the	following:	
	
1) Based	on	the	electricity	tariffs	on	a	certain,	a	savings	potential	was	identified	for	

each	agent	in	every	agent	group	for	the	different	charging	scenarios.	
2) The	 savings	 potential	 along	 with	 electric	 vehicle	 state	 of	 charge	 and	 energy	

requirements	for	next	trip	formed	the	basis	of	allotting	a	payoff/weightage	to	each	
agent.	

3) Based	on	the	above	weightage	assigned	to	the	user,	the	user	decides	to	charge	in	
scenario	A,	B	or	C	

4) These	electric	charging	demands	are	aggregated	at	each	node	throughout	the	day	
and	the	difference	is	plotted	and	inferences	dotted	therein.	

5) Additionally,	 it	 is	determined	what	percentage	of	users	 in	a	specific	agent	group	
charge	using	a	certain	scenario.	

6) Care	is	also	taken	to	take	into	account	that	certain	user	in	an	agent	group	might	not	
be	eligible	for	Scenario	B	and	C	which	are	applicable	for	users	who	only	charge	at	
home	and/or	have	access	to	TOU	tariffs.	
- Group	1:	Residents	of	the	network:	This	group	is	eligible	for	all	three	charging	
scenarios	considered	

- Group	 2:	 Non-Residents	 but	 will	 charge	 once	 their	 trip	 is	 over	 and	will	 stop	
within	network:	As	these	are	non-residents	they	will	not	be	able	to	avail	Scenario	
B	and	Scenario	C	

- Group	3:	Private	from	the	metropolitan:	These	group	of	Agents	are	outside	the	
urban	limits	and	hence	cannot	avail	Scenario	B	and	C	either.	

- Group	4:	Professional	resident	of	the	network:	This	group	is	eligible	for	all	three	
charging	scenarios	considered	

- Group	5:	Professional	non-resident	of	the	network:	As	these	are	non-residents	
they	will	not	be	able	to	avail	Scenario	B	and	Scenario	C	

- Group	6:	Metropolitan	area	professionals:	This	group	since	outside	the	network	
is	not	eligible	for	either	of	the	three	charging	scenarios	considered	

4.2. Part	2:	Two	player	game	in	a	single	household	
In	this	part,	a	scenario	was	constructed	considering	an	affluent	family	household	with	a	
single	charging	point	with	typical	mobility	patterns	of	commute	to	work,	dropping	kids	
at	school,	visiting	supermarkets,	gym	and	running	errands.	This	was	done	to	simplify	the	
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need	to	model	multiple	users	 in	order	to	reduce	the	complexity	of	 the	game.	This	will	
form	a	simple	exercise	in	employing	game	theory	to	evaluate	how	agents	within	the	same	
household	 and	 access	 to	 one	 charging	 port	 will	 compete	 and	 collaborate	 amongst	
themselves	 to	 ensure	 an	 optimum	 charging	 pattern	 keeping	 in	 mind	 their	 mobility	
patters.	Additionally,	it	will	also	be	interesting	to	note	the	effect	of	electricity	prices	and	
off-peak	tariffs	on	their	charging	decisions.	In	the	following	section	the	major	aspects	of	
this	scenario	will	be	highlighted.	

4.2.1. Two	player	household	game	scenario	description	
	
Certain	salient	features	of	the	household	used	to	create	this	scenario	are:	
	
1) Number	of	Occupants:	It	is	assumed	that	in	the	household	reside	two	adults	who	

form	a	couple	and	two	children	aged	between	0-17	years;	This	will	be	taken	into	
account	while	considering	the	energy	consumption	of	the	household	irrespective	of	
the	electric	vehicles.	
	

2) Major	 Electric	 Loads:	 The	major	 electric	 loads	 of	 the	 house	 outside	 the	 electric	
vehicle	 charging	 are	 considered	 to	 be	 laundry,	 dishwashing,	 refrigeration	 and	
water/space	 heating.	 Typical	 values	 applicable	 for	 a	 family	 will	 be	 taken	 into	
account	 to	 generate	 a	 typical	 load	 profile	 for	 a	 family.	 Additionally,	 a	 randomly	
distributed	consumption	over	a	mean	consumption	with	certain	deviation	will	be	
used	 to	 account	 for	 other	 smaller	 electric	 loads	 such	 as	 lighting,	 television	 and	
computers	etc.		
	

3) Electric	Vehicles:	since	two	electric	vehicles	were	to	be	selected,	two	of	the	most	
common	and	popular	EV’s	were	selected.	One	with	very	high	range	and	other	with	
a	slightly	reduced	range.	These	EVs	are	Tesla	Model	S	and	Nissan	Leaf	respectively.	
These	are	hereafter	referred	to	as	EV1	and	EV2	respectively.		
	

4) Mobility	Pattern:	Here	it	is	assumed	that	EV1	is	used	for	commute	to	work	and	back	
by	one	of	the	adults	in	the	household	and	thereafter	another	trip	is	made	to	the	gym	
or	market	or	errands.	Similarly,	EV2	is	used	by	the	other	adult	to	pick-up	and	drop	
the	children	to	school/university	and	run	an	additional	errand	a	few	times	a	week.	
This	coupled	with	a	longer	weekend	trip	twice	a	month	in	EV1	is	assumed	to	be	the	
typical	mobility	pattern	for	the	household	in	scenario.	

	
The	size	of	these	trips	(commute	to	work,	personal	and	weekend	trip)	are	estimated	
from	publications	which	 have	 predicted	 average	 commute	 distances	 in	 different	
countries	and	distances	for	personal	trips.	In	the	following	section,	the	numerical	
data	used	to	build	the	scenario	will	be	enlisted.		
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4.2.2. Data	used	to	build	the	scenario	
The	 data	 used	 in	 the	 scenario	 is	 sourced	 from	 various	 open	 public	 data	 platforms,	
publications	related	to	power	consumption	and	mobility,	and	manufacturer	websites.	All	
sources	referenced	to	estimate	the	required	numbers	for	the	scenario	are	listed	after	the	
data	sourced	from	there	is	presented	in	this	report.	The	characteristics	of	the	major	loads	
considered	in	creating	the	household	scenario	are	listed	in	the	following	table:		

Table	5:	Household	Loads	considered	for	Load	Profile	

	 Dishwasher	
Laundry	
with	dryer	

Refrigerator	 Heating	

No.	of	cycles	per	
day	 1	 2	 Cont.	 Cont.	

