
Master Thesis

Academic Year 2016-2017

How to deal correctly with Lead

Time in General Supply Chains

Optimizing Safety Stock Placement under the Guaranteed
Service Model approach

Maria Pilar Martín Romero
Student ID: 91655642

Supervisor:
Prof. Hiroaki Matsukawa

March 2017

Keio University
Graduate School of Science and Technology
School for Open and Environmental System

Universitat Politècnica de Catalunya (UPC)
Escola Tècnica Superior d’Enginyeria Industrial de Barcelona

Màster en Enginyeria Industrial
Màster en Enginyeria d’Organització Industrial

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

Abstract

In the new global economy, the inventory control has become a priority for the

supply chain management. Safety stock is the sole way to fight against the

demand and the supply uncertainty, so determining the amount of it that must

be kept along the network to holistically minimize the risk of disruption while

maximize the profit is a critical issue. For the supply side, the focus is held in

the lead time variability which can significantly vary depending on the part of the

supply chain or new inconvenient facts could relevantly affect the lead time.

Even so, developed models have forced to assume a certain value or a

distribution for the lead time, yet this is risky. Historical data is often unreliable,

not available or insufficiently representative. Therefore, a new model based on

the Guaranteed Service approach and combined with robust optimization

techniques is proposed, working with the lead time volatility without assuming

any specific distribution. Interesting features arise from the new model such as

the smooth tractability of the problem, the facile computational skills required or

the lack of resources needed. This approach has been formulated and tested,

as well as the Guaranteed Service when a distribution is assumed for the lead

time and the original model. Then, the performance of the three of them has

been compared in order to find the correct way to deal with uncertain lead time.

Finally, the Robust Guaranteed model benefits promise better security to

companies and it also provides a powerful tool to manage the risk from the

supply side.

Keywords: Lead Time, Robust analysis, Guaranteed Service approach, Inventory

control, Safety stock.

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

i

Contents

List of Figures iii

List of Graphics iv

List of Tables v

1. Introduction 1

2. Literature Review 3

2.1. Guaranteed Service approach (original assumptions)………… 3

2.2. Guaranteed Service approach (modeling the assumptions)…… 5

2.3. Stochastic Service approach……………………………... 5

2.4. Comparison between the Guaranteed and Stochastic

Service Model…………………………………………..

6

2.5. Mixed Approaches……………………………………… 6

2.6. Data………………………………………………….. 6

3. Framework 7

3.1. Safety Stock placement approach………………………… 7

3.2. Single or multi-echelon systems………………………….. 9

3.3. The difficulty behind the multi-echelon systems…………….. 9

3.4. Types of stock…………………………………………. 10

3.5. Types of Supply chain………………………………….. 11

4. Deterministic Guaranteed Service model (GS-DET) 13

4.1. Formulation…………………………………………… 13

4.2. Experimental codification... 14

4.3. The end-customer grade of request 15

4.4. Modeling the GS-DET with maximum outbound service times

for internal nodes………………………………………

17

5. Robust Guaranteed Service model 19

5.1. Lead time in the Real World…………………………….. 19

5.2. Robust Guaranteed Service approach (GS-RO)…………… 19

5.3. Computational results…………………………………. 21

6. Guaranteed Service model under Random lead times (GS-RAN) 25

6.1. Model……………………………………………….. 25

6.2. Inconsistencies………………………………………. 25

6.3. Numerical experiments………………………………… 28

7. Conclusions 30

Bibliography 32

Acknowledges 34

ii

Appendix 1 35

Appendix 2 46

Appendix 3 65

Appendix 4 68

Appendix 5 76

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

iii

List of Figures

3.1 Multi-stage network example. Willems [2008]……………………. 7

3.2 Services per stage…………………………………………… 8

3.3 Acyclic and cyclic Networks. Eruguz et al. [2016]………………… 11

3.4 Serial production/inventory system. Inderfuth [1991]……………… 12

3.5 Convergent (Assembly) network. Inderfurth and Minner [1998]…….. 12

3.5 Divergent (Distribution) network. Inderfuth [1991]………………… 12

4.1 Optimal outbound and inbound service time for each stage of the

tutorial’s network………………………………………………...

15

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

iv

List of Graphics

4.1 Economical effect of increasing outgoing service time in demand stages…. 16

4.2 Safety stock versus customer service…………………………... 18

5.1 SC 04 results for the main outputs problem……………………... 24

6.1 Safety on-hand stock for stochastic lead time……………………. 27

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

v

List of Tables

4.1 Strategic safety stock placement………………………………. 16

4.2: Maximum outbound service time for internal nodes for the different

cases tested……………………………………………………

17

4.3 Results for the Guaranteed Service model with maximum outbound

service times for internal nodes…………………………………..

18

5.1 Stock results for the r-nets……………………………………. 22

5.2 Cost, outbound service time, stages and lead time results for r-nets. 22

6.1 GS-RO and GS-RAN results for comparing both approaches…….. 28

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

1

Chapter 1

Introduction

The supply chain world (SC) is a multi-factor system with different particular

network agents’ interests. The supply chain management comprises the

management of assets (machines, buildings, patents, etc.), products (starting

from the design and finishing with the process implementation), personal and

several flows (information, material, money, etc.). Finding the right combination

of the multiple aspects and tackle the management problem from end-to-end

perspective are the key points for a company to compete in a global world.

The inherent interaction between all these factors and the interests originates a

huge complexity in maximizing the supply chain benefits. The important

decisions about factors such as product, personal, philosophies, assets,

quantity and quality of information shared between all parts of the network and

investments policy, for example, have been widely studied and they are less

complicated for the companies. However, the inventory control across the

supply chains, which defines the material flow, still represents a challenge for

the managers’ community as CSCO [2011] confirmed.

The inventory control constantly faces the demand and supply uncertainty. An

efficient inventory management must optimize the safety stock (SFTY) strategy

to avoid disruptions in the supply chain to control the economical uncertainty

and to maximize the money-savings. Companies rely on SFTY to tackle the

variations in order to mitigate the risk. Hence, a critical issue is to determinate

the safety stock placement and the amount of stock that each stage has to hold

to holistically minimize the risk of stock out and the overall supply chain cost to

maximize the profit.

In order to solve the problem, the researchers initially focused their efforts to

extend the Stochastic Service (SS) approach. The first version of the SS model

was introduced by Clark and Scarf [1960] and the uncertainty of the demand

and supply were defined with stochastic distributions. The other significant

approach that has recently grown in attention is the Guaranteed Service (GS).

As opposed to the SS, SFTY is employed to meet the demand up to certain

bound and the rest of it is covered by operating flexibility. The creator of the GS

is considered to be Simpson in 1958 and the model has been extended until

Humair and Willems [2011]. Originally, the demands are normally and

independent distributed and the lead times are deterministic. However, the

basic lead time assumption is far from the real-world cases. This fact makes

harder to implement the Guaranteed Service approach in companies because

time and resources are only invested when the solution can be adapted to the

daily essence of a company. In that way, Humair et al. [2013] proposed a

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

2

Random Guaranteed model which works with assuming a stochastic distribution

for the lead time. Even so, how to deal with the lead time variability is a

controversial topic due to the fact of the data risks - assuming an incorrect

distribution and collecting unreliable, uncertain and incomplete.

The principal aim of this Master Thesis is to contribute with a new model based

on the GS and called Robust Guaranteed Service model which proposes to

deal with the uncertainty of the lead time without assuming a distribution. The

performance, strengths and weaknesses of the basic GS, the random and the

robust models are presented and compared to find the best way to deal with

lead time in order to optimize the inventory. In addition, a secondary goal is to

provide useful tools to the future researchers in this field so the codification of

each approach is exposed in the appendixes. On the other hand, the character

relationship between decision variables and the outputs, cost and safety stock,

is deeply explained at the beginning of this work to fully understand the models’

performance.

The thesis is structured as follows: The past literature review about the diverse

approaches is presented in Chapter 2 while in Chapter 3 the theoretical basis

for understanding the models and the numerical experiments are summarized.

Chapter 4 exposes the formulation of the original Guaranteed Service

approach, adds the maximum outbound service time constraint for internal

nodes and clarifies the meaning relation between parameters. In Chapter 5, the

main innovation (the Robust Guaranteed Service approach) is formulated at

first, and validated afterwards. In the next chapter, the Guaranteed Service

approach under random lead times from Humair et al. [2013] is exposed and

numerical trials comparing the three models are displayed. Chapter 7 finishes

with the conclusions and future lines.

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

3

Chapter 2

Literature Review

The state of the art regarding strategic safety stock placement in supply chains

is very extensive. Starting from the origin of the more general approaches

(Stochastic Service and the Guaranteed Service) placed in time as well as its

most relevant extensions and successes in the next decades until nowadays.

As an overview, the literature regarding the topic can be divided into

approaches and its corresponding assumptions and such as, it will be detailed

below using that classification.

2.1. Guaranteed Service approach (original assumptions)

This approach for modeling safety stock and inventory has been widely studied

in the last 60 years. The literature shows how the knowledge on the Guaranteed

Service model has been gradually extended until being able to be applied at the

most complex networks.

The initial model was presented by Simpson [1958]. The research was only

successfully conducted for serial supply chains. For the first time in this

research field, the optimal solution was demonstrated to occur when the service

time takes one of the extreme values of the possible domain solution.

After Simpson, Inderfurth [1991] was the next in contributing with a dynamic

program to execute the Guaranteed Service model in general serial and

divergent (distribution) systems. Inderfurth together with Minner [1998]

extended to convergent (assembly) supply chains the dynamic procedure. They

run several numerical experiments under different service measure to proof that

the approach can be used in different service levels situations and the results

concluded that the size and the allocation of stock depend on the service level

requirements. The same author, Minner [2000] summarized in his book all the

approaches for the safety stock placement until that moment and provided

accurate definitions of the concepts involved. The book classified all the basic

models in different categories depending on the assumptions used in each one:

single-stage or multi-stage modeling framework, stochastic or deterministic lead

times and the applicability of the model in the diverse types of networks. In

addition, it extended the original model based on the material flow philosophy.

The same year that Minner published his book, Graves and Willems [2000]

evolved the Guaranteed Service model multi-stage procedure to enable it to be

used in more general, complex and realistic supply chains. The procedure was

lately reviewed and it was correctly published by the same authors in 2003.

With slight abuse of redundancy, a spanning tree algorithm was introduced for

the networks that are spanning trees. The first step consists in labeling the

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

4

nodes of the supply chain using a specific method. Secondly, a dynamic

program is used to solve the problem. The recursion of the program was newly

limited by adding constraints bounding the decision variables (the inbound and

outbound service times).

The next remarkable study about the model following the original assumptions

was made by Lesnaia [2004]. In her Master Thesis, she reviewed all the

methods appeared until that moment; by proving that the optimization of the

safety stock problem in a general network is an NP-Hard problem and she

demonstrated the optimality of the solution for it. Furthermore, she developed a

new branch and bound algorithm based on paths.

Up to now, the sole technique to solve the optimization problem was the

dynamic programming, which implementation is necessary because the

objective function is non-linear. Magnanti et al. [2006] innovated by proposing a

linear approximation technique to minimize the total cost of safety stock

allocation. The main benefit of this manner is that a commercial solver can

settle the optimal solution then. On the other hand, Shu and Karimi [2009]

chose to solve the problem with heuristics. These techniques are efficient in

terms of computational time but worse in terms of solution because only near-

optimal solutions are reached with this method. The computational time needed

is less since the heuristics are nearly independent from the size of the network.

Regarding the above-mentioned methods into account, most the literature has

preferred the dynamic programming as a way of resolution. Humair and

Willems [2011] were the ones who finally achieved the goal to solve the

problem for acyclic chains (the major of real world networks are acyclic) by

using a routine that includes the spanning tree algorithm already exposed and a

dynamic approach. Without digging deeper on its specific method, at the

beginning some links of the acyclic supply chain must be broken to achieve a

spanning tree network, then the spanning tree and the dynamic program can be

applied and finally, a routine tests the solution to check if all the constraints are

right in all the links. In case of some broken constraints, the routine finds a near

solution for the spanning tree and it tests again. This step is repeated until the

routine obtains an optimal solution that fulfils all the constraints for all the links.

In addition, the paper presented two extra heuristics to find near optimal

solutions to the problem.

After Humair and Willems published his work in 2011, there was no gap for

extending the research in the model with the original assumptions to different

supply chain types. Therefore, lately the research topics have been focusing in

modeling the assumptions of the Guaranteed Service model, in the

performance of the different approaches (the Guaranteed Service against the

Stochastic Service) and in mixing both approaches.

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

5

2.2. Guaranteed Service approach (modeling the assumptions)

Apart from the above-mentioned contributions, two papers went beyond the

original assumptions (Magnanti’s et. al [2006] and Humar and Willems’ [2011]

papers). The former also added the capacity constraint to the model. Also in the

latter, the utility of the routine for solving the safety stock optimization problem

in a supply chain under the original statements is even more relevant than what

is explained before, since it allows solving any general cost objective function

for general networks (in which the objective function can adopt any general cost

equation, and can be non-concave, non-closed-form and/or non-continuous).

Therefore, an objective function can be modeled to take into account variable

lead times or non-nested review periods.

In this report, the discussion of whether it is correct to use the assumption of

lead time deterministic is going to be presented. Some work has already done

in this study subject: Humair et al. [2013] developed a safety stock expression

for stochastic lead time that follows a determinate discrete or continuous

variable with mean and standard deviation. Then they used the algorithm from

Humair and Willems [2011] to get results from different networks cases.

When stochastic lead time was considered, it was either typically normally

distributed or characterized by historical data: on the one hand, Eppen and

Martin [1988] have already showed with examples that normality assumption is

unwarranted. On the other hand, historical data is often not available or

unreliable. That is why is needed to continuing study the case of stochastic lead

time in Guaranteed Service model. More recently, Beiran and Martín-Romero

[2017] were adopting a completely new perspective for the discussed

statement. They assumed that the parameter lead time is unknown but it

belongs to a range of possible values. Hence, no distribution is assumed and a

new model is created as a new tool to solve the problem: the Robust

Guaranteed Service model.

In Eruguz et al. [2016], an exhaustive survey about the original Guaranteed

Service model and the modeling of the assumptions is made.

2.3. Stochastic Service approach

There is broad literature about the Stochastic Service model but in this section

only the main research is going to be referenced because this approach is not

used in this thesis.

The initial model was introduced in 1960 by Clark and Scarf [1960]. Then, Diks

et al. [1996] reviewed the most successful achievements for divergent supply

chains. Other remarkable literatures are Axsäter [2003][2006] and Simchi-Levi

and Zhao [2012]. The last-mentioned is an exhaustive survey of the different

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

6

Stochastic Service models for multi-echelon inventory systems and the

performance evaluation between them.

2.4. Comparison between the Guaranteed and Stochastic Service Model

Since the creation of both approaches, controversy around which one is best

has been a central topic in the research field. At least two relevant analyses

have been published. The first one was conducted by Graves and Willems

[2003] and it concluded that in general the Stochastic Service Time holds more

safety stock and the total cost is higher. The second one is from Klosterhalfen

and Minner [2007][2010], which detailed and compared both approaches in

terms of performance, materials flow and resulting service times. They agreed

with the analysis of 2003. However, it is noted that without operating flexibility

measures the Stochastic Service way is better regarding total cost. In addition,

it is also remarked that the Guaranteed Service model is computationally easier.

2.5. Mixed Approaches

Theoretically speaking, none approach stands out from representing the real

world than the other. That may be the reason why some researchers expose

models where a more realistic assumption of both approaches is done by

combining to form a new model.

