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A B S T R A C T

Validated computer simulations of the airflow and particle dynamics in human nasal cavities are
important for local, segmental and total deposition predictions of both inhaled toxic and ther-
apeutic particles. Considering three, quite different subject-specific nasal airway configurations,
micron-particle transport and deposition for low-to-medium flow rates have been analyzed. Of
special interest was the olfactory region from which deposited drugs could readily migrate to the
central nervous system for effective treatment. A secondary objective was the development of a
new dimensionless group with which total particle deposition efficiency curves are very similar
for all airway models, i.e., greatly reducing the impact of intersubject variability. Assuming dilute
particle suspensions with inhalation flow rates ranging from 7.5 to 20 L/min, the airflow and
particle-trajectory equations were solved in parallel with the in-house, multi-purpose Alya pro-
gram at the Barcelona Supercomputing Center. The geometrically complex nasal airways gen-
erated intriguing airflow fields where the three subject models exhibit among them both similar
as well as diverse flow structures and wall shear stress distributions, all related to the coupled
particle transport and deposition. Nevertheless, with the new Stokes-Reynolds-number group,
Stk Re1.23 1.28 , the total deposition-efficiency curves for all three subjects and flow rates almost
collapsed to a single function. However, local particle deposition efficiencies differed sig-
nificantly for the three subjects when using particle diameters dp = 2, 10, and m20 μ . Only one of
the three subject-specific olfactory regions received, at relatively high values of the inertial
parameter d Qp

2 , some inhaled microspheres. Clearly, for drug delivery to the brain via the ol-
factory region, a new method of directional inhalation of nanoparticles would have to be im-
plemented.

1. Introduction

The pulmonary route for direct drug-aerosol delivery is an attractive approach to combat brain or lung diseases or to reach
systemic regions. Of great potential is optimal targeting of solid tumors or severely inflamed areas with multifunctional particles
promising lower side-effects and costs than other treatment options, such as chemotherapy or radiation (Kleinstreuer,
Feng, & Childress, 2014; Kolanjiyil & Kleinstreuer, 2016; Kolanjiyil, Kleinstreuer, & Sadikot, 2016). For example, intranasal direct
drug delivery is being considered as a possible and effective route to deliver vaccines, insulin, and medication for treating various
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diseases and disorders affecting the central nervous system (Illum, 2000; Illum, Tsuda, & Gehr, 2015; Mistry, Stolnik, & Illum, 2009).
In case of intranasal drug delivery, it is quite challenging for the inhaled drugs to reach the olfactory region with the possibility of
crossing the blood-brain barrier in order to reduce/eliminate brain tumors or to maximize the impact on the central nervous system
(Dhuria, Hanson, & Frey, 2010; Thorne, Emory, Ala, & Frey, 1995). Even though intranasal delivery provides greater advantages, the
drug-amount actually reaching the brain is quite low, but possibly higher than intravenous administration (Garcia,
Schroeter, & Kimbell, 2015; Schroeter, Kimbell, & Asgharian, 2006; Thorne et al., 1995; Thorne, Pronk, Padmanabhan, & Frey, 2004).
Clearly, intranasal targeted drug delivery to a specific location could improve delivery efficiency (Inthavong, Tian, Tu, Yang, & Xue,
2008; Shi, 2007; Shi, Kleinstreuer, & Zhang, 2008, 2007). In general, high particle deposition at any predetermined site depends
largely on the given airway geometry as well as the fluid-particle inlet conditions, including the breathing mode and the type of
inhaler employed (Keeler, Patki, Woodard, & Frank-Ito, 2016; Schroeter et al., 2006; Segal, Kepler, & Kimbell, 2008). The complex
geometrical structure of the nasal cavity makes it difficult to predict the airflow and aerosol transport (Schroeter, Garcia, & Kimbell,
2010). Additionally, the geometrical variability among individuals raises significant challenges in developing efficient drug delivery
devices (Garcia, Tewksbury, Wong, & Kimbell, 2009; Inthavong et al., 2008; Kimbell et al., 2007; Leong, Chen, Lee, &Wang, 2010).

