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Abstract 

In the new global economy, the inventory control has become a priority for the 

supply chain management. Safety stock is the sole way to fight against the 

demand and the supply uncertainty, so determining the amount of it that must 

be kept along the network to holistically minimize the risk of disruption while 

maximize the profit is a critical issue. For the supply side, the focus is held in 

the lead time variability which can significantly vary depending on the part of the 

supply chain or new inconvenient facts could relevantly affect the lead time. 

Even so, developed models have forced to assume a certain value or a 

distribution for the lead time, yet this is risky. Historical data is often unreliable, 

not available or insufficiently representative. Therefore, a new model based on 

the Guaranteed Service approach and combined with robust optimization 

techniques is proposed, working with the lead time volatility without assuming 

any specific distribution. Interesting features arise from the new model such as 

the smooth tractability of the problem, the facile computational skills required or 

the lack of resources needed. This approach has been formulated and tested, 

as well as the Guaranteed Service when a distribution is assumed for the lead 

time and the original model. Then, the performance of the three of them has 

been compared in order to find the correct way to deal with uncertain lead time. 

Finally, the Robust Guaranteed model benefits promise better security to 

companies and it also provides a powerful tool to manage the risk from the 

supply side. 

Keywords: Lead Time, Robust analysis, Guaranteed Service approach, Inventory 

control, Safety stock. 
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Chapter 1 

Introduction 

The supply chain world (SC) is a multi-factor system with different particular 

network agents’ interests. The supply chain management comprises the 

management of assets (machines, buildings, patents, etc.), products (starting 

from the design and finishing with the process implementation), personal and 

several flows (information, material, money, etc.). Finding the right combination 

of the multiple aspects and tackle the management problem from end-to-end 

perspective are the key points for a company to compete in a global world. 

The inherent interaction between all these factors and the interests originates a 

huge complexity in maximizing the supply chain benefits. The important 

decisions about factors such as product, personal, philosophies, assets, 

quantity and quality of information shared between all parts of the network and 

investments policy, for example, have been widely studied and they are less 

complicated for the companies. However, the inventory control across the 

supply chains, which defines the material flow, still represents a challenge for 

the managers’ community as CSCO [2011] confirmed. 

The inventory control constantly faces the demand and supply uncertainty. An 

efficient inventory management must optimize the safety stock (SFTY) strategy 

to avoid disruptions in the supply chain to control the economical uncertainty 

and to maximize the money-savings. Companies rely on SFTY to tackle the 

variations in order to mitigate the risk. Hence, a critical issue is to determinate 

the safety stock placement and the amount of stock that each stage has to hold 

to holistically minimize the risk of stock out and the overall supply chain cost to 

maximize the profit.  

In order to solve the problem, the researchers initially focused their efforts to 

extend the Stochastic Service (SS) approach. The first version of the SS model 

was introduced by Clark and Scarf [1960] and the uncertainty of the demand 

and supply were defined with stochastic distributions. The other significant 

approach that has recently grown in attention is the Guaranteed Service (GS). 

As opposed to the SS, SFTY is employed to meet the demand up to certain 

bound and the rest of it is covered by operating flexibility. The creator of the GS 

is considered to be Simpson in 1958 and the model has been extended until 

Humair and Willems [2011]. Originally, the demands are normally and 

independent distributed and the lead times are deterministic. However, the 

basic lead time assumption is far from the real-world cases. This fact makes 

harder to implement the Guaranteed Service approach in companies because 

time and resources are only invested when the solution can be adapted to the 

daily essence of a company. In that way, Humair et al. [2013] proposed a 
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Random Guaranteed model which works with assuming a stochastic distribution 

for the lead time. Even so, how to deal with the lead time variability is a 

controversial topic due to the fact of the data risks - assuming an incorrect 

distribution and collecting unreliable, uncertain and incomplete. 

The principal aim of this Master Thesis is to contribute with a new model based 

on the GS and called Robust Guaranteed Service model which proposes to 

deal with the uncertainty of the lead time without assuming a distribution. The 

performance, strengths and weaknesses of the basic GS, the random and the 

robust models are presented and compared to find the best way to deal with 

lead time in order to optimize the inventory. In addition, a secondary goal is to 

provide useful tools to the future researchers in this field so the codification of 

each approach is exposed in the appendixes. On the other hand, the character 

relationship between decision variables and the outputs, cost and safety stock, 

is deeply explained at the beginning of this work to fully understand the models’ 

performance. 

The thesis is structured as follows: The past literature review about the diverse 

approaches is presented in Chapter 2 while in Chapter 3 the theoretical basis 

for understanding the models and the numerical experiments are summarized. 

Chapter 4 exposes the formulation of the original Guaranteed Service 

approach, adds the maximum outbound service time constraint for internal 

nodes and clarifies the meaning relation between parameters. In Chapter 5, the 

main innovation (the Robust Guaranteed Service approach) is formulated at 

first, and validated afterwards. In the next chapter, the Guaranteed Service 

approach under random lead times from Humair et al. [2013] is exposed and 

numerical trials comparing the three models are displayed. Chapter 7 finishes 

with the conclusions and future lines. 
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Chapter 2 

Literature Review 

The state of the art regarding strategic safety stock placement in supply chains 

is very extensive. Starting from the origin of the more general approaches 

(Stochastic Service and the Guaranteed Service) placed in time as well as its 

most relevant extensions and successes in the next decades until nowadays. 

As an overview, the literature regarding the topic can be divided into 

approaches and its corresponding assumptions and such as, it will be detailed 

below using that classification. 

2.1. Guaranteed Service approach (original assumptions) 

This approach for modeling safety stock and inventory has been widely studied 

in the last 60 years. The literature shows how the knowledge on the Guaranteed 

Service model has been gradually extended until being able to be applied at the 

most complex networks. 

The initial model was presented by Simpson [1958].  The research was only 

successfully conducted for serial supply chains. For the first time in this 

research field, the optimal solution was demonstrated to occur when the service 

time takes one of the extreme values of the possible domain solution. 

After Simpson, Inderfurth [1991] was the next in contributing with a dynamic 

program to execute the Guaranteed Service model in general serial and 

divergent (distribution) systems. Inderfurth together with Minner [1998] 

extended to convergent (assembly) supply chains the dynamic procedure. They 

run several numerical experiments under different service measure to proof that 

the approach can be used in different service levels situations and the results 

concluded that the size and the allocation of stock depend on the service level 

requirements. The same author, Minner [2000] summarized in his book all the 

approaches for the safety stock placement until that moment and provided 

accurate definitions of the concepts involved. The book classified all the basic 

models in different categories depending on the assumptions used in each one: 

single-stage or multi-stage modeling framework, stochastic or deterministic lead 

times and the applicability of the model in the diverse types of networks. In 

addition, it extended the original model based on the material flow philosophy. 

The same year that Minner published his book, Graves and Willems [2000] 

evolved the Guaranteed Service model multi-stage procedure to enable it to be 

used in more general, complex and realistic supply chains. The procedure was 

lately reviewed and it was correctly published by the same authors in 2003. 

With slight abuse of redundancy, a spanning tree algorithm was introduced for 

the networks that are spanning trees. The first step consists in labeling the 
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nodes of the supply chain using a specific method. Secondly, a dynamic 

program is used to solve the problem. The recursion of the program was newly 

limited by adding constraints bounding the decision variables (the inbound and 

outbound service times). 

The next remarkable study about the model following the original assumptions 

was made by Lesnaia [2004]. In her Master Thesis, she reviewed all the 

methods appeared until that moment; by proving that the optimization of the 

safety stock problem in a general network is an NP-Hard problem and she 

demonstrated the optimality of the solution for it. Furthermore, she developed a 

new branch and bound algorithm based on paths. 

Up to now, the sole technique to solve the optimization problem was the 

dynamic programming, which implementation is necessary because the 

objective function is non-linear. Magnanti et al. [2006] innovated by proposing a 

linear approximation technique to minimize the total cost of safety stock 

allocation. The main benefit of this manner is that a commercial solver can 

settle the optimal solution then. On the other hand, Shu and Karimi [2009] 

chose to solve the problem with heuristics. These techniques are efficient in 

terms of computational time but worse in terms of solution because only near-

optimal solutions are reached with this method. The computational time needed 

is less since the heuristics are nearly independent from the size of the network. 

Regarding the above-mentioned methods into account, most the literature has 

preferred the dynamic programming as a way of resolution.  Humair and 

Willems [2011] were the ones who finally achieved the goal to solve the 

problem for acyclic chains (the major of real world networks are acyclic) by 

using a routine that includes the spanning tree algorithm already exposed and a 

dynamic approach. Without digging deeper on its specific method, at the 

beginning some links of the acyclic supply chain must be broken to achieve a 

spanning tree network, then the spanning tree and the dynamic program can be 

applied and finally, a routine tests the solution to check if all the constraints are 

right in all the links. In case of some broken constraints, the routine finds a near 

solution for the spanning tree and it tests again. This step is repeated until the 

routine obtains an optimal solution that fulfils all the constraints for all the links. 

In addition, the paper presented two extra heuristics to find near optimal 

solutions to the problem. 

After Humair and Willems published his work in 2011, there was no gap for 

extending the research in the model with the original assumptions to different 

supply chain types. Therefore, lately the research topics have been focusing in 

modeling the assumptions of the Guaranteed Service model, in the 

performance of the different approaches (the Guaranteed Service against the 

Stochastic Service) and in mixing both approaches. 
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2.2. Guaranteed Service approach (modeling the assumptions) 

Apart from the above-mentioned contributions, two papers went beyond the 

original assumptions (Magnanti’s et. al [2006] and Humar and Willems’ [2011] 

papers). The former also added the capacity constraint to the model. Also in the 

latter, the utility of the routine for solving the safety stock optimization problem 

in a supply chain under the original statements is even more relevant than what 

is explained before, since it allows solving any general cost objective function 

for general networks (in which the objective function can adopt any general cost 

equation, and can be non-concave, non-closed-form and/or non-continuous). 

Therefore, an objective function can be modeled to take into account variable 

lead times or non-nested review periods. 

In this report, the discussion of whether it is correct to use the assumption of 

lead time deterministic is going to be presented. Some work has already done 

in this study subject: Humair et al. [2013] developed a safety stock expression 

for stochastic lead time that follows a determinate discrete or continuous 

variable with mean and standard deviation. Then they used the algorithm from 

Humair and Willems [2011] to get results from different networks cases. 

When stochastic lead time was considered, it was either typically normally 

distributed or characterized by historical data: on the one hand, Eppen and 

Martin [1988] have already showed with examples that normality assumption is 

unwarranted. On the other hand, historical data is often not available or 

unreliable. That is why is needed to continuing study the case of stochastic lead 

time in Guaranteed Service model. More recently, Beiran and Martín-Romero 

[2017] were adopting a completely new perspective for the discussed 

statement.  They assumed that the parameter lead time is unknown but it 

belongs to a range of possible values. Hence, no distribution is assumed and a 

new model is created as a new tool to solve the problem: the Robust 

Guaranteed Service model. 

In Eruguz et al. [2016], an exhaustive survey about the original Guaranteed 

Service model and the modeling of the assumptions is made. 

2.3. Stochastic Service approach 

There is broad literature about the Stochastic Service model but in this section 

only the main research is going to be referenced because this approach is not 

used in this thesis. 

The initial model was introduced in 1960 by Clark and Scarf [1960]. Then, Diks 

et al. [1996] reviewed the most successful achievements for divergent supply 

chains. Other remarkable literatures are Axsäter [2003][2006] and Simchi-Levi 

and Zhao [2012]. The last-mentioned is an exhaustive survey of the different 
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Stochastic Service models for multi-echelon inventory systems and the 

performance evaluation between them. 

2.4. Comparison between the Guaranteed and Stochastic Service Model 

Since the creation of both approaches, controversy around which one is best 

has been a central topic in the research field. At least two relevant analyses 

have been published. The first one was conducted by Graves and Willems 

[2003] and it concluded that in general the Stochastic Service Time holds more 

safety stock and the total cost is higher. The second one is from Klosterhalfen 

and Minner [2007][2010], which detailed and compared both approaches in 

terms of performance, materials flow and resulting service times.  They agreed 

with the analysis of 2003. However, it is noted that without operating flexibility 

measures the Stochastic Service way is better regarding total cost. In addition, 

it is also remarked that the Guaranteed Service model is computationally easier. 

2.5. Mixed Approaches 

Theoretically speaking, none approach stands out from representing the real 

world than the other. That may be the reason why some researchers expose 

models where a more realistic assumption of both approaches is done by 

combining to form a new model. 

Rambau and Schade [2010] contemplated a Guaranteed Service model with a 

demand scenario sampling creating the Stochastic Guaranteed Service model. 

It is a model that does not upper bound the demand, in which the service level 

is an output of the model and that adds the cost of the extra-measures from the 

operating flexibility at the objective function. The difficulty in this case is to take 

a significant and relevant sample. 

Klosterhalfen and Minner [2013] created an integrated Guaranteed- and 

Stochastic-Service approach for the inventory optimization in supply chains (the 

Hybrid-Service approach). The idea is that the model allows to each stage of 

the network to choose the best approach to calculate the minimum total supply 

chain cost.  

2.6. Data 

Representative data of the real-world networks is needed to run numerical 

examples to prove the theory. Willems [2008] shared data from 38 real multi-

echelon supply chains that can be used in empirical studies to inform and test.  
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Chapter 3 

Framework 

An introduction to the core issues of this research is conducted in this chapter. 

The first subsection is focused on the main approach used in this thesis. 

Subsections two and five explain the different kind of networks while the third 

one faces the difficulties of the multi-echelon supply chains. Finally, subsection 

four presents the diverse stock types. 

3.1. Safety Stock placement approach 

There are mainly two approaches to study the safety stock placement: the 

Guaranteed Service model (GS) and the Stochastic Service model (SS).  

The GS model states that every stage   in a supply chain guarantees a delivery 

time to its customers. Furthermore, the approach combats against the 

uncertainty of the data with the safety stock and the operating flexibility. 

The basic assumptions for the model are mentioned below. See Graves and 

Willems [2000] for an exhaustive understanding of the statements. 

 Multi-stage Networks: A network is represented by a graph which is 

simplified with nodes and arcs. Every stage in the supply chain is a node 

and every relation between stages is an arc. All the multi-stage systems 

considered in the document are acyclic networks. 

 

Figure 3.1: Multi-stage network example. Willems [2008] 

Each stage performs the role of some activity of the process in a supply 

chain so a stage can be a supplier of raw material or component (part), 

an assembly and producer company (manufacturer), a transportation 

step between two stages (transport), a final selling point to the end-

customer (retail) or a distribution centre to other stages or to the final 

customer (distributor). 
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In addition, there is no delay in ordering in the system. When the stock is 

placed at the warehouse, then it is ready for the immediately shipment if 

it is necessary.  

 Periodic-Review Base-Stock Replenishment Policy: All stages have a 

Periodic-Review Base-stock Replenishment Policy with common periods. 

 Production lead times: Lead times are known, constant and 

independent from the order size. Lead time is the production time for a 

component/product once all its parts are available. It includes the 

transportation time to the warehouse. 

 Capacity: No capacity constraints referring to production volume or 

warehouse space in any stage. 

 Demand process: The demand is stationary and it is only known at the 

stages without successors: demand or external nodes. The mean    and 

the standard deviation    are known for them. 

Important to note, the demand is bounded with a function       where   

refers to a period of time. The model contemplates how to serve the 

demand until the bound. When normal distribution is assumed for the 

demand, then: 

 

                   (1) 

 

   is related with the service level with the customers of stage   and it 

means how much the company is willing to incur into stock out. 