Rambau and Schade [2010] contemplated a Guaranteed Service model with a

demand scenario sampling creating the Stochastic Guaranteed Service model.

It is a model that does not upper bound the demand, in which the service level

is an output of the model and that adds the cost of the extra-measures from the

operating flexibility at the objective function. The difficulty in this case is to take

a significant and relevant sample.

Klosterhalfen and Minner [2013] created an integrated Guaranteed- and

Stochastic-Service approach for the inventory optimization in supply chains (the

Hybrid-Service approach). The idea is that the model allows to each stage of

the network to choose the best approach to calculate the minimum total supply

chain cost.

2.6. Data

Representative data of the real-world networks is needed to run numerical

examples to prove the theory. Willems [2008] shared data from 38 real multi-

echelon supply chains that can be used in empirical studies to inform and test.

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

7

Chapter 3

Framework

An introduction to the core issues of this research is conducted in this chapter.

The first subsection is focused on the main approach used in this thesis.

Subsections two and five explain the different kind of networks while the third

one faces the difficulties of the multi-echelon supply chains. Finally, subsection

four presents the diverse stock types.

3.1. Safety Stock placement approach

There are mainly two approaches to study the safety stock placement: the

Guaranteed Service model (GS) and the Stochastic Service model (SS).

The GS model states that every stage in a supply chain guarantees a delivery

time to its customers. Furthermore, the approach combats against the

uncertainty of the data with the safety stock and the operating flexibility.

The basic assumptions for the model are mentioned below. See Graves and

Willems [2000] for an exhaustive understanding of the statements.

 Multi-stage Networks: A network is represented by a graph which is

simplified with nodes and arcs. Every stage in the supply chain is a node

and every relation between stages is an arc. All the multi-stage systems

considered in the document are acyclic networks.

Figure 3.1: Multi-stage network example. Willems [2008]

Each stage performs the role of some activity of the process in a supply

chain so a stage can be a supplier of raw material or component (part),

an assembly and producer company (manufacturer), a transportation

step between two stages (transport), a final selling point to the end-

customer (retail) or a distribution centre to other stages or to the final

customer (distributor).

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

8

In addition, there is no delay in ordering in the system. When the stock is

placed at the warehouse, then it is ready for the immediately shipment if

it is necessary.

 Periodic-Review Base-Stock Replenishment Policy: All stages have a

Periodic-Review Base-stock Replenishment Policy with common periods.

 Production lead times: Lead times are known, constant and

independent from the order size. Lead time is the production time for a

component/product once all its parts are available. It includes the

transportation time to the warehouse.

 Capacity: No capacity constraints referring to production volume or

warehouse space in any stage.

 Demand process: The demand is stationary and it is only known at the

stages without successors: demand or external nodes. The mean and

the standard deviation are known for them.

Important to note, the demand is bounded with a function where

refers to a period of time. The model contemplates how to serve the

demand until the bound. When normal distribution is assumed for the

demand, then:

 (1)

 is related with the service level with the customers of stage and it

means how much the company is willing to incur into stock out.

 Guaranteed Service times: The outbound service time for the stage

() means that the stage guarantees that the demand, up to a certain

bound, is served to each of its downstream nodes in a period of time .

Besides that, the inbound service time for the stage () defines that

the stage is promised to be served and gets all its inputs in a period of

time .

Hence, every stage has two services times, the outbound and the

inbound service time.

 Figure 3.2: Services per stage

 Operating flexibility: Extra-ordinary measures such as outsourcing or

working extra hours are admitted for fulfilling the demand that exceeds

the limit. However, the cost of this operational flexibility is not part of the

model.

As opposed to the GS; the Stochastic Service model considers the uncertainty

and variability of the data by assuming stochastic distributions for the demand

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

9

and the lead times. Moreover, it fills all the complete demand (there is no upper

bound) and it does not take into account any extra-ordinary measure. The

general idea is that if there is an order and there are enough stock units as the

order size, then it can be shipped to the customer. Otherwise, it has to be

delayed until there is enough stock to reach the original demand order.

Therefore, one of the basic differences between approaches is that there is

room for delays and stock outs in the model. The other essential contrast is that

the safety stock is the unique measure to battle the uncertainty of the model.

All the case studies analyzed in this report are under the Guaranteed Service

model approach and discuss the assumption of lead times known and constant.

3.2. Single or multi-echelon systems

In general terms, profit is known to be the ultimate goal of a company.

Therefore, every transaction between stages is possible if the end-customer

buys the product and both the supply chain actors and the service to the final

customer are affected for the stock policy of each stage. That is why it does not

make sense to optimize the safety stock placement in a single stage and it is

also the reason why it is necessary to work with a multi-echelon inventory

optimization perspective even though it makes the uncertainty of the variables

higher.

3.3. The difficulty behind the multi-echelon systems

There are three peculiar issues to confront: the cost propagation, the demand

propagation and the mathematical methods to solve the problem.

When the data about the cost is the holding cost per stage and per unit , there

is no problem. However, when the data cost is the added cost in each stage

then some calculations must be done to find the holding cost:

 (2)

 is the cumulative added cost per stage and per unit. The cumulative cost has

to be multiple per the annual holding cost value to find the holding cost per

stage.

The theory is more complex for the demand propagation case. It is a fact that

the demand is given only for external nodes (external demand). The external

demand has to be propagated to the internal nodes, nodes.

There is one clear expression from the past literature about the topic:

 where is the number of units of component produced in stage

 to produced one unit in stage . However, there are discrepancies between

which expression is used to find and for internal nodes. The concept

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

10

that generates all the discussion and confusion is the pooling risk: if the

inventories for different components which are needed at the same time for

more than one product are joined, then the variability of the demand is reduced

and the safety stock inventory decreases. Depending on the pooling risk (p)

factor the expression for demand parameters differs (see Graves and Willems

[2000]). This report assumes a pooling risk factor equal to 1 that means no

interaction between demands coming from different stages for a simple

computational reason. According to the theory in Graves and Willems [2000],

the expression for p=1 used to calculate at the internal demand is the

same as for the external nodes, equation (1).

Finally, the discussion is focused in which mathematical method applied. The

GS model problem has a non-linear objective function, as well as non-concave

depending on the expression for the safety stock, with linear constraints. In

other words, linear resolution methods cannot be used.

When the optimizing problem is only non-linear, then the dynamic programming

and the linear approximation procedures are proved to find an optimal solution.

The problem of both methods is that they are slow in terms of computational

time. As bigger the number of stages in the problem, the bigger the recursions

and the time needed. On the contrary, the heuristics methods find near-optimal

solution but they required less computational time.

On the other hand, only the dynamic programming and the heuristics work

when the optimizing equation is non-linear and non-concave.

3.4. Types of stock

The large majority of the stock placement optimization literature refers to a

specific type of inventory: The safety stock. However, it is not as simple as just

considering one type. From here on, for types of stock will appeared: base (BS),

safety (SFTY), pipeline (PS) and early arrival stock (ES). Next, the document

explains the main ideas and the formulation of each type. Refer to Graves and

Willems [2000] for the demonstration of the formulas and more information

about the topic.

The inventory level at stage and period is defined as . The

base stock () is the amount of stock at the inventory just before the shipment

of the demand.

The BS should be equal or higher than the demand to not incur into a stock out.

It is important to note that the GS avoid the stock out in its model. Adapting the

argument to the GS model, because the demand is limited by an

upper bound and the rest of it will be served by extra-ordinary measures. The

best solution in terms of cost is having the less stock units possible, so the final

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

11

expression for the BS is . is the net replenishment lead time

 . The expression for the is:

 (3)

Basically, the base stock has to cover the upper bound demand during the net

replenishment time which means that there has to be enough stock for the extra

time needed when the sum of the production time and the inbound service

time is bigger than the time the stage has to deliver the bounded demand to

the customer, . Therefore it can be concluded that:

 where

The safety stock or the expected inventory is part of the BS. In fact, the SFTY is

the part of the BS used to cover the uncertainty of the and it can be

expressed by:

 (4)

The pipeline stock are units that have been started to be produced but that have

not yet reached the warehouse since they are not finished yet (work-in-progress

stock).

 (5)

The early arrival stock (ES) is a new concept introduced by Humair et al. [2011].

The meaning of this term is going to be explained at the Random Guaranteed

Service section.

3.5. Types of Supply chain

It is necessary to note that there are different

supply chains depending on how the stages

interact with each other because it is easier to

solve the optimization problem in some chains

than in others. The SS model is adopted

normally in serial, assembly and distribution

networks because the computations are easy to

carry. For supply chains more complex, the

number of calculations is high and the stochastic

equations become hard to solve. This is the

reason why lately it has been used the GS

approach considering its less essential

computational difficulty to solve the model.

Figure 3.3: Acyclic and cyclic Networks. Eruguz et al. [2016]

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

12

Figure 3.4: Divergent (Distribution)
network. Inderfuth [1991]

Figure 3.5: Convergent (Assembly)
network. Inderfurth and Minner [1998]

Figure 3.6: Serial production/inventory
system. Inderfuth [1991]

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

13

Chapter 4

Deterministic Guaranteed Service model

(GS-DET)

4.1. Formulation

One of the basic assumptions of the Guaranteed Service model is that the

production lead times are deterministic, so this data is known and fixed for all

the stages in the GS-DET. The following input data for all nodes is necessary to

formulate the problem:

 : Production lead time for stage .

 Holding cost per unit at stage . The data available is the added cost

to the product in each stage. Therefore, the holding cost per unit is

calculated with the corresponding formula noted at the Framework.

For the demand nodes, more information is required. They are the ones directly

connected to the end-customer in the supply chain. They know the requests of

the final clients and the demand of the final product produced by the whole

network. The above mentioned information is as follows:

 : Mean of the demand for external nodes. This information must be

transferred to the internal nodes as explained at the Framework section.

 : Standard deviation of the demand for external nodes. This

information must be transferred to the internal nodes as explained at the

framework’s section.

 Safety factor related to the service level for demand stages. It means

how frequently the company is willing to incur into stock out. Data for

external nodes must be propagated to the internal nodes so the mean

value of the demand service level is taken for the internal ones. The

inverse of the cumulative standard normal function of the service level is

generally the method to calculate this factor. In other scenarios, the value

1,64 is taken for all the stages.

 : Maximum service time for the external nodes. In other words,

maximum outbound service time allowed for the final nodes to deliver the

product to end-customer.

The program to solve the minimum cost for the placement of safety stock

combines these inputs with the best decision variables to find the optimal cost

for the supply chain. Hence, the outputs of the problem are:

 : Outbound service time per stage .

 : Inbound service time per stage .

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

14

 The cost per stage according to the best service times found by the

program.

 The optimal cost for the supply chain to allocate the safety stock. From

now on, problem P refers to resolving the minimum cost for the

placement of safety stock in a general supply chain.

Therefore, the mathematical formulation for the problem P based on the multi-

stage Willems’ [2000] model is then:

P

(6)

s.t.

 (6a)

 (6b)

 (6c)

 (6d)

The objective function (6) minimizes the stock. From the types of stock above

mentioned in the section Framework, it is only the expected inventory or safety

stock (SFTY) to be contemplated. The equation to express this expected

inventory is (4). The pipeline stock only depends on the Lead time and the

demand of each stage. Both parameters are constant so it can be avoid from

the optimization due to the fact that the values of the decision variables not

affect this type of stock.

The first constraint, 6a., defines the net replenishment time and ensures the

non-negativity of the NRLT. If the difference between the outbound and the

inbound service time is equal to the lead time, the stage is not holding safety

stock. Otherwise, the stage expects inventory (more at Humair et al. [2013]). 6b.

assures that the inbound service time meets the maximum service time of their

immediate successors. The next one, 6c., guarantees that the external demand

is served within the service time required. Finally, 6d. defines the nature of the

decision variables.

4.2. Experimental codification

Problem P has already been solved using dynamic programming, linear

approximation and heuristics procedures for all types of networks: serial,

assembly, distribution, acyclic and cyclic. All these methods have been

discussed in papers mentioned in the Literature Review section. However, not a

single one shows the code for the program.

Focusing the attention to the dynamic procedure, one of the main contributions

of this thesis is providing and explaining a code to solve the GS-DET. To

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

15

validate the code, it has been tested in the Moncayo-Martinez and Ramirez

[2016] tutorial and in the supply chains from Willems [2008] appearing in

Humair et al. [2013].

Before discussing the details about the code, the theory of the dynamic

programming has to be understood. Review Graves and Willems [2000] and its

correction in 2003 for the knowledge in the algorithm for labeling the stages and

the dynamic steps. Check the Humair and Willems [2011] paper to understand

the theory behind the routine needed to solve acyclic chains.

In the first test, the six stage convergent network is a perfect spanning tree. The

code program proposed in the Appendix 1, subsection eight, labels the nodes in

a different order than the numerical case exposed in Moncayo-Martinez and

Ramirez [2016]. The point is that the spanning tree algorithm from Graves and

Willems [2000] allows choosing between a set of alternative in some iterations

freely. Indistinctively, the results show how the theory works and the outputs

match the results of the tutorial (and Figure 4.1 shows the

optimal service times).

The network of the second case is an acyclic network which needs to break

arcs to form a spanning tree. The code works for 11 out of 12 supply chains in

Humair et al. [2013] in terms of cost and services time. The computational time

increases when the number of stages per supply chain and the number of

broken constraints does too.

4.3. The end-customer grade of request

In general, the conclusions in studies about the Guaranteed Service model talk

about the safety stocks units, the number of stages holding it and the total cost

of it. To the best of this report’s knowledge, there is no analysis about the

relationship between the outbound service time and the other problem’s

outputs. This section and the next one contribute with this new analysis. The

numerical experiments were run in the supply number 03 from Willems [2008].

Figure 4.1: Optimal outbound and inbound service time for each stage of the tutorial’s network

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

16

In this first case, the main idea was to obtain different cost, safety stock and

number of stages holding stock results for different end-customer’s maximum

service time. Afterwards, the behavior of the variables was analyzed.

The Graphic 4.1 shows how the cost decreases permanently but non-lineally

when the external stages allow more delivery time to its supplier. It can be also

stated that the trend for the safety stock units is the same as the cost overall.

For the safety stock units line, there is one discrepant point when

 is 20 days. As it can be observed in Table 4.1 for different

outgoing service times for external nodes, the safety stock placement strategy

is changing from the most expensive places to the cheapest ones when

 increases. The strategy changes when is

20 days. At this value, there are more stages holding stock and more units.

However, these units are settled in cheaper places than before and in total the

cost is less.

 Stages holding safety stock (cost added in each stage
[um])

0 Dist1 (2 750,00) - Dist2 (4 103,00) - Dist3 (4 162,00) -
Dist4 (4 247,40) - Part3 (400,00) - Trans2 (1 503,00) -

Trans4 (2 350,00)

15 Man1 (2 400,00) - Trans3 (1 502,00) - Trans4 (2 350,00) -
Part3 (400,00) - Part5 (1 500,00)

20 Man1 (2 400,00) - Man2 (2 350,00) - Part1 (1 100,00) -
Part2 (600,00) - Part3 (400,00) - Part4 (1 100,00) - Part5

(1 500,00)

53 Part1 (1 100,00) - Part3 (400,00) - Part5 (1 500,00)

78 Part3 (400,00)

79 None
Table 4.1: Strategic safety stock placement

0

1000

2000

3000

4000

5000

6000

7000

8000

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

0 1 2 3 4 5 10 15 20 25 30 53 75 78 79

Sa
fe

ty
 s

to
ck

 u
n

it
s

u
.m

Maximum outgoing service time at demand stages

Total cost

Total Safety stock

Graphic 4.1: Economical effect of increasing outgoing service time in demand stages

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

17

It is also curious that there is no safety stock and no cost when

 days. This is possible because it is the maximum

replenishment time for any stage in the supply chain. Hence, mathematically

speaking is possible to combine all the service times to not have stock following

constraints 6a. and 6b.