Deposition of inhaled aerosols in human nasal cavity has been extensively studied using in vivo (Bennett & Zeman, 2005; K.-H.
Cheng et al., 1996; Y. S. Cheng et al., 1996; Cheng, Yeh, & Swift, 1991; Kesavan, Bascom, Laube, & Swift, 2000;
Kesavanathan & Swift, 1998; Kesavanathan, Bascom, Laube, & Swift, 1998; Rasmussen, Andersen, & Pedersen, 2000; Wiesmiller
et al., 2003) in vitro (Cheng et al., 2001; Cheng, 2003; Cheng, Cheng, Yeh, & Swift, 1995; Garcia, Tewksbury, Wong, & Kimbell, 2009;
L. Golshahi, M. L. Noga, R. B. Thompson, &W. H. Finlay, 2011; Kelly, Asgharian, Kimbell, &Wong, 2004a, 2004b; Schroeter,
Tewksbury, Wong, & Kimbell, 2015a; Storey-Bishoff, Noga, & Finlay, 2008; Zwartz & Guilmette, 2001) and in silico (Corley et al.,
2015; Dastan, Abouali, & Ahmadi, 2014; Garcia et al., 2015; Inthavong et al., 2006; Inthavong, Wen, Tian, & Tu, 2008; Kimbell et al.,
2007; Liu, Matida, & Johnson, 2010; Schroeter et al., 2006, 2010; Schroeter, Garcia, & Kimbell, 2011; Shanley, Zamankhan, Ahmadi,
Hopke, & Cheng, 2008; Shi et al., 2008; Shi, 2007; Shi, Kleinstreuer, & Zhang, 2007; Wang, Hopke, Ahmadi, Cheng, & Baron, 2008;
Xi & Longest, 2008; Xi, Kim, Si, Corley, & Zhou, 2016; Zhang & Kleinstreuer, 2011) methods. The deposition results from these studies
indicate that there exist significant variations in human nasal aerosol deposition. While the major reason for these variations is due to
anatomical variations, differences in experimental techniques can also affect reported nasal aerosol deposition outcome (Kelly et al.,
2004a, 2004b; Schroeter, Garcia, & Kimbell, 2011; Shi et al., 2007). Even though an in vivo deposition measurement on human
subjects is the most physiologically realistic method, there are many limitations. Such experiments are restricted due to the usage of
aerosols which may lead to side effects, especially when using radioactive aerosols, and hence are limited in the number of trials.
Additionally, in vivo measurements cannot clearly provide detailed regional deposition measurements and the presence of subject
variability limits comparative analyses without geometrical correlations (Y. S. Cheng et al., 1996; Rasmussen et al., 2000). Even
though these limitations can be overcome with in vitro experiments, even small differences in the in vitro model geometry can
significantly alter aerosol deposition. Recent investigations have shown that surface irregularities (surface roughness vs. surface
smoothness) due to the differences in the fabrication process and/or due to the low resolution of the scanned images have resulted in
significant variations in aerosol deposition (Dastan et al., 2014; Kelly et al., 2004a, 2004b; Schroeter et al., 2011; Shi et al., 2007).
Hence, as an alternative to these experimental techniques numerical analysis, using Computational Fluid-Particle Dynamics (CF-PD),
has shown many advantages including repeatability and regional deposition resolution (Kolanjiyil & Kleinstreuer, 2016, 2013). Re-
cent developments in Magnetic Resonance Imaging (MRI) and Computer Tomography (CT) techniques have helped in reconstructing
physiologically realistic models. Such subject-specific geometries can be coupled with the advancements in CF-PD simulation
computer hardware and software technology to obtain detailed, accurate and realistic visualization of the flow field and particle
transport/deposition (Kleinstreuer et al., 2014). For example, for direct drug delivery numerical analysis concerning nasal airway
models has been able to reveal detailed nasal airflow fields (Garcia, Bailie, Martins, & Kimbell, 2007; Kim, Na, Kim, & Chung, 2013;
Kimbell, Frank, Laud, Garcia, & Rhee, 2013), particle dynamics (Dastan et al., 2014; Garcia et al., 2015; Inthavong et al., 2006, 2008;
Kimbell et al., 2007; Liu et al., 2010; Schroeter et al., 2006; Shanley et al., 2008; Shi et al., 2007, 2008; Shi, 2007; Wang et al., 2008;
Xi & Longest, 2008; Xi et al., 2016; Zhang & Kleinstreuer, 2011), dosimetry of inhaled vapours (Asgharian, Price, Schroeter,
Kimbell, & Singal, 2012; Morris, HAssETT, & Blanchard, 1993; Schroeter et al., 2008), and odourant delivery (Keyhani,
Scherer, &Mozell, 1997). It can also assist in nasal surgery (Garcia et al., 2007; Kimbell et al., 2013; Rhee, Pawar, Garcia, & Kimbell,
2011), intranasal drug delivery and development of nasal drug delivery devices (Inthavong et al., 2006; Inthavong, Tian, Tu,
Yang, & Xue, 2008b; Keeler et al., 2016; Kimbell et al., 2007).