No.	 of	 time	 per	
week	 7	 4	 Cont.	 Cont.	

Consumption	
per	cycle	(kWh)	 1	 6.12	 4.8	/day	 4.38	/day	

Cycle	 Duration	
(hours)	

2	 2	 Cont.	 Cont.	

	
The	above-mentioned	data	on	multiple	occasions	is	sourced	from	and	estimated	based	
on	 data	 from	 countries	 where	 a	 scenario	 for	 two	 electric	 vehicles	 is	 more	 probable	
especially	the	Scandinavian	countries	of	Norway,	and	Sweden.	[20][21][22][23]	
	
The	characteristics	of	these	vehicles	relevant	to	the	modeling	of	this	scenario	are	listed	
in	the	following	table:	

Table	6:	EV	Characteristics	

	 Nissan	Leaf	(EV2)	
Tesla	Model	S	

(EV1)	

Battery	Size	(kWh)	 30	 70	

Range	(km)	 420	 172	

Economy	(Wh/km)	 160	 170	

Max.	Onboard	charging	power	(kW)	 3.6	 10	

Hybrid/EV	 EV	 EV	

	
The	above	specifications	have	been	sourced	 from	manufacturer	websites	and	product	
information	brochures.	[24][25]	
	
The	mobility	data	used	to	define	the	length	of	trips	are	listed	in	the	following	table:	



44	 	 Master	Thesis	

	 	 Dev	Mishra
	 	

Table	7:	Mobility	Data	

Average	Personal	trip	distance	(km)	 16.6	
Average	Professional	commute	trip	distance	(km)	 10	
Average	weekend	trip	distance	(km)	 90	
Number	of	trips/day	(Personal)	 2	per	vehicle	(incl.	return)	
Number	of	trips/day	(Professional)	 2	(incl.	return)	
Velocity	urban	(km/hr)	 22.2	
Velocity	metropolitan	(km/hr)	 59.3	
	
The	 above	 data	 is	 sourced	 and	 estimated	 from	 typical	 data	 for	 metropolitan	 cities.	
[19][26][27]	
	
Electricity	prices	as	used	for	Time-of-use	tariffs	is	not	listed	here	due	to	volume	of	the	
data,	 however	 a	 sample	 of	 the	 data	 used	will	 be	 presented	 in	 Annexure	 A.	 They	 are	
sourced	from	Red	Eléctrica	de	España	as	provided	by	ENDESA	to	its	customers.	[28]	

4.2.3. Methodology	implementation	in	the	Scenario	
In	 this	 segment,	we	discuss	 the	 concepts	 from	segment	3.3	 and	how	 they	are	used	 in	
solving	the	given	two-player	game	scenario.	Firstly,	the	scenario	at	hand	is	modelled	in	
the	form	of	daily	power	consumption	of	a	household	over	a	fixed	period	of	time	like	week,	
month	or	year.	Thereafter	each	day	is	divided	in	to	a	5-min	time-step	and	a	two-player	
game	is	charging/not-charging	game	is	played	between	the	two	EV’s	in	our	scenario.		
	
A	load	profile	for	each	day	is	created	based	on	the	household	appliance	data	listed	in	the	
previous	section.	This	is	coupled	with	a	base	load	and	additional	factors	accounting	for	
occupant	 presence	 in	 the	 household	 and	 for	 sleep/night	 hours.	 The	 base	 load	 from	
lighting	and	passive	electricity	usage	and	accounting	for	no	occupants	at	home	and/or	
sleep	hours	 is	added	to	the	continuous	 loads	from	refrigeration	and	heating.	The	base	
load	is	modelled	based	on	data	from	[22].		A	normal	distribution	with	a	mean	of	0.2	kW	
and	small	standard	deviation	of	0.05	thus	form	the	base	load	on	which	all	other	loads	and	
factors	are	superimposed	to	create	a	typical	load	profile	for	the	scenario.	
	
It	is	then	attempted	to	consider	the	game	as	a	simultaneous	move	game	represented	as	a	
normal	form	game	at	every	single	time	step	during	the	day	and	analyze	where	it	makes	
sense	for	the	EV	user	to	charge	their	vehicle.	This	means	in	a	day	there	are	288	games	
and	for	a	valid	game	there	exists	a	Nash	Equilibrium	(pure	strategy	or	mixed	strategy	
equilibria)	which	will	ensure	that	it	is	the	best	response	for	each	EV	to	the	conditions	of	
the	scenario	as	well	as	to	the	strategy	of	each	EV.		
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The	payoffs	attached	to	each	time	step	for	each	user	are	based	on	the	vehicle	SOC,	price	
of	electricity	at	that	hour,	whether	or	not	the	other	vehicle	is	charging	and	how	close	it	is	
to	fulfilling	its	max	charge.	These	factors	determine	the	inclination	of	any	EV	to	charge	
and	are	used	to	ensure	a	logical	pattern	to	the	needs	of	charging.	
	
Thereafter,	an	algorithm	for	iterated	elimination	of	strictly	dominated	strategies	is	used	
to	arrive	at	pure	strategy	Nash	equilibria	if	existing	for	every	time	step	in	the	day.	Post	
that	 an	 algorithm	 to	 find	mixed	 strategy	Nash	 Equilibria	 is	 constructed	 based	 on	 the	
probability	of	a	certain	player	to	play	a	certain	strategy	between	charge	and	not	charge	
and	matching	his	expected	utilities.	From	these	equilibria,	the	one	with	higher	utility	will	
be	picked	as	the	player’s	move	and	the	scenario	will	be	updated	accordingly.	
	