To sum up, the supply chain has more reaction time against the demand when

the end-customers are more flexible. If the demand stages are permitted to

respond slower, then the reaction time for every stage is bigger and the cost is

lower. The safety stock placement changes to allocate it in cheaper stages

when is higher than a certain value. The basic concepts are

that slight changes of stock units in the most expensive stages mean large

differences in cost because of equation (2) and that the outbound service time

and the cost are antagonist variables.

At the end, this kind of analysis can help companies to perform an evaluation

about the cost versus the service time and to take decisions about which

variable to prioritize and until which point.

This analysis can be extended to all the networks possible with the same

conclusions because the NRLT decreases when the outbound service time

increases, so there is less safety stock in general.

4.4. Modeling the GS-DET with maximum outbound service times for

internal nodes

In the second numerical experiments, the framework was changed by adding to

the model the constraint of maximum outbound service time for all the stages.

Table 4.2 shows the data constraints imposed for different cases studied.

Real Data Case 1 Case 2 Case 3 Case 4

Stage Stage Stage Stage Stage

Dist 0 Dist 0 Dist 0 Dist 0 Dist 0

Man - Man 24 Man 12 Man 10 Man 0

Trans - Trans 4 Trans 2 Trans 0 Trans 0

Part - Part 60 Part 30 Part 20 Part 0
Table 4.2: Maximum outbound service time for internal nodes for the different cases tested

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

18

Total Cost Av. Av.

Number of stages
holding SS

Total SS
units

Iterations

Real 13 565 043,80 23,29 26,53 7 5 004,90 10

Case
1

14 578 648,46 7,29 10,41 8 6 395,14 5

Case
2

14 884 831,67 2,94 2,35 11 9 494,15 1

Case
3

15 894 494,00 2,35 1,76 14 10 164,60 1

Case
4

17 105 442,13 0,00 0,00 17 10 568,02 1

Table 4.3: Results for the Guaranteed Service model with maximum outbound service times for internal

nodes

In Table 4.3 the columns explain the total cost of the supply chain 03 (Total

Cost), the average of the inbound service time for the whole network (Av.),

the average for the outbound service time (Av.), the total number of stages

holding safety stock (Number of stages holding SS), the total units of safety

stock (Total SS units) and the number of iterations needed in the routine for

solving the problem (Iterations). Again, the outbound service time is antagonist

to the total cost and the safety stock units. The tougher the customer is the

better service he receives, but less flexible is the system and the higher the total

cost. The extreme case is the number 4 where there is no freedom in terms of

choosing the service times. Therefore, the response to the customers is

immediately guaranteed. Big safety stock is necessary to fight the instant

delivery because the production lead times are not zero.

Graphic 4.2 displays how the trend of the average relative variation of the

outbound service time from the real case to 0 (case 4) is opposite from the

relative variation of the cost between the real data situation and the last case. In

addition, for this supply chain the complete relative variation of the outbound

service time correspond to a relative cost growth of ‘only’ 26%.

Graphic 4.2: Safety stock versus customer service

0

0,05

0,1

0,15

0,2

0,25

0,3

0 61% 91% 93% 100%

%
 R

el
at

iv
e

V
ar

ia
ti

o
n

 o
f

th
e

sa
fe

ty
 s

to
ck

 c
o

t
re

ga
rd

in
g

th
e

re
al

 d
at

a

% Relative Variation of Average Otbound Service Time
regarding the real data

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

19

Chapter 5

Robust Guaranteed Service model

5.1. Lead time in the Real World

The fixed, known and constant lead time assumption of the Guaranteed Service

model is one of the weaknesses of this approach because it does not represent

the real situation in companies, factories or distribution centers. Actually, the

variability of the lead time is typically different depending on the part of the

supply chain and depending on every part’s function in the process. It is well-

known that the raw material supplier faces longer delays and more uncertainty

than the other stages. At the manufacturing parts, the knowledge of the

variability of the process is higher since has been studied in many occasions so

the delays are controlled and there is less uncertainty. Finally, the retail stores

face only 1 or 2 days delays in general due to the fact that the end-customer’s

requirements are the most important constraint in the supply chain.

The lead time variability is a key issue that forms part of the uncertainty from the

supplier side. Over the past two decades, several new models considering

specific distributions for the lead time were introduced to fight this unreal

assumption such as the Random Guaranteed Service model, which it is going

to be explained in the next chapter. However, defining the right distribution for

the variable in each situation is not a trivial task and the stochastic distribution

selected is sometimes not reliable. Historical data of the process is often not

available or not representative of the current and/or future situation. Therefore,

companies are assuming a risk every time that a determinist value or a specific

distribution is considered.

Recently, Beiran and Martin-Romero [2017] tackled this issue with a new

approach called Robust Guaranteed Service model and the first experiments

provide a powerful tool for the companies to at least manage the risk. This

approach is the most important contribution in this thesis.

5.2. Robust Guaranteed Service approach (GS-RO)

The GS-RO deals with the lead time uncertainty without assuming any

distribution avoiding risks. The unique fact known is that lead time is uncertain

within a certain interval, defined by (7).

 (7)

Inspired by the budgeted uncertain set presented in Bental et al. [2009] and

deployed in Berstimas and Thiele [2006] in which the uncertainty is bounded,

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

20

 is a parameter set by the user between 0 and 1. It is assumed a fixed value

and no uncertainty when while maximizes the doubt. Different

levels of uncertainty can be chosen with this approach. Hence, the cost of

immunization against the supply delays and the flexibility for the stages in the

supply chain could be evaluated.

As opposed to all the other models used in this work, the GS-RO has been

solved with a linear approximation method as Manganti et al. [2006] does in his

research. For this case, the objective function (8) is separable, concave and

non-decreasing. This way, the model remains a mixed-integer linear program

that can be solved by commercial software such as Gurobi and the

computational times are not long in any of the networks used (less than one

minute).

The program coded in Python and the model formulation were first contributed

by Beiran and the definitively version was developed by Beiran and Martin-

Romero. The model formulation of the safety stock problem is then the next

one:

P

(8)

(8a)

 (8b)

(8c)

 (8d)

 (8e)

 (8e)

 (8f)

 (8g)

 (8h)

 (8i)

 (8j)

The different terms not defined in the GS-DET are:

 : Is the net replenishment time.

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

21

 : Order point.

 : Expresses the level of safety stock in terms of the net

replenishment lead time. The equation for this parameter is:

 : It is the midterm value of the interval of lead time.

 It is half of the interval of lead time.

 : The parameter to express the uncertainty of lead time.

 : Pieces of the linear approximation.

 : Independent term.

 : Auxiliary variable to activate the slope.

 : Auxiliary variable to activate the independent term.

 : Slope.

Focusing the attention in the uncertain data, it only appears in constraint 8g.

Note that there is only one uncertain parameter for each constraint. Thus,

the only possible uncertain set is a box. See Appendix 4 for the codification of

the problem P.

5.3. Computational results

The GS-RO has been validated and applied to 20 out of 38 supply chains from

the data of Willems [2008] varying the number of stages from 8 to 159. There

two types of supply chains in the database and two different analyses

consequently. Some networks consider the lead time as a random variable (r-

nets), expressing the lead time as a discrete distribution based on historical

data or as a normal distribution, and some others as a deterministic value (d-

nets). In the former, the GS-RO results have been compared with the results

from GS-DET considering the mean of the lead time as the deterministic value

for the variable (Humair et al. [2013]). If the lead time is expressed as a discrete

distribution, the uncertain interval for this parameter is defined by its minimum

and maximum value. Otherwise, the uncertain interval is described by the mean

value plus three times its standard deviation. In the latter, the effect of the

variability in the lead time has been studied by assuming a certain interval of

uncertainty.

Table 5.1 and Table 5.2 summarize the comparison results for the r-nets types

and the meaning of the columns are:

 SC: The number of the network in the public-available database from

2008.

 Mid: Display the solution of the GS-RO model when the lead time has no

variability. The term has to do with the fact that the lead time value taken

is not the mean but the middle value from the uncertain interval for the

lead time (no distribution assumed).

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

22

 Max: Corresponds to the solution the lead time has the maximum

uncertainty possible.

 : It is the percentage variation of the safety stock between the Mid

and the Max result.

 : It is the average of the outbound service time considering all the

supply chain.

 Stages w stock: It is the number of stages holding safety stock in the

solution.

 St stock: Number of stages with stochastic lead time.

 N: Total number of stages.

 : Relative variation of lead time between the Mid and the Max

solution.

SC
Pipeline stock Safety stock

Δss
Mid Max Mid Max

1 26 443 35 530 984 1 054 7%

3 51 724 56 157 5 538 5 547 0%

5 4 200 255 4 953 114 641 824 687 722 7%

6 1 461 410 1 604 567 806 905 12%

7 2059 2 447 266 217 -19%

8 805 526 849 074 34 695 40 050 15%

9 3 348 803 3 443 173 109 054 115 494 6%

10 31 698 34 473 4 112 2 340 -43%

11 2 393 3 002 402 520 30%

12 9 921 038 10 589 143 1 260 297 1 270 778 1%

14 642 693 652 932 2 927 3 469 19%

15 1 684 500 2 536 831 511 227 627 161 23%

16 1 178 854 1 404 159 78 833 92 515 17%
Table 5.1: Stock results for the r-nets

SC
Δss
cost

Sav
Stages w

stock
Stages
stoch.

leadtime
N ΔLT(av)

Mid Max Mid Max

1 4% 0,0 0,0 5 5 1 8 79%

3 5% 28,4 33,9 8 7 8 17 37%

5 14% 1,0 1,1 22 22 9 27 51%

6 23% 0,4 0,4 22 22 16 28 88%

7 20% 6,1 11,7 19 21 38 38 25%

8 4% 39,1 42,8 3 3 23 40 22%

9 5% 12,4 13,1 24 25 11 49 22%

10 36% 2,3 23,5 52 37 21 58 35%

11 32% 4,4 6,7 36 44 45 68 86%

12 3% 4,9 5,5 75 75 28 88 27%

14 40% 3,5 4,9 55 66 36 116 97%

15 21% 1,6 2,5 77 77 77 133 52%

16 31% 3, 4,3 83 84 106 145 92%
 Table 5.2: Cost, outbound service time, stages and lead time results for r-nets

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

23

According to the Table 5.1, the total amount of pipeline stock increases always

from the Mid to the Max case, as would have been expected intuitively. If the

lead time is bigger, then the pipeline stock is too because it is function of the

lead time and the demand. Regarding the total amount of safety stock, the trend

is similar. It can be stated that generally the supply chains fight the uncertainty

by increasing the safety stock – care must be taken because it is not a fixed

rule. For instance in SC 07 and SC 10, the safety stock policy changes from

more stock in stages with less holding cost to less stock in stages with more

costly holding cost. That is the reason why the is negative for these two

systems while it is positive in the other cases. Either way, the cost rises when

the supply chain faces the uncertainty from suppliers as it was expected. The

numbers show that the cost related to the safety stock goes from 3% difference

to a maximum of 40%. The number of stages with random lead time and the

relative lead time variation should be considered to effectively compare the

 . For example, in SC 16, 106 out of 145 stages are characterized with

random lead times, varying in average 92% and the increase of safety stock

cost is 31%. The company should then consider if this over-cost is worth to take

in order to avoid unmet demand, especially if it is taken into account that the

safety stock costs represents, for this SC, just one fifth of the total stock cost.

The number of stages holding safety stock reacts in a similar way as the safety

stock amount but with less changeability. From the results, it is concluded that

Stages w stock does not vary (or at least not significantly) due to the lead time

variability. In total, 481 stages hold safety stock for the Mid case and 488, seven

stages more, for the worst-case scenario. Six supply chains remain the same

regarding the number of stages holding safety stock, five increase the stock but

two of them reduce the number of stages after applying the robust optimization.

The two special cases are SC 03 and SC 10 even though the lead time

considered is more than 30% bigger in average in both of situations.

Finally, the outbound service times are the other important issue to study

because they are a measure of the service to the customer and a quota for the

supply chain flexibility. The bigger the lead time variability so the supplier side

uncertainty too, the longer the time needed for each stage of the SC to

guarantee the same service level to its successors. A rule is impossible to make

observing the numerical experiments. Anyhow, the relative variation is

significantly different from one chain to another. In case that the outbound

service time for an internal node does not seem realistic, feasible or acceptable

for its customer, the companies can easily impose a maximum outbound

service time constraint for internal nodes.

On the other hand, the GS-RO has been run 10 times with uncertainty going

from 0 to 100% in intervals of 10% for the first six d-nets (SC 02, 04, 13, 17, 18

an 19). This work proceeded with this methodology because the robust

approach cannot be directly implemented as stated before. The aim of the study

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

24

for d-nets was still the same as the r-nets, measuring how much does it affect

uncertainty in terms of cost, safety stock and service time to the optimal solution

when the lead time admits some random variability around its mean value.

However, an aggregate analysis was less meaningful in this case, so in Graphic

5.1 is shown the results for SC 04 and the possible conclusions to be extracted

will be using this network as an example. The trend lines mean the variation of

safety stock (blue), the variation of safety stock cost (orange) and the variation

of the outbound service times in average (green).

For this particular network, the safety stock amount and its corresponding cost

follow a similar trend. The difference between both lines began to be relevant

around the 50% of the lead time uncertainty. The increase of the discrepancy is

caused by the change in the safety stock policy. A few new safety stock units

have been allocated in the most expensive stages. On the other side, the

outbound service times experiment an uncommon tendency, having a

significant growth for levels of 60% of uncertainty, then staggering and finally,

dramatically decreasing. For a better understanding of this phenomenon, it

should be noted that stages holding cost remains in 12 until 50% of uncertainty

and then it scales to 19 stages for 60%, where it keeps constant.

Therefore, the ratification and the value of the Robust Guaranteed Service

approach have been demonstrated. It is a powerful tool capable of immunizing

the Guaranteed Service model against the supply uncertainty. In addition, the

GS-RO permits to manage the risk by using a sensitive analysis that can

discover how the outputs will behave.

0%

50%

100%

150%

200%

250%

0% 20% 40% 60% 80% 100%

Lead time uncertainty ζ

% ΔSafety
stock

% ΔSafety cost

Graphic 5.1: SC 04 results for the main outputs problem

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

25

Chapter 6

Guaranteed Service model under Random

lead times (GS-RAN)

6.1. Model

In the previous chapter, the GS-RO has been proved to be a competent and

powerful tool when it has been compared with the Guaranteed Service

approach under deterministic lead time. In this one, the intention is also to

demonstrate that makes more sense for the companies to solve the safety stock

placement optimization with the GS-RO instead of the GS-RAN. For this

purpose, the expressions proposed by Humair et al. [2013] are going to be used

as the starting point of the theories developed in this chapter and the results are

going to be useful for comparing both approaches (GS-RO versus GS-RAN).

The Guaranteed Service model under Random lead time incorporates an

appropriate safety stock formula for the case of random lead times in a supply

chain. It is a more realistic approach than the GS-DET but the same or even

worse risks are taken by assuming a stochastic discrete or continuous

distribution for the parameter. In addition to the not representative and not

correct data risks, the occurrence of the early arrival stock (ES) phenomenon is

an extra difficulty that has to be added to the model and contemplated in the

objective function (more at Humair et al. [2013]).