As indicated, the results from nasal deposition studies have shown that the nasal aerosol deposition is a function of inhalation
conditions and particle properties, including size, shape and density (Schroeter, Tewksbury, Wong, & Kimbell, 2015b; Shi et al.,
2007). These studies suggest that the nasal passage acts as a filtering mechanism for the incoming particles which leads to large
deposition in the anterior part, thereby reducing drug aerosols from reaching their predetermined areas (Garcia & Tewksbury, 2009;
Liu et al., 2010). In the inertial regime (for particle diameters ≥ m1μ ) the aerosol deposition increases with the particle size and air
flow rate, following a sigmoidal curve with very low deposition for lower micron particles (Shi et al., 2007a). For nanoparticles
( − nm1 100 ), aerosol deposition decreases with diameter due to higher diffusivity of smaller particles leading to higher nasal de-
position (Garcia et al., 2015; Shi et al., 2008a). Even though nasal deposition has been investigated for different inhalation conditions
and particle sizes, only a limited number of studies have focused on estimating the regional distribution of the deposited particles
(Dastan et al., 2014; Garcia et al., 2015; Schroeter et al., 2006; Shanley, Zamankhan, Ahmadi, Hopke, & Cheng, 2008; Shi et al.,
2007a; Zwartz & Guilmette, 2001) and it is still unknown how the regional distribution depends on subject variability. Subject
variability in nasal deposition hinders development of intranasal therapeutic drugs, because variability in deposition leads to
variability in drug dose and its reaction (Garcia, Tewksbury, et al., 2009).
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As a first step towards the overall goal of optimal intranasal drug delivery, ultimately to the central nervous system, this paper
focuses on the effects of subject-variability on both airflow and regional drug deposition, considering microspheres in three very
different nasal cavities. A secondary objective is to develop representative particle deposition graphs which are common to the
majority of human nasal cavities. Many investigations have been conducted to map the anatomical differences among individuals
(Guilmette, Cheng, & Griffith, 1997). Other studies, using methods like acoustic⧹optical rhinometry and rhinomanometry as well as
MRI and CT techniques, have shown large variations in nasal cross-sectional area and nasal resistance (Corey, Gungor, Liu,
Nelson, & Fredberg, 1998; Corey, Gungor, Nelson, Fredberg, & Lai, 1997; Menache et al., 1997). Preliminary results from in vivo and
in vitro methods have confirmed the individual differences in nasal anatomy which leads to intersubject variability in aerosol
deposition (Bennett & Zeman, 2005; K.-H. Cheng et al., 1996; Cheng et al., 1991, 1995; Y. S. Cheng et al., 1996; Cheng, 2003; Garcia,
Tewksbury, et al., 2009; Kesavan et al., 2000; Kesavanathan & Swift, 1998; Kesavanathan, Bascom et al., 1998; Rasmussen et al.,
2000; Wiesmiller et al., 2003). Recently, investigations using CF-PD modeling methodology also predicted subject variability in nasal
deposition (Dastan et al., 2014; Garcia, Schroeter, et al., 2009; Keeler et al., 2016; Wang et al., 2008). A number of attempts have
been made to define functional correlations for nasal deposition with geometrical parameters like nostril shape and dimension,
minimum cross-sectional area, and ⧹ or transnasal pressure drop (Cheng et al., 1991; Y. S. Cheng et al., 1996; Garcia, Tewksbury,
et al., 2009; Golshahi et al., 2011; Kesavan et al., 2000; Kesavanathan & Swift, 1998). Even though these correlations did not
completely eliminate the scatter in inter-individual nasal deposition, some have been able to reduce the variations (Garcia,
Tewksbury, et al., 2009; Golshahi et al., 2011). However, these studies were based on a limited number of samples and hence these
functional forms should be tested with more cases. While investigations considering subject variability have been conducted to
predict the total nasal deposition, variations in regional deposition have not been made available. The objective of the present
investigation is to determine the impact of intersubject variability in spatial and regional deposition distributions of micron particles
in three different human nasal cavities.

2. Theory

2.1. Nasal geometries

In order to evaluate the effect of subject variability on regional particle deposition distribution, three nasal airway geometries
have been considered. The first nasal model (subject A) was developed from MRI scans of the nose of a healthy, 53-year-old, non-
smoking male (weighing 73 kg, 173 cm tall), provided by CIIT (Research Triangle Park, NC; also refer to Kelly et al. (2004a), Shi et al.
(2008, 2007), Shi (2007). The image file was then processed and surface-smoothed to develop a CAD-like geometry file (Shi et al.,
2007a). The second model (subject B) was developed by Kabilan et al. (2016). Subject B model was developed from multi-slice CT
scans of the nose of a healthy, 35-year-old male weighing 68 kg. and 173 cm tall. The details regarding image segmentation and
geometry development are provided in Kabilan et al. (2016). The third model (subject C) was developed by Liu, Johnson, Matida,
Kherani, and Marsan (2009). This standardized geometry of the human nasal cavity was created by computing and averaging 30 sets
of computed tomography (CT) scans of nasal airways of healthy subjects. All the details of the nasal cavity standardized are provided
in Liu et al. (2009).