 Guaranteed Service times: The outbound service time for the stage   

(  ) means that the stage   guarantees that the demand, up to a certain 

bound, is served to each of its downstream nodes in a period of time   .   

Besides that, the inbound service time for the stage   (   ) defines that 

the stage   is promised to be served and gets all its inputs in a period of 

time    . 

Hence, every stage has two services times, the outbound and the 

inbound service time. 

 

 

 Figure 3.2: Services per stage 

 Operating flexibility: Extra-ordinary measures such as outsourcing or 

working extra hours are admitted for fulfilling the demand that exceeds 

the limit. However, the cost of this operational flexibility is not part of the 

model. 

As opposed to the GS; the Stochastic Service model considers the uncertainty 

and variability of the data by assuming stochastic distributions for the demand 
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and the lead times. Moreover, it fills all the complete demand (there is no upper 

bound) and it does not take into account any extra-ordinary measure. The 

general idea is that if there is an order and there are enough stock units as the 

order size, then it can be shipped to the customer. Otherwise, it has to be 

delayed until there is enough stock to reach the original demand order. 

Therefore, one of the basic differences between approaches is that there is 

room for delays and stock outs in the model. The other essential contrast is that 

the safety stock is the unique measure to battle the uncertainty of the model. 

All the case studies analyzed in this report are under the Guaranteed Service 

model approach and discuss the assumption of lead times known and constant. 

3.2. Single or multi-echelon systems 

In general terms, profit is known to be the ultimate goal of a company. 

Therefore, every transaction between stages is possible if the end-customer 

buys the product and both the supply chain actors and the service to the final 

customer are affected for the stock policy of each stage. That is why it does not 

make sense to optimize the safety stock placement in a single stage and it is 

also the reason why it is necessary to work with a multi-echelon inventory 

optimization perspective even though it makes the uncertainty of the variables 

higher. 

3.3. The difficulty behind the multi-echelon systems 

There are three peculiar issues to confront: the cost propagation, the demand 

propagation and the mathematical methods to solve the problem. 

When the data about the cost is the holding cost per stage and per unit   , there 

is no problem. However, when the data cost is the added cost    in each stage 

then some calculations must be done to find the holding cost: 

         
       

 (2) 

   is the cumulative added cost per stage and per unit.  The cumulative cost has 

to be multiple per the annual holding cost value   to find the holding cost per 

stage. 

The theory is more complex for the demand propagation case. It is a fact that 

the demand is given only for external nodes   (external demand). The external 

demand has to be propagated to the internal nodes,   nodes.  

There is one clear expression from the past literature about the topic:    

               where     is the number of units of component produced in stage 

  to produced one unit in stage  . However, there are discrepancies between 

which expression is used to find    and       for internal nodes. The concept 
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that generates all the discussion and confusion is the pooling risk: if the 

inventories for different components which are needed at the same time for 

more than one product are joined, then the variability of the demand is reduced 

and the safety stock inventory decreases. Depending on the pooling risk (p) 

factor the expression for demand parameters differs (see Graves and Willems 

[2000]). This report assumes a pooling risk factor equal to 1 that means no 

interaction between demands coming from different stages for a simple 

computational reason. According to the theory in Graves and Willems [2000], 

the expression for p=1 used to calculate       at the internal demand is the 

same as for the external nodes, equation (1). 

Finally, the discussion is focused in which mathematical method applied. The 

GS model problem has a non-linear objective function, as well as non-concave 

depending on the expression for the safety stock, with linear constraints. In 

other words, linear resolution methods cannot be used. 

When the optimizing problem is only non-linear, then the dynamic programming 

and the linear approximation procedures are proved to find an optimal solution. 

The problem of both methods is that they are slow in terms of computational 

time. As bigger the number of stages in the problem, the bigger the recursions 

and the time needed.  On the contrary, the heuristics methods find near-optimal 

solution but they required less computational time. 

On the other hand, only the dynamic programming and the heuristics work 

when the optimizing equation is non-linear and non-concave.  

3.4. Types of stock 

The large majority of the stock placement optimization literature refers to a 

specific type of inventory: The safety stock. However, it is not as simple as just 

considering one type. From here on, for types of stock will appeared: base (BS), 

safety (SFTY), pipeline (PS) and early arrival stock (ES). Next, the document 

explains the main ideas and the formulation of each type. Refer to Graves and 

Willems [2000] for the demonstration of the formulas and more information 

about the topic.  

The inventory level at stage   and period   is defined as               . The 

base stock (  ) is the amount of stock at the inventory just before the shipment 

of the demand.  

The BS should be equal or higher than the demand to not incur into a stock out. 

It is important to note that the GS avoid the stock out in its model. Adapting the 

argument to the GS model,          because the demand is limited by an 

upper bound and the rest of it will be served by extra-ordinary measures. The 

best solution in terms of cost is having the less stock units possible, so the final 
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expression for the BS is         .   is the net replenishment lead time 

       . The expression for the       is: 

                (3) 

Basically, the base stock has to cover the upper bound demand during the net 

replenishment time which means that there has to be enough stock for the extra 

time needed when the sum of the production time    and the inbound service 

time     is bigger than the time the stage has to deliver the bounded demand to 

the customer,   . Therefore it can be concluded that: 

          where                 

The safety stock or the expected inventory is part of the BS. In fact, the SFTY is 

the part of the BS used to cover the uncertainty of the       and it can be 

expressed by: 

           
             

             (4) 

The pipeline stock are units that have been started to be produced but that have 

not yet reached the warehouse since they are not finished yet (work-in-progress 

stock). 

          (5) 

The early arrival stock (ES) is a new concept introduced by Humair et al. [2011]. 

The meaning of this term is going to be explained at the Random Guaranteed 

Service section. 

3.5. Types of Supply chain 

It is necessary to note that there are different 

supply chains depending on how the stages 

interact with each other because it is easier to 

solve the optimization problem in some chains 

than in others. The SS model is adopted 

normally in serial, assembly and distribution 

networks because the computations are easy to 

carry. For supply chains more complex, the 

number of calculations is high and the stochastic 

equations become hard to solve. This is the 

reason why lately it has been used the GS 

approach considering its less essential 

computational difficulty to solve the model. 

  

 

Figure 3.3: Acyclic and cyclic Networks. Eruguz et al. [2016] 
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Figure 3.4: Divergent (Distribution) 
network. Inderfuth [1991] 

Figure 3.5: Convergent (Assembly) 
network. Inderfurth and Minner [1998] 

Figure 3.6: Serial production/inventory 
system. Inderfuth [1991] 
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Chapter 4 

Deterministic Guaranteed Service model 

(GS-DET) 

4.1. Formulation 

One of the basic assumptions of the Guaranteed Service model is that the 

production lead times are deterministic, so this data is known and fixed for all 

the stages in the GS-DET. The following input data for all nodes is necessary to 

formulate the problem: 

   : Production lead time for stage  . 

     Holding cost per unit at stage  . The data available is the added cost 

to the product in each stage. Therefore, the holding cost per unit is 

calculated with the corresponding formula noted at the Framework. 

For the demand nodes, more information is required. They are the ones directly 

connected to the end-customer in the supply chain. They know the requests of 

the final clients and the demand of the final product produced by the whole 

network. The above mentioned information is as follows: 

   
 : Mean of the demand for external nodes. This information must be 

transferred to the internal nodes as explained at the Framework section. 

   
 : Standard deviation of the demand for external nodes. This 

information must be transferred to the internal nodes as explained at the 

framework’s section. 

     Safety factor related to the service level for demand stages. It means 

how frequently the company is willing to incur into stock out. Data for 

external nodes must be propagated to the internal nodes so the mean 

value of the demand service level is taken for the internal ones. The 

inverse of the cumulative standard normal function of the service level is 

generally the method to calculate this factor. In other scenarios, the value 

1,64 is taken for all the stages. 

   : Maximum service time for the external nodes. In other words, 

maximum outbound service time allowed for the final nodes to deliver the 

product to end-customer. 

The program to solve the minimum cost for the placement of safety stock 

combines these inputs with the best decision variables to find the optimal cost 

for the supply chain. Hence, the outputs of the problem are: 

   : Outbound service time per stage  . 

    : Inbound service time per stage  . 
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 The cost per stage according to the best service times found by the 

program. 

 The optimal cost for the supply chain to allocate the safety stock. From 

now on, problem P refers to resolving the minimum cost for the 

placement of safety stock in a general supply chain. 

Therefore, the mathematical formulation for the problem P based on the multi-

stage Willems’ [2000] model is then: 

P 
             

 

   

 
(6) 

s.t. 

                      (6a) 

                   (6b) 

                     (6c) 

                                 (6d) 

 

The objective function (6) minimizes the stock. From the types of stock above 

mentioned in the section Framework, it is only the expected inventory or safety 

stock (SFTY) to be contemplated. The equation to express this expected 

inventory is (4). The pipeline stock only depends on the Lead time and the 

demand of each stage. Both parameters are constant so it can be avoid from 

the optimization due to the fact that the values of the decision variables not 

affect this type of stock.  

The first constraint, 6a., defines the net replenishment time and ensures the 

non-negativity of the NRLT. If the difference between the outbound and the 

inbound service time is equal to the lead time, the stage is not holding safety 

stock. Otherwise, the stage expects inventory (more at Humair et al. [2013]). 6b. 

assures that the inbound service time meets the maximum service time of their 

immediate successors. The next one, 6c., guarantees that the external demand 

is served within the service time required. Finally, 6d. defines the nature of the 

decision variables. 

4.2. Experimental codification 

Problem P has already been solved using dynamic programming, linear 

approximation and heuristics procedures for all types of networks: serial, 

assembly, distribution, acyclic and cyclic. All these methods have been 

discussed in papers mentioned in the Literature Review section. However, not a 

single one shows the code for the program. 

Focusing the attention to the dynamic procedure, one of the main contributions 

of this thesis is providing and explaining a code to solve the GS-DET. To 
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validate the code, it has been tested in the Moncayo-Martinez and Ramirez 

[2016] tutorial and in the supply chains from Willems [2008] appearing in 

Humair et al. [2013]. 

Before discussing the details about the code, the theory of the dynamic 

programming has to be understood. Review Graves and Willems [2000] and its 

correction in 2003 for the knowledge in the algorithm for labeling the stages and 

the dynamic steps. Check the Humair and Willems [2011] paper to understand 

the theory behind the routine needed to solve acyclic chains. 

In the first test, the six stage convergent network is a perfect spanning tree. The 

code program proposed in the Appendix 1, subsection eight, labels the nodes in 

a different order than the numerical case exposed in Moncayo-Martinez and 

Ramirez [2016]. The point is that the spanning tree algorithm from Graves and 

Willems [2000] allows choosing between a set of alternative in some iterations 

freely. Indistinctively, the results show how the theory works and the outputs 

match the results of the tutorial (            and Figure 4.1 shows the 

optimal service times). 

The network of the second case is an acyclic network which needs to break 

arcs to form a spanning tree. The code works for 11 out of 12 supply chains in 

Humair et al. [2013] in terms of cost and services time. The computational time 

increases when the number of stages per supply chain and the number of 

broken constraints does too. 

4.3. The end-customer grade of request  

In general, the conclusions in studies about the Guaranteed Service model talk 

about the safety stocks units, the number of stages holding it and the total cost 

of it. To the best of this report’s knowledge, there is no analysis about the 

relationship between the outbound service time and the other problem’s 

outputs. This section and the next one contribute with this new analysis. The 

numerical experiments were run in the supply number 03 from Willems [2008].  

Figure 4.1: Optimal outbound and inbound service time for each stage of the tutorial’s network 



How to deal correctly with Lead Time in a Supply Chain 
Keio University, March 2017 

16 
 

In this first case, the main idea was to obtain different cost, safety stock and 

number of stages holding stock results for different end-customer’s maximum 

service time. Afterwards, the behavior of the variables was analyzed. 

The Graphic 4.1 shows how the cost decreases permanently but non-lineally 

when the external stages allow more delivery time to its supplier. It can be also 

stated that the trend for the safety stock units is the same as the cost overall. 

For the safety stock units line, there is one discrepant point when   

                    is 20 days. As it can be observed in Table 4.1 for different 

outgoing service times for external nodes, the safety stock placement strategy 

is changing from the most expensive places to the cheapest ones when 

                    increases. The strategy changes when                     is 

20 days. At this value, there are more stages holding stock and more units. 

However, these units are settled in cheaper places than before and in total the 

cost is less. 

                   Stages holding safety stock (cost added in each stage 
[um]) 

0 Dist1 (2 750,00) - Dist2 (4 103,00) - Dist3 (4 162,00) -  
Dist4 (4 247,40) - Part3 (400,00) - Trans2 (1 503,00) - 

Trans4 (2 350,00) 

15 Man1 (2 400,00) - Trans3 (1 502,00) - Trans4 (2 350,00) - 
Part3 (400,00) - Part5 (1 500,00) 

20 Man1 (2 400,00) - Man2 (2 350,00) - Part1 (1 100,00) - 
Part2 (600,00) - Part3 (400,00) - Part4 (1 100,00) - Part5 

(1 500,00) 

53 Part1 (1 100,00) - Part3 (400,00) - Part5 (1 500,00) 

78  Part3 (400,00) 

79 None 
Table 4.1: Strategic safety stock placement 
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Graphic 4.1: Economical effect of increasing outgoing service time in demand stages 
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It is also curious that there is no safety stock and no cost when 

                       days. This is possible because it is the maximum 

replenishment time for any stage in the supply chain. Hence, mathematically 

speaking is possible to combine all the service times to not have stock following 

constraints 6a. and 6b.  

To sum up, the supply chain has more reaction time against the demand when 

the end-customers are more flexible. If the demand stages are permitted to 

respond slower, then the reaction time for every stage is bigger and the cost is 

lower. The safety stock placement changes to allocate it in cheaper stages 

when                     is higher than a certain value. The basic concepts are 

that slight changes of stock units in the most expensive stages mean large 

differences in cost because of equation (2) and that the outbound service time 

and the cost are antagonist variables. 

At the end, this kind of analysis can help companies to perform an evaluation 

about the cost versus the service time and to take decisions about which 

variable to prioritize and until which point. 

This analysis can be extended to all the networks possible with the same 

conclusions because the NRLT decreases when the outbound service time 

increases, so there is less safety stock in general.  

4.4. Modeling the GS-DET with maximum outbound service times for 

internal nodes 

In the second numerical experiments, the framework was changed by adding to 

the model the constraint of maximum outbound service time for all the stages. 

Table 4.2 shows the data constraints imposed for different cases studied. 

Real Data Case 1 Case 2 Case 3 Case 4 

Stage      Stage      Stage      Stage      Stage      

Dist 0 Dist 0 Dist 0 Dist 0 Dist 0 

Man - Man 24 Man 12 Man 10 Man 0 

Trans - Trans 4 Trans 2 Trans 0 Trans 0 

Part - Part 60 Part 30 Part 20 Part 0 
Table 4.2: Maximum outbound service time for internal nodes for the different cases tested 
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Total Cost Av.    Av.   