The ES is the corresponding stock to a replenishment order arriving to the

warehouse earlier than the associated customer order has been shipped. This

type of stock has to be assumed by the same stage and it cannot be transferred

to the downstream stages because the latter is not going to be willing to accept

and deal with the associated holding cost of the extra and unnecessary units.

This event can only happen when the outbound service time is bigger than the

inbound service time plus the realized lead time so it is only possible when the

net replenishment time is negative (more at Humair et al. [2013]).

6.2. Inconsistencies

The first steps for comparing GS-RO with GS-RAN were to analyze the results

given by Humair et al. [2013] and to replicate the program proposed in the

paper. Discrepancies with the authors were found in terms of results and

expressions.

 Data and results inconsistencies: Firstly, the pipeline stock in SC 08

cannot change from the GS-DET using mean and GS-RAN. This is

happening because the raw data for the stage Part_01 from SC 08 is

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

26

incorrect. It is not possible that the lead time mean for this node is equal

to 42 when 50% of the cases the lead time value is 1 and the other 50%

is 45. Secondly, the total stock results are uncommon for network 09. It

makes sense that the GS-DET using max lead time holds more total

stock because it is the worst scenario possible than the GS-RAN. For

this example, the numbers show the opposite situation so it is

inconsistent.

 Expressions inconsistencies: The expression to minimize the safety

stock under random lead time has to include the early arrival stock

because every stage must find a compromise between both types of

stock in this approach. Next, the equations for each stock given by

Humair et al. [2013] are written:

(9)

(10)

 Where:

 Q(T): Expected value of the positive part of the NRLT when

 R(T): Variance of the positive part of the NRLT when

(11)

(12)

 : Sum of the probabilities when the net replenishment time is

negative.

 : Expected lead time value when the net replenishment time is

positive.

 : Statistic formula for the positive net replenishment time.

The two disagreements found regarding the expressions are: the limits of

H(T)’s functions and the behavior of the SFTY formula. Regarding the

limits issue, the limit T is included in all three Hs formulas but this fact is

not logical. T means a possible value for the lead time. When T is equal

to the difference , then the NRLT is zero and the stage does not

need to hold safety stock. However, when T is included as the lower

bound for

 , it means that the previous assertion is being denied

and the stage is being forced to own SFTY. To conclude, the expressions

for

 should be reformulated because one of the basic

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

27

assumptions of the Guaranteed Service approach is that there is only

safety stock when . Thus, the equations would be:

(13)

(14)

(15)

Regarding the safety stock formula (9), the rising SFTY amount is not

considered when the inbound is bigger than the outbound service time

while the NRLT remains positive. Graphic 6.1, which is inspired from the

figures in Incorporating Stochastic Lead Times to the GS Model of Safety

Stock Optimization, shows how the SFTY and ES should theoretically

behave depending on the service times (blue line) and displays what is

happening with safety stock trend when the equation (9) is applied (red

line).

Thus, the SFTY becomes a constant when and it is because the

authors consider . This effect does not match with the

safety stock theory due that extra safety stock is required to fight longer

inbound service times when the delivery time to the customer is still the

same. There is either missing information in Humair et al. [2013], or the

expression is not adequate for all the scenarios.

Therefore, a new expression (16) is proposed and used for the following

numerical experiments to be sure that all the scenarios can be evaluated.

 The SFTY expression when
 is: (4).

0

5

10

15

20

25

30

-8 -6 -4 -2 0 2 4 6 8 10 12 14 16

Sa
fe

ty
 s

to
ck

 u
n

it
s

S-SI

Safety stock
real

Safety stock
formula

Graphic 6.1: Safety on-hand stock for stochastic lead time

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

28

 The equation when is: (9).

 Finally, the formula when is:

(16)

6.3. Numerical experiments

Taking advantage from the raw data error in supply chain 08, different values

for Part_01 have been tested to infer strengths and weaknesses of the GS-RAN

and GS-RO. The varied experiments are:

 The robust approach with minimum and maximum uncertainty.

 The GS under random lead times with the raw data

 .

 The GS-RAN with
 and

 .

Pipeline
Stock

Early
Stock

Safety
Stock

Total
Stock

Total
Cost

GS-RO

4
2

[1,45] 805 525,71 - 34 694,94 840 220,65 16 780 600,60

GS-RO

4
2

[1,45] 849 073,75 - 40 050,12 889 123,87 18 058 880,07

GS-RAN
1_45_42

4
2

[1,45] 793 786,70 42 483,14 46 030,77 882 300,61 15 035 832,90

GS-RAN
40_45_4

2

4
2

[40,45] 793 786,70 45 554,64 42 483,44 881 824,78 15 022 423,73

GS-RAN
1_45_23

2
3

[1,45] 764 604,50 71 662,39 46 030,77 882 297,66 15 035 832,90

Table 6.1: GS-RO and GS-RAN results for comparing both approaches

The early and the safety stock are opposites from the definition of both, the

former happens when the net replenishment time is negative while the latter

phenomenon occurs when the NRLT is positive. In general, the bigger the

safety stock the smaller the early stock. This cannot be appreciated in Table 6.1

because the data is incorrect in all GS-RAN cases. In any case, the ES is

considered part of the stage stock in the GS-RAN model. This fact is what

makes the straight comparison between the random and the robust model

impossible due to the fact that the second one considers the ES in the pipeline

stock. A better way to analyze the models is comparing the total stock and cost.

Analyzing the total results, it can be stated that the robust analysis is the most

conservative approach. A cheaper cost does not mean that the GS-RAN is the

best model. In fact, Table 6.1 shows that this approach is more conservative

than the deterministic case but also the incapability of the model for detecting

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

29

the error has been proved. From the three random cases studied, the one

representing the real chain seems to be GS-RAN 40_45_42. The other two

situations differ less than 1 000 stock units so the cost is significantly similar in

the three cases. Thus, the mistake made in this chain does not seem to cause a

potential damage in the safety stock allocation. However, the GS-RAN cannot

avoid or detect errors and it does not guarantee that the effect of the errors can

be almost irrelevant as in this case. On the other hand, the robust approach is a

way to immunize the chain against the data errors and it allows sensitive

analysis so it is the most correct one to use to solve the problem with total

confidence.

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

30

Chapter 7

Conclusions

The uncertainty on the supply side has been always a challenge for the

inventory control and so then for the supply chain management too. The lead

time variability has been one of the main concerns in this field, especially at the

Guaranteed Service approach which basically assumes that the parameter is

known and fixed.

A deterministic lead time was considered at the beginning of the GS model.

However, past literature as Humair et al. [2013] and this thesis proved how this

approach with the basic statement of fixed lead time is unrealistic; the results

strongly differ from more representative results approaches and data errors

cannot be detected.

Being conscious of this weakness, a program (validated using the Moncayo-

Martinez and Ramirez [2016] tutorial and several supply chains from Willems

[2008]) for the basic Guaranteed Service approach has been developed in this

research to be able to test the reaction of the safety stock and the cost under

different outbound service time situations. The study about the outbound

service time can be conducted under deterministic case because the general

trends of the outputs are not correlated to the way the lead time data is treated.

The antagonist behavior of the outbound service time with the safety stock and

the network cost is demonstrated. The shorter outbound service time in demand

nodes and/or internal nodes, the tougher the customer is. The more demanding

the customers are, the less flexible the supply chain is. Thus, higher amount of

safety stock is needed to respond without stock outs to shorter service times

and the network cost is more expensive then.

Following with the history of the GS approach literature, the work contributes

with another codified program for the Random Guaranteed Service model which

has been successfully tested in eleven supply chain cases from Willems [2008].

It will be a useful tool for practitioners and researchers in future work. In spite of

the evidences of being a more conservative but accurate model for the safety

stock allocation than the deterministic case, assuming a stochastic distribution

for the lead time is not the correct way to deal with the key issue. The random

approach cannot detect lead time value mistakes or incorrect distributions

assumed, collecting data is still a challenge and furthermore, the data collected

can be unreliable of the current or future reality so the risk is too high and it is

difficult to manage.

This thesis proposes a new approach called the Robust Guaranteed Service to

solve the GS under random lead times without assuming a determinate

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

31

stochastic distribution. Therefore, it is a model that enables to capture the

variability of the lead time and the uncertainty of the supply side and at the

same time, the safety stock placement is immunized against the data errors and

challenges. It is the most conservative model from the three mentioned but its

benefits outstands in comparison with the other two. It is protected against the

errors, less investment in the collecting data challenge is required and less

computational time is needed to solve the problem. In addition, the Robust

Guaranteed approach is completely able to manage the risk; it allows the

practitioners to decide how much risk are they willing to take and it helps them

to take important inventory control decisions after analyzing the sensitive

studies possible thank to uncertain lead time parameter of the model ().

In conclusion, the lead time should be considered variable to represent the

reality but without assuming distributions to avoid data risks. The most efficient

approach for this lead time treatment is the Robust Guaranteed Service

approach for the arguments above-mentioned. It has been validated by testing it

for twenty supply chains from Willems [2008] and it higher quality performance

has been proved in comparison with the other two approaches.

Future work could extend the Robust Guaranteed Service model with capacities

constraints and considering the cost of the operating flexibility allowed by the

GS approach. Another possible future contribution can be testing the

effectiveness of this approach in different business sectors and industries.

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

32

Bibliography
S. Axsäter. Supply chain operations: serial and distribution inventory systems.

In: A.G. deKok and S.C. Graves (Eds.), Handbook in Operations
Reaseach and Science, Supply Chain Management: Design, Coordination
and Operation. Elsevier, Amsterdam, North-Holland, Chapter 11, 525-559,
2003.

S. Axsäter. Inventory Control. Springer, New York, 2006.

P. Beiran, M.P. Martin-Romero and H. Matsukawa. A Robust Guaranteed-

Service Model to deal with Uncertain Lead Time in General Acyclic Supply
Chains. Department of Administration Engineering, Keio University, 2017.

A. Ben-tal, L. Ghaoui and A. Nemirovski. Robust optimization. Princeton

University Press, 2009.

D. Bertsimas and A. Thiele. A robust optimization approach to inventory theory.

Operations Research, 54(1):150-168, 2006.

A.J. Clark and H. Scarf. Optimal policies for a multi-echelon inventory problem.

Operations Research, 6(4):475-490, July 1960.

CSCO. Five strategies for Improving Inventory Management Across Complex

Supply Chain Networks. Obtained from:
www.scdigest.com/assets/reps/exec brief network inventories.pdf, June
2011.

E.B. Diks, A.G. deKok and A.G. Lagodimos. Multi-echelon systems: a service

measure perspective. European Journal of Operations Research,
95(2):241-263, 1996.

G.D. Eppen and R.K. Martin. Determining safety stock in the presence of

stochastic lead time and demand. Management Science, 34(11): 1380-
1390, 1988.

S.C. Graves and S. Willems. Optimizing strategic safety stock placement in

supply chains. Manufacturing & Service Operations Management, 1(2):68-
83, Winter 2000.

S.C. Graves and S. Willems. Erratum: Optimizing strategic safety stock

placement in supply chains. Manufacturing & Service Operations
Management, 5(2):176-177, 2003.

S. Humair and S.P. Willems. Technical note. Optimizing strategic safety stock

placement in general acyclic networks. Operations Research, 59(3): 781-
787. 2011.

http://www.scdigest.com/assets/reps/exec%20brief%20network%20inventories.pdf

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

33

S. Humair, J.D. Ruark, B. Tomlin and S.P. Willems. Incoporating staochastic
lead times into the guaranteed service model of safety stock optimization.
Interfaces, 43(5):421-434, 2013.

K. Inderfurth. Safety stock optimization in multi-stage production systems.

International Journal of Production Economics, 24:103-113, 1991.

K. Inderfurth and S. Minner. Safety stocks in multi-stage inventory systems

under different service measures. European Journal of Operations
Research, 106:57-73, 1998.

S.T. Klosterhalfen, D. Dittmar and S. Minner. An integrated guaranteed- and

stochastic-service approach to inventory optimization in supply chains.
European Journal of Operation Research, 231(1):109-119, 2013.

S.T. Klosterhalfen and S. Minner. Comparison of stochastic- and guaranteed-

service approaches to safety stock optimization in supply chains.
Operations Research Proceedings 2006, 485-490, 2007.

S.T. Klosterhalfen and S. Minner. Safety stock optimisation in distribution

systems: a comparison of two competing approaches. International
Journal of Logistics: Research and Applications, 13(2):99-120, 2010.

E. Lesnaia. Optimizing Safety Stock Placement in General Network Supply

Chains. Doctoral dissertation, Massachusetts Institute of Technology,
September 2004.

T.L. Maganti, Z.J.M. Shen, J.Shu, D. Simchi-Levi, C.P. Teo. Inventory

placement in acyclic supply chain networks. Operations Research Letters,
34(2): 228-238, 2006.

S. Minner. Strategic Safety Stocks in Supply Chains, volume 490 of Lecture

Notes in Economics and Mathematical Systems. Springer, 2000.

L.A. Moncayo-Martinez and A. Ramirez. A tutorial to set safety stock under

guaranteed-service time by dynamic programming. International Journal of
Industrial and Systems Engineering, October 2016.

J. Rambau and K. Schade. The stochastic guaranteed service model with

recourse for multi-echelon warehouse management. Science Direct,
Electronic Notes in Discrete Mathematics, 36:783–790, 2010.

D. Simchi-Levi and Y. Zhao. Performance evaluation of stochastic multi-echelon

inventory systems: A survey. Adv. Operational Reasearch, 1-34, 2012.

K.F. Simpson. In-process inventories. Operations Research, 6:863-873, 1958.

S.P. Willems. Data set-real-world multiechelon supply chains used for inventory
optimization. Manufacturing Service Operations Management, 10(1):19-
23, 2008.

How to deal correctly with Lead Time in a Supply Chain
Keio University, March 2017

34

Acknowledges

I would like to express my sincere gratitude to my supervisor, Prof. Matsukawa,

for giving me the opportunity to research at his Production & Logistics

Laboratory, for his wise advices, his patience and immense knowledge.

I would also like to thank to my lab mates and friends for their support and

friendship, and made my experience at Keio University impressive. I would

specially acknowledge my lab mate Pablo Beiran for his continuous support, for

his patience, guidance during the semester and for sharing his first research

steps with me. I would like to express the honor it has been for me to work in

the same team and develop the Robust Guaranteed Service approach together.

Finally, I would like to thank the support of my family: my parents and close

friends. They were handling my bad temperament in my worst days, being

compressive with no having enough time to share with me, giving me strength

and encouragement to reach my goals and dreams, providing me with financial

support and continuously supporting and motivating me.

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

35

Appendix 1

Program for solving the Moncayo-Martinez and Ramirez [2016] tutorial

1) The modules are imported and the data available is read from excel.

#modules

import xlrd

import math

##read excel

book=xlrd.open_workbook("C:/Users/Usuario/Dropbox/KEIO/MASTER

THESIS/Programing/tutorial_Willems2000/tutorial.xlsx")

arcs=book.sheet_by_name("T_LL")

data=book.sheet_by_name("T_SD")

2) The data variables are initiated.

stages={} #name and labeling

avgD = {} #mean demand

varD = {} #variance of demand

stdD = {} #deviation of demand

Cs = {} #cost stage (not holding cost)

h=0.2 #annual holding cost

CC={} #cumulative cost, holding cost

service = {} #service level

z={} #normsinv(service level)

lt_av = {} #lead time mean

lt_std = {} #standard deviation lead time #Lead time is

deterministic, lt_std=0

M={} #replenishment time

s_out_req={} #service time required by the last customer

Ve=[] #demand nodes

Vs=[] #supply nodes

Vs_sin_ord=[] #supply node without the spanning tree labeling

orderStages=[] #relation between excel and spanning tree labeling

3) Transfer data from excel to python.