Table 1 summerizes the geometrical features and dimensions for the three subjects. Length, height, area, volume and their ratios
help to represent the 3D objects and also to compare them. While subject A and B are balanced with L/H ratio almost equal to 2,
subject C has the most stretch nasal cavity of the three patients and the lowest A/V ratio.

2.2. Mesh generation

The mesh discretisation used for scientific computing and simulation of the passages of the nasal cavity must be of high quality.
An unstructured mesh was employed to represent faithfully the complex shape of the computational domain. Specifically using
ANSYS ICEM CFD (ANSYS Inc., USA) an octree-based method was used to generate a high resolution surface mesh. Surface smoothing
was performed using successive Laplace smoothing (Field, 1988) and aspect ratio (ratio of shortest to longest edge) smoothing
(ANSYS Meshing User's Guide, 2000) in order to avoid surface shrinkage Fig. 1.

The second step of the meshing process was the generation of a volumetric mesh, for which the Delaunay method was employed.
This yielded a tetrahedral volume mesh with a smooth cell transition ratio (∼ 1.2) close to the boundary wall. Finally a multi-layer
prism mesh was created to resolve the high velocity gradients at the wall, with a few pyramids needed to ensure the transition
between the prism layer and tetrahedral mesh in the core of the computational domain. (see Table 2).

Table 1
Geometrical features of the nasal cavities, with L=length cm( ), H=height cm( ), A=area cm( )2 and V=volume cm( )3 then geometrical features of nostrils, with
NL=length cm( ), NW=width cm( ) and P=perimeter cm( ) of the nostril.

Subject Structural features L H L/H A V A/V NL NW P

A Smoothness surface, slightly converging left nasal cavity 9.5 4.1 2.3 430 18.8 22.8 1.2 0.4 3
B Roughness surface, slight septum deviation 10.6 4.8 2.2 538 26.2 20.5 1.7 0.4 3.8
C symmetric standardized geometry 10.9 3.8 2.8 188 29 6.5 1.7 0.6 3.9
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The three different meshes are presented in Fig. 2. For all, a minimum element height of m30μ at the wall for the most critical
region (nasal valve). That corresponds to a range of value of the inner variable =+y u y

ν
* of −1 3 for a constant flow rate of L min20 / .

These values of +y can be considered to be sufficiently small for resolving the near-wall flow dynamics (Robinson, 1991) and falls into
the range defined by Piomelli and Balaras (2002) that describes well resolved wall-layers. Mesh generation was accomplished with
ANSYS ICEM CFD software requiring 2 GB of RAM on a single Intel Xeon X5650 core.

2.3. Governing equation

2.3.1. Fluid solver
In this section, we briefly describe the numerical method used to solve the Navier-Stokes equations with the Alya system (Alya

System, 2000), which is a high-performance computational mechanics code developed at Barcelona Supercomputing Center
(Houzeaux & Vázquez, 2008). Assuming incompressible fluid flow, the task is to solve for the velocity vector u and pressure p in a
domain Ω

∂

∂
+ ∇ − ∇ + ∇ =

u u u ε u 0ρ
t

ρ p( · ) ·[2μ ( )] , (1)

∇ =u· 0, (2)

subject to initial and boundary conditions. Here μ is the viscosity of the fluid, and ρ is the fluid density. The velocity strain rate is
= ∇ + ∇ε u u u( ) ( )t1

2 .
The numerical model to solve these equations is based on a stabilized finite element method. The stabilization is based on the

Fig. 1. Geometry descriptions of the subjects.

Table 2
Summary of different mesh resolutions and simulation parameters with NN : number of nodes, NE : number of elements, tΔ : time step, h: mean edge length of elements,
hpl1: height of the first element in the prism layer, Npl: number of prism layers and hpl: height of total prism layer.

Mesh ×N ( 10 )N 6 ×N ( 10 )E 6 t msΔ ( ) h mm( ) h m(μ )pl1 Npl h mm( )pl

Subject A 1.8 6.1 0.1 0.5 30 5 0.2
Subject B 2.0 6.4 0.1 0.5 30 5 0.2
Subject C 1.4 4.6 0.1 0.5 30 5 0.2
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Variational MultiScale method which is considered as an implicit Large Eddy Simulation method (Colomés, Badia,
Codina, & Principe, 2015). The formulation is obtained by splitting the unknowns into grid scale and subgrid scale components. In the
present formulation of Alya, the subgrid scale is, in addition, tracked in time and in space, thereby giving more accuracy and more
stability to the numerical model (Houzeaux & Principe, 2008).

Discretization of the Navier-Stokes equations yields a coupled algebraic system to be solved at each linearization step within a
time loop. The resulting system is split to solve the momentum and continuity equations independently. This is achieved by applying
an iterative strategy to solve for the Schur complement of the pressure. According to the present scheme, at each linearization step it
is necessary to solve the momentum and continuity equation twice. This split strategy is described and validated in Houzeaux, Aubry,
and Vázquez (2011).

