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ABSTRACT

We propose an algebraic constructive method which allows to
find a certain kind of networks having optimal diameter.
These interconnection networks have been proposed for SIMD
machines. We compare the results with other designs, pointing

out the improvement achieved with this method.

Es proposa un métode algebraic constructiu que permet trobar
un cert tipus de xarxes Optimes amb respecte al seu didmetre.
Aquestes Xarxes d'interconnexid han estat propostes per a
miquines SIMD. Es comparen els resultats amb altres dissenys,

posant en evidéncia la gandncia obtinguda amb aquest métode.
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I. INTRODUCTION.

A SIMD machine, as described by Siegel [B1, is a system which
consists of a control unit and N processing elements, connected by a
interconnection network. The control wunit is able to broadcast
instructions to every processing element, so that those elements
which are active at each time execute simultaneously the same
instruction on its own data. A memory module is available to each of
them to hold the data. Communication among the processing elements
is provided by the interconnection network.

The two basic configurations for SIMD machines [31 are shown in
the figure 1. An example of topology (a) is the ILLIAC IV computer
Cll, and an example of topolcgy (b), with two alignment networks, .is
the BSP computer U[41. SIMD machines have Dbeen designed to be
programmed with parallel algorithms for matrix operations.

An important problem in this type of systems is the design of an
appropriate storage scheme for the data access in the memory
modules. These schemes should provide fast access to the most
frequently wused sections of data. They should provide conflict-free
access to vrows, columns, diagonals, and subarrays, which are
sections of data typically used in matricial computations. Several
storage schemes have been proposed [21, [7], in which the so called
p-ordered vectors arise. We deal with this kind of vectors.

An important task for the interconnection networks when working

with this kind of schemes is to unscramble p-ordered vectors. The

necessity of this organization is due to the fact that vectors of

| data, obtained from memory modules in a single access, are not
usually in the required order.

Swanson [10] suggests a type of interconnection networks known
as k-apart networks to unscramble the p-ordered vectors. These
networks require -
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steps through an interconnection network consisting of two
k-apart networks. However, Lang and Stone [53 proved that perfect
shuffle networks perform the same task in logzN steps. For this

reason, Siegel [81, [9] does not consider the networks proposed by
Swanson.

In this paper we propose a modification of the k-apart networks,
by establishing bidirectional 1links among the registers of the
network. In this way, unscrambling of p-ordered vectors can be
acpieved within

steps through the interconnection network. Both Lang and Stone
upper bounds and ours are shown 1in figure 2, in continuous and
discrete forms. It can be seen from the figure that our performances
are in geﬁeral significantly better for values less than N=86, with
three values in which both networks require 6 steps. We consider

that these values are practical for particular implementations.

The structure of this paper is as follows: in section IT we
define some concepts based in the paper of Swanson C101, as well as

_the extension we propose of the k-apart networks; in section III we

give an algebraic solution for the problem of finding two values of
k giving an optimal network, for any number of memory modules. This
algebraic solution has also practical interest for interconnection
networks connecting each processing element with four neighbour
processing elements, as in the case of the ILLIAC IV computer [13;
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we consider this issue in section IV. Finally, we present in section
V some ideas regarding the control of the optimal network.

II. DEFINITIONS.

In this section we present a set of definitions that will be
used throughout the paper. As an initial remark, we point out that
we assume a prime number of memory modules; this fact yvields a

number of practical advantages, as observed by Budnik and Kuck L[21
and Lawrie L[63.

Definition 1. An N-vector A is p-ordered, with 1 ¢ p ¢ N-1, if
its contents are described by

A(pimod0N) =1

where 0 ¢ i ¢ N-1. If N is a prime, then it 1is possible to
define any p-ordered vector.

Definition 2. N registers are interconnected with a k-apart
network, 1 ¢ k ¢ N-1, 1if the contents of register ( ki mod N ) can

be transferred directly to register i, with 0 ¢ i ¢ N-1. If N is a

prime, then it is possible to define any k-apart network.

Definition 3. The group AN = ( A, +N > includes the set A of the
nonnegative integers 1less than N, with the addition modulo N as

operation.

Definition 4. The group MN = ( M, ‘N Y includes the set M of the
nonnegative integers less than N and relatively prime to N, with the

product modulo N as operation. If N is a prime, then the group MN is
cyclic.