Number of stages 
holding SS 

Total SS 
units 

Iterations 

Real 13 565 043,80 23,29 26,53 7 5 004,90 10 

Case 
1 

14 578 648,46 7,29 10,41 8 6 395,14 5 

Case 
2 

14 884 831,67 2,94 2,35 11 9 494,15 1 

Case 
3 

15 894 494,00 2,35 1,76 14 10 164,60 1 

Case 
4 

17 105 442,13 0,00 0,00 17 10 568,02 1 

Table 4.3: Results for the Guaranteed Service model with maximum outbound service times for internal 

nodes 

In Table 4.3 the columns explain the total cost of the supply chain 03 (Total 

Cost), the average of the inbound service time for the whole network (Av.   ), 

the average for the outbound service time (Av.  ), the total number of stages 

holding safety stock (Number of stages holding SS), the total units of safety 

stock (Total SS units) and the number of iterations needed in the routine for 

solving the problem (Iterations). Again, the outbound service time is antagonist 

to the total cost and the safety stock units. The tougher the customer is the 

better service he receives, but less flexible is the system and the higher the total 

cost. The extreme case is the number 4 where there is no freedom in terms of 

choosing the service times. Therefore, the response to the customers is 

immediately guaranteed. Big safety stock is necessary to fight the instant 

delivery because the production lead times are not zero. 

Graphic 4.2 displays how the trend of the average relative variation of the 

outbound service time from the real case to 0 (case 4) is opposite from the 

relative variation of the cost between the real data situation and the last case. In 

addition, for this supply chain the complete relative variation of the outbound 

service time correspond to a relative cost growth of ‘only’ 26%. 

 

Graphic 4.2: Safety stock versus customer service 
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Chapter 5 

Robust Guaranteed Service model 

5.1. Lead time in the Real World 

The fixed, known and constant lead time assumption of the Guaranteed Service 

model is one of the weaknesses of this approach because it does not represent 

the real situation in companies, factories or distribution centers. Actually, the 

variability of the lead time is typically different depending on the part of the 

supply chain and depending on every part’s function in the process. It is well-

known that the raw material supplier faces longer delays and more uncertainty 

than the other stages. At the manufacturing parts, the knowledge of the 

variability of the process is higher since has been studied in many occasions so 

the delays are controlled and there is less uncertainty. Finally, the retail stores 

face only 1 or 2 days delays in general due to the fact that the end-customer’s 

requirements are the most important constraint in the supply chain. 

The lead time variability is a key issue that forms part of the uncertainty from the 

supplier side. Over the past two decades, several new models considering 

specific distributions for the lead time were introduced to fight this unreal 

assumption such as the Random Guaranteed Service model, which it is going 

to be explained in the next chapter. However, defining the right distribution for 

the variable in each situation is not a trivial task and the stochastic distribution 

selected is sometimes not reliable. Historical data of the process is often not 

available or not representative of the current and/or future situation. Therefore, 

companies are assuming a risk every time that a determinist value or a specific 

distribution is considered. 

Recently, Beiran and Martin-Romero [2017] tackled this issue with a new 

approach called Robust Guaranteed Service model and the first experiments 

provide a powerful tool for the companies to at least manage the risk. This 

approach is the most important contribution in this thesis. 

5.2. Robust Guaranteed Service approach (GS-RO) 

The GS-RO deals with the lead time uncertainty without assuming any 

distribution avoiding risks. The unique fact known is that lead time is uncertain 

within a certain interval, defined by (7). 

                                        (7) 

  

Inspired by the budgeted uncertain set presented in Bental et al. [2009] and 

deployed in Berstimas and Thiele [2006] in which the uncertainty is bounded, 



How to deal correctly with Lead Time in a Supply Chain 
Keio University, March 2017 

20 
 

     is a parameter set by the user between 0 and 1.  It is assumed a fixed value 

and no uncertainty when      while      maximizes the doubt.  Different 

levels of uncertainty can be chosen with this approach. Hence, the cost of 

immunization against the supply delays and the flexibility for the stages in the 

supply chain could be evaluated. 

As opposed to all the other models used in this work, the GS-RO has been 

solved with a linear approximation method as Manganti et al. [2006] does in his 

research. For this case, the objective function (8) is separable, concave and 

non-decreasing. This way, the model remains a mixed-integer linear program 

that can be solved by commercial software such as Gurobi and the 

computational times are not long in any of the networks used (less than one 

minute).   

The program coded in Python and the model formulation were first contributed 

by Beiran and the definitively version was developed by Beiran and Martin-

Romero. The model formulation of the safety stock problem is then the next 

one: 

P 
           

   
    

   
   

 

   

 

   

 
(8) 

 

      
 

 

   

             

(8a) 

    
   

    
    

   
                              (8b) 

   
  

 

   

               

(8c) 

  
                                    (8d) 

  
                                (8e) 

                     (8e) 

                   (8f) 

                         (8g) 

                      (8h) 

                           (8i) 

                 (8j) 

The different terms not defined in the GS-DET are: 

   : Is the net replenishment time. 
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   : Order point. 

       : Expresses the level of safety stock in terms of the net 

replenishment lead time. The equation for this parameter is:           

  
      

    : It is the midterm value of the interval of lead time. 

      It is half of the interval of lead time. 

   : The parameter to express the uncertainty of lead time. 

  : Pieces of the linear approximation. 

   
 : Independent term. 

   
 : Auxiliary variable to activate the slope. 

   
 : Auxiliary variable to activate the independent term. 

   
 : Slope. 

Focusing the attention in the uncertain data, it only appears in constraint 8g. 

Note that there is only one uncertain parameter for each     constraint. Thus, 

the only possible uncertain set is a box. See Appendix 4 for the codification of 

the problem P. 

5.3. Computational results 

The GS-RO has been validated and applied to 20 out of 38 supply chains from 

the data of Willems [2008] varying the number of stages from 8 to 159. There 

two types of supply chains in the database and two different analyses 

consequently. Some networks consider the lead time as a random variable (r-

nets), expressing the lead time as a discrete distribution based on historical 

data or as a normal distribution, and some others as a deterministic value (d-

nets). In the former, the GS-RO results have been compared with the results 

from GS-DET considering the mean of the lead time as the deterministic value 

for the variable (Humair et al. [2013]). If the lead time is expressed as a discrete 

distribution, the uncertain interval for this parameter is defined by its minimum 

and maximum value. Otherwise, the uncertain interval is described by the mean 

value plus three times its standard deviation. In the latter, the effect of the 

variability in the lead time has been studied by assuming a certain interval of 

uncertainty. 

Table 5.1 and Table 5.2 summarize the comparison results for the r-nets types 

and the meaning of the columns are: 

 SC: The number of the network in the public-available database from 

2008. 

 Mid: Display the solution of the GS-RO model when the lead time has no 

variability. The term has to do with the fact that the lead time value taken 

is not the mean but the middle value from the uncertain interval for the 

lead time (no distribution assumed). 
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 Max: Corresponds to the solution the lead time has the maximum 

uncertainty possible.  

    : It is the percentage variation of the safety stock between the Mid 

and the Max result. 

    : It is the average of the outbound service time considering all the 

supply chain. 

 Stages w stock: It is the number of stages holding safety stock in the 

solution. 

 St stock: Number of stages with stochastic lead time. 

 N: Total number of stages. 

        : Relative variation of lead time between the Mid and the Max 

solution. 

SC 
Pipeline stock Safety stock 

Δss 
Mid Max Mid Max 

1 26 443 35 530 984 1 054 7% 

3 51 724 56 157 5 538 5 547 0% 

5 4 200 255 4 953 114 641 824 687 722 7% 

6 1 461 410 1 604 567 806 905 12% 

7 2059 2 447 266 217 -19% 

8 805 526 849 074 34 695 40 050 15% 

9 3 348 803 3 443 173 109 054 115 494 6% 

10 31 698 34 473 4 112 2 340 -43% 

11 2 393 3 002 402 520 30% 

12 9 921 038 10 589 143 1 260 297 1 270 778 1% 

14 642 693 652 932 2 927 3 469 19% 

15 1 684 500 2 536 831 511 227 627 161 23% 

16 1 178 854 1 404 159 78 833 92 515 17% 
Table 5.1: Stock results for the r-nets 

SC 
Δss 
cost 

Sav 
Stages w 

stock 
Stages 
stoch. 

leadtime 
N ΔLT(av) 

Mid Max Mid Max 

1 4% 0,0 0,0 5 5 1 8 79% 

3 5% 28,4 33,9 8 7 8 17 37% 

5 14% 1,0 1,1 22 22 9 27 51% 

6 23% 0,4 0,4 22 22 16 28 88% 

7 20% 6,1 11,7 19 21 38 38 25% 

8 4% 39,1 42,8 3 3 23 40 22% 

9 5% 12,4 13,1 24 25 11 49 22% 

10 36% 2,3 23,5 52 37 21 58 35% 

11 32% 4,4 6,7 36 44 45 68 86% 

12 3% 4,9 5,5 75 75 28 88 27% 

14 40% 3,5 4,9 55 66 36 116 97% 

15 21% 1,6 2,5 77 77 77 133 52% 

16 31% 3, 4,3 83 84 106 145 92% 
 Table 5.2: Cost, outbound service time, stages and lead time results for r-nets  
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According to the Table 5.1, the total amount of pipeline stock increases always 

from the Mid to the Max case, as would have been expected intuitively. If the 

lead time is bigger, then the pipeline stock is too because it is function of the 

lead time and the demand. Regarding the total amount of safety stock, the trend 

is similar. It can be stated that generally the supply chains fight the uncertainty 

by increasing the safety stock – care must be taken because it is not a fixed 

rule. For instance in SC 07 and SC 10, the safety stock policy changes from 

more stock in stages with less holding cost to less stock in stages with more 

costly holding cost. That is the reason why the     is negative for these two 

systems while it is positive in the other cases. Either way, the cost rises when 

the supply chain faces the uncertainty from suppliers as it was expected. The 

numbers show that the cost related to the safety stock goes from 3% difference 

to a maximum of 40%. The number of stages with random lead time and the 

relative lead time variation should be considered to effectively compare the 

        . For example, in SC 16, 106 out of 145 stages are characterized with 

random lead times, varying in average 92% and the increase of safety stock 

cost is 31%. The company should then consider if this over-cost is worth to take 

in order to avoid unmet demand, especially if it is taken into account that the 

safety stock costs represents, for this SC, just one fifth of the total stock cost. 

The number of stages holding safety stock reacts in a similar way as the safety 

stock amount but with less changeability. From the results, it is concluded that 

Stages w stock does not vary (or at least not significantly) due to the lead time 

variability. In total, 481 stages hold safety stock for the Mid case and 488, seven 

stages more, for the worst-case scenario. Six supply chains remain the same 

regarding the number of stages holding safety stock, five increase the stock but 

two of them reduce the number of stages after applying the robust optimization. 

The two special cases are SC 03 and SC 10 even though the lead time 

considered is more than 30% bigger in average in both of situations. 

Finally, the outbound service times are the other important issue to study 

because they are a measure of the service to the customer and a quota for the 

supply chain flexibility. The bigger the lead time variability so the supplier side 

uncertainty too, the longer the time needed for each stage of the SC to 

guarantee the same service level to its successors. A rule is impossible to make 

observing the numerical experiments. Anyhow, the relative variation is 

significantly different from one chain to another. In case that the outbound 

service time for an internal node does not seem realistic, feasible or acceptable 

for its customer, the companies can easily impose a maximum outbound 

service time constraint for internal nodes. 

On the other hand, the GS-RO has been run 10 times with uncertainty going 

from 0 to 100% in intervals of 10% for the first six d-nets (SC 02, 04, 13, 17, 18 

an 19). This work proceeded with this methodology because the robust 

approach cannot be directly implemented as stated before. The aim of the study 
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for d-nets was still the same as the r-nets, measuring how much does it affect 

uncertainty in terms of cost, safety stock and service time to the optimal solution 

when the lead time admits some random variability around its mean value. 

However, an aggregate analysis was less meaningful in this case, so in Graphic 

5.1 is shown the results for SC 04 and the possible conclusions to be extracted 

will be using this network as an example. The trend lines mean the variation of 

safety stock (blue), the variation of safety stock cost (orange) and the variation 

of the outbound service times in average (green). 

For this particular network, the safety stock amount and its corresponding cost 

follow a similar trend. The difference between both lines began to be relevant 

around the 50% of the lead time uncertainty. The increase of the discrepancy is 

caused by the change in the safety stock policy. A few new safety stock units 

have been allocated in the most expensive stages. On the other side, the 

outbound service times experiment an uncommon tendency, having a 

significant growth for levels of 60% of uncertainty, then staggering and finally, 

dramatically decreasing. For a better understanding of this phenomenon, it 

should be noted that stages holding cost remains in 12 until 50% of uncertainty 

and then it scales to 19 stages for 60%, where it keeps constant. 

Therefore, the ratification and the value of the Robust Guaranteed Service 

approach have been demonstrated.  It is a powerful tool capable of immunizing 

the Guaranteed Service model against the supply uncertainty. In addition, the 

GS-RO permits to manage the risk by using a sensitive analysis that can 

discover how the outputs will behave.  
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Graphic 5.1: SC 04 results for the main outputs problem 
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Chapter 6 

Guaranteed Service model under Random 

lead times (GS-RAN) 

6.1. Model 

In the previous chapter, the GS-RO has been proved to be a competent and 

powerful tool when it has been compared with the Guaranteed Service 

approach under deterministic lead time. In this one, the intention is also to 

demonstrate that makes more sense for the companies to solve the safety stock 

placement optimization with the GS-RO instead of the GS-RAN. For this 

purpose, the expressions proposed by Humair et al. [2013] are going to be used 

as the starting point of the theories developed in this chapter and the results are 

going to be useful for comparing both approaches (GS-RO versus GS-RAN). 

The Guaranteed Service model under Random lead time incorporates an 

appropriate safety stock formula for the case of random lead times in a supply 

chain. It is a more realistic approach than the GS-DET but the same or even 

worse risks are taken by assuming a stochastic discrete or continuous 

distribution for the parameter. In addition to the not representative and not 

correct data risks, the occurrence of the early arrival stock (ES) phenomenon is 

an extra difficulty that has to be added to the model and contemplated in the 

objective function (more at Humair et al. [2013]). 

The ES is the corresponding stock to a replenishment order arriving to the 

warehouse earlier than the associated customer order has been shipped. This 

type of stock has to be assumed by the same stage and it cannot be transferred 

to the downstream stages because the latter is not going to be willing to accept 

and deal with the associated holding cost of the extra and unnecessary units.  

This event can only happen when the outbound service time is bigger than the 

inbound service time plus the realized lead time so it is only possible when the 

net replenishment time is negative (more at Humair et al. [2013]). 

6.2. Inconsistencies  

The first steps for comparing GS-RO with GS-RAN were to analyze the results 

given by Humair et al. [2013] and to replicate the program proposed in the 

paper. Discrepancies with the authors were found in terms of results and 

expressions. 

 Data and results inconsistencies: Firstly, the pipeline stock in SC 08 

cannot change from the GS-DET using mean and GS-RAN. This is 

happening because the raw data for the stage Part_01 from SC 08 is 
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incorrect. It is not possible that the lead time mean for this node is equal 

to 42 when 50% of the cases the lead time value is 1 and the other 50% 

is 45. Secondly, the total stock results are uncommon for network 09. It 

makes sense that the GS-DET using max lead time holds more total 

stock because it is the worst scenario possible than the GS-RAN. For 

this example, the numbers show the opposite situation so it is 

inconsistent.                                                                                                                                          

 Expressions inconsistencies: The expression to minimize the safety 

stock under random lead time has to include the early arrival stock 

because every stage must find a compromise between both types of 

stock in this approach. Next, the equations for each stock given by 

Humair et al. [2013] are written: 

                              
  

 
    

  
 
                  

 

(9) 

         
     

                                  
 

(10) 

 Where: 

 Q(T): Expected value of the positive part of the NRLT when 

                

 R(T): Variance of the positive part of the NRLT when          

       

       
            

      
 

(11) 

          
          

            
       

    

   
        

       

(12) 

   
    : Sum of the probabilities when the net replenishment time is 

negative.  