As	mentioned	in	the	section	explaining	the	background	on	the	game	theory	modelling,	
the	scenario	although	treated	as	a	simultaneous	game	at	each	time	step,	it	is	essentially	a	
reduction	of	a	sequential	game	to	be	solved	as	a	simultaneous	or	normal	form	game.	
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5. Results	and	Discussion	
In	this	section,	we	will	present	and	discuss	the	results	obtained	from	the	two	parts	of	this	
project.	In	the	following	section,	we	will	first	present	the	results	obtained	from	employing	
weighted	strategies	based	on	price	of	electricity,	SOC	and	mobility	on	the	algorithm	from	
[1],	 and	 discuss	 the	 same	 while	 mentioning	 certain	 important	 observations	 therein.	
Thereafter,	 we	 will	 proceed	 to	 present	 the	 findings	 from	 the	 two-player	 household	
scenario	game	and	the	results	obtained	from	solving	that	game.	

5.1. Results	and	Discussion:	Part	1	
In	 Fig.	 16	 the	 original	 demand	 at	 each	 node	 is	 plotted	which	 is	 then	 followed	 by	 the	
modified	demand	obtained	by	giving	weightage	to	strategies	as	described	in	the	previous	
section.	While	overall	load	distribution	across	the	nodes	is	similar	there	is	a	reduction	in	
peak	 load	 in	 some	 nodes	 that	 is	 observed.	 This	 can	 be	 attributed	 to	 time	 based	
preferences	in	the	weightage	that	is	attributed	to	different	strategies.		
	

	
Figure	15:	Original	Demand	at	each	node	

The	peak	demand	seen	in	the	previous	figure	at	nodes	29	and	34	is	above	1200	kW	
however	as	observed	in	the	following	figure	the	peak	demand	at	those	nodes	is	now	
well	below	1200	kW.	
	

	
Figure	16:	Demand	at	each	node	with	weighted	strategies	
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Let	us	now	 look	at	 a	 single	 agent	 group	and	how	 their	 charging	patterns	are	affected	
during	each	time	step	of	the	day	with	the	modified	strategies.	Fig.	18	shows	the	original	
demand	from	agent	group	1	at	every	5-minute	time-step	of	the	day.	The	5-minute	time-
step	allows	for	288	total	time	steps	in	24	hours	thus	allowing	for	easier	visualization	of	
the	day	on	a	higher	resolution.	
	

	
Figure	17:	Original	demand	for	every	time	step	for	Agent	Group	1	

In	Fig.	19,	we	observe	the	modified	energy	demand	from	agents	of	group	1.	A	spike	in	
demand	is	observed	during	low	electricity	price	hours	during	the	early	hours	of	the	day	
and	a	net	reduction	in	peak	demand	during	peak	hours	is	also	noticed.	This	affirms	that	a	
weighted	strategy	for	the	scenarios	and	giving	users	payoff	based	on	the	time	they	charge	
amongst	other	factors	can	result	in	a	reduction	of	peak	hour	demand	and	can	be	to	study	
peak	shifting	and	valley	filling	phenomenon.	Although,	it	was	initially	aimed	to	achieve	
results	 using	 game	 theory	 and	 competition,	 we	 have	 only	 been	 able	 to	 demonstrate	
certain	patterns	which	can	be	expected	to	be	observed	if	this	exercise	is	extended	to	the	
implementation	of	game	theory.	

	
Figure	18:	Modified	demand	with	weighted	strategies	for	Agent	Group	1	

Additionally,	 as	mentioned	 in	 the	previous	 section,	 it	was	also	determined	as	 to	what	
percentage	of	users	in	a	certain	agent	group	are	charging	in	a	particular	scenario.	The	
findings	from	the	same	are	tabulated	in	the	following	table.	
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Table	8:	Percentage	of	agents	charging	in	a	scenario	

	
Percentage	of	user	charging	in	each	Scenario	%	
A	 B	 C	

Agent	Group	1	 76	 15	 9	
Agent	Group	4	 75	 25	 0	

	
As	 can	 be	 observed,	 the	 majority	 of	 the	 agents	 do	 continue	 to	 charge	 in	 the	 most	
convenient	 intensive	 charge	 scenario	 which	 allows	 for	 charging	 whenever	 possible,	
however	a	shift	towards	scenarios	B	and	C	are	also	involved.	As	this	part	of	the	study	was	
done	by	a	simple	weighted	scheme	instead	of	a	game	theoretic	optimization	approach	
technique,	it	is	difficult	to	draw	any	strong	conclusions	from	the	above	results.	
	
Let	us	now	explore	in	detail	the	results	obtained	from	Part	2	of	this	study.	

5.2. Results	&	Discussion:	Part	2	
In	 this	 section,	we	will	 examine	 the	 results	 from	 the	 second	 part	 of	 the	 study	which	
involves	a	specially	created	scenario	of	a	household	with	two	electric	vehicles.	
	
As	 a	 first	 step,	we	examined	 the	 results	 from	 the	 scenario	 for	one	day	 to	 check	 if	 the	
algorithm	was	behaving	as	expected	and	if	the	findings	seemed	logical.	It	is	interesting	to	
observe	the	equilibria	we	have	obtained	when	the	game	is	solved	as	simultaneous	game	
at	each	time	step.	As	expected	the	game	shows	no	equilibria	for	the	initial	durations	of	
the	day	and	eventually	when	both	EVs	are	available	at	 the	 residence	and	 the	price	of	
electricity	is	simultaneously	low,	both	players	have	a	pure	strategy	Nash	equilibrium	with	
the	charge	strategy	with	preference	going	 to	 the	player	with	 lower	SOC	and	while	 the	
vehicle	with	preference	charges	there	can	be	no	game	until	the	player’s	SOC	requirement	
for	subsequent	trips	is	met.	Thereafter,	the	second	EV	start	charging	and	again	there	is	
no	game	involved	till	the	second	EV	attains	a	desirable	SOC.	While	this	seems	logical,	there	
are	 other	 iterations	which	 can	be	 examined	herein	where	player	 two	believes	 he	 has	
higher	utility	by	charging	when	player	1	is	not	available	to	charge	even	though	the	price	
of	 electricity	 is	 higher,	 thus	 essentially	 not	 competing	 in	 the	 game.	 This	 is	 based	 on	
subjective	utility	given	to	convenience	and	factors	and	results	in	a	shift	in	equilibrium	to	
outside	what	is	observed	earlier	in	the	off-peak	hours.	After	observing	this	on	a	singular	
day	the	game	was	expanded	to	run	for	a	week	with	additional	trips.	
	