#Total number of stages

N=len(data.col_values(0))-1

#transfer data from excel to python. (excel order data)

for row in range(N):

 stages[row+1]= [data.cell_value(row+1,0), 0]

 Cs[row+1]= data.cell_value(row+1,1)

 avgD[row+1]= data.cell_value(row+1,4)

 stdD[row+1]= data.cell_value(row+1,5)

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

36

 service[row+1]=data.cell_value(row+1,7)

 lt_av[row+1]=data.cell_value(row+1,8)

 lt_std[row+1]=data.cell_value(row+1,9)

 s_out_req[row+1]=data.cell_value(row+1,6)

 if avgD[row+1]=='':

 avgD[row+1]=0

 stdD[row+1]=0

 varD[row+1]= stdD[row+1]**2

 if lt_std[row+1]=='':

 lt_std[row+1]=0

4) Matrices with the relation between stages.

#Arcs matrix #Initial matrix dim(N*N) with all values equal zero

arc_matrix = [[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

#Arc_matrix (with all the arcs, relations between stages)

for i in range(1,len(arcs.col_values(0))):

 val_extra_1=arcs.cell_value(i,0)

 val_extra_2=arcs.cell_value(i,1)

arc_matrix[stages.values().index([val_extra_1,0])][stages.values().index([

val_extra_2,0])]=1

#Arc_matrix_aux1 (equal to arc_matrix)(arc_matrix_aux1 is an auxiliar

matrix)

arc_matrix_aux1 = [[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(1,len(arcs.col_values(0))):

 val_extra_1=arcs.cell_value(i,0)

 val_extra_2=arcs.cell_value(i,1)

arc_matrix_aux1[stages.values().index([val_extra_1,0])][stages.values().i

ndex([val_extra_2,0])]=1

5) Maximum Replenishment Time algorithm.

#Maximum Replenishment time. (excel order)

memory_del=[]

arc_matrix_rp=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

arc_matrix_aux=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_rp[i][j]=arc_matrix[i][j]

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

37

memory_del=[]

while (len(memory_del)!=N):

 for i in [x for x in xrange(N) if x not in memory_del]:

 if sum([arc_matrix_rp[j][i]==1 for j in range(N)])==0: #The algorithm

is looking for columns with all zeros (no predecessors)

 M[i+1]=lt_av[i+1]+max(arc_matrix_aux[i])

 for j in range(N):

 if arc_matrix_rp[i][j]==1:

 arc_matrix_aux[j][i]=M[i+1] #The algorithm uses

arc_matrix_aux to create the Mmax (it would be the max of the row)

 arc_matrix_rp[i][j]=0

 memory_del=memory_del+[i]

6) Demand propagation algorithm. The propagation is done as simple as

possible (more in Framework section).

#Demand Propagation (1 successor for all stages)

#Work in arc_matrix_demand that will be modified during the algorithm

arc_matrix_demand=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_demand[i][j]=arc_matrix[i][j]

memory_del=[]

while(arc_matrix_demand != [[0] * (len(arc_matrix)) for i in

range(len(arc_matrix_demand))]): #running until arc_matrix_demand

becomes zero

 for row in [x for x in xrange(len(arc_matrix_demand)) if x not in

memory_del]: #It selects row with no 1 (demand

nodes)

 if arc_matrix_demand[row] == ([0]*N):

 for i in range(len(arc_matrix_demand)):

 if arc_matrix_demand[i][row]==1:

 avgD[i+1]=avgD[i+1]+avgD[row+1]

 varD[i+1]=varD[i+1]+varD[row+1]

 memory_del=memory_del+[row]

#Values already treated are changed to zeros

 for aa in memory_del:

 for bb in range(len(arc_matrix_demand)):

 if arc_matrix_demand[bb][aa]==1:

 arc_matrix_demand[bb][aa]=0

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

38

7) Algorithms for other data variables.

#Dictionary with z=normsinv(service_level)

for k in range(N):

 z[k+1]=1.64

#List with supply nodes (no predecessors)

for i in range(N):

 if sum([arc_matrix[j][i]==1 for j in range(N)])==0: #if the column is all

zeros, then it is a supply node

 Vs_sin_ord=Vs_sin_ord+[i+1]

#Cumulative cost

for i in range(N):

 if (i+1) in Vs_sin_ord:

 CC[i+1]=Cs[i+1]

 else:

 cumulative=0

 for j in range(i):

 if arc_matrix[j][i]==1:

 cumulative=cumulative+CC[j+1]

 CC[i+1]=Cs[i+1]+cumulative

8) Code for the Spanning Tree algorithm proposed by Graves and Willems

[2000].

k=1

while(arc_matrix_aux1 != [[0] * (len(arc_matrix_aux1)) for i in

range(len(arc_matrix_demand))]):

 for i in range(N):

 if sum(arc_matrix_aux1[i]) + sum([arc_matrix_aux1[j][i]==1 for j in

range(len(arc_matrix_aux1))])==1:

 stages[i+1][1]=k

 k=k+1

 for j in range(len(arc_matrix_aux1)):

 arc_matrix_aux1[j][i]=0

 arc_matrix_aux1[i]=[0]*(len(arc_matrix_aux1))

for i in range(k,len(arc_matrix_aux1)+1):

 for j in range(N):

 if stages[j+1][1]==0:

 stages[j+1][1]=k

 k=k+1

9) Reordering the stages according the spanning tree labeling and

generating the new demand and supply nodes.

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

39

#Arc matrix ordered and its corresponding spanning tree for the new

labeling

arc_matrix_ord=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(1,len(arcs.col_values(0))):

 val_extra_1=arcs.cell_value(i,0)

 val_extra_2=arcs.cell_value(i,1)

 for j in range(1,N+1):

 if stages[j][0]==val_extra_1:

 break

 for k in range(1,N+1):

 if stages[k][0]==val_extra_2:

 break

 arc_matrix_ord[stages[j][1]-1][stages[k][1]-1]=1

#List with demand nodes

for k in range(N):

 if sum(arc_matrix_ord[k])==0:

 Ve=Ve+[k+1]

#List with initial nodes (no predecessors)

for i in range(N):

 if sum([arc_matrix_ord[j][i]==1 for j in range(N)])==0: #if the column is

all zeros, then it is a supply node

 Vs=Vs+[i+1]

10) Expressions for the objective function.

#Safety stock

def SS(k,SI,S):

 posk=orderStages.index(k)

 if SI+lt_av[posk+1]-S>=0:

 return

z[posk+1]*math.sqrt(varD[posk+1])*math.sqrt(lt_av[posk+1]+SI-S)

 else:

 print "no possible" #There is no stock if NRLT is negative

#Cost function

def cost(k,SI,S):

 posk=orderStages.index(k)

 return h*CC[posk+1]*SS(k,SI,S)

11) is the expression for the minimum cost of the sub-

graph when the unique adjacent node with higher label is the customer

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

40

of (as Humair and Willems [2011] wrote: let the function

 be the optimal cost of the sub-tree connected to after

removing its unique adjacent node with higher label if ’s outgoing

service time is). is the stage/node, is the given outbound service

and is the current dictionary where the possible results from

the nodes with less label have been stored.

def f(k,S,stageInfo):

 SIResults=[]

 ZResultF=[]

 posk=orderStages.index(k)

 for si in range(int(max(0,S-lt_av[posk+1])),int(M[posk+1]-

lt_av[posk+1]+1)):

 cF=cost(k,si,S)

 prevF=0.0

 nextF=0.0

 for i in range(k):

 m1=[]

 if arc_matrix_ord[i][k-1]==1:

 listNF=stageInfo[i+1]

 listS=[]

 for nf in range(len(listNF)):

 listS=listS+[listNF[nf][2]]

 for nf in range(len(listNF)):

 if listNF[nf][2]<=si and listNF[nf][2]>=0:

 m1=m1+[listNF[nf][0]]

 elif si>max(listS):

 m1=m1+[float("inf")]

 if m1!=[]:

 Min1=min(m1)

 prevF=prevF+Min1

 for j in range(k):

 m2=[]

 if arc_matrix_ord[k-1][j]==1:

 posj=orderStages.index(j+1)

 listNF=stageInfo[j+1]

 listSI=[]

 for nf in range(len(listNF)):

 listSI=listSI+[listS[nf][1]]

Evaluation of the lower

label ‘previous’ nodes

cost of k.

Evaluation of the lower

label ‘next’ nodes cost

of k.

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

41

 for nf in range(len(listNF)):

 if listNF[nf][1]>=S and listNF[nf][1]<=(M[posj+1]-

lt_av[posj+1]):

 m2=m2+[listNF[nf][0]]

 elif S>max(listSI):

 m2=m2+[float("inf")]

 if m2!=[]:

 Min2=min(m2)

 nextF=nextF+Min2

 ResultF=cF+prevF+nextF

 SIResults=SIResults+[(ResultF,si,S)]

 ZResultF=ZResultF+[ResultF]

 ResultFinalF=min(ZResultF)

 PosResultFinalF=ZResultF.index(ResultFinalF)

TupleFinalF=[(ResultFinalF,SIResults[PosResultFinalF][1],SIResults[Pos

ResultFinalF][2])]

 return TupleFinalF

12) g is the expression for the minimum cost of the sub-

graph when the unique adjacent node with higher label is the supplier of

 (as Humair and Willems [2011] wrote: let the function

 be the optimal cost of the sub-tree connected to

after removing its unique adjacent node with higher label if ’s incoming

service time is). is the stage/node, is the given outbound service

and is the current dictionary where the possible results from

the nodes with less label have been stored.

def g(k,SI,stageInfo):

 SResults=[]

 ZResultG=[]

 posk=orderStages.index(k)

 if k in Ve:

 smax=s_out_req[posk+1]+1

 else:

 smax=SI+lt_av[posk+1]+1

 for s in range(0,int(smax)):

 cG=cost(k,SI,s)

 prevG=0.0

 nextG=0.0

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

42

 for i in range(k):

 m1=[]

 if arc_matrix_ord[i][k-1]==1:

 listNG=stageInfo[i+1]

 listS=[]

 for nf in range(len(listNG)):

 listS=listS+[listNG[nf][2]]

 for nf in range(len(listNG)):

 if listNG[nf][2]<=SI and listNG[nf][2]>=0:

 m1=m1+[listNG[nf][0]]

 elif SI>max(listS):

 m1=m1+[float("inf")]

 if m1!=[]:

 Min1=min(m1)

 prevG=prevG+Min1

 for j in range(k):

 m2=[]

 if arc_matrix_ord[k-1][j]==1:

 posj=orderStages.index(j+1)

 listNG=stageInfo[j+1]

 listSI=[]

 for nf in range(len(listNG)):

 listSI=listSI+[listNG[nf][1]]

 for nf in range(len(listNG)):

 if listNG[nf][1]>=s and listNG[nf][1]<=(M[posj+1]-

lt_av[posj+1]):

 m2=m2+[listNG[nf][0]]

 elif s>max(listSI):

 m2=m2+[float("inf")]

 if m2!=[]:

 Min2=min(m2)

 nextG=nextG+Min2

 ResultG=cG+prevG+nextG

 SResults=SResults+[(ResultG,SI,s)]

 ZResultG=ZResultG+[ResultG]

 ResultFinalG=min(ZResultG)

 PosResultFinalG=ZResultG.index(ResultFinalG)

Evaluation of the lower

label next nodes cost

of k.

Evaluation of the

lower label

‘previous’ nodes

cost of k.

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

43

TupleFinalG=[(ResultFinalG,SResults[PosResultFinalG][1],SResults[Pos

ResultFinalG][2])]

 return TupleFinalG

13) function is used to create all the possible stage cost for all the

node.

First, it chooses between f or g which

one has to be selected for each node. Second, it evaluates the selected

function for the concrete service time range of values. Third, every

evaluation is cached in the dictionary.

def model():

 stageInfo={}

 for k in range(N):

 posk=orderStages.index(k+1)

 if (k+1)!= N: #all stages calculation

 TupleStage=[] #the results for each node will be stored at

TupleStage

 for j in range(N):

 if k<j:

 if arc_matrix_ord[k][j]==1:

 for S in range(0,int(M[posk+1]+1)):

 TupleStage=TupleStage+f(k+1,S,stageInfo)

 stageInfo[k+1]=TupleStage

 if arc_matrix_ord[j][k]==1:

 for SI in range(0,int(M[posk+1]-lt_av[posk+1])+1):

 TupleStage=TupleStage+g(k+1,SI,stageInfo)

 stageInfo[k+1]=TupleStage

 else:

 LastTupleStage=[]

 for SI in range(0,int(M[posk+1]-lt_av[posk+1])+1):

 LastTupleStage=LastTupleStage+g(k+1,SI,stageInfo)

 stageInfo[k+1]=LastTupleStage

 return stageInfo

14) is a function used for finding the optimal cost of

the whole supply chain and the best outbound and inbound service time

for each stage that fulfill all the constraints. is where the cost

depending on the best services time found, the best incoming and

outcoming service times are stored for each stage. is the optimal

cost for the supply chain. It is important to note that the main goal is to

The last stage possible costs

are evaluated with g function

If the unique higher adjacent node

of k is its customer, then f function

is evaluated for the corresponding S

values

If the unique higher adjacent node of k is its supplier, then g

function is evaluated for the corresponding SI values

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

44

resolve the optimization for the whole supply chain so it happens that

sometimes the cost of one stage is not the optimal for itself. In

conclusion, the program does not work with locals, it works with global

optimization.

SET={}

stageOpt={}

def backtrack(stageInfo):

 for k in range (N, 0, -1):

 if k==N:

 Alternatives=stageInfo[k]

 Min3=[]

 for a in Alternatives:

 Min3=Min3+[a[0]]

 Zopt=min(Min3)

 posZopt=Min3.index(Zopt)

 SET[k]=(Alternatives[posZopt][1],Alternatives[posZopt][2])

#set=(SI,S)

 else:

 Alternatives=stageInfo[k]

 Alter=[]

 for j in range(N):

 if (k-1)<j:

 if arc_matrix_ord[k-1][j]==1:

 limit=SET[j+1]

 SIlimit=limit[0]

 Min4=[]

 for i in range(len(Alternatives)):

 if Alternatives[i][2]<=SIlimit:

 Alter=Alter+[Alternatives[i]]

 else:

 Alter=Alter

 for i in Alter:

 Min4=Min4+[i[0]]

 fog=min(Min4)

 posfog=Min4.index(fog)

 SET[k]=(Alter[posfog][1],Alter[posfog][2])

The optimal cost for the

supply chain is found

When the stage k is

the supplier of j, then

the constraint

has to be fulfilled.

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

45

 if arc_matrix_ord[j][k-1]==1:

 limit=SET[j+1]

 Slimit=limit[1]

 Min5=[]

 for i in range(len(Alternatives)):

 if Alternatives[i][1]>=Slimit:

 Alter=Alter+[Alternatives[i]]

 else:

 Alter=Alter

 for i in Alter:

 Min5=Min5+[i[0]]

 fog=min(Min5)

 posfog=Min5.index(fog)

 SET[k]=(Alter[posfog][1],Alter[posfog][2])

 Zopt=0.0

 for k in range(N):

 Zopt=Zopt+cost(k+1,SET[k+1][0],SET[k+1][1])

stageOpt[k+1]=(cost(k+1,SET[k+1][0],SET[k+1][1]),SET[k+1][0],SET[k+1]

[1])

 print Zopt,stageOpt

15) To run the program and obtain the outputs.

stageInfo=model()

Zopt,stageOpt=backtrack(stageInfo)

When the stage k

is the customer

of j, then the

constraint

 has to

be fulfilled.