Proposition. A k-apart network, with k € MN' becomes a k’-~-apart
network, with k' € MN’ when the links are inverted. Further, k' is
the inverse element of k in the group MN.

Proof. Let A be a k-apart network. Then for 0 ¢ i  N-1 and
1 & k & N-1,

reg ( ki mod N ) --> reg ( i) -

following the notation of Swanson [101. When the 1links avre
inverted,

reg ( i ) --> reg ( ki mod N ).

Taking as a value of i the quantity k-lj mod N, for 0 £ j & N-1,
we obtain

1 1

reg ( 'S j mod N ) --> reg ( k(k j mod N) mod N ).

A straightforward manipulation shows that

K(k 15 mod N) mod N = j

and hence the inverted network is

reg k_lj mod N ) --> reg ( )

which is the k—l-apart network by definition.

From now on, we consider k-apart bidirectional networks, in
which the transfer of data may be performed in both directions.



ITI. AN OPTIMAL INTERCONNECTION NETWORK.

In this section we propose an algebraic method for finding an
optimal interconnection network consisting of two k-apart
bidirectional networks. By using two k-apart 'networks with k=kl,
k=k2, 1 « kl, k2 ¢ N-1, any p-ordered vector, 1  p & N-1, can be
unscrambled if there are two integers i, j such that:

(xit L k29 ) moda N = p (1)

Positive values of i or j indicate transfers through the kl- or
k2-apart networks respectively; and negative wvalues indicate
transfers through the inverse networks.

As we have a prime number of memory modules, the group MN is
cyclic and hence isomorphic to the group AN—l' Therefore we state
our results for AN-l’ using any generator g of MN in the following
way:

X Z
‘kl =g, k2=qY, p=9g9

where 0  x, ¥y, z £ N-2, and we can rewrite (1) as
( ix + jy ) mod N-1 = z (2)

In order to achieve the unscrambling of p-ordered vectors as
fast as possible, one must find integers i, j fulfilling (2) and
such that |[i]+|j] be minimal. As z may take N-1 different values,
.the maximal wvalues of |i| and |j| must be minimized by choosing in
an inteligent manner the fixed values of x and y.

Lemma 1. For every m > 0 there are exactly 2m2+2m+1 different
ways of choosing couples i, j with [i]+|j] £ m.



Proof. The i may take 2m+l different values, ranging from -m to

m. For every 1 there are 2(m-|i|)+1l possible values for j. Hence
there are

m

T 2(m-1ip+1
i=-m

different ways of choosing the couples i, j. Evaluating the
series,

m

T 2(m-1i)+1 = 2m%+2m+l
i=-m

Theorem. Let m be an integer, m > 2, let Nm = 2m2+2m+1, and let
N ' be such that N ( N N_. Then for every z, 0 & z { N-1, there
m-1 m \
are two integers i, j such that

( im + j(m+l) ) mod N = 2z (3)

with [i]+]]J} & m.

Remark. For N as in the theorem, no couple can behave better
than ( m, m+l ), because if [i|+]|j| ¢ m then the number of elements

which can be generated is at most Nm according to lemma 1.

-1

Before proving the theorem we state a set of auxiliar lemmas.



(ii) Jj-g
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Lemma 2. If |ij+{]j] & m and |pl+ig] & m, then
( im + j(m+l) ) = ( pm + glm+l) ) (4)
implies i=p and j=q.
Proof. By straightforward manipulation we obtain
(p-i)m = (j-qg)(m+l) (5)
As GCD ( m, m+l ) = 1, m must divide (j-g). Without loss of

generality, we assume that J ) q. By hypothesis, |j| {( m and
gl & m; hence,

lj-al < (jl+tal & 2m.
There are three cases:

0. By substituting in (4), we have j=q and i=p.

(1) J-g

m. By substituting in (4), we have p-i = m+l. On the other
hand, from the hypothesis we have

I(p-D)+(3-) | & Ipl+iil+lFl+lql ¢ Zm (5).

Substituting m for j-g and m+l for p-i we get a
contradiction.

(iii) Jj-g = 2m. By substituting in (4) we have p-i = 2(m+l).

Substituting again in (5) we get a contradiction.