The momentum equation algebraic system is solved using the GMRES method, with a simple diagonal preconditioner with a
relatively low Krylov dimension. Usually, convergence is obtained within ten iterations. The continuity equations is solved using the
Deflated Conjugate Gradient (DCG) method (Lohner, Mut, Cebral, Aubry, & Houzeaux, 2011), together with a linelet preconditioner
to accelerate the convergence in the boundary layers (Soto, Löhner, & Camelli, 2003).

The simulation code is parallelized using a hybrid MPI+OpenMP approach. The partition of the mesh is carried out on-the-fly
with the METIS library (Karypis, 2015). The fluid solver consists mainly of two basic steps, the assembly of the matrix representing
the discretized form of the Navier-Stokes equations, and the solution of this system using the iterative solvers described previously.
The assembly step does not require any communication, and its speedup is directly related to the load balance provided by METIS.
The MPI exchanges in the iterative solvers are carried out in an asynchronous way, enabling to overlap work and communication
during the matrix-vector products. The parallelization of the DCG solver is based on MPI gather functions, as extensively described in
Lohner et al. (2011). Finally, parallel I/O is achieved using the HDF5 library (Folk, Cheng, & Yates, 1999) in order to postprocess the
velocities and pressure on the mesh.

Fig. 2. Grid generation topology.
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2.3.2. Particle transport and deposition modeling
Physical model The transport of particles is simulated in a Lagrangian frame of reference, following each particle individually. The

main assumptions to develop the model are:

• Particles are sufficiently small and the suspension is dilute to neglect their effect on airflow: i.e., a one way coupling is appro-
priate;

• Particles are spherical and do not interact with each other;

• Particle rotation is negligible;

• Thermophoretic forces are negligible;

• The forces considered are drag Fd, gravitational and buoyancy Fg;

Let xp, up, ap be the particle position, velocity and acceleration, respectively. Let mp be its mass, ρp its density, dp its diameter, and
Vp its volume. Particles are transported solving Newton's second law, and by applying the series of forces mentioned previously:

= +a F F m( )/ .p d g p (3)

The equation for the drag force assumes the particle has reached its terminal velocity and is given by

= − −F u uπ μd C
8

Re( ),d p d p f (4)

where Re is the particle Reynolds number involving its relative velocity with the fluid:

=
−u u d

ν
Re

| |
.p f p

The drag coefficient is given by Ganser's formula Ganser (1993):

= + +
+

=
+

=

= =

−

−

C
k

k k k
k k

k
ψ

k
ψ

24
Re

(1 0.1118(Re ) ) 0.4305
1 3305/(Re )

,

3
1 2

,

10 ,
sphericity, ( 1 for a sphere).

d

ψ

1
1 2

0.6567 2

1 2

1 0.5

2
1.84148( log ( ))10

0.5743

The gravity and buoyancy forces contribute to the dynamic of the particle whenever there exist a density difference:

= −F gV ρ ρ( ),g p p

with g being the gravity vector.
Time integration Let us assume the particle path must be computed from time step n to the next one +n 1, where the time step size

is defined as ≔ −+δt t tn n1 .
The time integration to actualize the particle dynamics at the new time step +n 1 is based on the Newmark method. This method

is quite general in the sense that given the acceleration at time steps n and +n 1, one can obtain the velocity and position at the new
time step +n 1 in an explicit form, using ap

n, or implicit form using a linear combination between an and +ap
n 1. The switch between

these possibilities are two parameters, namely β and γ which thus enable to control the accuracy and stability of the method. Given
the accelaration computed at time step +n 1, the scheme consists in solving the following equations:

=

= + + −

= + + + −

+ +

+ +

+ +

a F

u u a a

x x u a a

m

δt γ γ

δt δt β β

/ ,

( (1 ) ),
1
2

(2 (1 2 ) ).
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n n

p

p
n

p
n

p
n

p
n
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n

p
n n

p
n

p
n

1 1

1 1

1 2 1

The drag force given by Eq. (4) depends on the relative velocity of the particle with respect to the fluid at +n 1, and therefore to
the position of the particle at the new time step. For robustness purpose, we apply a Newton-Raphson scheme to converge the non-
linearity in velocity, but not in position. Once the velocity is obtained, the position is updated.

In order to gain additional control on the particle path, an adaptive time step strategy is adopted. The strategy is based on an error
estimation of the Newmark-scheme (Olivares & Houzeaux, 2016).

Numerical implementation The particle transport computation can be carried out in both a single-code or multi-code version. In the
latter case, particles are transported using the same code and MPI partition as the fluid; in the last case, two instances of the code are
used to enable asynchornism. The parallelization is hybrid, based on MPI+OpenMP, together with a dynamic load balance me-
chanism, as particle are likely to be located in very few MPI processes. The parallel strategy is extensively described in Houzeaux
et al. (2016).