   
    : Expected lead time value when the net replenishment time is 

positive. 

   
    : Statistic formula for the positive net replenishment time. 

The two disagreements found regarding the expressions are: the limits of 

H(T)’s functions and the behavior of the SFTY formula. Regarding the 

limits issue, the limit T is included in all three Hs formulas but this fact is 

not logical. T means a possible value for the lead time. When T is equal 

to the difference     , then the NRLT is zero and the stage does not 

need to hold safety stock. However, when T is included as the lower 

bound for   
        

 , it means that the previous assertion is being denied 

and the stage is being forced to own SFTY. To conclude, the expressions 

for   
        

  should be reformulated because one of the basic 
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assumptions of the Guaranteed Service approach is that there is only 

safety stock when       . Thus, the equations would be: 

  
             

 

   

 
(13) 

  
               

 

     

 
(14) 

  
                

 

     

 
(15) 

  

Regarding the safety stock formula (9), the rising SFTY amount is not 

considered when the inbound is bigger than the outbound service time 

while the NRLT remains positive. Graphic 6.1, which is inspired from the 

figures in Incorporating Stochastic Lead Times to the GS Model of Safety 

Stock Optimization, shows how the SFTY and ES should theoretically 

behave depending on the service times (blue line) and displays what is 

happening with safety stock trend when the equation (9) is applied (red 

line). 

Thus, the SFTY becomes a constant when      and it is because the 

authors consider                . This effect does not match with the 

safety stock theory due that extra safety stock is required to fight longer 

inbound service times when the delivery time to the customer is still the 

same. There is either missing information in Humair et al. [2013], or the 

expression is not adequate for all the scenarios. 

Therefore, a new expression (16) is proposed and used for the following 

numerical experiments to be sure that all the scenarios can be evaluated. 

 The SFTY expression when   
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 The equation when      is: (9). 

 Finally, the formula when      is: 

             
             

  
 
    

  
 
    

  
 
 

(16) 

 

6.3. Numerical experiments 

Taking advantage from the raw data error in supply chain 08, different values 

for Part_01 have been tested to infer strengths and weaknesses of the GS-RAN 

and GS-RO. The varied experiments are: 

 The robust approach with minimum and maximum uncertainty. 

 The GS under random lead times with the raw data         
        

                        . 

 The GS-RAN with         
                                  and 

        
                                . 

  
 
 
 
   

  

 
  

 
 
  

  

Pipeline 
Stock 

Early 
Stock 

Safety 
Stock 

Total 
Stock 

Total 
Cost 

GS-RO 

    
4
2 

[1,45] 805 525,71 - 34 694,94 840 220,65 16 780 600,60 

GS-RO 

    
4
2 

[1,45] 849 073,75 - 40 050,12 889 123,87 18 058 880,07 

GS-RAN 
1_45_42 

4
2 

[1,45] 793 786,70 42 483,14 46 030,77 882 300,61 15 035 832,90 

GS-RAN 
40_45_4

2 

4
2 

[40,45] 793 786,70 45 554,64 42 483,44 881 824,78 15 022 423,73 

GS-RAN 
1_45_23 

2
3 

[1,45] 764 604,50 71 662,39 46 030,77 882 297,66 15 035 832,90 

Table 6.1: GS-RO and GS-RAN results for comparing both approaches 

The early and the safety stock are opposites from the definition of both, the 

former happens when the net replenishment time is negative while the latter 

phenomenon occurs when the NRLT is positive. In general, the bigger the 

safety stock the smaller the early stock. This cannot be appreciated in Table 6.1 

because the data is incorrect in all GS-RAN cases. In any case, the ES is 

considered part of the stage stock in the GS-RAN model. This fact is what 

makes the straight comparison between the random and the robust model 

impossible due to the fact that the second one considers the ES in the pipeline 

stock. A better way to analyze the models is comparing the total stock and cost. 

Analyzing the total results, it can be stated that the robust analysis is the most 

conservative approach. A cheaper cost does not mean that the GS-RAN is the 

best model. In fact, Table 6.1 shows that this approach is more conservative 

than the deterministic case but also the incapability of the model for detecting 
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the error has been proved. From the three random cases studied, the one 

representing the real chain seems to be GS-RAN 40_45_42. The other two 

situations differ less than 1 000 stock units so the cost is significantly similar in 

the three cases. Thus, the mistake made in this chain does not seem to cause a 

potential damage in the safety stock allocation. However, the GS-RAN cannot 

avoid or detect errors and it does not guarantee that the effect of the errors can 

be almost irrelevant as in this case. On the other hand, the robust approach is a 

way to immunize the chain against the data errors and it allows sensitive 

analysis so it is the most correct one to use to solve the problem with total 

confidence. 
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Chapter 7 

Conclusions 

The uncertainty on the supply side has been always a challenge for the 

inventory control and so then for the supply chain management too. The lead 

time variability has been one of the main concerns in this field, especially at the 

Guaranteed Service approach which basically assumes that the parameter is 

known and fixed. 

A deterministic lead time was considered at the beginning of the GS model. 

However, past literature as Humair et al. [2013] and this thesis proved how this 

approach with the basic statement of fixed lead time is unrealistic; the results 

strongly differ from more representative results approaches and data errors 

cannot be detected.  

Being conscious of this weakness, a program (validated using the Moncayo-

Martinez and Ramirez [2016] tutorial and several supply chains from Willems 

[2008]) for the basic Guaranteed Service approach has been developed in this 

research to be able to test the reaction of the safety stock and the cost under 

different outbound service time situations. The study about the outbound 

service time can be conducted under deterministic case because the general 

trends of the outputs are not correlated to the way the lead time data is treated. 

The antagonist behavior of the outbound service time with the safety stock and 

the network cost is demonstrated. The shorter outbound service time in demand 

nodes and/or internal nodes, the tougher the customer is. The more demanding 

the customers are, the less flexible the supply chain is. Thus, higher amount of 

safety stock is needed to respond without stock outs to shorter service times 

and the network cost is more expensive then. 

Following with the history of the GS approach literature, the work contributes 

with another codified program for the Random Guaranteed Service model which 

has been successfully tested in eleven supply chain cases from Willems [2008]. 

It will be a useful tool for practitioners and researchers in future work. In spite of 

the evidences of being a more conservative but accurate model for the safety 

stock allocation than the deterministic case, assuming a stochastic distribution 

for the lead time is not the correct way to deal with the key issue. The random 

approach cannot detect lead time value mistakes or incorrect distributions 

assumed, collecting data is still a challenge and furthermore, the data collected 

can be unreliable of the current or future reality so the risk is too high and it is 

difficult to manage. 

This thesis proposes a new approach called the Robust Guaranteed Service to 

solve the GS under random lead times without assuming a determinate 



How to deal correctly with Lead Time in a Supply Chain 
Keio University, March 2017 

31 
 

stochastic distribution. Therefore, it is a model that enables to capture the 

variability of the lead time and the uncertainty of the supply side and at the 

same time, the safety stock placement is immunized against the data errors and 

challenges. It is the most conservative model from the three mentioned but its 

benefits outstands in comparison with the other two. It is protected against the 

errors, less investment in the collecting data challenge is required and less 

computational time is needed to solve the problem. In addition, the Robust 

Guaranteed approach is completely able to manage the risk; it allows the 

practitioners to decide how much risk are they willing to take and it helps them 

to take important inventory control decisions after analyzing the sensitive 

studies possible thank to uncertain lead time parameter of the model (  ). 

In conclusion, the lead time should be considered variable to represent the 

reality but without assuming distributions to avoid data risks. The most efficient 

approach for this lead time treatment is the Robust Guaranteed Service 

approach for the arguments above-mentioned. It has been validated by testing it 

for twenty supply chains from Willems [2008] and it higher quality performance 

has been proved in comparison with the other two approaches. 

Future work could extend the Robust Guaranteed Service model with capacities 

constraints and considering the cost of the operating flexibility allowed by the 

GS approach. Another possible future contribution can be testing the 

effectiveness of this approach in different business sectors and industries. 
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Appendix 1 

Program for solving the Moncayo-Martinez and Ramirez [2016] tutorial 

1) The modules are imported and the data available is read from excel. 

#modules 

import xlrd 

import math 

##read excel 

book=xlrd.open_workbook("C:/Users/Usuario/Dropbox/KEIO/MASTER 

THESIS/Programing/tutorial_Willems2000/tutorial.xlsx") 

arcs=book.sheet_by_name("T_LL")  

data=book.sheet_by_name("T_SD") 

 

2) The data variables are initiated. 

stages={}   #name and labeling 

avgD = {}   #mean demand 

varD = {}   #variance of demand 

stdD = {}   #deviation of demand 

Cs = {}        #cost stage (not holding cost) 

h=0.2    #annual holding cost 

CC={}   #cumulative cost, holding cost 

service = {}   #service level 

z={}    #normsinv(service level) 

lt_av = {}    #lead time mean 

lt_std = {}   #standard deviation lead time #Lead time is 

deterministic, lt_std=0 

M={}    #replenishment time 

s_out_req={}  #service time required by the last customer 

Ve=[]    #demand nodes 

Vs=[]    #supply nodes 

Vs_sin_ord=[]  #supply node without the spanning tree labeling 

orderStages=[]  #relation between excel and spanning tree labeling 

 

3) Transfer data from excel to python. 

#Total number of stages 

N=len(data.col_values(0))-1 

#transfer data from excel to python. (excel order data) 

for row in range(N): 

    stages[row+1]= [data.cell_value(row+1,0), 0] 

    Cs[row+1]= data.cell_value(row+1,1) 

    avgD[row+1]= data.cell_value(row+1,4) 

    stdD[row+1]= data.cell_value(row+1,5) 
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    service[row+1]=data.cell_value(row+1,7) 

    lt_av[row+1]=data.cell_value(row+1,8) 

    lt_std[row+1]=data.cell_value(row+1,9) 

    s_out_req[row+1]=data.cell_value(row+1,6) 

    if avgD[row+1]=='': 

        avgD[row+1]=0 

        stdD[row+1]=0 

    varD[row+1]= stdD[row+1]**2 

    if lt_std[row+1]=='': 

        lt_std[row+1]=0 

 

4) Matrices with the relation between stages. 

#Arcs matrix #Initial matrix dim(N*N) with all values equal zero 

arc_matrix = [[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)]  

#Arc_matrix (with all the arcs, relations between stages) 

for i in range(1,len(arcs.col_values(0))):   

    val_extra_1=arcs.cell_value(i,0) 

    val_extra_2=arcs.cell_value(i,1) 

arc_matrix[stages.values().index([val_extra_1,0])][stages.values().index([

val_extra_2,0])]=1 

 

#Arc_matrix_aux1 (equal to arc_matrix)(arc_matrix_aux1 is an auxiliar 

matrix) 

arc_matrix_aux1 = [[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)]  

for i in range(1,len(arcs.col_values(0))):   

    val_extra_1=arcs.cell_value(i,0) 

    val_extra_2=arcs.cell_value(i,1) 

     

arc_matrix_aux1[stages.values().index([val_extra_1,0])][stages.values().i

ndex([val_extra_2,0])]=1 

 

5) Maximum Replenishment Time algorithm. 

#Maximum Replenishment time. (excel order) 

memory_del=[] 

arc_matrix_rp=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

arc_matrix_aux=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(N): 

    for j in range(N): 

        arc_matrix_rp[i][j]=arc_matrix[i][j] 
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memory_del=[] 

 

while (len(memory_del)!=N): 

    for i in [x for x in xrange(N) if x not in memory_del]: 

        if sum([arc_matrix_rp[j][i]==1 for j in range(N)])==0: #The algorithm 

is looking for columns with all zeros (no predecessors) 

            M[i+1]=lt_av[i+1]+max(arc_matrix_aux[i]) 

            for j in range(N): 

                if arc_matrix_rp[i][j]==1: 

                    arc_matrix_aux[j][i]=M[i+1] #The algorithm uses 

arc_matrix_aux to create the Mmax (it would be the max of the row) 

                arc_matrix_rp[i][j]=0     

            memory_del=memory_del+[i] 

 

6) Demand propagation algorithm. The propagation is done as simple as 

possible (more in Framework section). 

#Demand Propagation (1 successor for all stages) 

#Work in arc_matrix_demand that will be modified during the algorithm                

arc_matrix_demand=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(N): 

    for j in range(N): 

        arc_matrix_demand[i][j]=arc_matrix[i][j] 

 

memory_del=[] 

while(arc_matrix_demand != [[0] * (len(arc_matrix)) for i in 

range(len(arc_matrix_demand))]):    #running until arc_matrix_demand 

becomes zero        

    for row in [x for x in xrange(len(arc_matrix_demand)) if x not in 

memory_del]:    #It selects row with no 1 (demand 

nodes) 

        if arc_matrix_demand[row] == ([0]*N): 

            for i in range(len(arc_matrix_demand)): 

                if arc_matrix_demand[i][row]==1: 

                    avgD[i+1]=avgD[i+1]+avgD[row+1] 

                    varD[i+1]=varD[i+1]+varD[row+1]        

            memory_del=memory_del+[row] 

#Values already treated are changed to zeros 

    for aa in memory_del: 

        for bb in range(len(arc_matrix_demand)): 

            if arc_matrix_demand[bb][aa]==1: 

                arc_matrix_demand[bb][aa]=0 

 



How to deal correctly with Lead Time in a Supply Chain - Appendix 
Keio University, March 2017 

38 
 

7) Algorithms for other data variables. 

#Dictionary with z=normsinv(service_level) 

for k in range(N): 

    z[k+1]=1.64 

     

#List with supply nodes (no predecessors)    

for i in range(N): 

    if sum([arc_matrix[j][i]==1 for j in range(N)])==0: #if the column is all 

zeros, then it is a supply node 

        Vs_sin_ord=Vs_sin_ord+[i+1] 

#Cumulative cost 

for i in range(N): 

    if (i+1) in Vs_sin_ord: 

        CC[i+1]=Cs[i+1] 

    else: 

        cumulative=0 

        for j in range(i): 

            if arc_matrix[j][i]==1: 

                cumulative=cumulative+CC[j+1] 

        CC[i+1]=Cs[i+1]+cumulative 

 

8) Code for the Spanning Tree algorithm proposed by Graves and Willems 

[2000]. 

k=1  

while(arc_matrix_aux1 != [[0] * (len(arc_matrix_aux1)) for i in 

range(len(arc_matrix_demand))]): 

    for i in range(N): 

        if sum(arc_matrix_aux1[i]) + sum([arc_matrix_aux1[j][i]==1 for j in 

range(len(arc_matrix_aux1))])==1: 

            stages[i+1][1]=k 

            k=k+1                 

            for j in range(len(arc_matrix_aux1)): 

                arc_matrix_aux1[j][i]=0  

            arc_matrix_aux1[i]=[0]*(len(arc_matrix_aux1)) 

 

for i in range(k,len(arc_matrix_aux1)+1): 

    for j in range(N): 

        if stages[j+1][1]==0: 

            stages[j+1][1]=k 

            k=k+1 

 

9) Reordering the stages according the spanning tree labeling and 

generating the new demand and supply nodes. 
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#Arc matrix ordered and its corresponding spanning tree for the new 

labeling 

arc_matrix_ord=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

                     

for i in range(1,len(arcs.col_values(0))):   

    val_extra_1=arcs.cell_value(i,0) 

    val_extra_2=arcs.cell_value(i,1) 

    for j in range(1,N+1): 

        if stages[j][0]==val_extra_1:  

            break 

    for k in range(1,N+1): 

        if stages[k][0]==val_extra_2:  

            break   

    arc_matrix_ord[stages[j][1]-1][stages[k][1]-1]=1  

         

#List with demand nodes 

for k in range(N): 

    if sum(arc_matrix_ord[k])==0: 

        Ve=Ve+[k+1] 

 

#List with initial nodes (no predecessors) 

for i in range(N): 

    if sum([arc_matrix_ord[j][i]==1 for j in range(N)])==0: #if the column is 

all zeros, then it is a supply node 

        Vs=Vs+[i+1] 

 

10) Expressions for the objective function. 