Lemma 3. Let m be an integer, m > 2, let Nm = 2m2+2m+1, and let N be

such that va_1 N Nm. Iet ¢ = ( (i+j)m + 3 > mod N, with

|[i{+]3j] & m. Then exactly one of the following cases holds:

(1) (i+j)m + j % 0, and we have ¢ (i+j)m + j < N;

(ii) (i+j)m + j ¢ 0, and we have c

(i+j)m + j + N.

Proof. For m > 2 it holds that m ¢ m2—2m+2. We have:

L (A4)m + 3 | € (JE1+]50m + 191 € m’+m <
(m+n’ -2m+2=20°-2m+2=N_, +1gN

Thus,
-N ¢ (i+j)m + j ¢ N

and the lemma fecllows.

Remark. For the lemma it is enough that m2+m ¢ N. For m = 2 and
N > 6 it is also true. On the other hand, it is easily seen that the
main theorem is still true for N = 6. Hence all the cases for m > 1
are covered.

Lemma 4. Let m be an integer, m > 2, Nm and N as in lemma 3, and
let t = Nm-N. .Let i, j be such that |i|+|j] ¢ m. If ( (i+j)m + J )

.mod N « m2+m+1-t then only case (i) of lemma 3 holds.

Proof. We show that case (ii) leads to a contradiction.

( (i+j)m + j ) mod N ( mltmtl-t ==
( (d+m + 3 ) + N ¢ mo4mel-t ==
( (i+im + j ) < ml4m+l-t-N ==



( (4+9)m + § ) ¢ mP4mtl-t-2m°-2m-1+t ==
( (i+3)m + JF ) <‘-m2—m

As ( (i+j)m + j ) < O,
< . 2
] (i+j)m + j | > m” + m
but as |i|+]lj| & m we have a contradiction.

Lemma 5. Let m be an integer, m > 2. Let i, Jj be such that

114151 < m. If ( (i+5)m + § ) mod N > m’+m then only case (ii) of
lemma 3 holds.

Proof. We show that case (i) leads to a contradiction.
c . . 2
( (i+j)m + j ) mod N > m +m
As case (i) implies that ( (i+j)m + 3 ) > O,
. . 2
] (i+j)m + j | >m +m

which is the same contradiction as before.

Now we are ready to prove the main theorem.

Proof of theorem. Let i, j and p, 9@ be two different couples
with |i]+]j] ¢ m and |p|+lg| ¢ m. Assume that

( (i+j)m + j ) mod N = ( (p+tg)m + g ) mod N

Then for each of the two terms of the equality a different case

of lemma 3 holds; if it were the same case, we would have

| -



( (i+j)m + j ) = ( (p+rg)m + g )
contradicting lemma 2.

Let t be Nm—N as before. Now, the elements less than m2+m+1—t
can be only generated by the case (i) of lemma 3 ( because of lemma
4 ) and the elements greater than m2+m can be only generated by the
case (ii) of lemma 3 ( because of lemma 5 ). Hence, the only couples
generating repeated elements are the 2t couples generating the t
elements between m2+m+1-t and m2+m, each element being generated by
at most two couples corresponding to the two cases of lemma 3. Now
we have proved that at least 2m2+2m+1—t = N different elements are
generated. As there are exactly N elements, all of them have been
generated. This completes the proof.

IV. A COMPARISON WITH THE ILLIAC IV NETWORK.

As mentioned before, the ILLIAC IV is an array processor having
64 processing elements. Each processing element can send data to one
of four neighbour processing elements with just one transfer. We may

characterize the network of the ILLIAC IV by four routing functions
£37:

P+1 (i) = ( i41 ) mod N

P, (i) = (i-1 ) mod N

P (i) = ( i4r ) mod N (6)
+r =

P-r (i) = ( i-r ) mod N

for 0 L i { N-1. In this particular case N = 64 and r = VN = 8.
With this network, sending data from processing element 1 to

processing element j requires at most VN-1 transfers through the
network.

11
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It is apparent now that we have here the same problem we have
discussed in the last section. From our solution we see that, as

Nm—l < 64 ( Nm form = 6,

we can use the following routing functions instead of (6):

P+6 (i) = ( i+6 ) mod N
P_6 (i) = ( i-6 ) mod N
P+7 (1) = ( i+7 ) mod N
P_.7 (i) = ( i-7 ) mod N

With this network sending data from any processing element to
another requires at nostVN-2 transfers, which is one less than the
upper bound indicated above.