Just	to	demonstrate	what	a	typical	2x2	matrix	for	a	time	step	looks	like,	in	the	following	
table	we	will	see	the	first	equilibrium	reached	where	EV2	has	a	low	SOC	and	decides	to	
start	charging.		
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Table	9:	Typical	Payoff	matrix	as	obtained	for	Charge/Charge	equilibrium	scenario	

EV1/EV2	 Charge	 Not	Charge	

Charge	 3,	6	 1,	1	

Not	Charge	 1,	1	 1,	1	

	
In	the	above	table,	it	is	a	charge/charge	equilibrium	but	in	our	scenario	only	one	EV	can	
charge	 at	 a	 time	 and	 it	makes	 sense	 to	 charge	 the	 one	 having	 a	 higher	 payoff	which	
incidentally	and	because	of	the	design	on	the	algorithm	has	a	higher	payoff	which	in	this	
case	is	EV2.	It	is	also	essential	to	observe	that	the	resulting	game	is	not	a	zero-sum	game	
and	thus	is	not	purely	competitive	and	thus	there	can	be	scope	for	co-operation	and	co-
ordination.	
	
In	the	following	section,	we	will	see	how	the	load	profile	looks	in	comparison	to	prices	
and	during	what	time	this	equilibrium	occurs	and	whether	the	player	also	benefits	from	
low	tariffs	at	that	point	and	how	the	progression	of	SOC	takes	place	thus	indicating	till	
what	 time	 the	 EV	 charges.	 There	 are	 efficiency	 factors	 which	 are	 applied	 to	 the	 EV	
charging	as	well	as	 to	battery	depletion	to	ensure	that	all	processes	are	not	occurring	
perfectly	ideally	and	are	instead	more	realistic.	
	
The	first	equilibrium	is	observed	on	day	4,	when	EV2	has	a	higher	payoff	to	charge	during	
a	low-price	time	on	day	4	of	the	week.	This	can	be	observed	in	Fig.	19	where	a	rise	in	
household	load	is	observed	around	0900	hrs.	This	is	after	EV2	has	completed	its	first	trip	
of	dropping	the	children	at	school	and	is	back	at	the	household	until	the	next	trip	which	
is	scheduled	to	pick	up	the	children	from	school.	The	game	results	in	EV2	charging	in	this	
duration	up	till	a	point	where	the	normal	prices	are	higher	than	the	off-peak	prices.	This	
is	ensured	by	a	correct	construction	of	 the	payoff	allotting	 function	 in	 the	code	and	 is	
verified	by	obtaining	this	result.	It	is	also	interesting	to	note	that	the	game	decides	when	
the	EV	should	charge	based	on	it	mobility	needs.	It	is	seen	in	Fig.	19	that	EV2	engages	in	
charging	for	the	first	time	in	the	week	on	day	4	based	on	the	knowledge	of	the	mobility	
pattern	 for	 the	 week.	 Additional	 equilibriums	 with	 EV2	 having	 higher	 payoffs	 are	
observed	during	the	weekend	depending	on	the	price	of	electricity	and	are	contributed	
to	the	mobility	pattern	for	weekends	being	different,	that	is	there	are	fewer	or	no	trips,	
the	weekend	charging	allows	for	charging	up	to	100%	SOC	for	EV2	on	day	6	thus	being	
prepared	for	the	mobility	requirements	of	the	coming	week.	
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Figure	19:	First	Equilibrium	with	EV2	charging	on	Day	4	

Post	this	the	next	equilibrium,	that	is	observed	is	for	EV1	with	higher	utility	being	observed	
for	EV1	during	the	early	hours	of	day	5.	This	is	illustrated	in	Fig.	20.	Here,	again	the	game	
decides	that	the	vehicle	needs	to	charge	taking	into	account	user	preferences	for	SOC,	which	
is	 in	turn	based	on	plans	to	use	EV1	over	the	weekend.	While	doing	so	it	also	takes	into	
account	payoff	related	to	SOC	and	electricity	prices	to	charge	the	vehicle	in	low-price	hours	
for	the	off	peak	TOU	tariff.	EV1	owing	to	the	time	when	system	equilibrium	is	 identified	
charges	up	to	100	%	SOC	and	is	thus	prepared	for	any	weekend	trip	or	additional	duties	
over	the	weekend.	It’s	again	interesting	to	note	that	the	charging	here	takes	place	when	the	
vehicle	SOC	has	dropped	to	below	50%	on	day	5	of	the	week.	A	further	equilibrium	favorable	
to	EV1	is	observed	on	the	final	day	7	during	off-peak	low	tariff	hours	in	case	there	has	been	
a	weekend	trip	which	depletes	the	battery.	This	equilibrium	again	ensures	that	the	vehicle	
has	an	SOC	of	100%	before	the	next	week	commences.	It	can	be	observed	in	the	plot	that	
post	the	charging	in	the	early	hours	of	day	5	the	vehicle	continues	with	it	normal	mobility	
pattern	for	day	5,	and	the	same	is	seen	in	the	SOC	depletion	observed	during	the	day	hours.	
The	effect	observed	on	the	demand	profile	for	charging	at	the	rated	max	high	power	for	EV1	
shows	that	the	charging	duration	is	short	but	the	peak	load	is	higher	as	compared	to	EV1	
which	has	a	lower	max	rated	charging	power.	This	assumes	that	both	vehicles	are	able	to	
charge	at	their	max	rated	onboard	charging	power.		
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Figure	20:	Second	Equilibrium	with	EV1	charging	on	Day	5	

Some	other	observations	which	result	in	a	closer	examination	of	the	results	are	that	only	
pure	 strategy	 Nash	 equilibria	 are	 observed	 and	 that	 all	 equilibria	 which	 are	 used	 to	
evaluate	 the	 charging	 demand	 from	 EV’s	 are	 strong	 or	 strict	 equilibria.	 Weak	
equilibriums	are	also	observed	when	there	is	no	incentive	for	either	vehicle	to	charge	and	
thus	there	is	no	utility	assigned	at	any	action	profile	and	thus	all	profiles	end	up	being	
weak	equilibriums.	No	mixed	strategy	equilibria	are	observed	and	this	attributed	to	the	
fact	that	there	is	no	uncertainty	in	the	mobility	patterns	of	the	EVs.	In	case,	there	was	a	
factor	which	was	applied	to	assign	probabilities	of	taking	certain	trips	to	each	EV	and	as	
a	result	the	SOC	at	any	point	of	time	on	any	given	day	of	the	week	would	be	stochastic,	it	
is	 expected	 that	 in	 such	 case	 mixed	 strategy	 Nash	 equilibria	 might	 have	 also	 been	
observed.	As	has	been	mentioned	previously,	 the	games	here	non	zero	sum	game	and	
thus	allow	for	co-ordination	and	co-operation.	This	has	not	 fully	been	explored	in	this	
project,	however	there	is	scope	to	apply	co-ordination	and	co-operation	mechanism	to	
explore	the	findings	therein.	
	