The optimal

cost is

calculated

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

46

Appendix 2

Program for optimizing the safety stock placement in General Acyclic

Chains with deterministic lead time

1) The modules are imported and the data available is read from excel

#modules

import xlrd

import math

from scipy.sparse import csr_matrix

from scipy.sparse.csgraph import minimum_spanning_tree

from scipy.stats import norm

#read data

book=xlrd.open_workbook("C:\Users\Usuario\Dropbox\KEIO\MASTER

THESIS\Programing\Data Set_org.xls")

arcs=book.sheet_by_name("12_LL") #supply chain #

data=book.sheet_by_name("12_SD") #supply chain #

2) The data variables and the limits are initiated.

stages={} #name and labeling

avgD = {} #mean demand

varD = {} #variance of demand

stdD = {} #deviation of demand

Cs = {} #cost stage (not holding cost)

h=1 #annual holding cost

CC={} #cumulative cost

service = {} #service level

z={} #normsinv(service level)

lt_av = {} #lead time mean without decimals

lt_av_decimal={} ##lead time mean with decimals

lt_std = {} #standard deviation lead time N

lt_var={} #auxiliary

lt_max={} #auxiliary

M={} #replenishment time

s_out_req={} #service time required by the last customer

stage_lk={} #auxiliary

prob_lk={} #auxiliary

Ve=[] #demand nodes

Vs=[] #supply nodes

Vs_sin_ord=[] #supply node without spanning tree labeling

orderStages=[] #relation between excel and spanning tree

labeling

#limits initialization

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

47

u={}

l={}

U={}

L={}

3) Transfer data from excel to python.

#Total number of stages

N=len(data.col_values(0))-1

#Transfer data from excel to python. (excel order data)

for row in range(N):

 stages[row+1]= [data.cell_value(row+1,0), 0]

 Cs[row+1]= data.cell_value(row+1,1)

 avgD[row+1]= data.cell_value(row+1,4)

 stdD[row+1]= data.cell_value(row+1,5)

 service[row+1]=data.cell_value(row+1,7)

 lt_av[row+1]=data.cell_value(row+1,8)

 lt_av_decimal[row+1]=data.cell_value(row+1,8)

 if (lt_av[row+1]/0.5)%2==1:

 lt_av[row+1]=lt_av[row+1]-0.01

 lt_av[row+1]=round(lt_av[row+1])

 lt_std[row+1]=data.cell_value(row+1,9)

 s_out_req[row+1]=data.cell_value(row+1,6)

 if avgD[row+1]=='':

 avgD[row+1]=0

 stdD[row+1]=0

 varD[row+1]= stdD[row+1]**2

 if lt_std[row+1]=='':

 lt_std[row+1]=0

 stage_lk[row+1]=[data.cell_value(row+1,c) for c in range (10,22,2)]

 prob_lk[row+1]=[data.cell_value(row+1,c) for c in range (11,23,2)]

 for i in range(len(stage_lk[row+1])):

 if stage_lk[row+1][i]=='':

 stage_lk[row+1][i]=0

 prob_lk[row+1][i]=0

 if stage_lk[row+1]==[0]*6 and lt_std[row+1]=='':

 stage_lk[row+1][0]=lt_av[row+1]

 prob_lk[row+1][0]=1

 if stage_lk[row+1]==[0]*6 and lt_std[row+1]!='':

 stage_lk[row+1][0]=lt_av[row+1]

 lt_var[row+1]=3*lt_std[row+1]

 for i in range(len(stage_lk[row+1])-1,0, -1):

 if stage_lk[row+1][i]==0:

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

48

 del stage_lk[row+1][i]

 lt_max[row+1]=max(stage_lk[row+1])

4) Matrices with the relation between stages.

#Arcs matrix. #Initial matrix dim(N*N) with all values equal zero

arc_matrix = [[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

#Arc_matrix (with all the arcs, relations between stages)

for i in range(1,len(arcs.col_values(0))):

 val_extra_1=arcs.cell_value(i,0)

 val_extra_2=arcs.cell_value(i,1)

arc_matrix[stages.values().index([val_extra_1,0])][stages.values().index([

val_extra_2,0])]=1

#Arc_matrix_aux1 (equal to arc_matrix)(arc_matrix_aux1 is an auxiliar

matrix)

arc_matrix_aux1 = [[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(1,len(arcs.col_values(0))):

 val_extra_1=arcs.cell_value(i,0)

 val_extra_2=arcs.cell_value(i,1)

arc_matrix_aux1[stages.values().index([val_extra_1,0])][stages.values().i

ndex([val_extra_2,0])]=1

5) Maximum Replenishment Time algorithm.

#Maximum Replenishment time. (excel order)

memory_del=[]

arc_matrix_rp=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

arc_matrix_aux=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_rp[i][j]=arc_matrix[i][j]

memory_del=[]

while (len(memory_del)!=N):

 for i in [x for x in xrange(N) if x not in memory_del]:

 if sum([arc_matrix_rp[j][i]==1 for j in range(N)])==0: #The algorithm

looks for columns with all zeros (no predecessors)

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

49

 M[i+1]=lt_av[i+1]+max(arc_matrix_aux[i])

 for j in range(N):

 if arc_matrix_rp[i][j]==1:

 arc_matrix_aux[j][i]=M[i+1] #The algorithm uses

arc_matrix_aux to create the Mmax (it would be the max of the row)

 arc_matrix_rp[i][j]=0

 memory_del=memory_del+[i]

6) Initial values for the limits. The service times limits are up to the

programmer. In this case, the limits have been fathomed from the

definition of maximum replenishment time and from the constraints 6a.

and 6b. In other cases, the range of possible values can be selected

using other criteria by the researcher.

for i in range(N):

 l[i+1]=0

 L[i+1]=0

 U[i+1]=M[i+1]-lt_av[i+1]

 if s_out_req[i+1]=='':

 u[i+1]=M[i+1]

 else:

 u[i+1]=min(s_out_req[i+1],M[i+1])

7) Demand propagation algorithm. The propagation is done as simple as

possible (more in Framework section).

arc_matrix_demand=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_demand[i][j]=arc_matrix[i][j]

memory_del=[]

while(arc_matrix_demand != [[0] * (len(arc_matrix)) for i in

range(len(arc_matrix_demand))]): #running until arc_matrix_demand

becomes zero

 for row in [x for x in xrange(len(arc_matrix_demand)) if x not in

memory_del]: #It selects row with no 1 (demand

nodes)

 if arc_matrix_demand[row] == ([0]*N):

 for i in range(len(arc_matrix_demand)):

 if arc_matrix_demand[i][row]==1:

 avgD[i+1]=avgD[i+1]+avgD[row+1]

 varD[i+1]=varD[i+1]+varD[row+1]

 memory_del=memory_del+[row]

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

50

#The zeros already treated are changed

 for aa in memory_del:

 for bb in range(len(arc_matrix_demand)):

 if arc_matrix_demand[bb][aa]==1:

 arc_matrix_demand[bb][aa]=0

8) Algorithms for other data variables.

#Supply nodes of the excel labeling

for i in range(N):

 if sum([arc_matrix[j][i]==1 for j in range(N)])==0: #if the column is all

zeros, then it is a supply node

 Vs_sin_ord=Vs_sin_ord+[i+1]

#Cumulative cost

memory_del=[]

arc_matrix_cc=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

arc_matrix_aux=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_cc[i][j]=arc_matrix[i][j]

memory_del=[]

while (len(memory_del)!=N):

 for i in [x for x in xrange(N) if x not in memory_del]:

 if sum([arc_matrix_cc[j][i]==1 for j in range(N)])==0:

 CC[i+1]=Cs[i+1]+sum(arc_matrix_aux[i])

 for j in range(N):

 if arc_matrix_cc[i][j]==1:

 arc_matrix_aux[j][i]=CC[i+1]

 arc_matrix_cc[i][j]=0

 memory_del=memory_del+[i]

#service level coefficient

#Calculation of the average service level coefficient (for those with no

value assigned)

count_service=0

sum_service=0

for k in range (N):

 if service[k+1]!='':

 count_service += 1

 sum_service += service[k+1]

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

51

#The average is assigned to those stages with no value assigned

for k in range (N):

 if service[k+1]=='':

 service[k+1]=sum_service/count_service

#Dictionary with z=normsinv(service)

for k in range(N):

 z[k+1]=norm.ppf(service[k+1])

9) Generation and labeling of the spanning tree. An acyclic network is not a

spanning tree. The arcs are ranked considering its associated cost (more

at Humair and Willems [2011]) to choose a spanning tree from the supply

chain. Once a minimum spanning tree is selected, the stages are labeled

taking into account the broken links. Finally, matrices are created to store

all the spanning tree information.

#Spanning tree

#Matrix with links and costs for choosing the spanning tree

arc_matrix_costs=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_costs[i][j]=arc_matrix[i][j]

#The associate arc (i,j) in A cost= -(Ci+Cj)*stdj

for i in range(len(arc_matrix_costs)):

 for j in range(len(arc_matrix_costs)):

 if arc_matrix_costs[i][j]==1 and CC[i+1]!=0 and CC[j+1]!=0:

 arc_matrix_costs[i][j]=-

100*(CC[i+1]+CC[j+1])*(math.sqrt(varD[j+1]))

#Generation of the spanning tree

X = csr_matrix(arc_matrix_costs)

Tcsr = minimum_spanning_tree(X)

arc_matrix_costs=Tcsr.toarray().astype(int)

#Matrix with the spanning tree

arc_matrix_st=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(len(arc_matrix_costs)):

 for j in range(len(arc_matrix_costs)):

 if arc_matrix_costs[i][j]!=0:

 arc_matrix_st[i][j]=1

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

52

#Matrix storing the links that have been broken for creating the spanning

tree

arc_matrix_brokenlinks=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_brokenlinks[i][j]=arc_matrix[i][j]-arc_matrix_st[i][j]

#Labeling the spanning tree in stages[i][1]

#Initial value for the counter

k=1

while(arc_matrix_st != [[0] * (len(arc_matrix)) for i in

range(len(arc_matrix_demand))]):

 for i in range(N):

 if sum(arc_matrix_st[i]) + sum([arc_matrix_st[j][i]==1 for j in

range(len(arc_matrix_st))])==1:

 stages[i+1][1]=k

 k=k+1

 for j in range(len(arc_matrix_st)):

 arc_matrix_st[j][i]=0

 arc_matrix_st[i]=[0]*(len(arc_matrix))

for i in range(k,len(arc_matrix_st)+1):

 for j in range(N):

 if stages[j+1][1]==0:

 stages[j+1][1]=k

 k=k+1

#Spanning tree ordered cost (spanning tree)

arc_matrix_ordered_cost=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(1,len(arcs.col_values(0))):

 val_extra_1=arcs.cell_value(i,0)

 val_extra_2=arcs.cell_value(i,1)

 for j in range(1,N+1):

 if stages[j][0]==val_extra_1:

 break

 for k in range(1,N+1):

 if stages[k][0]==val_extra_2:

 break

 arc_matrix_ordered_cost[stages[j][1]-1][stages[k][1]-

1]=arc_matrix_costs[j-1][k-1]

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

53

#The arc_matrix_st is saved again

arc_matrix_st=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(len(arc_matrix_costs)):

 for j in range(len(arc_matrix_costs)):

 if arc_matrix_costs[i][j]!=0:

 arc_matrix_st[i][j]=1

#The arc matrix ordered is generated and its corresponding spanning

tree

arc_matrix_ordered=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(1,len(arcs.col_values(0))):

 val_extra_1=arcs.cell_value(i,0)

 val_extra_2=arcs.cell_value(i,1)

 for j in range(1,N+1):

 if stages[j][0]==val_extra_1:

 break

 for k in range(1,N+1):

 if stages[k][0]==val_extra_2:

 break

 arc_matrix_ordered[stages[j][1]-1][stages[k][1]-1]=1

arc_matrix_ordered_st=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_ordered_st[i][j]=arc_matrix_ordered[i][j]

for i in range(N):

 for j in range(N):

 if arc_matrix_brokenlinks[i][j]==1:

 arc_matrix_ordered_st[stages[i+1][1]-1][stages[j+1][1]-1]=0

arc_matrix_ordered_brokenlinks=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_ordered_brokenlinks[i][j]=arc_matrix_ordered[i][j]-

arc_matrix_ordered_st[i][j]

10) Information about the stages after the spanning tree labeling.

#List with demand nodes

for k in range(N):

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

54

 if sum(arc_matrix_ordered[k])==0:

 Ve=Ve+[k+1]

#List with initial nodes (no predecessors)

for i in range(N):

 if sum([arc_matrix_ordered[j][i]==1 for j in range(N)])==0: #if the

column is all zeros, then it is a supply node

 Vs=Vs+[i+1]

#Relation between stages and spanning tree labeling

for i in stages:

 orderStages=orderStages+[stages[i][1]]

11) Expressions for the objective function.

#Safety stock

def SS(k,SI,S):

 posk=orderStages.index(k)

 if SI+lt_av[posk+1]-S>=0:

 return

z[posk+1]*math.sqrt(varD[posk+1])*math.sqrt(lt_av[posk+1]+SI-S)

 else:

 print 'no stock' #representa la rallita, not possible

#Pipeline stock

def PS(k):

 posk=orderStages.index(k)

 return lt_av_decimal[posk+1]*avgD[posk+1]

#Cost function

def cost(k,SI,S):

 posk=orderStages.index(k)

 if SI+lt_av[posk+1]-S>=0:

 return CC[posk+1]*SS(k,SI,S)

 else:

 return 'no cost'

12) and g mean the

same as and g in the first appendix.