Anyway, for this particular case N = 64 we can find this optimal
value of VN-2 changing only one of the two networks, because the
couples (1,10) and (3,8) are also optimal. Observe also that an
interconnection of 256 processing elements with a network similar to
the one of the ILLIAC IV will require in the worst case 15
transfers, while 11 transfers will suffice when using a network
obtained from our theorem.

V. THE CONTROL OF THE NETWORK.

We focus in this section on the problem of finding the fastest
way for a communication through the optimal network proposed in the
.section III. We solve the problem for the additive group; a solution
" for the unscrambling of p-ordered vectors is obtained easily from
the isomorphism.

Our problem is as follows: we have a bidirectional network with
at most Nm elements, in which each node is connected to four

neighbours nodes at,distances m and.m+l; given two nodes x, y of the

12



network, we want numbers i, j, such that:

(1) Jil+ljl & m
(ii) dim + j(m+l) = ( y-x ) mod N
Observe that im + j(m+l) = (i+j)m + 3j. Hence, an integer

division of y-x mod N by m will give a remainder j and a quotient
i+j from which a couple (i,j) is obtained. This couple allows to
reach node y from node x. Unfortunately, there is no warranty that
li]+]J] is less than or equal to m. We will show how to find an
optimal couple (i’,j’) from this one if it is not optimal.

First, we will proceed to this computation only if (y-x) mod N
is strictly 1less than m2+m. If y-x mod N= m2+m then an optimal
solution is given by i = 0, j = m. If y-x mod N is greater than
m2+m, then the inverse of y-x mod N in AN is smaller, and we can
solve the problem for this inverse and then change the sign of the

solutions.

Now, if y-x mod N is smaller than m2+m, then the integer
division by m will give a remainder j with 0 ¢ j {( m and a quotient
(i+3j) with 0 & (i+3j) ¢ m. If |i|+|J| & m then a solution has been
found. Assume that |i|+|Jj| > m. We prove that i < 0.

If i is nonnegative, then |i] = i; also, |j| = j. Hence,

i+j = |i]+1Jj] >m. But the quotient of the division is i+j and cannot

_~be greater than m, because the dividend was smaller than m2+m. Hence
i is negative. From 0  (i+j) we deduce |i] = -1 { jJ.

Now define i’ = i+m+l and j’ = j-m. ( It is easily seen that

these are the new quotient and remainder if the integer division is
performed with negative remainder. ) Then

l -

13
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i'm+ §'(m+l) = (i4m+l)m + (J-m)(m+l) = im + F(m+l)

and the couple (i‘,j’) generates also y-x mod N. On the other
hand, as |i}] & § < n+l,

11

li+m+1l] = | m+l-]i| | = nm+l - |i]

and as 0 ¢ J ¢{( m,

131 tij-m| = m-j = m-[J].

Hence,
[11+13'] = m+l-|i|+m~| 3| = 2m+1l-(|[i|+]1]]) < 2m+l-m = m+l
because we assumed |i|+|j]| > m. Thus we have
i1+ & m
as desired.

Using this method, the values of i and j may be obtained with

PLA’'s or from a ROM memory. In the second case the size of the
needed ROM would be

(N-1) X ( 2([;.og2 ((N-1)1/2—1)12-I +10)
where the "+1" is due to the sign bit.
VI. CONCLUSIONS.

We consider that one of the contributions of our work is to
provide an example of a situation in which number-theoretic methods
give solutions to nontrivial problems on computer architecture. 1In
particular, a uniform algebraic solution has been found giving for

14



any number of nodes an optimal interconnection mnetwork, consisting
of two bidirectional networks; our optimality criteria has been the
minimization of the number of steps through the network in the worst
case.

These networks seem to admit several applications. We have
studied its use for unscrambling p-ordered vectors, obtaining better
results than perfect shuffle networks for values of N less than 86.

Swanson’s solution is significatively improved for every value of N.

Comparing this solution with the network in the ILLIAC IV
computer, we show that the upper bound on the number of steps
through the network is improved in 1 by the network we propose, with

no extra hardware; this improvement could be greater for higher
values of N.

Finally, we have shown how the control of the network can be
performed, giving a simple algorithm of routing that can be easily
implemented. -

We will continue this 1line of research 1looking for similar
characterizations of the optimal configurations for three or more
networks with directed or not directed 1links, thus allowing a
comparison with other existing networks, like n-cube and PM2T.
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