Before	proceeding	to	conclude,	we	will	now	take	a	quick	look	at	the	monetary	savings	
which	 a	 household	 could	 expect	 to	 see	 from	 the	 game	 theoretic	 management	 of	 the	
electric	vehicles	charging	using	off-peak	TOU	tariff	over	normal	tariffs.	This	is	illustrated	
in	Table	9.		

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
0

1

2
C

on
su

m
pt

io
n 

kW
h Load Profile

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
0

0.05

0.1

0.15

Pr
ic

e 
(E

ur
o/

kW
h)

Prices of Normal & Offpeak schemes

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00

Time of day

0

50

100

SO
C

 %

SOC



52	 	 Master	Thesis	

	 	 Dev	Mishra
	 	

Table	10:	Savings	from	game	theoretic	electric	vehicle	charging	using	off-peak	tariffs	

	 Saving	in	Euros	
Yearly	Savings	from	EV1	 154.3	
Yearly	Savings	from	EV2	 45.9	

Net	Yearly	Savings	for	household	 ~	200.0	
	
Thus,	it	can	be	observed	that	through	the	game	theoretic	charging	of	the	electric	vehicles	
using	an	off-peak	TOU	tariff,	net	yearly	saving	of	almost	200	Euros	can	be	achieved.	While	
this	is	not	substantial	for	a	household,	it	does	clearly	demonstrate	how	demand	response	
can	have	a	monetary	impact	on	the	spending	of	a	household.	
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6. Conclusions 
In	conclusion,	 the	 findings	 from	this	work	are	summarized	as	 follows.	From	 including	
multiple	charging	scenarios	such	as	intensive	charging,	plug	and	play,	and	off	–peak	it	is	
observed	that	demand	from	electric	vehicles	is	modified.	Important	trends	such	as	peaks	
being	reduced	and	certain	amount	of	demand	shifting	is	observed	and	thus	highlights	the	
importance	 of	 the	 carrying	 out	 an	 exercise	 as	 in	 part	 one	 of	 this	work	 along	with	 an	
optimization	technique	such	that	stronger	conclusions	can	be	drawn	from	the	work	and	
be	utilized	to	understand	the	impact	on	the	grid.	
	
From	part	two	of	this	work,	it	is	possible	to	conclude	that	game	theoretic	methods	can	be	
applied	to	optimization	problems	in	electric	vehicle	charging	scenarios	as	well	household	
energy	management	schemes	including	demand	response.	The	results	show	that	game	
theory	can	be	a	versatile	tool	to	ensure	that	optimum	results	are	obtained	while	taking	
into	account	preferences	from	agents	or	players.	The	results	showed	that	it	was	optimum	
to	charge	the	vehicles	1-2	times	a	week,	even	at	times	not	up	to	100%	SOC	while	making	
use	of	off-peak	tariffs	to	generate	monetary	savings	for	the	household.	The	results	also	
demonstrated	certain	aspects	from	a	game	theoretic	point	of	view.	These	involved	the	
lack	 of	 mixed	 strategy	 Nash	 Equilibria	 illustrating	 that	 the	 user’s	 actions	 were	 fully	
defined	and	there	was	no	probability	involved	based	on	other	factors	which	could	be	used	
to	attain	additional	equilibria.	Another	important	conclusion	was	the	observation,	that	
the	 game	 at	 each	 time	 step	 was	 a	 non-zero	 sum	 game	 thus	 demonstrating	 that	 co-
operation	and	co-ordination	be	a	factor	in	such	scenarios.	

6.1. Scope	for	Additional	Work		
It	is	interesting	to	note	from	the	above	sections,	that	the	results	seem	very	logical	when	
being	predicted	even	without	game	theory,	however	this	study	reinforces	the	logicality	
of	concepts	in	load	management	such	as	demand	side	management	and	demand	response	
where	it	is	observable	that	the	tendency	to	shift	to	off	peak	hours	for	monetary	benefit	is	
the	major	observable	trend	while	considering	that	it	optimizes	the	charging	behavior	in	
a	single	household.		Additionally,	it	indicates	the	optimum	pattern	in	which	heavy	loads	
of	electric	vehicles	can	be	shifted	to	allow	for	maximizing	their	utility,	while	maintain	user	
convenience.	Further	extension	of	this	study	can	involve	extending	the	shifting	of	loads	
to	all	household	appliances.	Alternately,	the	game	theoretic	approach	can	be	extended	to	
an	entire	neighborhood	or	district	and	then	the	impact	on	the	grid	can	be	observed	and	
potential	for	mechanisms	such	as	peak	shifting	and	valley	filling	can	be	evaluated.	Also,	
as	 mentioned	 towards	 the	 end	 of	 the	 last	 section,	 there	 is	 scope	 to	 implement	 co-
operation	and	co-ordination	and	that	can	be	an	interesting	extension	of	this	work.	
	