Particle deposition The particle deposition efficiency is defined as:
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=η
N
N

dep

in (5)

where Ndep is the number of particles deposited on the surface area of interest, which can be the total nasal passage wall or local
surface areas, e.g., olfactory regions, and Nin is the total number of particles released at the nostrils.

2.3.3. Boundary and initial conditions
For the inlet condition situated in the extended nostril, see Fig. 2, a constant velocity profile giving a steady flow rate of L min20 /

was used. For the outlet, a zero pressure gage opening boundary condition was applied and finally a no-slip boundary condition were
imposed on the all passage walls. The present study assumes constant air flow inhalation with equal flow rates assigned to both
nostrils.

In order to inject particles at the accurate location and optimize the deposition, injectors were located at each nostril as a plane
surface. Particles are distributed uniformly and the initial velocities of particles are assumed to be the same as the airflow velocity at
the nostril. Furthermore, released particles at each time step would be a prohibitively expensive computationally approach. Instead,
’frozen’ particle tracking was adopted here, i.e in the ’frozen’ implicit LES computational domain, particles are released and fully
tracked. Based on the literature (Ghalati et al., 2012; Shi, Kleinstreuer, & Zhang, 2007b) and convergence test thousands of particles
(7000) for each size are released to reach a constant deposition value independent of the number of injected particles.

3. Model validations

3.1. Analysis of grid convergence

The grid convergence study was performed with a dimensionless velocity magnitude profile at the location in a nasal valve slice
indicated in Fig. 3, considering three different mesh resolutions of subject A, i.e., a coarse mesh (1 M; 1 million of elements), a
medium mesh (6 M; 6 millions of elements) and a fine mesh (50 M; 50 millions of elements).

The fine mesh was produced using the Mesh Multiplication technique described in Houzeaux, de la Cruz, Owen, and Vázquez
(2013). This technique consists in refining the mesh uniformly, recursively, on-the-fly and in parallel, inside the simulation code. For
tetrahedra, hexahedra and prisms, each level multiplies the number of elements by eight, while a pyramid is divided into ten new
elements. The finest mesh was obtained using a one-level mesh multiplication from the medium mesh (6 M), therefore obtaining
approximately (due to the presence of pyramids) eight times more elements. The time to produce this multiplied mesh in parallel is
almost negligible (Houzeaux et al., 2013).

The velocity profiles over an arbitrary line at a cross-section mm16 distal from the nostril and for a constant inhalation flow rate
of L min20 / are shown in Fig. 3 for different grid sizes. The profiles look very similar for the medium mesh and the fine mesh, although
some discrepancies are still visible for the two higher grid sizes. The medium-size mesh with 6 million elements, strikes a balance
between computational costs and accuracy of solution, and hence was used to provide the majority of results presented in this study.

3.2. Particle deposition

Particle deposition in the nasal cavity was compared to the experimental data reported by Kelly, Asgharian, Kimbell, and Wong
(2004) as depicted in Fig. 4. The human nasal cast is based on the same MRI file as employed for the present study (i.e, the subject A)
and the same impaction parameter (IP) was used, i.e.,

=IP d Q·p
2

(6)

Fig. 3. Effect of computational grid size on calculated velocity profile for an arbitrary line in the flow( =Q L min20 / ).
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where da is the particle aerodynamic diameter and Q is the volumetric airflow rate. The aerodynamic diameter is that of a sphere with
unit density ( g cm1 / 3) and its mass is equal to the mass of the actual particle.

Fig. 4 shows an acceptable agreement between the present simulation and the measurements of Kelly et al. (2004). Differences in
deposition results are due to the coarser airway surfaces in the replica producing higher deposition efficiencies than the numerical
model (Shi et al., 2007b).

4. Results and discussion

4.1. Airflow field results

Assuming steady laminar flow with =Q L min20 /in , the airflow fields for the three subjects are given in Figs. 5–7. It should be
noted that the dimensionless velocities u U/ inlet are the vector components normal the slice planes 1-1′ to 6-6′. Furthermore the
location of slice planes for the three subjects are chosen to be approximately equivalent for direct comparison.

The airflow field description was already published in previous studies (Shi, Kleinstreuer, & Zhang, 2008b, 2007b) for subject A at
=Q L min20 / . Thus, the analysis focuses on the comparison of the three subjects. Also the two first slices are displayed with the unity

range of the dimensionless velocity and the rest of the slices are ranged zero to 0.75. This configuration is done to reproduce the

Fig. 4. Particle deposition efficiency comparison between simulation and experiment.

Fig. 5. Velocity fields for subject A at a constant inlet flow rate of L min20 / : velocity contours of velocity fieds in six selected slices.
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layout of the cited previous studies.
Concerning slice 1-1′, the tendency of higher velocity is observed in the left nasal cavity for the first two subjects, while for subject

C velocity field is symmetric. By imposing the same inflow for each nostril, the differences between the left/right cross-sections

Fig. 6. Velocity fields for subject B at a constant inlet flow rate of L min20 / : velocity contours of velocity fieds in six selected slices.