#Safety stock 

def SS(k,SI,S): 

    posk=orderStages.index(k) 

    if SI+lt_av[posk+1]-S>=0: 

        return 

z[posk+1]*math.sqrt(varD[posk+1])*math.sqrt(lt_av[posk+1]+SI-S) 

    else: 

        print "no possible" #There is no stock if NRLT is negative 

#Cost function 

def cost(k,SI,S): 

    posk=orderStages.index(k) 

    return h*CC[posk+1]*SS(k,SI,S) 

 

11)                  is the expression for the minimum cost of the sub-

graph when the unique adjacent node with higher label is the customer 
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of   (as Humair and Willems [2011] wrote: let the function 

                 be the optimal cost of the sub-tree connected to   after 

removing its unique adjacent node with higher label if  ’s outgoing 

service time is  ).   is the stage/node,   is the given outbound service 

and           is the current dictionary where the possible results from 

the nodes with less label have been stored.  

def f(k,S,stageInfo): 

    SIResults=[] 

    ZResultF=[] 

    posk=orderStages.index(k) 

     

    for si in range(int(max(0,S-lt_av[posk+1])),int(M[posk+1]-

lt_av[posk+1]+1)): 

        cF=cost(k,si,S) 

        prevF=0.0 

        nextF=0.0 

         

        for i in range(k): 

            m1=[] 

            if arc_matrix_ord[i][k-1]==1: 

                listNF=stageInfo[i+1] 

                listS=[] 

                for nf in range(len(listNF)): 

                    listS=listS+[listNF[nf][2]] 

                     

                for nf in range(len(listNF)): 

                    if listNF[nf][2]<=si and listNF[nf][2]>=0: 

                        m1=m1+[listNF[nf][0]] 

                    elif si>max(listS): 

                        m1=m1+[float("inf")] 

                if m1!=[]: 

                    Min1=min(m1) 

                    prevF=prevF+Min1 

              

        for j in range(k): 

            m2=[] 

            if arc_matrix_ord[k-1][j]==1: 

                posj=orderStages.index(j+1) 

                listNF=stageInfo[j+1] 

                listSI=[] 

                for nf in range(len(listNF)): 

                    listSI=listSI+[listS[nf][1]] 

                     

 

Evaluation of the lower 

label ‘previous’ nodes 

cost of k. 

Evaluation of the lower 

label ‘next’ nodes cost 

of k. 
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                for nf in range(len(listNF)): 

                    if listNF[nf][1]>=S and listNF[nf][1]<=(M[posj+1]-

lt_av[posj+1]): 

                        m2=m2+[listNF[nf][0]] 

                    elif S>max(listSI): 

                        m2=m2+[float("inf")] 

                if m2!=[]: 

                    Min2=min(m2) 

                    nextF=nextF+Min2 

                         

        ResultF=cF+prevF+nextF 

        SIResults=SIResults+[(ResultF,si,S)] 

        ZResultF=ZResultF+[ResultF] 

         

    ResultFinalF=min(ZResultF) 

    PosResultFinalF=ZResultF.index(ResultFinalF) 

    

TupleFinalF=[(ResultFinalF,SIResults[PosResultFinalF][1],SIResults[Pos

ResultFinalF][2])] 

       return TupleFinalF 

 

12)  g                 is the expression for the minimum cost of the sub-

graph when the unique adjacent node with higher label is the supplier of 

  (as Humair and Willems [2011] wrote: let the function 

                  be the optimal cost of the sub-tree connected to   

after removing its unique adjacent node with higher label if  ’s incoming 

service time is   ).   is the stage/node,    is the given outbound service 

and           is the current dictionary where the possible results from 

the nodes with less label have been stored. 

def g(k,SI,stageInfo): 

    SResults=[] 

    ZResultG=[] 

    posk=orderStages.index(k) 

     

    if k in Ve: 

        smax=s_out_req[posk+1]+1 

    else: 

        smax=SI+lt_av[posk+1]+1 

     

    for s in range(0,int(smax)): 

        cG=cost(k,SI,s) 

        prevG=0.0 

        nextG=0.0 
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        for i in range(k): 

            m1=[] 

            if arc_matrix_ord[i][k-1]==1: 

                listNG=stageInfo[i+1] 

                listS=[] 

                for nf in range(len(listNG)): 

                    listS=listS+[listNG[nf][2]] 

                     

                for nf in range(len(listNG)): 

                    if listNG[nf][2]<=SI and listNG[nf][2]>=0: 

                        m1=m1+[listNG[nf][0]]  

                    elif SI>max(listS): 

                        m1=m1+[float("inf")] 

                if m1!=[]: 

                    Min1=min(m1) 

                    prevG=prevG+Min1     

                         

        for j in range(k): 

            m2=[] 

            if arc_matrix_ord[k-1][j]==1: 

                posj=orderStages.index(j+1) 

                listNG=stageInfo[j+1] 

                listSI=[] 

                for nf in range(len(listNG)): 

                    listSI=listSI+[listNG[nf][1]] 

                     

           for nf in range(len(listNG)): 

                    if listNG[nf][1]>=s and listNG[nf][1]<=(M[posj+1]-

lt_av[posj+1]): 

                        m2=m2+[listNG[nf][0]] 

                    elif s>max(listSI): 

                        m2=m2+[float("inf")] 

                if m2!=[]: 

                    Min2=min(m2) 

                    nextG=nextG+Min2 

                         

        ResultG=cG+prevG+nextG 

        SResults=SResults+[(ResultG,SI,s)] 

        ZResultG=ZResultG+[ResultG] 

     

    ResultFinalG=min(ZResultG) 

    PosResultFinalG=ZResultG.index(ResultFinalG) 

Evaluation of the lower 

label next nodes cost 

of k. 

 

Evaluation of the 

lower label 

‘previous’ nodes 

cost of k. 
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TupleFinalG=[(ResultFinalG,SResults[PosResultFinalG][1],SResults[Pos

ResultFinalG][2])] 

        return TupleFinalG 

 

13)         function is used to create all the possible stage cost for all the 

node.    

First, it chooses between f                or g                 which 

one has to be selected for each node. Second, it evaluates the selected 

function for the concrete service time range of values. Third, every 

evaluation is cached in the           dictionary. 

def model(): 

    stageInfo={}    

    for k in range(N): 

        posk=orderStages.index(k+1) 

        if (k+1)!= N:            #all stages calculation 

            TupleStage=[] #the results for each node will be stored at 

TupleStage 

            for j in range(N): 

                if k<j: 

                    if arc_matrix_ord[k][j]==1: 

                        for S in range(0,int(M[posk+1]+1)): 

                            TupleStage=TupleStage+f(k+1,S,stageInfo)                     

                        stageInfo[k+1]=TupleStage 

                     

                    if arc_matrix_ord[j][k]==1: 

                        for SI in range(0,int(M[posk+1]-lt_av[posk+1])+1): 

                            TupleStage=TupleStage+g(k+1,SI,stageInfo) 

                        stageInfo[k+1]=TupleStage 

                        

        else: 

            LastTupleStage=[]     

            for SI in range(0,int(M[posk+1]-lt_av[posk+1])+1): 

                LastTupleStage=LastTupleStage+g(k+1,SI,stageInfo) 

            stageInfo[k+1]=LastTupleStage 

        return stageInfo 

 

14)                      is a function used for finding the optimal cost of 

the whole supply chain and the best outbound and inbound service time 

for each stage that fulfill all the constraints.          is where the cost 

depending on the best services time found, the best incoming and 

outcoming service times are stored for each stage.      is the optimal 

cost for the supply chain. It is important to note that the main goal is to 

The last stage possible costs 

are evaluated with g function 

 

If the unique higher adjacent node 

of k is its customer, then f function 

is evaluated for the corresponding S 

values 

If the unique higher adjacent node of k is its supplier, then g 

function is evaluated for the corresponding SI values 
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resolve the optimization for the whole supply chain so it happens that 

sometimes the cost of one stage is not the optimal for itself. In 

conclusion, the program does not work with locals, it works with global 

optimization. 

SET={} 

stageOpt={} 

 

def backtrack(stageInfo): 

    for k in range (N, 0, -1): 

       

        if k==N: 

            Alternatives=stageInfo[k] 

            Min3=[] 

             

            for a in Alternatives: 

                Min3=Min3+[a[0]] 

            Zopt=min(Min3) 

            posZopt=Min3.index(Zopt) 

            SET[k]=(Alternatives[posZopt][1],Alternatives[posZopt][2]) 

#set=(SI,S) 

                     

        else: 

            Alternatives=stageInfo[k] 

            Alter=[] 

            for j in range(N): 

                if (k-1)<j: 

                    if arc_matrix_ord[k-1][j]==1:                     

                        limit=SET[j+1] 

                        SIlimit=limit[0] 

                        Min4=[] 

                     

                        for i in range(len(Alternatives)): 

                            if Alternatives[i][2]<=SIlimit: 

                                Alter=Alter+[Alternatives[i]] 

                            else: 

                                Alter=Alter 

                             

                        for i in Alter: 

                            Min4=Min4+[i[0]] 

                        fog=min(Min4) 

                        posfog=Min4.index(fog) 

                        SET[k]=(Alter[posfog][1],Alter[posfog][2]) 

                 

                    

The optimal cost for the 

supply chain is found 

When the stage k is 

the supplier of j, then 

the constraint        

has to be fulfilled. 
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   if arc_matrix_ord[j][k-1]==1: 

                        limit=SET[j+1] 

                        Slimit=limit[1] 

                        Min5=[] 

                         

                        for i in range(len(Alternatives)): 

                            if Alternatives[i][1]>=Slimit: 

                                 Alter=Alter+[Alternatives[i]] 

                             

                            else: 

                                Alter=Alter 

                         

                        for i in Alter: 

                            Min5=Min5+[i[0]] 

                        fog=min(Min5) 

                        posfog=Min5.index(fog) 

                        SET[k]=(Alter[posfog][1],Alter[posfog][2]) 

                     

    Zopt=0.0 

    for k in range(N): 

        Zopt=Zopt+cost(k+1,SET[k+1][0],SET[k+1][1]) 

      

stageOpt[k+1]=(cost(k+1,SET[k+1][0],SET[k+1][1]),SET[k+1][0],SET[k+1]

[1]) 

    print Zopt,stageOpt 

 

15) To run the program and obtain the outputs. 

stageInfo=model() 

Zopt,stageOpt=backtrack(stageInfo) 

When the stage k 

is the customer 

of j, then the 

constraint 

       has to 

be fulfilled. 

The optimal 

cost is 

calculated 
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Appendix 2 

Program for optimizing the safety stock placement in General Acyclic 

Chains with deterministic lead time 

1) The modules are imported and the data available is read from excel 

#modules 

import xlrd 

import math 

from scipy.sparse import csr_matrix 

from scipy.sparse.csgraph import minimum_spanning_tree 

from scipy.stats import norm 

#read data 

book=xlrd.open_workbook("C:\Users\Usuario\Dropbox\KEIO\MASTER 

THESIS\Programing\Data Set_org.xls") 

arcs=book.sheet_by_name("12_LL") #supply chain # 

data=book.sheet_by_name("12_SD") #supply chain # 

 

2) The data variables and the limits are initiated. 

stages={}    #name and labeling 

avgD = {}    #mean demand 

varD = {}    #variance of demand 

stdD = {}    #deviation of demand 

Cs = {}        #cost stage (not holding cost) 

h=1     #annual holding cost 

CC={}    #cumulative cost 

service = {}    #service level 

z={}     #normsinv(service level) 

lt_av = {}     #lead time mean without decimals 

lt_av_decimal={}   ##lead time mean with decimals 

lt_std = {}    #standard deviation lead time N 

lt_var={}    #auxiliary 

lt_max={}    #auxiliary 

M={}     #replenishment time 

s_out_req={}   #service time required by the last customer 

stage_lk={}    #auxiliary 

prob_lk={}     #auxiliary 

Ve=[]     #demand nodes 

Vs=[]     #supply nodes 

Vs_sin_ord=[]  #supply node without spanning tree labeling 

orderStages=[]  #relation between excel and spanning tree 

labeling 

#limits initialization 
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u={} 

l={} 

U={} 

L={} 

 

3) Transfer data from excel to python. 

#Total number of stages 

N=len(data.col_values(0))-1 

 

#Transfer data from excel to python. (excel order data) 

for row in range(N): 

    stages[row+1]= [data.cell_value(row+1,0), 0] 

    Cs[row+1]= data.cell_value(row+1,1) 

    avgD[row+1]= data.cell_value(row+1,4) 

    stdD[row+1]= data.cell_value(row+1,5) 

    service[row+1]=data.cell_value(row+1,7) 

    lt_av[row+1]=data.cell_value(row+1,8) 

    lt_av_decimal[row+1]=data.cell_value(row+1,8) 

    if (lt_av[row+1]/0.5)%2==1: 

        lt_av[row+1]=lt_av[row+1]-0.01 

    lt_av[row+1]=round(lt_av[row+1]) 

    lt_std[row+1]=data.cell_value(row+1,9) 

    s_out_req[row+1]=data.cell_value(row+1,6) 

    if avgD[row+1]=='': 

        avgD[row+1]=0 

        stdD[row+1]=0 

    varD[row+1]= stdD[row+1]**2 

    if lt_std[row+1]=='': 

        lt_std[row+1]=0 

 

    stage_lk[row+1]=[data.cell_value(row+1,c) for c in range (10,22,2)] 

    prob_lk[row+1]=[data.cell_value(row+1,c) for c in range (11,23,2)] 

    for i in range(len(stage_lk[row+1])): 

        if stage_lk[row+1][i]=='': 

            stage_lk[row+1][i]=0 

            prob_lk[row+1][i]=0 

    if stage_lk[row+1]==[0]*6 and lt_std[row+1]=='': 

        stage_lk[row+1][0]=lt_av[row+1] 

        prob_lk[row+1][0]=1 

    if stage_lk[row+1]==[0]*6 and lt_std[row+1]!='': 

        stage_lk[row+1][0]=lt_av[row+1] 

        lt_var[row+1]=3*lt_std[row+1] 

    for i in range(len(stage_lk[row+1])-1,0, -1): 

        if stage_lk[row+1][i]==0: 
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            del stage_lk[row+1][i] 

    lt_max[row+1]=max(stage_lk[row+1]) 

 

4) Matrices with the relation between stages. 

#Arcs matrix. #Initial matrix dim(N*N) with all values equal zero 

arc_matrix = [[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)]  

 

#Arc_matrix (with all the arcs, relations between stages) 

for i in range(1,len(arcs.col_values(0))):   

    val_extra_1=arcs.cell_value(i,0) 

    val_extra_2=arcs.cell_value(i,1) 

     

arc_matrix[stages.values().index([val_extra_1,0])][stages.values().index([

val_extra_2,0])]=1 

 

#Arc_matrix_aux1 (equal to arc_matrix)(arc_matrix_aux1 is an auxiliar 

matrix) 

arc_matrix_aux1 = [[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)]  

for i in range(1,len(arcs.col_values(0))):   

    val_extra_1=arcs.cell_value(i,0) 

    val_extra_2=arcs.cell_value(i,1) 

     

arc_matrix_aux1[stages.values().index([val_extra_1,0])][stages.values().i

ndex([val_extra_2,0])]=1 

 

5) Maximum Replenishment Time algorithm. 