With	the	higher	integration	of	EVs	it	also	opens	up	opportunities	to	utilize	EVs	and	EV	
charging	 infrastructure	 in	 alternate	ways	 such	as	 the	Vehicle-to-Grid(V2G)	 concept	 to	
supplement	 the	grid	energy	and	 in	 turn	 facilitate	higher	 integration	of	 renewables.	 In	
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essence,	the	power	grid	has	negligible	storage,	as	a	result	of	which	it	is	a	constant	effort	
to	match	transmission	and	generation	to	match	the	end	user	consumption.	This	is	usually	
achieved	by	turning	on/off	facilities	in	a	power	plant,	and	ramping	up	and	down	[29].	EVs	
as	 in	 the	 case	 of	 other	 vehicles	 are	 designed	 to	 deal	 with	 fluctuations	 in	 power	
requirement	as	per	road	profile	and	driving	behavior.	This	in	EVs	is	achieved	by	hybrid	
drive	trains,	or	battery	technology	which	are	forms	of	energy	storage	and	thus	can	proved	
energy	when	the	vehicles	are	parked,	and	with	the	required	connections	to	the	grid	can	
feed	power	 into	 the	grid	when	required.	This	 is	what	 is	 termed	as	 the	Vehicle-to-Grid	
concept	or	V2G.	This	is	additionally	aided	by	driving	patterns	of	personal	EVs	wherein	it	
can	be	observed	that	they	are	used	for	only	5-10%	per	cent	of	all	time	for	transportation,	
and	90-95%	time	are	parked,	making	them	available	for	a	‘secondary	function’	such	as	
V2G	[29].	Thus,	if	a	model	for	charging	demand	of	EVs	can	be	successfully	built,	it	can	be	
further	utilized	to	calculate	the	potential	of	privately	owned	EVs	to	supply	energy	back	to	
the	 grid.	 This	 requires	 the	 study	 of	 additional	 parameters	 and	 optimization	 of	 those	
parameters	 to	 achieve	 a	 successful	 implementation	which	 is	 beyond	 the	 scope	of	 this	
work.	The	concept	has	been	briefly	mentioned	here	in	order	to	demonstrate	possibilities	
of	additional	work.	
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Annexure	A:	Electricity	Prices	
The	 following	 table	 demonstrates	 sample	 Time-of-use	 electricity	 prices	 used	 in	 this	
project.	The	below	data	is	for	the	30th	of	April	2017.	
	

	 Off	Peak		(eur/kWh)	 Normal	((eur/kWh))	
0h	 0.06027	 0.10561	

1h	 0.04992	 0.10225	

2h	 0.0423	 0.09407	

3h	 0.03703	 0.08227	

4h	 0.03437	 0.08532	

5h	 0.03373	 0.08456	

6h	 0.03213	 0.08279	

7h	 0.03645	 0.08186	

8h	 0.03893	 0.08434	

9h	 0.03855	 0.08397	

10h	 0.03188	 0.07729	

11h	 0.02899	 0.07439	

12h	 0.02908	 0.07448	

13h	 0.08909	 0.07067	

14h	 0.08678	 0.06836	

15h	 0.08514	 0.06673	

16h	 0.08497	 0.06657	

17h	 0.08761	 0.06918	

18h	 0.09115	 0.0727	

19h	 0.09891	 0.08037	

20h	 0.10449	 0.08589	

21h	 0.12075	 0.10201	

22h	 0.12037	 0.10164	

23h	 0.0567	 0.10198	
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Annexure	B:	MATLAB	Code	
 
%% 2-player game for a houshold with 2 EVs and other loads 
EV_matrix=[160 420 70 10 1; 170 172 30 3.6 1]; 
  
EV_SOC=[100 100]; 
  
[Price_5min_OffPeak]=xlsread('Data_Master File','Price 288 
resolution','B2:B289'); 
[Price_5min_Normal]=xlsread('Data_Master File','Price 288 
resolution','C2:C289'); 
  
vel_urb= 22.2; % city region velocity 22.2 km/h 
vel_met= 59.3; % metropolitan region velocity 59.3 km/h 
  
Avg_Trip_Dist_commute = 16.6;  
Avg_Trip_Dist_personal = 10;  
Avg_Trip_Dist_weekend =90;  
  
time_step=zeros(288,7); %each column is a separate day of the week 
  
for k=1:1:7 
    for i=1:1:24 
        for j=1:1:12 
            time_step((i-1)*12+j,k)=(i-1)*100+5*(j); 
        end            
    end 
end   
  
%% intiaalise for day 1  
pattern_EV1=zeros(2016, 3); %[energy_consumed SOC C=1/NC=0...] 
pattern_EV1(1,2)=100; %initial SOC 
  
EV1_commute_time=floor((Avg_Trip_Dist_commute/vel_urb)*60);  
EV1_commute_energy=((Avg_Trip_Dist_commute*EV_matrix(1,1))/EV1_commute_time
)*5;  
  
EV1_personal_time=floor((Avg_Trip_Dist_personal/vel_urb)*60);  
EV1_personal_energy=((Avg_Trip_Dist_personal*EV_matrix(1,1))/EV1_personal_t
ime)*5; 
  
pattern_EV2=zeros(2016, 3);  
pattern_EV2(1,2)=100; %initial SOC 
  
EV2_personal_time=floor((Avg_Trip_Dist_personal/vel_urb)*60);  
EV2_personal_energy=((Avg_Trip_Dist_personal*EV_matrix(2,1))/EV2_personal_t
ime)*5;  
  
PayOff_EV1= ones(2,2,2016);  
PayOff_EV2= ones(2,2,2016);  
  
PS_NE=zeros(2016,4); 
  
day_of_week=0; j=1; 
  
for i=1:1:288 
    %for EV1 
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    if(time_step(i,j)>=830 && time_step(i,j)<=830+EV1_commute_time+5)    
        temp=0; 
        while(temp<=round(EV1_commute_time/5)) 
            pattern_EV1(day_of_week*288+i,1)=EV1_commute_energy; 
            temp=temp+1; 
        end       
    end 
     
    if(time_step(i,j)>=1700 && time_step(i,j)<=1700+EV1_commute_time+5)    
        temp=0; 
        while(temp<=round(EV1_commute_time/5)) 
            pattern_EV1(day_of_week*288+i,1)=EV1_commute_energy; 
            temp=temp+1; 
        end       
    end 
     
    if(time_step(i,j)>=1800 && time_step(i,j)<=1800+EV1_personal_time+5)    
        temp=0; 
        while(temp<=round(EV1_personal_time/5)) 
            pattern_EV1(day_of_week*288+i,1)=EV1_personal_energy; 
            temp=temp+1; 
        end       
    end 
    if(time_step(i,j)>=2000 && time_step(i,j)<=2000+EV1_personal_time+5)    
        temp=0; 
        while(temp<=round(EV1_personal_time/5)) 
            pattern_EV1(day_of_week*288+i,1)=EV1_personal_energy; 
            temp=temp+1; 
        end       
    end 
    pattern_EV1(day_of_week*288+i+1,2)=pattern_EV1(day_of_week*288+i,2)-
((pattern_EV1(day_of_week*288+i,1)/1000)/(0.9*EV_matrix(1,3))*100); 
      
    if(pattern_EV1(day_of_week*288+i,2)<60 && 
pattern_EV1(day_of_week*288+i,1)==0)  
      pattern_EV1(day_of_week*288+i,3)=1;  
    else 
      pattern_EV1(day_of_week*288+i,3)=0;  
    end  
     