Fig. 7. Velocity fields for subject C at a constant inlet flow rate of L min20 / : velocity contours of velocity fieds in six selected slices.
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explains these elevated velocities.
These higher local flow rates are due to the small cross-sectional area of the nasal valve leading to a jet like flow (Calmet et al.,

2016; Doorly, Taylor, Gambaruto, Schroter, & Tolley, 2008). These narrow undulated and intricate passageways produce drastically

Fig. 8. (a) The surface integrated wall-shear stress value over slice sections. (b) Average wall-shear stress (i.e the surface integrated wall-shear stress divided by the
considered area surface) value over slice sections. (c) Map of wall-shear stress with different views for the three subjects.
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different flow fields. For example, for subject A and C, the nasal-valve jet is located on the superior part of the slice. The geometry of
subject B is more narrow and undulated than the others, (see Fig. 6), causing a less established airflow where the nasal-valve jet is
spread along the channel.

The bulk airflow for slice 2-2′ is located in the superior part for subject A. In contrast, the narrow channels of subject B expand the
jet along all the passageways, as for the wider channels of subject C.

The flow distributions for cross-Sections 3-3′ to 5-5′ are significantly different between the three subjects, covering the meatuses.
Subject A exhibits high symmetric flow occurring in the superior part of the main passageway, decreasing progressively in the middle
meatus while Subject B shows an asymmetric flow distribution, one part in the left middle meatus and the rest along the right center
line of the main passageway. The rapid change of width of the channels and the septum deviation produce complex developing
airflow. Subject C with the unusual geometric symmetry, has the bulk flow divided on two locations, i.e., middle part and inferior
part of meatus and passageway.

In the cross-Section 6-6′, where the two different flows of the left and right cavities join with different velocities begins the
nasopharynx. Again, the flow distribution is significantly different for the three subjects. Subject A features asymmetric airflow and
high flow rates in to the posterior part due to Dean vortices, resulting from the curved passage undergoing an almost 90 ° bend from
the horizontal nasal passage to the vertical descending sections. Two different and symmetric flows are observed for subject B with a
clear separation in the middle.

In summary, the air flow entering in the nostrils change drastically when encountering the nasal-valve, i.e., almost from vertical
to horizontal, where the diameter is reduced. This feature is observed with all subjects, although, the three geometries produce
measurable differences. Then, most of the inhaled air flows through the wider middle-to-low portion of the main passageway which is
free of obstacles. At the wall surface due to the no-slip condition, in conjunction with the actual widths of the meatuses and main
passageway, interesting boundary-layer and near-wall flow establish. In the nasopharynx the left and right cavity-flows mix together
before reaching the lungs.

4.2. Wall-shear stress

The wall-shear stress is a key parameter directly related to the resistive forces during respiration, the exchange processes and the
near-wall flow field (Gambaruto, Doorly, & Yamaguchi, 2010). Fig. 8 shows the wall-shear stress distributions of the three subjects
with plots of the surface integrated wall-shear stress and the average wall-shear stress, i.e the surface integrated wall-shear stress
divided by the considered area surface.

The highest wall-shear stress distribution and surface integrated wall-shear stress are observed for subject C. As expected, the
largest flow resistance occurs between slices 1–2 (see Fig 8a) which corresponds to the nasal valve. The jet nasal valve, see Section
4.1, produces for subjects B and C some local maxima in skin friction on the thin and undulating channels downstream of the nasal
valve, (see B1 and C1 of Fig 8c). This jet impinges on the anterior protrusion of the middle turbinate, creating a local maximum of
wall-shear stress visible for all subjects (see A2, B2 and C2 in Fig 8c with the top view). The complex, undulating wall shapes of the
turbinates in the mid-region of the nasal cavity affect the airflow by partitioning it into different regions. The undulation surfaces also
favor exposing core flow to the nasal lining, enhancing exchange processes between lining and the flow as well as deposition of

Fig. 9. Particle deposition pattern and map of wall-shear stress gradient for Subject A with details of interesting zone.
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suspended particles.
The Wall-shear stress gradient as an indicator of disturbed near-wall flow field has been used in the past (Hyun,

Kleinstreuer, & Archie, 2001) to indicate potential sites of particle deposition. Fig. 9 shows micro-particle deposition pattern and a
map of the wall-shear stress gradient for Subject A. Some local prominent accumulations of deposited particles, also called hot spots,
coincide with local maxima of the wall-shear stress gradient (see Fig. 9 a, b or c). For example where the mechanism of deposition is
impaction (see b1 of Fig. 9b), the correlation with high wall-shear stress gradient is corroborated. In contrast, when secondary flows
cause deposition the correlation is not observed (see a1 of Fig. 9a).