The difference remains in the limits. In this program, the limits are also

an input for the functions due that depending on which iteration of the

routine the functions are called, then the limits are modified to calculate

the cost.

def f(k,S,stageInfo,L,U,a,Sh):

 SIResults=[]

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

55

 ZResultF=[]

 posk=orderStages.index(k)

 if a!=0:

 simin=int(max(Sh+1,L[posk+1],S-lt_av[posk+1]))

 else:

 simin=int(max(L[posk+1],S-lt_av[posk+1]))

 for si in range(simin,int(M[posk+1]-lt_av[posk+1]+1)):

 cF=cost(k,si,S)

 prevF=0.0

 nextF=0.0

 for i in range(k):

 m1=[]

 if arc_matrix_ordered_st[i][k-1]==1:

 listNF=stageInfo[i+1]

 listS=[]

 for nf in range(len(listNF)):

 listS=listS+[listNF[nf][2]]

 for nf in range(len(listNF)):

 if listNF[nf][2]<=si and listNF[nf][2]>=0:

 m1=m1+[listNF[nf][0]]

 elif si>max(listS):

 m1=m1+[float("inf")]

 if m1!=[]:

 Min1=min(m1)

 prevF=prevF+Min1

 for j in range(k):

 m2=[]

 if arc_matrix_ordered_st[k-1][j]==1:

 posj=orderStages.index(j+1)

 listNF=stageInfo[j+1]

 listSI=[]

 for nf in range(len(listNF)):

 listSI=listSI+[listNF[nf][1]]

 for nf in range(len(listNF)):

 if listNF[nf][1]>=S and listNF[nf][1]<=(M[posj+1]-

lt_av[posj+1]):

 m2=m2+[listNF[nf][0]]

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

56

 elif S>max(listSI):

 m2=m2+[float("inf")]

 if m2!=[]:

 Min2=min(m2)

 nextF=nextF+Min2

 ResultF=cF+prevF+nextF

 SIResults=SIResults+[(ResultF,si,S)]

 ZResultF=ZResultF+[ResultF]

 ResultFinalF=min(ZResultF)

 PosResultFinalF=ZResultF.index(ResultFinalF)

TupleFinalF=[(ResultFinalF,SIResults[PosResultFinalF][1],SIResults[Pos

ResultFinalF][2])]

 return TupleFinalF

def g(k,SI,stageInfo,l,u,a,Sh):

 SResults=[]

 ZResultG=[]

 posk=orderStages.index(k)

 smax=min(SI+lt_av[posk+1]+1,M[posk+1]+1)

 if k==a and k not in Ve:

 smax=min(Sh+1,SI+lt_av[posk+1]+1)

 #smax=min(Sh+1,s_out_req[posk+1]+1,SI+lt_av[posk+1]+1)

 if k==a and k in Ve:

 smax=min(s_out_req[posk+1]+1,Sh+1,SI+lt_av[posk+1]+1)

 if k in Ve:

 smax=min(s_out_req[posk+1]+1,SI+lt_av[posk+1]+1)

 for s in range(int(l[posk+1]),int(smax)):

 cG=cost(k,SI,s)

 prevG=0.0

 nextG=0.0

 for i in range(k):

 m1=[]

 if arc_matrix_ordered_st[i][k-1]==1:

 listNG=stageInfo[i+1]

 listS=[]

 for nf in range(len(listNG)):

 listS=listS+[listNG[nf][2]]

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

57

 for nf in range(len(listNG)):

 if listNG[nf][2]<=SI and listNG[nf][2]>=0:

 m1=m1+[listNG[nf][0]]

 elif SI>max(listS):

 m1=m1+[float("inf")]

 if m1!=[]:

 Min1=min(m1)

 prevG=prevG+Min1

 for j in range(k):

 m2=[]

 if arc_matrix_ordered_st[k-1][j]==1:

 posj=orderStages.index(j+1)

 listNG=stageInfo[j+1]

 listSI=[]

 for nf in range(len(listNG)):

 listSI=listSI+[listNG[nf][1]]

 for nf in range(len(listNG)):

 if listNG[nf][1]>=s and listNG[nf][1]<=(M[posj+1]-

lt_av[posj+1]):

 m2=m2+[listNG[nf][0]]

 elif s>max(listSI):

 m2=m2+[float("inf")]

 if m2!=[]:

 Min2=min(m2)

 nextG=nextG+Min2

 ResultG=cG+prevG+nextG

 SResults=SResults+[(ResultG,SI,s)]

 ZResultG=ZResultG+[ResultG]

 ResultFinalG=min(ZResultG)

 PosResultFinalG=ZResultG.index(ResultFinalG)

TupleFinalG=[(ResultFinalG,SResults[PosResultFinalG][1],SResults[Pos

ResultFinalG][2])]

 return TupleFinalG

13) means the same as However, in this

occasion the limits for the decision variables are an input.

def model(l,u,L,U):

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

58

 stageInfo={}

 for k in range(N):

 posk=orderStages.index(k+1)

 if (k+1)!= N: #all stages calculation

 TupleStage=[] #where I will store the results for each node

 for j in range(N):

 if k<j:

 if arc_matrix_ordered_st[k][j]==1:

 for S in range(int(l[posk+1]),int(u[posk+1]+1)):

 TupleStage=TupleStage+f(k+1,S,stageInfo,L,U,0,0)

 stageInfo[k+1]=TupleStage

 if arc_matrix_ordered_st[j][k]==1:

 for SI in range(int(L[posk+1]),int(U[posk+1]+1)):

 TupleStage=TupleStage+g(k+1,SI,stageInfo,l,u,0,0)

 stageInfo[k+1]=TupleStage

 else:

 LastTupleStage=[]

 for SI in range(int(L[posk+1]),int(U[posk+1]+1)):

 LastTupleStage=LastTupleStage+g(k+1,SI,stageInfo,l,u,0,0)

 stageInfo[k+1]=LastTupleStage

 return stageInfo

14) and do

the same work as . They are used instead of

 when the routine calls one of the methods to solve the

problem including the broken links by reducing the domain of solution

changing the range of the limits.

def upper(stageOpt,l,u,L,U,a,b,Sh):

 stageInfoU={}

 for k in range(N):

 posk=orderStages.index(k+1)

 if (k+1)!= N: #all stages calculation

 TupleStage=[] #where I will store the results for each node

 for j in range(N):

 if k<j:

 if arc_matrix_ordered_st[k][j]==1:

 if (k+1)==a:

 Smax=min(u[posk+1]+1,Sh+1)

 else:

 Smax=int(u[posk+1]+1)

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

59

 for S in range(int(l[posk+1]),Smax):

 TupleStage=TupleStage+f(k+1,S,stageInfoU,L,U,0,0)

 stageInfoU[k+1]=TupleStage

 if arc_matrix_ordered_st[j][k]==1:

 for SI in range(int(L[posk+1]),int(U[posk+1]+1)):

 TupleStage=TupleStage+g(k+1,SI,stageInfoU,l,u,a,Sh)

 stageInfoU[k+1]=TupleStage

 else:

 LastTupleStage=[]

 for SI in range(int(L[posk+1]),int(U[posk+1]+1)):

LastTupleStage=LastTupleStage+g(k+1,SI,stageInfoU,l,u,a,Sh)

 stageInfoU[k+1]=LastTupleStage

 return stageInfoU

def lower(stageOpt,l,u,L,U,a,b,Sh):

 stageInfo={}

 sucA=[]

 for i in range(N):

 if arc_matrix_ordered[a-1][i]==1:

 sucA=sucA+[i+1]

 for k in range(N):

 posk=orderStages.index(k+1)

 if (k+1)!= N: #all stages calculation

 TupleStage=[] #where I will store the results for each node

 for j in range(N):

 if k<j:

 if arc_matrix_ordered_st[k][j]==1:

 for S in range(int(l[posk+1]),int(u[posk+1]+1)):

 if (k+1) in sucA:

 TupleStage=TupleStage+f(k+1,S,stageInfo,L,U,a,Sh)

 else:

 TupleStage=TupleStage+f(k+1,S,stageInfo,L,U,0,0)

 stageInfo[k+1]=TupleStage

 if arc_matrix_ordered_st[j][k]==1:

 if k+1 in sucA:

 simin=max(Sh+1,L[posk+1])

 else:

 simin=int(L[posk+1])

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

60

 for SI in range(simin,int(U[posk+1])+1):

 TupleStage=TupleStage+g(k+1,SI,stageInfo,l,u,0,0)

 stageInfo[k+1]=TupleStage

 else:

 LastTupleStage=[]

 if N==b:

 simin=max(Sh+1,L[posk+1])

 else:

 simin=int(L[posk+1])

 for SI in range(simin,int(U[posk+1])+1):

 LastTupleStage=LastTupleStage+g(k+1,SI,stageInfo,l,u,0,0)

 stageInfo[k+1]=LastTupleStage

 return stageInfo

15) is another method called by the routine to fix the

problem of including that the broken links also fulfill the constraints.

def S_hat(stageOpt):

 S_set1={}

 S_s1={}

 SI_si1={}

 for k in range(N):

 S_s1[k+1]=stageOpt[k+1][2]

 for i in range(N):

 SAlternatives=[0]

 for j in range(N):

 if arc_matrix_ordered[j][i]==1:

 SAlternatives=SAlternatives+[S_s1[j+1]]

 m=max(SAlternatives)

 SI_si1[i+1]=m

 costStages={}

 S_cost=0.0

 for k in range(N):

 costStages[k+1]=cost(k+1,SI_si1[k+1],S_s1[k+1])

 S_cost=S_cost+costStages[k+1]

 for k in range(N):

 S_set1[k+1]=(costStages[k+1],SI_si1[k+1],S_s1[k+1])

 return S_cost,S_set1

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

61

16) The function investigates how many arcs from

the broken connections to form the spanning tree do not accomplish all

the constraints. The output of the function is then the number of broken

restrictions and the broken connections.

def broken(Zopt,stageOpt):

 #number of brokenlinks

 count=0

 brokenL=[]

 for i in range(N):

 for j in range(N):

 if arc_matrix_ordered_brokenlinks[i][j]==1 and

stageOpt[i+1][2]>stageOpt[j+1][1]:

 count=count+1

 brokenL=brokenL+[(i+1,j+1)]

 return count,brokenL

17) Routine. The main tool of it is the dynamic process. First, it uses the

model function to generate the first solution for the created spanning tree

chain. Then, it checks if there is any constraint not true for any of the

arcs of the whole network. If the result of the test is zero, the program

finishes and displays the optimal solution. Otherwise, the next step is to

call three different methods to find different solutions until there is no

broken constraint. The routine always keep the best solution so far in the

variable Zbest that should be initiated at an infinite number or big number

such 10 000 000 000 000.

def R(Zbest):

 #step2

 stageInfo=model(l,u,L,U)

 Zopt,stageOpt=backtrack(stageInfo)

 #step3

 if Zopt>=Zbest or Zopt==float("inf"):

 return float("inf")

 #info links

 count,brokenL=broken(Zopt,stageOpt)

 iteration=1

 #step4

 while True:

 if count==0:

 Zbest=Zopt

 S_set={}

 for k in range(N):

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

62

 S_set[k+1]=stageOpt[k+1][1:]

 break

 else:

 #step5

 #info S_hat

 S_cost,S_set1=S_hat(stageOpt)

 if S_cost<Zbest:

 Zbest=S_cost

 #choose a link (j,i)

 #choose the brokenlink with the least associated cost

 #the associate arc (j,i) in A cost= -(Cj+Ci)*stdi

 cost_broken=[]

 Cost_min=0.0

 for bc in brokenL:

 posbc0=orderStages.index(bc[0])

 posbc1=orderStages.index(bc[1])

 cost_broken=cost_broken+[-

(CC[posbc0+1]+CC[posbc1+1])*math.sqrt(varD[posbc1+1])]

 Cost_min=min(cost_broken)

 posCost=cost_broken.index(Cost_min)

 a=brokenL[posCost][0] #j

 b=brokenL[posCost][1] #i

 Sh=stageOpt[b][1]+int((stageOpt[a][2]-stageOpt[b][1])/2)

 print a,b,Sh

 #upperbound

 stageInfoU=upper(stageOpt,l,u,L,U,a,b,Sh)

 SetU={}

 ZoptU,stageOptU=backtrack(stageInfoU)

 for k in range(N):

 SetU[k+1]=stageOptU[k+1]

 #lowerbound

 stageInfoL=lower(stageOpt,l,u,L,U,a,b,Sh)

 SetL={}

 ZoptL,stageOptL=backtrack(stageInfoL)

 for k in range(N):

 SetL[k+1]=stageOptL[k+1]

 Zmin=min(S_cost,ZoptU,ZoptL)

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

63

 if Zmin==S_cost:

 Zopt=S_cost

 stageOpt=S_set1

 print 'Sfirst'

 elif Zmin==ZoptU:

 Zopt=ZoptU

 stageOpt=SetU

 posa=orderStages.index(a)

 if Sh<=u[posa+1]:

 u[posa+1]=Sh

 print 'upper'

 else:

 Zopt=ZoptL

 stageOpt=SetL

 posb=orderStages.index(b)

 print b, posb

 if Sh>=L[posb+1]:

 L[posb+1]=Sh+1

 print 'lower'

 print L

 print Zopt,stageOpt

 #info links

 count,brokenL=broken(Zopt,stageOpt)

 iteration=iteration+1

 print count

 print iteration

 print 'final'

 return Zopt,stageOpt

18) is a tool to calculate the number of stage with safety

stock and the total safety stock in the network.

def Nss(stageOpt):

 totalSS=0.0

 Nss=0

 for i in range(N):

 print i+1, SS(i+1,stageOpt[i+1][1],stageOpt[i+1][2])

 totalSS=totalSS+SS(i+1,stageOpt[i+1][1],stageOpt[i+1][2])

 if SS(i+1,stageOpt[i+1][1],stageOpt[i+1][2])!=0:

 Nss=Nss+1

 return Nss,totals

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

64

19) To run the program and obtain the outputs.

Zopt,stageOpt=R(11111111111111111)

Nss,totalSS=Nss(stageOpt)

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

65

Appendix 3

Algorithms

Algorithm for Spanning tree (copied from Graves and Willems [2000])

 Labeling the nodes

The algorithm for labeling or re-numbering the nodes is as follows:

1. Start with all nodes in the unlabeled set, .

2. Set k:=1.

3. Find a node such that the node is adjacent to at most one other

node in . That is, the degree of node is 0 or 1 in the subgraph with

node set and arc set defined on .

4. Remove node from set and insert into the ñabeled set ; label node

with index .

5. Stop if is empty: otherwise set and repeat steps 3 - 4.

Node has no adjacent nodes with larger labels.

 Dynamic program

1. For to

2. If is downstream of , evaluate for .

3. If is upstream of , evaluate for .

4. For evaluate for .

5. Minimize for to obtain the optimal objective

function value.

From the optimal objective function, the optimal set of service times can be

found by the standard backtracking procedure for a dynamic program.

The expression for the cost in each stage is:

Where:

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

66

The General Network Algorithm (copied from Humair and Willems [2011])

 : Lead time production. It is change the letter to not confuse it with the limits

in the constraints.

Routine R (arguments

)

Step 1: Let

 be the subset of constraints in that correspond to , i.e., drop

all constraints from that correspond to links not in . Call the problem of

optimizing the cost function of subject to

.

Step 2: Use SDP’ to obtain an optimal solution to . Let be the optimal

value of , and the optimal solution if one exists.

Step 3: If or , return for the cost.

Step 4: Else, if satisfies the constraints in

, set and return , .

Step 5: Else, does not satisfy the constraints in

. Let equal the cost of

the solution , which has
 , and for all stages . If ,

set ; otherwise, leave unchanged. Then carry out the steps below.

(a) Choose a link for which

 , i.e., a constraint in

 is

violated. Let

 .

(b) Carry out the Upperbound and Lowerbound steps below in order.

Upperbound: Let be the solution returned by R for arguments

, and the updated constraint set .

Lowerbound: Let be the solution returned by R for arguments

, and the updated constraint set .

Return and the associated solution (breaking any tie arbitrarily).

 Arguments and limits

SDP: Solving the problem P with a dynamic program.

SDP’: Solving the problem P’ with a dynamic program.

 : Set of constraint.

 : Set of inbound and outbound service times, the decision

variables for P’ and P.

 : Best solution so far.

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

67

 : Spanning tree.

Problem P’ is the same as P with two extra constraints:

Function and are redefined taking into account the above

constraints:

If and , then if , , or if .

Otherwise, for .

If and , then if , , or if .

Otherwise, for .