    % for EV2 
    if(time_step(i,j)>=830 && time_step(i,j)<=830+2*EV2_personal_time+5)    
        temp=0; 
        while(temp<=floor((2*EV2_personal_time)/5)) 
            pattern_EV2(day_of_week*288+i,1)=EV2_personal_energy; 
            temp=temp+1; 
        end       
    end 
    if(time_step(i,j)>=1500 && 
time_step(i,j)<=1500+2*EV2_personal_time+5)    
        temp=0; 
        while(temp<=floor((2*EV2_personal_time)/5)) 
            pattern_EV2(day_of_week*288+i,1)=EV2_personal_energy; 
            temp=temp+1; 
        end       
    end   
    pattern_EV2(day_of_week*288+i+1,2)=pattern_EV2(day_of_week*288+i,2)-
((pattern_EV2(day_of_week*288+i,1)/1000)/(0.9*EV_matrix(2,3))*100); 
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    if(pattern_EV2(day_of_week*288+i,2)<60 && 
pattern_EV2(day_of_week*288+i,1)==0) 
      pattern_EV2(day_of_week*288+i,3)=1;  
    else 
      pattern_EV2(day_of_week*288+i,3)=0;  
    end 
        
end 
  
[PayOff_EV1,PayOff_EV2]=assign_2P_payoff_1W(PayOff_EV1,PayOff_EV2,pattern_E
V1,pattern_EV2,Price_5min_Normal,Price_5min_OffPeak,j-1); 
[PS_NE]=PS_NE_1W(PayOff_EV1,PayOff_EV2,j-1,PS_NE); 
     
    
day_of_week=day_of_week+1; 
  
  
%% Mobility pattern and energy consumption of EV1 & EV2 
  
% movement pattern of EVs 
for j=2:1:7 
for i=1:1:288 
    %for EV1 
    if(time_step(i,j)>=830 && time_step(i,j)<=830+EV1_commute_time+5)    
        temp=0; 
        while(temp<=round(EV1_commute_time/5)) 
            pattern_EV1(day_of_week*288+i,1)=EV1_commute_energy; 
            temp=temp+1; 
        end       
    end 
     
    if(time_step(i,j)>=1700 && time_step(i,j)<=1700+EV1_commute_time+5)    
        temp=0; 
        while(temp<=round(EV1_commute_time/5)) 
            pattern_EV1(day_of_week*288+i,1)=EV1_commute_energy; 
            temp=temp+1; 
        end       
    end 
     
    if(time_step(i,j)>=1800 && time_step(i,j)<=1800+EV1_personal_time+5)    
        temp=0; 
        while(temp<=round(EV1_personal_time/5)) 
            pattern_EV1(day_of_week*288+i,1)=EV1_personal_energy; 
            temp=temp+1; 
        end       
    end 
    if(time_step(i,j)>=2000 && time_step(i,j)<=2000+EV1_personal_time+5)    
        temp=0; 
        while(temp<=round(EV1_personal_time/5)) 
            pattern_EV1(day_of_week*288+i,1)=EV1_personal_energy; 
            temp=temp+1; 
        end       
    end 
    pattern_EV1(day_of_week*288+i+1,2)=pattern_EV1(day_of_week*288+i,2)-
((pattern_EV1(day_of_week*288+i,1)/1000)/(0.9*EV_matrix(1,3))*100); 
      
    if(pattern_EV1(day_of_week*288+i,2)<60 && 
pattern_EV1(day_of_week*288+i,1)==0)  
      pattern_EV1(day_of_week*288+i,3)=1;  
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    else 
      pattern_EV1(day_of_week*288+i,3)=0;  
    end  
     
    % for EV2 
    if(time_step(i,j)>=830 && time_step(i,j)<=830+2*EV2_personal_time+5)    
        temp=0; 
        while(temp<=floor((2*EV2_personal_time)/5)) 
            pattern_EV2(day_of_week*288+i,1)=EV2_personal_energy; 
            temp=temp+1; 
        end       
    end 
    if(time_step(i,j)>=1500 && 
time_step(i,j)<=1500+2*EV2_personal_time+5)    
        temp=0; 
        while(temp<=floor((2*EV2_personal_time)/5)) 
            pattern_EV2(day_of_week*288+i,1)=EV2_personal_energy; 
            temp=temp+1; 
        end       
    end   
    pattern_EV2(day_of_week*288+i+1,2)=pattern_EV2(day_of_week*288+i,2)-
((pattern_EV2(day_of_week*288+i,1)/1000)/(0.9*EV_matrix(2,3))*100); 
     
 
    if(pattern_EV2(day_of_week*288+i,2)<60 && 
pattern_EV2(day_of_week*288+i,1)==0) 
      pattern_EV2(day_of_week*288+i,3)=1;  
    else 
      pattern_EV2(day_of_week*288+i,3)=0;  
    end 
     
    
        
end 
  
[PayOff_EV1,PayOff_EV2]=assign_2P_payoff_1W(PayOff_EV1,PayOff_EV2,pattern_E
V1,pattern_EV2,Price_5min_Normal,Price_5min_OffPeak,j-1); 
[PS_NE]=PS_NE_1W(PayOff_EV1,PayOff_EV2,j-1,PS_NE); 
    
    
day_of_week=day_of_week+1; 
end     
  
  
  
%plotday 4 EV2 charging 
plot_day_4(4,time_step,EV_matrix,Price_5min_Normal,Price_5min_OffPeak,patte
rn_EV2,pattern_EV1,EV2_personal_energy); 
  