Fig. 10. Particle deposition efficiency plotted against non-dimensional fluid-particle dynamic parameter with characteristic diameter defined as =d V L/c , (L.
Golshahi, M. Noga, et al., 2011).
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Fig. 11. Particle deposition pattern and particle deposition efficiency as a function of slice position (see Figs. 5–7) for the three subjects at a constant inlet flow rate of
L min20 / .
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4.3. Particle deposition results

4.3.1. Total nasal deposition
Small particles ( <d m1μp ) follow largely the streamlines while larger microsphere tend to cross streamlines and deposit because

of particle inertia. Considering three inlet flow rates, the micron-particles deposition in the nasal cavities of the three subjects are
plotted against a new dimensionless group, combining both the Stokes number and the Reynolds number in Fig. 10. It should be
noted that the velocity U used to define the Stokes number is based on the mean velocity at the nasal inlet, while the system
characterisitic length scale is =d V L/c . As noticed in previous studies, the deposition trend follows a sigmoidal curve, with very low
deposition in the small particle range and rapid increase with the particle diameter. At a higher inhalation flow rate, the deposition
curves become steeper, indicating that the increase in inertial force results in higher depositions. A very interesting observation is that
with the new dimensionless group (Stk Re1.23 1.28 ), see L. Golshahi, M. Noga, R. Thompson, and W. Finlay (2011), the deposition
efficiency curves in all subjects are quite similar.

Fig. 12. Particle deposition efficiencies in different critical regions for the three different subjects.
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4.3.2. Spatial deposition distribution
The spatial deposition distributions of the particles in the nasal airways of the three subjects for different micron particle dia-

meters are shown in Fig 11. The influence of the local airflow field on particle deposition is evident. Enhanced deposition in the
anterior section of the nasal airway passage occurred in all three subjects. The deposition on the surface covering up to slice 2-2 is
over 60% of the total deposition in all subjects. Apart from the anterior sections of the nasal airways covering mostly the nasal valve,
concentrated deposition was also noticed in the middle meatus in all three subjects. In subject A, apart from these two sections, a
small percentage of the particles deposited in the anterior section of the superior turbinates. The concentrated deposition site for
particle size 10 mμ was in the upper turbinates while for particle size 20 mμ it moved to the anterior turbinates. This could be
attributed to the bulk flow through the superior meatus in subject A (see Fig 5). As the particle size increased, the number of particles
deposited in the nasal cavity increased to more than 50% for 10 mμ particles and to more than 90% for 20 mμ particles, due to inertial
impaction.

4.3.3. Regional deposition distribution
The regional deposition efficiency was estimated for each section as a function of the inertial parameter d Qa

2 . The sectional
deposition results are shown in Fig 12. As expected, maximum deposition occurred in the anterior section of the nasal airway for all
three subjects (see blue colored surfaces in Fig 12). The deposition in the anterior surface is high for larger particles at lower
inhalation flow rates. The deposition decreases for small particles with high inhalation flow rates and large particles with medium
inhalation flow rates. The deposition in the inferior meatus is low in all subjects. The deposition in the olfactory region is very low for
subject A and almost non-exististent in subject B and subject C. Clearly, for direct delivery to the brain via the olfactory region,
directional inhalation of nano-particles would be required.

5. Conclusions

The human nose generally works as a fine filter of pollutants; but, it could also be used for the delivery of medicine to treat various
diseases. One example would be targeting the olfactory region for deposited drug to cross the blood-brain-barrier to reach the central
nervous system. Unfortunately the human nasal airways are complex and may differ greatly between subjects. Thus, considering a
basic range of inhalation flow rates and microspheres, the airflow field, wall shear stress distribution and coupled particle transport/
deposition in three subject-specific nasal models have been simulated and analyzed in detail. Specifically, the airflow and particle-
trajectory equations were solved in parallel with the in-house, multi-purpose Alya program at the Barcelona Supercomputing Center.

The geometrically complex nasal airways generated a large variety of airflow fields, where among them the three subject models
exhibit both similar as well as diverse flow structures and wall shear stress distributions, all related to the coupled particle transport
and deposition. Nevertheless, with the new Stokes-Reynolds-number group, Stk Re1.23 1.28 , the total deposition-efficiency curves for all
three subjects and flow rates almost collapsed to a single function. However, local particle deposition efficiencies differed sig-
nificantly for the three subjects and particle diameters dp = 2, 10, and 20 mμ .

Only one of the three subject-specific olfactory regions received, at relatively high values of the inertial parameter d Qa
2 , some

inhaled microspheres. Thus, to achieve direct drug delivery to the brain via the olfactory region, future work will focus on the
dynamics of inhaled nanoparticles using a modified inhaler device for targeting.
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