#Maximum Replenishment time. (excel order) 

memory_del=[] 

arc_matrix_rp=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

arc_matrix_aux=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(N): 

    for j in range(N): 

        arc_matrix_rp[i][j]=arc_matrix[i][j] 

 

memory_del=[] 

while (len(memory_del)!=N): 

    for i in [x for x in xrange(N) if x not in memory_del]: 

        if sum([arc_matrix_rp[j][i]==1 for j in range(N)])==0: #The algorithm 

looks for columns with all zeros (no predecessors) 
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            M[i+1]=lt_av[i+1]+max(arc_matrix_aux[i]) 

            for j in range(N): 

                if arc_matrix_rp[i][j]==1: 

                    arc_matrix_aux[j][i]=M[i+1] #The algorithm uses 

arc_matrix_aux to create the Mmax (it would be the max of the row) 

                arc_matrix_rp[i][j]=0     

            memory_del=memory_del+[i] 

 

6) Initial values for the limits. The service times limits are up to the 

programmer. In this case, the limits have been fathomed from the 

definition of maximum replenishment time and from the constraints 6a. 

and 6b.  In other cases, the range of possible values can be selected 

using other criteria by the researcher. 

for i in range(N): 

    l[i+1]=0 

    L[i+1]=0 

    U[i+1]=M[i+1]-lt_av[i+1] 

    if s_out_req[i+1]=='': 

        u[i+1]=M[i+1] 

    else: 

        u[i+1]=min(s_out_req[i+1],M[i+1]) 

 

7) Demand propagation algorithm. The propagation is done as simple as 

possible (more in Framework section). 

arc_matrix_demand=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(N): 

    for j in range(N): 

        arc_matrix_demand[i][j]=arc_matrix[i][j] 

 

memory_del=[] 

while(arc_matrix_demand != [[0] * (len(arc_matrix)) for i in 

range(len(arc_matrix_demand))]):    #running until arc_matrix_demand 

becomes zero        

    for row in [x for x in xrange(len(arc_matrix_demand)) if x not in 

memory_del]:    #It selects row with no 1 (demand 

nodes) 

        if arc_matrix_demand[row] == ([0]*N): 

            for i in range(len(arc_matrix_demand)): 

                if arc_matrix_demand[i][row]==1: 

                    avgD[i+1]=avgD[i+1]+avgD[row+1] 

                    varD[i+1]=varD[i+1]+varD[row+1]        

            memory_del=memory_del+[row] 
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#The zeros already treated are changed 

    for aa in memory_del: 

        for bb in range(len(arc_matrix_demand)): 

            if arc_matrix_demand[bb][aa]==1: 

                arc_matrix_demand[bb][aa]=0 

 

8) Algorithms for other data variables. 

#Supply nodes of the excel labeling  

for i in range(N): 

    if sum([arc_matrix[j][i]==1 for j in range(N)])==0: #if the column is all 

zeros, then it is a supply node 

        Vs_sin_ord=Vs_sin_ord+[i+1] 

 

#Cumulative cost 

memory_del=[] 

arc_matrix_cc=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

arc_matrix_aux=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(N): 

    for j in range(N): 

        arc_matrix_cc[i][j]=arc_matrix[i][j] 

 

memory_del=[] 

while (len(memory_del)!=N): 

    for i in [x for x in xrange(N) if x not in memory_del]: 

        if sum([arc_matrix_cc[j][i]==1 for j in range(N)])==0:  

            CC[i+1]=Cs[i+1]+sum(arc_matrix_aux[i]) 

            for j in range(N): 

                if arc_matrix_cc[i][j]==1: 

                    arc_matrix_aux[j][i]=CC[i+1] 

                arc_matrix_cc[i][j]=0     

            memory_del=memory_del+[i] 

 

#service level coefficient 

#Calculation of the average service level coefficient (for those with no 

value assigned) 

count_service=0 

sum_service=0 

for k in range (N): 

    if service[k+1]!='': 

        count_service += 1 

        sum_service += service[k+1] 
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#The average is assigned to those stages with no value assigned 

for k in range (N): 

    if service[k+1]=='': 

        service[k+1]=sum_service/count_service 

         

#Dictionary with z=normsinv(service) 

for k in range(N): 

    z[k+1]=norm.ppf(service[k+1]) 

 

9) Generation and labeling of the spanning tree. An acyclic network is not a 

spanning tree. The arcs are ranked considering its associated cost (more 

at Humair and Willems [2011]) to choose a spanning tree from the supply 

chain. Once a minimum spanning tree is selected, the stages are labeled 

taking into account the broken links. Finally, matrices are created to store 

all the spanning tree information. 

#Spanning tree 

#Matrix with links and costs for choosing the spanning tree 

arc_matrix_costs=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(N): 

    for j in range(N): 

        arc_matrix_costs[i][j]=arc_matrix[i][j] 

 

#The associate arc (i,j) in A cost= -(Ci+Cj)*stdj        

for i in range(len(arc_matrix_costs)): 

    for j in range(len(arc_matrix_costs)): 

        if arc_matrix_costs[i][j]==1 and CC[i+1]!=0 and CC[j+1]!=0: 

            arc_matrix_costs[i][j]=-

100*(CC[i+1]+CC[j+1])*(math.sqrt(varD[j+1])) 

 

#Generation of the spanning tree 

X = csr_matrix(arc_matrix_costs) 

Tcsr = minimum_spanning_tree(X) 

arc_matrix_costs=Tcsr.toarray().astype(int) 

 

#Matrix with the spanning tree 

arc_matrix_st=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(len(arc_matrix_costs)): 

    for j in  range(len(arc_matrix_costs)): 

        if arc_matrix_costs[i][j]!=0: 

            arc_matrix_st[i][j]=1 
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#Matrix storing the links that have been broken for creating the spanning 

tree 

arc_matrix_brokenlinks=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(N): 

    for j in  range(N): 

        arc_matrix_brokenlinks[i][j]=arc_matrix[i][j]-arc_matrix_st[i][j] 

 

#Labeling the spanning tree in stages[i][1] 

#Initial value for the counter 

k=1         

while(arc_matrix_st != [[0] * (len(arc_matrix)) for i in 

range(len(arc_matrix_demand))]): 

    for i in range(N): 

        if sum(arc_matrix_st[i]) + sum([arc_matrix_st[j][i]==1 for j in 

range(len(arc_matrix_st))])==1: 

            stages[i+1][1]=k 

            k=k+1                 

            for j in range(len(arc_matrix_st)): 

                arc_matrix_st[j][i]=0  

            arc_matrix_st[i]=[0]*(len(arc_matrix)) 

 

for i in range(k,len(arc_matrix_st)+1): 

    for j in range(N): 

        if stages[j+1][1]==0: 

            stages[j+1][1]=k 

            k=k+1  

             

#Spanning tree ordered cost (spanning tree) 

arc_matrix_ordered_cost=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

                     

for i in range(1,len(arcs.col_values(0))):   

    val_extra_1=arcs.cell_value(i,0) 

    val_extra_2=arcs.cell_value(i,1) 

    for j in range(1,N+1): 

        if stages[j][0]==val_extra_1:  

            break 

    for k in range(1,N+1): 

        if stages[k][0]==val_extra_2:  

            break   

    arc_matrix_ordered_cost[stages[j][1]-1][stages[k][1]-

1]=arc_matrix_costs[j-1][k-1] 
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#The arc_matrix_st is saved again 

arc_matrix_st=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(len(arc_matrix_costs)): 

    for j in  range(len(arc_matrix_costs)): 

        if arc_matrix_costs[i][j]!=0: 

            arc_matrix_st[i][j]=1 

 

#The arc matrix ordered is generated and its corresponding spanning 

tree 

arc_matrix_ordered=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

                     

for i in range(1,len(arcs.col_values(0))):   

    val_extra_1=arcs.cell_value(i,0) 

    val_extra_2=arcs.cell_value(i,1) 

    for j in range(1,N+1): 

        if stages[j][0]==val_extra_1:  

            break 

    for k in range(1,N+1): 

        if stages[k][0]==val_extra_2:  

            break   

    arc_matrix_ordered[stages[j][1]-1][stages[k][1]-1]=1           

 

arc_matrix_ordered_st=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)]      

for i in range(N): 

    for j in range(N): 

        arc_matrix_ordered_st[i][j]=arc_matrix_ordered[i][j] 

for i in range(N): 

    for j in range(N):  

        if arc_matrix_brokenlinks[i][j]==1: 

            arc_matrix_ordered_st[stages[i+1][1]-1][stages[j+1][1]-1]=0 

             

arc_matrix_ordered_brokenlinks=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(N): 

    for j in range(N): 

        arc_matrix_ordered_brokenlinks[i][j]=arc_matrix_ordered[i][j]-

arc_matrix_ordered_st[i][j] 

 

10) Information about the stages after the spanning tree labeling. 

#List with demand nodes 

for k in range(N): 
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    if sum(arc_matrix_ordered[k])==0: 

        Ve=Ve+[k+1] 

 

#List with initial nodes (no predecessors) 

for i in range(N): 

    if sum([arc_matrix_ordered[j][i]==1 for j in range(N)])==0: #if the 

column is all zeros, then it is a supply node 

        Vs=Vs+[i+1] 

             

#Relation between stages and spanning tree labeling       

for i in stages: 

    orderStages=orderStages+[stages[i][1]] 

 

11) Expressions for the objective function. 

#Safety stock 

def SS(k,SI,S): 

    posk=orderStages.index(k) 

    if SI+lt_av[posk+1]-S>=0: 

        return 

z[posk+1]*math.sqrt(varD[posk+1])*math.sqrt(lt_av[posk+1]+SI-S) 

    else: 

        print 'no stock' #representa la rallita, not possible 

#Pipeline stock 

def PS(k): 

    posk=orderStages.index(k) 

    return lt_av_decimal[posk+1]*avgD[posk+1] 

 

#Cost function 

def cost(k,SI,S): 

    posk=orderStages.index(k) 

    if SI+lt_av[posk+1]-S>=0: 

        return CC[posk+1]*SS(k,SI,S) 

    else: 

        return 'no cost' 

 

12)                           and g                          mean the 

same as                  and g                 in the first appendix. 

The difference remains in the limits. In this program, the limits are also 

an input for the functions due that depending on which iteration of the 

routine the functions are called, then the limits are modified to calculate 

the cost.  

def f(k,S,stageInfo,L,U,a,Sh): 

    SIResults=[] 
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    ZResultF=[] 

    posk=orderStages.index(k) 

     

    if a!=0: 

        simin=int(max(Sh+1,L[posk+1],S-lt_av[posk+1])) 

         

    else: 

        simin=int(max(L[posk+1],S-lt_av[posk+1])) 

     

    for si in range(simin,int(M[posk+1]-lt_av[posk+1]+1)): 

        cF=cost(k,si,S) 

        prevF=0.0 

        nextF=0.0 

         

        for i in range(k): 

            m1=[] 

            if arc_matrix_ordered_st[i][k-1]==1: 

                listNF=stageInfo[i+1] 

                listS=[] 

                for nf in range(len(listNF)): 

                    listS=listS+[listNF[nf][2]] 

                     

                for nf in range(len(listNF)): 

                    if listNF[nf][2]<=si and listNF[nf][2]>=0: 

                        m1=m1+[listNF[nf][0]] 

                    elif si>max(listS): 

                        m1=m1+[float("inf")] 

                if m1!=[]: 

                    Min1=min(m1) 

                    prevF=prevF+Min1 

              

        for j in range(k): 

            m2=[] 

            if arc_matrix_ordered_st[k-1][j]==1: 

                posj=orderStages.index(j+1) 

                listNF=stageInfo[j+1] 

                listSI=[] 

                for nf in range(len(listNF)): 

                    listSI=listSI+[listNF[nf][1]] 

                     

                for nf in range(len(listNF)): 

                    if listNF[nf][1]>=S and listNF[nf][1]<=(M[posj+1]-

lt_av[posj+1]): 

                        m2=m2+[listNF[nf][0]] 
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                    elif S>max(listSI): 

                        m2=m2+[float("inf")] 

                if m2!=[]: 

                    Min2=min(m2) 

                    nextF=nextF+Min2 

                         

        ResultF=cF+prevF+nextF 

        SIResults=SIResults+[(ResultF,si,S)] 

        ZResultF=ZResultF+[ResultF] 

         

    ResultFinalF=min(ZResultF) 

    PosResultFinalF=ZResultF.index(ResultFinalF) 

    

TupleFinalF=[(ResultFinalF,SIResults[PosResultFinalF][1],SIResults[Pos

ResultFinalF][2])] 

     

    return TupleFinalF 

 

def g(k,SI,stageInfo,l,u,a,Sh): 

    SResults=[] 

    ZResultG=[] 

    posk=orderStages.index(k) 

 

    smax=min(SI+lt_av[posk+1]+1,M[posk+1]+1)     

    if k==a and k not in Ve: 

        smax=min(Sh+1,SI+lt_av[posk+1]+1) 

        #smax=min(Sh+1,s_out_req[posk+1]+1,SI+lt_av[posk+1]+1) 

    if k==a and k in Ve: 

        smax=min(s_out_req[posk+1]+1,Sh+1,SI+lt_av[posk+1]+1) 

    if k in Ve: 

        smax=min(s_out_req[posk+1]+1,SI+lt_av[posk+1]+1) 

 

  for s in range(int(l[posk+1]),int(smax)): 

        cG=cost(k,SI,s) 

        prevG=0.0 

        nextG=0.0 

             

        for i in range(k): 

            m1=[] 

            if arc_matrix_ordered_st[i][k-1]==1: 

                listNG=stageInfo[i+1] 

                listS=[] 

                for nf in range(len(listNG)): 

                    listS=listS+[listNG[nf][2]] 
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                for nf in range(len(listNG)): 

                    if listNG[nf][2]<=SI and listNG[nf][2]>=0: 

                        m1=m1+[listNG[nf][0]]  

                    elif SI>max(listS): 

                        m1=m1+[float("inf")] 

                if m1!=[]: 

                    Min1=min(m1) 

                    prevG=prevG+Min1     

                         

        for j in range(k): 

            m2=[] 

            if arc_matrix_ordered_st[k-1][j]==1: 

                posj=orderStages.index(j+1) 

                listNG=stageInfo[j+1] 

                listSI=[] 

                for nf in range(len(listNG)): 

                    listSI=listSI+[listNG[nf][1]] 

                     

                 

                for nf in range(len(listNG)): 

                    if listNG[nf][1]>=s and listNG[nf][1]<=(M[posj+1]-

lt_av[posj+1]): 

                        m2=m2+[listNG[nf][0]] 

                    elif s>max(listSI): 

                        m2=m2+[float("inf")] 

                if m2!=[]: 

                    Min2=min(m2) 

                    nextG=nextG+Min2 

                         

        ResultG=cG+prevG+nextG 

        SResults=SResults+[(ResultG,SI,s)] 

        ZResultG=ZResultG+[ResultG] 

     

    ResultFinalG=min(ZResultG) 

    PosResultFinalG=ZResultG.index(ResultFinalG) 

    

TupleFinalG=[(ResultFinalG,SResults[PosResultFinalG][1],SResults[Pos

ResultFinalG][2])] 

        return TupleFinalG 

 

13)                means the same as          However, in this 

occasion the limits for the decision variables are an input. 