%plotday 5 EV1 charging 
plot_day_5(5,time_step,EV_matrix,Price_5min_Normal,Price_5min_OffPeak,patte
rn_EV2,pattern_EV1,EV1_personal_energy,EV1_commute_energy); 
 
Code for Load profile: 
 
base_load=normrnd(0.2,0.0025,288,1); %0.2 kw with std deviation of 0.05 
x=[1:1:288]; 
  
load_profile=base_load; 
ctr=0; 
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for i=1:1:288 
     
    load_profile(i)=load_profile(i)+((2.19*2)/(24*12)+0.2);  
         
    if floor(i/12)>ctr 
       ctr=ctr+1; 
    end 
     
    if ctr>=7 && ctr<=8  
        load_profile(i)=load_profile(i)+i/1000;  
    end 
     
    if ctr>=15  
        load_profile(i)=load_profile(i)+i/1000;  
    end 
     
    if ctr>=21 && ctr <23 
        load_profile(i)=load_profile(i)+1/12;  
    end 
     
    if ctr>=21 && ctr <24 
        load_profile(i)=load_profile(i)+3.06/12;  
    end 
     
end  
  
 
 
Function for Pure Strategy Nash Equilibrium: 
  
function [EQM]=PS_NE_1W(PayOff_EV1,PayOff_EV2,day_week,EQM) 
%EQM =[C,C C,NC NC,NC NC,C] clockwise across the 2x2 grid  
    for i=1:1:288 %decision block every 5 mins 
   
            if PayOff_EV2(1,1,day_week*288+i) > 
PayOff_EV2(1,2,day_week*288+i) && PayOff_EV2(1,1,day_week*288+i) > 
PayOff_EV2(2,1,day_week*288+i)  
                if PayOff_EV1(1,1,day_week*288+i) > 
PayOff_EV1(1,2,day_week*288+i) && PayOff_EV1(1,1,day_week*288+i) > 
PayOff_EV1(2,1,day_week*288+i)  
                %if both above statements become true then C,C is a PS_NE 
                EQM(day_week*288+i,1)=1;        
                end     
            elseif PayOff_EV2(2,2,day_week*288+i) > 
PayOff_EV2(1,2,day_week*288+i) && PayOff_EV2(2,2,day_week*288+i) > 
PayOff_EV2(2,1,day_week*288+i)   
                if PayOff_EV1(2,2,day_week*288+i) > 
PayOff_EV1(1,2,day_week*288+i) && PayOff_EV1(2,2,day_week*288+i) > 
PayOff_EV1(2,1,day_week*288+i)  
                    %if both above statements become true then NC, NC is a 
PS_NE 
                EQM(day_week*288+i,3)=1;              
                end  
            elseif PayOff_EV2(1,2,day_week*288+i) > 
PayOff_EV2(1,1,day_week*288+i) && PayOff_EV2(1,2,day_week*288+i) > 
PayOff_EV2(2,2,day_week*288+i)   
                if PayOff_EV1(1,2,day_week*288+i) > 
PayOff_EV1(1,1,day_week*288+i) && PayOff_EV1(1,2,day_week*288+i) > 
PayOff_EV1(2,2,day_week*288+i)  



Estimation	of	the	net	charging	demand	from	privately	owned	electric	vehicles	using	Game	Theory	 	65	

Dev	Mishra	

                    %if both above statements become true then C, NC is a 
PS_NE 
                EQM(day_week*288+i,2)=1;          
                end     
            elseif PayOff_EV2(2,1,day_week*288+i) > 
PayOff_EV2(1,1,day_week*288+i) && PayOff_EV2(2,1,day_week*288+i) > 
PayOff_EV2(2,2,day_week*288+i)                   
                if PayOff_EV1(2,1,day_week*288+i) > 
PayOff_EV1(1,1,day_week*288+i) && PayOff_EV1(2,1,day_week*288+i) > 
PayOff_EV1(2,2,day_week*288+i)  
                    %if both above statements become true then NC, C is a 
PS_NE 
                EQM(day_week*288+i,4)=1;          
                end     
            end 
             
    end     
end     
 
 
Function for Mixed Strategy Nash Equilibrium: 
 
function [Pat_EV1,Pat_EV2]=MS_NE(PayOff_EV1,PayOff_EV2,Pat_EV1,Pat_EV2) 
  
  
    for i=1:1:288 %decision block every 5 mins 
             
            syms sig_u exp_util_l exp_util_r 
            syms sig_l exp_util_u exp_util_d 
            sig_P1=0; 
            sig_P2=0; 
   
            %player 1 mixed strategy 
            eqn1=exp_util_l==sig_u*PayOff_EV2(1,1,i)+(1-
sig_u)*PayOff_EV2(1,2,i); 
            eqn2=exp_util_r==sig_u*PayOff_EV2(2,1,i)+(1-
sig_u)*PayOff_EV2(2,2,i); 
            eqn3=exp_util_l==exp_util_r; 
             
            [A,B] = equationsToMatrix([eqn1, eqn2, eqn3], [sig_u, 
exp_util_l, exp_util_r]); 
            sol_1 = solve([eqn1, eqn2, eqn3], [sig_u, exp_util_l, 
exp_util_r]); 
            sig_P1(i,1)=sol_1.sig_u; 
            if sig_P1>0 & sig_P1<1  
               Pat_EV1(i,5)=sig_P1; 
            end    
             
              
            %player 2 mixed strategy 
            eqn4=exp_util_u==sig_l*PayOff_EV1(1,1,i)+(1-
sig_l)*PayOff_EV1(1,2,i); 
            eqn5=exp_util_d==sig_l*PayOff_EV1(2,1,i)+(1-
sig_l)*PayOff_EV1(2,2,i); 
            eqn6=exp_util_u==exp_util_d; 
    
            [C,D] = equationsToMatrix([eqn4, eqn5, eqn6], [sig_l, 
exp_util_u, exp_util_d]); 
            sol_2 = solve([eqn4, eqn5, eqn6], [sig_l, exp_util_u, 
exp_util_d]); 
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            sig_P2=sol_2.sig_l; 
            if sig_P2>0 & sig_P2<1  
                Pat_EV2(i,5)=sig_P2; 
            end 
     
            
    end            
end 
 
 
 
 
 
 