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

68

Appendix 4

Program for the robust optimization

from gurobipy import *

import math

import xlrd

import xlwt

from scipy.stats import norm

book = xlrd.open_workbook("C:\Users\Pablo\Desktop\MSOM-06-038-R2-

modified.xls")

arcs=book.sheet_by_name("09_LL")

data=book.sheet_by_name("09_SD")

R=5000

results = xlwt.Workbook()

r_example = results.add_sheet("Example1", cell_overwrite_ok=True)

model = Model("5stage")

#Indexes

N=len(data.col_values(0))-1

arc_matrix = [[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)] #Initial matrix dim(N*N) with all values equal

zero

stages={}

avgD = {} #mean demand

varD = {} #variance of demand

stdD = {}

h_add = {} #holding cost

service = {} #service level

z_lev={} #normsinv(service)

lt_av = {} #lead time mean

lt_av_decimal = {}

lt_var = {} #var lead time

m={} #replenishment time

s_out_req={}

Ve=[]

Vs=[]

gamma = {}

stage_lk={}

prob_lk={}

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

69

lt_max={}

lt_min={}

lt_average={}

for row in range(N):

 stages[row+1]= [data.cell_value(row+1,0), 0]

 h_add[row+1]= data.cell_value(row+1,1)

 avgD[row+1]= data.cell_value(row+1,4)

 stdD[row+1]= data.cell_value(row+1,5)

 service[row+1]=data.cell_value(row+1,7)

 lt_average[row+1]=data.cell_value(row+1,8)

 lt_av[row+1]=data.cell_value(row+1,8)

 if (lt_av[row+1]/0.5)%2==1:

 lt_av[row+1]=lt_av[row+1]-0.01

 lt_av[row+1]=round(lt_av[row+1])

 lt_av_decimal[row+1]=data.cell_value(row+1,8)

 s_out_req[row+1]=data.cell_value(row+1,6)

 if avgD[row+1]=='':

 avgD[row+1]=0

 stdD[row+1]=0

 varD[row+1]= stdD[row+1]**2

 gamma[row+1]=0

#Arc_matrix (with all the arcs relation)

for i in range(1,len(arcs.col_values(0))):

 val_extra_1=arcs.cell_value(i,0)

 val_extra_2=arcs.cell_value(i,1)

arc_matrix[stages.values().index([val_extra_1,0])][stages.values().index([val_ext

ra_2,0])]=1

 #Demand propagation (average and variance)

#Arc_matrix_demand will be modified during the algorithm

arc_matrix_demand=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_demand[i][j]=arc_matrix[i][j]

memory_del=[]

while(arc_matrix_demand != [[0] * (len(arc_matrix)) for i in

range(len(arc_matrix_demand))]): #running until arc_matrix_demand

becomes zero

 for row in [x for x in xrange(len(arc_matrix_demand)) if x not in memory_del]:

#It selects row with no 1 (demand nodes)

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

70

 if arc_matrix_demand[row] == ([0]*N):

 for i in range(len(arc_matrix_demand)):

 if arc_matrix_demand[i][row]==1:

 avgD[i+1]=avgD[i+1]+avgD[row+1]

 varD[i+1]=varD[i+1]+varD[row+1]

 memory_del=memory_del+[row]

 for aa in memory_del:

 for bb in range(len(arc_matrix_demand)):

 if arc_matrix_demand[bb][aa]==1:

 arc_matrix_demand[bb][aa]=0

for i in range(N):

 stdD[i+1]=math.sqrt(varD[i+1])

 #Net replenishment propagation

m={}

memory_del=[]

arc_matrix_rp=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

arc_matrix_aux=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_rp[i][j]=arc_matrix[i][j]

memory_del=[]

while (len(memory_del)!=N):

 for i in [x for x in xrange(N) if x not in memory_del]:

 if sum([arc_matrix_rp[j][i]==1 for j in range(N)])==0: #Columns with all

zeros (no predecessors)

 m[i+1]=lt_av[i+1]+max(arc_matrix_aux[i])

 for j in range(N):

 if arc_matrix_rp[i][j]==1:

 arc_matrix_aux[j][i]=m[i+1] #Arc_matrix_aux is used to create the

Mmax (it would be the max of the row)

 arc_matrix_rp[i][j]=0

 memory_del=memory_del+[i]

 #Holding cost calculation

h={}

memory_del=[]

arc_matrix_rp=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

71

arc_matrix_aux=[[0] * (len(data.col_values(0))-1) for i in

range(len(data.col_values(0))-1)]

for i in range(N):

 for j in range(N):

 arc_matrix_rp[i][j]=arc_matrix[i][j]

memory_del=[]

while (len(memory_del)!=N):

 for i in [x for x in xrange(N) if x not in memory_del]:

 if sum([arc_matrix_rp[j][i]==1 for j in range(N)])==0: #Columns with all

zeros (no predecessors)

 h[i+1]=h_add[i+1]+sum(arc_matrix_aux[i])

 for j in range(N):

 if arc_matrix_rp[i][j]==1:

 arc_matrix_aux[j][i]=h[i+1] #Arc_matrix_aux is used to create the

Mmax (it would be the max of the row)

 arc_matrix_rp[i][j]=0

 memory_del=memory_del+[i]

#Service level coefficient

#Calculation of the average service level coefficient (for those with no value

assigned)

count_service=0

sum_service=0

for k in range (N):

 if service[k+1]!='':

 count_service += 1

 sum_service += service[k+1]

#The average is assigned to those stages with no value assigned

for k in range (N):

 if service[k+1]=='':

 service[k+1]=sum_service/count_service

#Dictionary with z=normsinv(service)

for k in range(N):

 z_lev[k+1]=norm.ppf(service[k+1])

#Lineal approximation

M={}

alpha={}

f={}

for i in range(N):

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

72

 for r in range (R+1):

 M[r,i+1]=0.03*r

for i in range(N):

 for r in range(R):

 alpha[r+1,i+1]=(z_lev[i+1]*stdD[i+1])*((math.sqrt(M[r+1,i+1])-

math.sqrt(M[r,i+1])))/(M[r+1,i+1]-M[r,i+1])

 f[r+1,i+1]=(z_lev[i+1]*stdD[i+1])*((M[r+1,i+1]*math.sqrt(M[r,i+1])-

M[r,i+1]*math.sqrt(M[r+1,i+1]))/(M[r+1,i+1]-M[r,i+1]))

#Decision Variables

s_in={}

s_out={}

x={}

z={}

u={}

#a & b extra are used to include the summatories in the constraints

a_extra={}

b_extra={}

for i in range(N):

 s_in[i+1] = model.addVar(lb=0.0, ub=m[i+1]-lt_av[i+1], vtype="I",

name="s_in[%s]"%((i+1)))

 s_out[i+1] = model.addVar(lb=0.0, ub=m[i+1], vtype="I",

name="s_out[%s]"%((i+1)))

 x[i+1] = model.addVar(lb=0.0, vtype="I", name="x[%s]"%((i+1)))

 a_extra[i+1] = model.addVar(lb=0.0, vtype="C", name="a[%s]"%((i+1)))

 b_extra[i+1] = model.addVar(lb=0.0, vtype="C", name="b[%s]"%((i+1)))

for i in range(N):

 for r in range(R):

 z[r+1,i+1] = model.addVar (lb=0.0, vtype="I", name="z[%s,%s]"%(r+1,i+1))

 u[r+1,i+1] = model.addVar (vtype="B", name="u[%s,%s]"%(r+1,i+1))

for i in range(N):

 if sum([arc_matrix[j][i]==1 for j in range(N)])==0:

 s_in[i+1]=0

 Vs=Vs+[i+1]

for k in range(N):

 if sum(arc_matrix[k])==0:

 Ve=Ve+[k+1]

model.update()

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

73

#Constraint 8a

for i in range(N):

 a_extra[i+1]=0

for i in range(N):

 for r in range(R):

 a_extra[i+1]=z[r+1,i+1]+a_extra[i+1]

for i in range(N):

 model.addConstr(x[i+1],"=", a_extra[i+1])

#Constraint 8b.

for i in range(N):

 for r in range(R):

 model.addConstr(M[r,i+1]*u[r+1,i+1],"<=", z[r+1,i+1])

for i in range(N):

 for r in range(R):

 model.addConstr(z[r+1,i+1],"<=", M[r+1,i+1]*u[r+1,i+1])

#Constraint 8c. and 8d.

for i in range(N):

 b_extra[i+1]=0

for i in range(N):

 for r in range(R):

 b_extra[i+1]=b_extra[i+1]+u[r+1,i+1]

for i in range(N):

 model.addConstr(b_extra[i+1],"<=",1)

#Constraint 8e.

for i in range(len(Ve)):

 a=Ve[i]

 model.addConstr(s_out[a],"<=",s_out_req[a])

#In supply nodes, SI=0 (by convention)

for i in range(len(Vs)):

 a=Vs[i]

 model.addConstr(s_in[a],"=",0)

#Constraint 8g.

for i in range(N):

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

74

 for j in range(N):

 if arc_matrix[i][j] ==1:

 model.addConstr(s_in[j+1],">=",s_out[i+1])

for i in range(N):

 model.addConstr(x[i+1],">=",s_in[i+1]-s_out[i+1]+lt_av[i+1])

#Constraints 8h., 8i. and 8j included in the declaration of variables

#Objective function

exp={}

cost=0

for i in range(N):

 exp[i+1]=0

for i in range(N):

 for r in range(R):

 exp[i+1]=exp[i+1]+(f[r+1,i+1]*u[r+1,i+1]+alpha[r+1,i+1]*z[r+1,i+1])

for i in range(N):

 cost=cost+h[i+1]*exp[i+1]

model.setObjective(cost,GRB.MINIMIZE)

model.update()

model.optimize()

model.printAttr('x')

safety={}

safety_new={}

cost_st={}

cost_st_stock={}

safety_total=0

pipeline_st={}

pipeline_total=0

cost_total_stock=0

cost_total=0

for i in range(N):

 safety[i+1]=math.sqrt(x[i+1].X)*stdD[i+1]*z_lev[i+1]

 pipeline_st[i+1]=lt_av_decimal[i+1]*avgD[i+1]

 cost_st[i+1]=h[i+1]*safety[i+1]

 cost_st_stock[i+1]=h[i+1]*(safety[i+1]+pipeline_st[i+1])

for i in range(N):

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

75

 cost_total=cost_total+cost_st[i+1]

 cost_total_stock=cost_total_stock+cost_st_stock[i+1]

 safety_total=safety_total+safety[i+1]

 pipeline_total=pipeline_total+pipeline_st[i+1]

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

76

Appendix 5

Program for optimizing the safety stock placement in General Acyclic

Chains under random lead time

The necessaries changes to adapt Appendix 2 for contemplating random lead

time are exposed next.

1) Statistics of the positive shortfall (

).

def H1(n3,k): #k follows the new numeration of the nodes, spanning tree

numeration

 posk=orderStages.index(k)

 stage_lk=[data.cell_value(posk+1,c) for c in range (10,22,2)]

 prob_lk=[data.cell_value(posk+1,c) for c in range (11,23,2)]

 for i in range(len(stage_lk)):

 if stage_lk[i]=='':

 stage_lk[i]=0

 prob_lk[i]=0

 if stage_lk==[0]*6:

 stage_lk[0]=lt_av[posk+1]

 prob_lk[0]=1

 sum1=0

 for j in range(len(stage_lk)):

 if stage_lk[j]<=n3:

 sum1+=prob_lk[j]

 #For the case the distribution is continuous

 if lt_std[posk+1]!=0 and prob_lk[0]==1 and sum(prob_lk[1:])==0:

 sumI=integrate.quad(lambda x: (norm.pdf(x, lt_av[posk+1],

lt_std[posk+1])), 0, n3)

 sum1=sumI[0]

 if sum1<0:

 sum1=0

 if sum1<0.1:

 sum1=0

 return sum1

#H2=Expected value of lead time when nrlt k(t) is non-negative [SAFETY

STOCK IS NEEDED]

def H2(n4,k):

 posk=orderStages.index(k)

 stage_lk=[data.cell_value(posk+1,c) for c in range (10,22,2)]

 prob_lk=[data.cell_value(posk+1,c) for c in range (11,23,2)]

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

77

 for i in range(len(stage_lk)):

 if stage_lk[i]=='':

 stage_lk[i]=0

 prob_lk[i]=0

 if stage_lk==[0]*6:

 stage_lk[0]=lt_av[posk+1]

 prob_lk[0]=1

 new_lt=[]

 new_prob_lt=[]

 for i in range(6):

 if stage_lk[i]>n4: #*Bigger than n4. Different value from the paper,

the equal is not included. In the limits was problematic with the equal.

 new_lt=new_lt+[stage_lk[i]]

 new_prob_lt=new_prob_lt+[prob_lk[i]]

 prod2=[]

 sum2=0.0

 prod2=[a*b for a,b in zip(new_lt,new_prob_lt)]

 for i in prod2:

 sum2+=i

 if lt_std[posk+1]!=0 and prob_lk[0]==1 and sum(prob_lk[1:])==0:

 sumI=integrate.quad(lambda x: x*norm.pdf(x, lt_av[posk+1],

lt_std[posk+1]), n4, np.inf)

 sum2=sumI[0]

 if sum2<0:

 sum2=0

 if sum2<0.1:

 sum2=0

 return sum2

#H3=not statistical meaning

def H3(n5,k):

 posk=orderStages.index(k)

 stage_lk=[data.cell_value(posk+1,c) for c in range (10,22,2)]

 prob_lk=[data.cell_value(posk+1,c) for c in range (11,23,2)]

 for i in range(len(stage_lk)):

 if stage_lk[i]=='':

 stage_lk[i]=0

 prob_lk[i]=0

 if stage_lk==[0]*6:

 stage_lk[0]=lt_av[posk+1]

 prob_lk[0]=1

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

78

 new_lt=[]

 new_prob_lt=[]

 for i in range(6):

 if stage_lk[i]>n5: #*Bigger than n5. Different value from the paper,

the equal is not included. In the limits was problematic with the equal.

 new_lt=new_lt+[stage_lk[i]]

 new_prob_lt=new_prob_lt+[prob_lk[i]]

 stage_lt2=new_lt

 elev2=[a*b for a,b in zip(new_lt,stage_lt2)]

 prod3=[c*d for c,d in zip(elev2,new_prob_lt)]

 sum3=0.0

 for i in prod3:

 sum3=sum3+i

 if lt_std[posk+1]!=0 and prob_lk[0]==1 and sum(prob_lk[1:])==0:

 sumI=integrate.quad(lambda x: x*x*norm.pdf(x, lt_av[posk+1],

lt_std[posk+1]), n5, np.inf)

 sum3=sumI[0]

 if sum3<0:

 sum3=0

 if sum3<0.1:

 sum3=0

 return sum3

2) Expected value and variance of the positive part of the NRLT when

def Q(n1,k):

 q=H2(n1,k)-n1*(1-H1(n1,k))

 return q

def RR(n2,k):

 r=(n2**2)*H1(n2,k)*(1-H1(n2,k))-2*n2*H1(n2,k)*H2(n2,k)+H3(n2,k)-

(H2(n2,k))**2

 return r

3) Expressions for the objective function.

def SS(k,SI,S):

 posk=orderStages.index(k)

 par=S-SI

 if lt_std[posk+1]==0: #deterministic case

 NRLT=SI+lt_av[posk+1]-S

 if NRLT>=0:

How to deal correctly with Lead Time in a Supply Chain - Appendix
Keio University, March 2017

79

 ss=z[posk+1]*math.sqrt(varD[posk+1])*math.sqrt(NRLT)

 else:

 ss=0

 else:

 if par<0:

 ss=z[posk+1]*math.sqrt(((lt_av[posk+1]+SI-

S)*varD[posk+1])+avgD[posk+1]*avgD[posk+1]*lt_std[posk+1]*lt_std[pos

k+1])

else:

ss=z[posk+1]*math.sqrt((Q(par,k))*varD[posk+1]+((avgD[posk+1]

)**2)*RR(par,k))

 return ss

def EARLY(k,SI,S):

 posk=orderStages.index(k)

 par=max(0,S-SI)

 if par!=0:

 early=avgD[posk+1]*(Q(par,k)-lt_av[posk+1]+par)

 else:

 early=0

 return early

#cost function

def cost(k,SI,S):

 posk=orderStages.index(k)

 return CC[posk+1]*(SS(k,SI,S)+EARLY(k,SI,S))