def model(l,u,L,U): 
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    stageInfo={}    

    for k in range(N): 

        posk=orderStages.index(k+1) 

        if (k+1)!= N:            #all stages calculation 

            TupleStage=[] #where I will store the results for each node 

            for j in range(N): 

                if k<j: 

                    if arc_matrix_ordered_st[k][j]==1: 

                        for S in range(int(l[posk+1]),int(u[posk+1]+1)): 

                            TupleStage=TupleStage+f(k+1,S,stageInfo,L,U,0,0)                     

                        stageInfo[k+1]=TupleStage 

                     

                    if arc_matrix_ordered_st[j][k]==1: 

                        for SI in range(int(L[posk+1]),int(U[posk+1]+1)): 

                            TupleStage=TupleStage+g(k+1,SI,stageInfo,l,u,0,0) 

                        stageInfo[k+1]=TupleStage 

                         

        else: 

            LastTupleStage=[]     

            for SI in range(int(L[posk+1]),int(U[posk+1]+1)): 

                LastTupleStage=LastTupleStage+g(k+1,SI,stageInfo,l,u,0,0) 

            stageInfo[k+1]=LastTupleStage 

     

    return stageInfo 

  

14)                                and                             do 

the same work as               . They are used instead of 

               when the routine calls one of the methods to solve the 

problem including the broken links by reducing the domain of solution 

changing the range of the limits. 

def upper(stageOpt,l,u,L,U,a,b,Sh): 

    stageInfoU={}    

    for k in range(N): 

        posk=orderStages.index(k+1) 

        if (k+1)!= N:            #all stages calculation 

            TupleStage=[] #where I will store the results for each node 

            for j in range(N): 

                if k<j: 

                    if arc_matrix_ordered_st[k][j]==1: 

                        if (k+1)==a: 

                            Smax=min(u[posk+1]+1,Sh+1) 

                        else: 

                            Smax=int(u[posk+1]+1) 
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                        for S in range(int(l[posk+1]),Smax): 

                            TupleStage=TupleStage+f(k+1,S,stageInfoU,L,U,0,0)                     

                        stageInfoU[k+1]=TupleStage 

                     

                    if arc_matrix_ordered_st[j][k]==1: 

                        for SI in range(int(L[posk+1]),int(U[posk+1]+1)): 

                            TupleStage=TupleStage+g(k+1,SI,stageInfoU,l,u,a,Sh) 

                        stageInfoU[k+1]=TupleStage 

                         

        else: 

            LastTupleStage=[] 

            for SI in range(int(L[posk+1]),int(U[posk+1]+1)): 

                

LastTupleStage=LastTupleStage+g(k+1,SI,stageInfoU,l,u,a,Sh) 

            stageInfoU[k+1]=LastTupleStage 

     

    return stageInfoU 

 

def lower(stageOpt,l,u,L,U,a,b,Sh): 

    stageInfo={} 

    sucA=[] 

    for i in range(N): 

        if arc_matrix_ordered[a-1][i]==1: 

            sucA=sucA+[i+1] 

           

    for k in range(N): 

        posk=orderStages.index(k+1) 

        if (k+1)!= N:            #all stages calculation 

            TupleStage=[] #where I will store the results for each node 

            for j in range(N): 

                if k<j: 

                    if arc_matrix_ordered_st[k][j]==1: 

                        for S in range(int(l[posk+1]),int(u[posk+1]+1)): 

                            if (k+1) in sucA: 

                                TupleStage=TupleStage+f(k+1,S,stageInfo,L,U,a,Sh) 

                            else: 

                                TupleStage=TupleStage+f(k+1,S,stageInfo,L,U,0,0) 

                        stageInfo[k+1]=TupleStage 

                     

                    if arc_matrix_ordered_st[j][k]==1: 

                        if k+1 in sucA: 

                            simin=max(Sh+1,L[posk+1]) 

                        else: 

                            simin=int(L[posk+1]) 
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                        for SI in range(simin,int(U[posk+1])+1): 

                            TupleStage=TupleStage+g(k+1,SI,stageInfo,l,u,0,0) 

                        stageInfo[k+1]=TupleStage 

                         

        else: 

            LastTupleStage=[] 

            if N==b: 

                simin=max(Sh+1,L[posk+1]) 

            else: 

                simin=int(L[posk+1]) 

            for SI in range(simin,int(U[posk+1])+1): 

                LastTupleStage=LastTupleStage+g(k+1,SI,stageInfo,l,u,0,0) 

            stageInfo[k+1]=LastTupleStage 

     return stageInfo 

 

15)                 is another method called by the routine to fix the 

problem of including that the broken links also fulfill the constraints. 

def S_hat(stageOpt): 

    S_set1={} 

    S_s1={} 

    SI_si1={} 

     

    for k in range(N): 

        S_s1[k+1]=stageOpt[k+1][2] 

                     

    for i in range(N): 

        SAlternatives=[0] 

        for j in range(N): 

            if arc_matrix_ordered[j][i]==1: 

                SAlternatives=SAlternatives+[S_s1[j+1]] 

            m=max(SAlternatives) 

            SI_si1[i+1]=m 

                 

    costStages={} 

    S_cost=0.0 

    for k in range(N): 

        costStages[k+1]=cost(k+1,SI_si1[k+1],S_s1[k+1]) 

        S_cost=S_cost+costStages[k+1] 

    for k in range(N): 

        S_set1[k+1]=(costStages[k+1],SI_si1[k+1],S_s1[k+1]) 

     

    return S_cost,S_set1 
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16) The function                       investigates how many arcs from 

the broken connections to form the spanning tree do not accomplish all 

the constraints. The output of the function is then the number of broken 

restrictions and the broken connections. 

def broken(Zopt,stageOpt): 

    #number of brokenlinks 

    count=0 

    brokenL=[] 

    for i in range(N): 

        for j in range(N): 

            if arc_matrix_ordered_brokenlinks[i][j]==1 and 

stageOpt[i+1][2]>stageOpt[j+1][1]: 

                count=count+1 

                brokenL=brokenL+[(i+1,j+1)] 

    return count,brokenL 

 

17) Routine. The main tool of it is the dynamic process. First, it uses the 

model function to generate the first solution for the created spanning tree 

chain. Then, it checks if there is any constraint not true for any of the 

arcs of the whole network. If the result of the test is zero, the program 

finishes and displays the optimal solution. Otherwise, the next step is to 

call three different methods to find different solutions until there is no 

broken constraint. The routine always keep the best solution so far in the 

variable Zbest that should be initiated at an infinite number or big number 

such 10 000 000 000 000. 

def R(Zbest): 

    #step2 

    stageInfo=model(l,u,L,U) 

    Zopt,stageOpt=backtrack(stageInfo) 

     

    #step3 

    if Zopt>=Zbest or Zopt==float("inf"): 

        return float("inf") 

         

    #info links 

    count,brokenL=broken(Zopt,stageOpt) 

    iteration=1 

    #step4 

    while True: 

        if count==0: 

            Zbest=Zopt 

            S_set={} 

            for k in range(N): 



How to deal correctly with Lead Time in a Supply Chain - Appendix 
Keio University, March 2017 

62 
 

                S_set[k+1]=stageOpt[k+1][1:] 

            break                       

     

        else: 

            #step5  

            #info S_hat 

            S_cost,S_set1=S_hat(stageOpt) 

     

            if S_cost<Zbest: 

                Zbest=S_cost 

         

            #choose a link (j,i) 

            #choose the brokenlink with the least associated cost 

            #the associate arc (j,i) in A cost= -(Cj+Ci)*stdi   

            cost_broken=[] 

            Cost_min=0.0 

            for bc in brokenL: 

                posbc0=orderStages.index(bc[0]) 

                posbc1=orderStages.index(bc[1]) 

                cost_broken=cost_broken+[-

(CC[posbc0+1]+CC[posbc1+1])*math.sqrt(varD[posbc1+1])] 

            Cost_min=min(cost_broken) 

            posCost=cost_broken.index(Cost_min) 

            a=brokenL[posCost][0] #j 

            b=brokenL[posCost][1] #i 

            Sh=stageOpt[b][1]+int((stageOpt[a][2]-stageOpt[b][1])/2) 

            print a,b,Sh 

                 

            #upperbound 

            stageInfoU=upper(stageOpt,l,u,L,U,a,b,Sh) 

            SetU={} 

            ZoptU,stageOptU=backtrack(stageInfoU) 

            for k in range(N): 

                SetU[k+1]=stageOptU[k+1] 

         

            #lowerbound 

            stageInfoL=lower(stageOpt,l,u,L,U,a,b,Sh) 

            SetL={} 

            ZoptL,stageOptL=backtrack(stageInfoL) 

            for k in range(N): 

                SetL[k+1]=stageOptL[k+1]             

             

            Zmin=min(S_cost,ZoptU,ZoptL) 
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            if Zmin==S_cost: 

                Zopt=S_cost 

                stageOpt=S_set1 

                print 'Sfirst' 

            elif Zmin==ZoptU: 

                Zopt=ZoptU 

                stageOpt=SetU 

                posa=orderStages.index(a) 

                if Sh<=u[posa+1]:                 

                    u[posa+1]=Sh 

                print 'upper' 

            else: 

                Zopt=ZoptL 

                stageOpt=SetL 

                posb=orderStages.index(b) 

                print b, posb 

                if Sh>=L[posb+1]: 

                    L[posb+1]=Sh+1 

                print 'lower' 

                print L 

                 

            print Zopt,stageOpt  

           #info links 

            count,brokenL=broken(Zopt,stageOpt)  

            iteration=iteration+1 

            print count 

             

    print iteration 

    print 'final' 

    return Zopt,stageOpt 

 

18)               is a tool to calculate the number of stage with safety 

stock and the total safety stock in the network. 

def Nss(stageOpt): 

    totalSS=0.0 

    Nss=0 

    for i in range(N): 

        print i+1, SS(i+1,stageOpt[i+1][1],stageOpt[i+1][2]) 

        totalSS=totalSS+SS(i+1,stageOpt[i+1][1],stageOpt[i+1][2]) 

        if SS(i+1,stageOpt[i+1][1],stageOpt[i+1][2])!=0: 

            Nss=Nss+1 

    return Nss,totals 

 



How to deal correctly with Lead Time in a Supply Chain - Appendix 
Keio University, March 2017 

64 
 

19) To run the program and obtain the outputs. 

Zopt,stageOpt=R(11111111111111111) 

Nss,totalSS=Nss(stageOpt) 
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Appendix 3 

Algorithms 

Algorithm for Spanning tree (copied from Graves and Willems [2000]) 

 Labeling the nodes 

The algorithm for labeling or re-numbering the nodes is as follows: 

1. Start with all nodes in the unlabeled set,  . 

2. Set k:=1. 

3. Find a node     such that the node   is adjacent to at most one other 

node in  . That is, the degree of node   is 0 or 1 in the subgraph with 

node set   and arc set   defined on  . 

4. Remove node   from set   and insert into the ñabeled set  ; label node   

with index  . 

5. Stop if   is empty: otherwise set        and repeat steps 3 - 4. 

Node   has no adjacent nodes with larger labels. 

 Dynamic program 

1. For      to     

2. If      is downstream of  , evaluate       for           . 

3. If      is upstream of  , evaluate        for               . 

4. For      evaluate        for               . 

5. Minimize        for                to obtain the optimal objective 

function value. 

From the optimal objective function, the optimal set of service times can be 

found by the standard backtracking procedure for a dynamic program. 

The expression for the cost in each stage   is: 

                                   
    

   
      

       
   

       

  
   

         
       

   

        

Where: 
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The General Network Algorithm (copied from Humair and Willems [2011]) 

  : Lead time production. It is change the letter to not confuse it with the limits 

in the constraints. 

Routine R (arguments      
 
  ) 

Step 1: Let  
 
 be the subset of constraints in   that correspond to  , i.e., drop 

all constraints from   that correspond to links not in  . Call    the problem of 

optimizing the cost function of   subject to  
 
. 

Step 2: Use SDP’ to obtain an optimal solution to   . Let    be the optimal 

value of   , and    the optimal solution if one exists. 

Step 3: If       or     , return   for the cost. 

Step 4: Else, if    satisfies the constraints in  
 
, set       and return   ,   . 

Step 5: Else,    does not satisfy the constraints in  
 
. Let    equal the cost of 

the solution   , which has       
 , and                    for all stages  . If      , 

set     ; otherwise, leave   unchanged. Then carry out the steps below. 

(a) Choose a link         for which   
     

 , i.e., a constraint in  
 
 is 

violated. Let      
      

     
     . 

(b) Carry out the Upperbound and Lowerbound steps below in order. 

Upperbound: Let       be the solution returned by R for arguments 

     
 
, and the updated constraint set         . 

Lowerbound: Let       be the solution returned by R for arguments 

     
 
, and the updated constraint set                     . 

Return                and the associated solution (breaking any tie arbitrarily). 

 Arguments and limits 

SDP: Solving the problem P with a dynamic program. 

SDP’: Solving the problem P’ with a dynamic program. 

 : Set of constraint. 

                   : Set of inbound and outbound service times, the decision 

variables for P’ and P. 

 : Best solution so far. 
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 : Spanning tree. 

                     

                  

                      

Problem P’ is the same as P with two extra constraints: 

          

         

Function       and       are redefined taking  into account the above 

constraints: 

If          and      , then         if     ,     , or if         . 

Otherwise, for        . 

      

   
   

           

            
   

      
       

   

       

  
   

     
       

   

        

 

If          and    , then          if      ,      , or if      . 

Otherwise, for         . 
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Appendix 4  

Program for the robust optimization 

from gurobipy import * 

import math 

import xlrd 

import xlwt 

from scipy.stats import norm 

   

book = xlrd.open_workbook("C:\Users\Pablo\Desktop\MSOM-06-038-R2-

modified.xls") 

arcs=book.sheet_by_name("09_LL") 

data=book.sheet_by_name("09_SD") 

R=5000 

 

results = xlwt.Workbook() 

r_example = results.add_sheet("Example1", cell_overwrite_ok=True) 

model = Model("5stage") 

 

#Indexes 

N=len(data.col_values(0))-1 

arc_matrix = [[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] #Initial matrix dim(N*N) with all values equal 

zero 

stages={} 

avgD = {} #mean demand 

varD = {} #variance of demand 

stdD = {}  

h_add = {}      #holding cost 

service = {} #service level 

z_lev={} #normsinv(service) 

lt_av = {}  #lead time mean 

lt_av_decimal = {} 

lt_var = {} #var lead time 

m={} #replenishment time 

s_out_req={} 

Ve=[] 

Vs=[] 

gamma = {} 

stage_lk={} 

prob_lk={} 
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lt_max={} 

lt_min={} 

lt_average={} 

 

for row in range(N): 

    stages[row+1]= [data.cell_value(row+1,0), 0] 

    h_add[row+1]= data.cell_value(row+1,1)        

    avgD[row+1]= data.cell_value(row+1,4) 

    stdD[row+1]= data.cell_value(row+1,5) 

    service[row+1]=data.cell_value(row+1,7) 

    lt_average[row+1]=data.cell_value(row+1,8) 

    lt_av[row+1]=data.cell_value(row+1,8) 

    if (lt_av[row+1]/0.5)%2==1: 

        lt_av[row+1]=lt_av[row+1]-0.01 

    lt_av[row+1]=round(lt_av[row+1]) 

    lt_av_decimal[row+1]=data.cell_value(row+1,8) 

    s_out_req[row+1]=data.cell_value(row+1,6) 

    if avgD[row+1]=='': 

        avgD[row+1]=0 

        stdD[row+1]=0 

    varD[row+1]= stdD[row+1]**2 

    gamma[row+1]=0 

 

#Arc_matrix (with all the arcs relation) 

for i in range(1,len(arcs.col_values(0))):        

    val_extra_1=arcs.cell_value(i,0) 

    val_extra_2=arcs.cell_value(i,1) 

      

arc_matrix[stages.values().index([val_extra_1,0])][stages.values().index([val_ext

ra_2,0])]=1 

            #Demand propagation (average and variance) 

#Arc_matrix_demand will be modified during the algorithm                

arc_matrix_demand=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(N): 

    for j in range(N): 

        arc_matrix_demand[i][j]=arc_matrix[i][j] 

 

memory_del=[] 

while(arc_matrix_demand != [[0] * (len(arc_matrix)) for i in 

range(len(arc_matrix_demand))]):    #running until arc_matrix_demand 

becomes zero        

    for row in [x for x in xrange(len(arc_matrix_demand)) if x not in memory_del]: 

#It selects row with no 1 (demand nodes) 
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        if arc_matrix_demand[row] == ([0]*N): 

            for i in range(len(arc_matrix_demand)): 

                if arc_matrix_demand[i][row]==1: 

                    avgD[i+1]=avgD[i+1]+avgD[row+1] 

                    varD[i+1]=varD[i+1]+varD[row+1] 

                  memory_del=memory_del+[row] 

     

    for aa in memory_del: 

        for bb in range(len(arc_matrix_demand)): 

            if arc_matrix_demand[bb][aa]==1: 

                arc_matrix_demand[bb][aa]=0 

 

for i in range(N): 

    stdD[i+1]=math.sqrt(varD[i+1]) 

                 

    #Net replenishment propagation 

m={} 

memory_del=[] 

arc_matrix_rp=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

arc_matrix_aux=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(N): 

    for j in range(N): 

        arc_matrix_rp[i][j]=arc_matrix[i][j] 

 

memory_del=[] 

while (len(memory_del)!=N): 

    for i in [x for x in xrange(N) if x not in memory_del]: 

        if sum([arc_matrix_rp[j][i]==1 for j in range(N)])==0: #Columns with all 

zeros (no predecessors) 

            m[i+1]=lt_av[i+1]+max(arc_matrix_aux[i]) 

            for j in range(N): 

                if arc_matrix_rp[i][j]==1: 

                    arc_matrix_aux[j][i]=m[i+1] #Arc_matrix_aux is used to create the 

Mmax (it would be the max of the row) 

                arc_matrix_rp[i][j]=0     

            memory_del=memory_del+[i] 

 

    #Holding cost calculation 

h={} 

memory_del=[] 

arc_matrix_rp=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 
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arc_matrix_aux=[[0] * (len(data.col_values(0))-1) for i in 

range(len(data.col_values(0))-1)] 

for i in range(N): 

    for j in range(N): 

        arc_matrix_rp[i][j]=arc_matrix[i][j] 

 

memory_del=[] 

while (len(memory_del)!=N): 

    for i in [x for x in xrange(N) if x not in memory_del]: 

        if sum([arc_matrix_rp[j][i]==1 for j in range(N)])==0: #Columns with all 

zeros (no predecessors) 

            h[i+1]=h_add[i+1]+sum(arc_matrix_aux[i]) 

            for j in range(N): 

                if arc_matrix_rp[i][j]==1: 

                    arc_matrix_aux[j][i]=h[i+1] #Arc_matrix_aux is used to create the 

Mmax (it would be the max of the row) 

                arc_matrix_rp[i][j]=0     

            memory_del=memory_del+[i] 

 

#Service level coefficient 

#Calculation of the average service level coefficient (for those with no value 

assigned) 

count_service=0 

sum_service=0 

for k in range (N): 

    if service[k+1]!='': 

        count_service += 1 

        sum_service += service[k+1] 

 

#The average is assigned to those stages with no value assigned 

for k in range (N): 

    if service[k+1]=='': 

        service[k+1]=sum_service/count_service 

         

#Dictionary with z=normsinv(service) 

for k in range(N): 

    z_lev[k+1]=norm.ppf(service[k+1]) 

 

#Lineal approximation 

M={} 

alpha={} 

f={} 

 

for i in range(N): 
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    for r in range (R+1): 

 

        M[r,i+1]=0.03*r 

         

for i in range(N): 

    for r in range(R): 

        alpha[r+1,i+1]=(z_lev[i+1]*stdD[i+1])*((math.sqrt(M[r+1,i+1])-

math.sqrt(M[r,i+1])))/(M[r+1,i+1]-M[r,i+1]) 

        f[r+1,i+1]=(z_lev[i+1]*stdD[i+1])*((M[r+1,i+1]*math.sqrt(M[r,i+1])-

M[r,i+1]*math.sqrt(M[r+1,i+1]))/(M[r+1,i+1]-M[r,i+1])) 

      

#Decision Variables 

s_in={} 

s_out={} 

x={} 

z={} 

u={} 

#a & b extra are used to include the summatories in the constraints 

a_extra={} 

b_extra={} 

 

for i in range(N): 

    s_in[i+1] = model.addVar( lb=0.0, ub=m[i+1]-lt_av[i+1], vtype="I", 

name="s_in[%s]"%((i+1))) 

    s_out[i+1] = model.addVar( lb=0.0, ub=m[i+1], vtype="I", 

name="s_out[%s]"%((i+1))) 

    x[i+1] = model.addVar( lb=0.0, vtype="I", name="x[%s]"%((i+1))) 

    a_extra[i+1] = model.addVar( lb=0.0, vtype="C", name="a[%s]"%((i+1))) 

    b_extra[i+1] = model.addVar( lb=0.0, vtype="C", name="b[%s]"%((i+1))) 

        

for i in range(N): 

    for r in range(R): 

        z[r+1,i+1] = model.addVar ( lb=0.0, vtype="I", name="z[%s,%s]"%(r+1,i+1)) 

        u[r+1,i+1] = model.addVar ( vtype="B", name="u[%s,%s]"%(r+1,i+1)) 

 

for i in range(N): 

    if sum([arc_matrix[j][i]==1 for j in range(N)])==0: 

        s_in[i+1]=0 

        Vs=Vs+[i+1] 

 

for k in range(N): 

    if sum(arc_matrix[k])==0: 

        Ve=Ve+[k+1] 

model.update() 
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#Constraint 8a 

for i in range(N): 

    a_extra[i+1]=0 

 

for i in range(N): 

    for r in range(R): 

        a_extra[i+1]=z[r+1,i+1]+a_extra[i+1] 

     

for i in range(N): 

    model.addConstr(x[i+1],"=", a_extra[i+1]) 

 

#Constraint 8b. 

for i in range(N): 

    for r in range(R): 

        model.addConstr(M[r,i+1]*u[r+1,i+1],"<=", z[r+1,i+1]) 

         

for i in range(N): 

    for r in range(R): 

        model.addConstr(z[r+1,i+1],"<=", M[r+1,i+1]*u[r+1,i+1]) 

         

#Constraint 8c. and 8d. 

for i in range(N):  

    b_extra[i+1]=0 

     

for i in range(N):  

    for r in range(R): 

        b_extra[i+1]=b_extra[i+1]+u[r+1,i+1] 

         

for i in range(N): 

    model.addConstr(b_extra[i+1],"<=",1) 

 

#Constraint 8e. 

for i in range(len(Ve)): 

        a=Ve[i]     

        model.addConstr(s_out[a],"<=",s_out_req[a]) 

 

#In supply nodes, SI=0 (by convention) 

for i in range(len(Vs)): 

        a=Vs[i]     

        model.addConstr(s_in[a],"=",0) 

 

#Constraint 8g. 

for i in range(N): 
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    for j in range(N): 

        if arc_matrix[i][j] ==1:  

            model.addConstr(s_in[j+1],">=",s_out[i+1]) 

 

for i in range(N):    

    model.addConstr(x[i+1],">=",s_in[i+1]-s_out[i+1]+lt_av[i+1]) 

 

#Constraints 8h., 8i. and 8j included in the declaration of variables 

     

#Objective function 

exp={} 

cost=0  

for i in range(N): 

    exp[i+1]=0 

 

for i in range(N): 

    for r in range(R): 

        exp[i+1]=exp[i+1]+(f[r+1,i+1]*u[r+1,i+1]+alpha[r+1,i+1]*z[r+1,i+1])  

     

for i in range(N): 

        cost=cost+h[i+1]*exp[i+1] 

         

model.setObjective(cost,GRB.MINIMIZE) 

model.update() 

model.optimize() 

model.printAttr('x') 

 

safety={} 

safety_new={} 

cost_st={} 

cost_st_stock={} 

safety_total=0 

pipeline_st={} 

pipeline_total=0 

cost_total_stock=0 

cost_total=0 

 

for i in range(N): 

    safety[i+1]=math.sqrt(x[i+1].X)*stdD[i+1]*z_lev[i+1] 

    pipeline_st[i+1]=lt_av_decimal[i+1]*avgD[i+1]    

    cost_st[i+1]=h[i+1]*safety[i+1] 

    cost_st_stock[i+1]=h[i+1]*(safety[i+1]+pipeline_st[i+1]) 

 

for i in range(N): 
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    cost_total=cost_total+cost_st[i+1] 

    cost_total_stock=cost_total_stock+cost_st_stock[i+1] 

    safety_total=safety_total+safety[i+1] 

    pipeline_total=pipeline_total+pipeline_st[i+1] 
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Appendix 5 

Program for optimizing the safety stock placement in General Acyclic 

Chains under random lead time 

The necessaries changes to adapt Appendix 2 for contemplating random lead 

time are exposed next. 

1) Statistics of the positive shortfall (  
       

       
    ). 

def H1(n3,k): #k follows the new numeration of the nodes, spanning tree 

numeration 

    posk=orderStages.index(k) 

    stage_lk=[data.cell_value(posk+1,c) for c in range (10,22,2)] 

    prob_lk=[data.cell_value(posk+1,c) for c in range (11,23,2)] 

    for i in range(len(stage_lk)): 

        if stage_lk[i]=='': 

            stage_lk[i]=0 

            prob_lk[i]=0 

    if stage_lk==[0]*6: 

        stage_lk[0]=lt_av[posk+1] 

        prob_lk[0]=1 

 

    sum1=0 

    for j in range(len(stage_lk)): 

        if stage_lk[j]<=n3: 

            sum1+=prob_lk[j] 

             

    #For the case the distribution is continuous 

    if lt_std[posk+1]!=0 and prob_lk[0]==1 and sum(prob_lk[1:])==0: 

        sumI=integrate.quad(lambda x: (norm.pdf(x,  lt_av[posk+1], 

lt_std[posk+1])), 0, n3) 

        sum1=sumI[0] 

        if sum1<0: 

            sum1=0 

    if sum1<0.1: 

        sum1=0 

    return sum1 

     

#H2=Expected value of lead time when nrlt k(t) is non-negative [SAFETY 

STOCK IS NEEDED] 

def H2(n4,k): 

    posk=orderStages.index(k) 

    stage_lk=[data.cell_value(posk+1,c) for c in range (10,22,2)] 

    prob_lk=[data.cell_value(posk+1,c) for c in range (11,23,2)] 
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    for i in range(len(stage_lk)): 

        if stage_lk[i]=='': 

            stage_lk[i]=0 

            prob_lk[i]=0 

    if stage_lk==[0]*6: 

        stage_lk[0]=lt_av[posk+1] 

        prob_lk[0]=1 

 

    new_lt=[] 

    new_prob_lt=[] 

    for i in range(6): 

        if stage_lk[i]>n4:   #*Bigger than n4. Different value from the paper, 

the equal is not included. In the limits was problematic with the equal.     

            new_lt=new_lt+[stage_lk[i]] 

            new_prob_lt=new_prob_lt+[prob_lk[i]] 

    prod2=[] 

    sum2=0.0   

    prod2=[a*b for a,b in zip(new_lt,new_prob_lt)] 

    for i in prod2: 

        sum2+=i 

         

    if lt_std[posk+1]!=0 and prob_lk[0]==1 and sum(prob_lk[1:])==0: 

        sumI=integrate.quad(lambda x: x*norm.pdf(x, lt_av[posk+1], 

lt_std[posk+1]), n4, np.inf) 

        sum2=sumI[0] 

        if sum2<0: 

            sum2=0 

    if sum2<0.1: 

        sum2=0 

    return sum2 

 

#H3=not statistical meaning 

def H3(n5,k): 

    posk=orderStages.index(k) 

    stage_lk=[data.cell_value(posk+1,c) for c in range (10,22,2)] 

    prob_lk=[data.cell_value(posk+1,c) for c in range (11,23,2)] 

    for i in range(len(stage_lk)): 

        if stage_lk[i]=='': 

            stage_lk[i]=0 

            prob_lk[i]=0 

    if stage_lk==[0]*6: 

        stage_lk[0]=lt_av[posk+1] 

        prob_lk[0]=1 
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    new_lt=[] 

    new_prob_lt=[] 

    for i in range(6): 

        if stage_lk[i]>n5:  #*Bigger than n5. Different value from the paper, 

the equal is not included. In the limits was problematic with the equal.       

            new_lt=new_lt+[stage_lk[i]] 

            new_prob_lt=new_prob_lt+[prob_lk[i]] 

     

    stage_lt2=new_lt 

    elev2=[a*b for a,b in zip(new_lt,stage_lt2)] 

    prod3=[c*d for c,d in zip(elev2,new_prob_lt)] 

    sum3=0.0 

    for i in prod3: 

        sum3=sum3+i 

         

    if lt_std[posk+1]!=0 and prob_lk[0]==1 and sum(prob_lk[1:])==0: 

        sumI=integrate.quad(lambda x: x*x*norm.pdf(x, lt_av[posk+1], 

lt_std[posk+1]), n5, np.inf) 

        sum3=sumI[0] 

        if sum3<0: 

            sum3=0 

    if sum3<0.1: 

        sum3=0 

    return sum3 

 

2) Expected value and variance of the positive part of the NRLT when 

                

def Q(n1,k):               

    q=H2(n1,k)-n1*(1-H1(n1,k)) 

    return q 

     

def RR(n2,k):              

    r=(n2**2)*H1(n2,k)*(1-H1(n2,k))-2*n2*H1(n2,k)*H2(n2,k)+H3(n2,k)-

(H2(n2,k))**2 

    return r 

 

3) Expressions for the objective function. 

def SS(k,SI,S): 

    posk=orderStages.index(k) 

    par=S-SI 

    if lt_std[posk+1]==0:               #deterministic case 

        NRLT=SI+lt_av[posk+1]-S 

        if NRLT>=0: 
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            ss=z[posk+1]*math.sqrt(varD[posk+1])*math.sqrt(NRLT) 

        else: 

            ss=0 

    else: 

        if par<0: 

            ss=z[posk+1]*math.sqrt(((lt_av[posk+1]+SI-

S)*varD[posk+1])+avgD[posk+1]*avgD[posk+1]*lt_std[posk+1]*lt_std[pos

k+1]) 

else:            

ss=z[posk+1]*math.sqrt((Q(par,k))*varD[posk+1]+((avgD[posk+1]

)**2)*RR(par,k)) 

    return ss 

     

def EARLY(k,SI,S): 

    posk=orderStages.index(k) 

    par=max(0,S-SI) 

    if par!=0: 

        early=avgD[posk+1]*(Q(par,k)-lt_av[posk+1]+par) 

    else: 

        early=0 

    return early     

     

#cost function 

def cost(k,SI,S): 

    posk=orderStages.index(k) 

    return CC[posk+1]*(SS(k,SI,S)+EARLY(k,SI,S)) 


