COMPLEMENTARY REMARKS AND IMPROVEMERTS
TO A LAGRAKGEAN HEURISTIC FOR
CAPACITATED PLANT LOCATION PROBLEMS

Jaume BARCELO
Josep CASANOVAS

RR85/04



COMPLEMENTARY REMARKS AND IMPROVEMENTS TO A LAGRANGEAN
HEURISTIC FOR CAPACITATED PLANT LOCATION PROBLEMS.

J.Barceld and J.Casanovas

Departament d'Investigacid Operativa, Facultat d'Informdtica,
Universitat Politécnica de Catalunya.

Jordi Girona Salgado, 31. 08034 Barcelona (Spain).

ABSTRACT

In a former paper, [1] , a2 heuristic using multipliers
from a lagrangean relaxation was proposed for getting
feasible solutions to a class of pure integer capacited plant
location problems. The heuristic consisted of three steps,
the last one being a plant interchange step. Further
computational experience has shown that the proposed
interchange procedure could fail. In this paper we
investigate the computational behaviour of the heuristic
without interchange, we propose an alternative plant
interchange procedure, and we give the result of our
computational experience.

RESUMEN

En un trabajo anterior, [ 1], proponiamos una heuristica
para obtener soluciones posibles para problemas de
localizacidén de plantas con restricciones de capacidad
formulados como problemas enteros puros. La heuristica
utilizaba multiplicadores de una relajacibén lagrangiana del
problema y operaba en tres etapas, la Gltima de las cuales
consistia en un procedimiento de intercambio. Experiencia
computacional adicional ha demostrado que en algunos casos el
procedimiento de intercambio puede fallar. En este trabajo

investigamos el comportamiento de la heuristica sin
intercambio, proponemos un procedimiento alternativo de
intercambio y damos los resultados de experiencias

computacionales adicionales.

[1] J.Barceld and J.Casanovas, A Heuristic Lagrangean
Algorithm for the capacitated plant Location Problem,
European Jourmnal of Operational Research, 15, no.2,
February 1984, pp.212-226.
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ABSTRACT

In a former paper,[l], a heuristic using multipliers
from a lagrangean relaxation was proposed for getting
feasible solutions to a class of pure integer capacited plant
location problems. The heuristic consisted of three steps,
the last one being a plant interchange step. Further
computational experience has shown that the proposed
interchange procedure could fail. In this paper we
investigate the computational behaviour of the heuristic
without interchange, we propose an alternative plant
interchange procedure, and we give the result of our
computational experience.

1. INTRODUCTION
In a former paper, 1] , we proposed a heuristic derived

from a lagrangean relaxation, for getting feasible solutions
for capacited plant location problems formulated as:

min £ Zc,. x,, t Z f.y. (1)
: i3 13 . 373
i€T i€Jd JE€J
s.t. (2)
T %45 =1, Vi€l
J&J
(3)
(P) z yj < K
1eJ (4)
T 4 < b, v
i€ ij 33 3€d
(5)
x, 4 {o,1} , vies, vied

(6)



where as usual I is the set of centers with demands d; to be
supplied from plants j, with capacities by, J is the set of
potential locations for plants, €i5 are the costs of,
supplying the total demand of center j from plant j, and fj,
are the fixed costs of opening a plant at potential locationij,
The problem is formulated as a pure integer one, meaning that
each center has to be supplied from only one plant, so the

decision variables are: Xj4 = 1, if centerj is supplied from
plant j, and iy = 0 otherwise, y . = 1 when plant 4 is open
and y- = 0 Whenjit is closed. ]

J

The proposed heuristic worked out in three phases. The
first phase was a plant selection procedure operating of the
following way: define the values of lagrangean nultipliers of
constraints (2) as:

- d: f.
u, = MIN c.. . . .
i JET { i3 " b r Vier (6) =
compute the amounts,
d.f.
pP. = z (C._ 1 J _— g Y=
3 ieg 17 bj ui ) » V3€T (7)

which could be interpreted as a measure of the interest of
including plant j in the solution, and then solve the
knapsack problem with an additional constraint,

min .z p Y
JET 3 3

s.t.
b)) Yj < K

(K1) J&J
z by =D , being D=2 di
jed I ] ieg
yj G{O,l} ' VjEJ

whose solution J*= {jGJ |Yj=l}, gives a set of plants of
cardinality | J"| <K, able to satisfy the total demand D.



The second phase was an heuristic for getting a feasible
solution for the remaining generalized assignment subproblem:

min z pX c.. X..
ieg gjege I

s.t. ¥ x,.=1, V¥

i€1
jeT* *+J

(GA) T d.,x,. <b.,, V.. .=
jer YD J J&J

Xije {O,l} ’ ViEI' VjEJ

this heuristic was a modification of the starting
procedure of the Ross and Soland algorithm,[27] .

The third and last phase proposed an attempt of
improving the choice of plants through an interchange based
on an estimate of the contribution of each plant to the
duality gap. The basic assumption behind this approach was
that the amounts S5 V4 (where sy, JET* , was the slack of
plant j in (4) and” w~ its dual variable) provided such an
estimate. So, if a plant KEJ \J* existed such that its
capacity by was less than bj , and bj'bk < -EJiSj , and
substitution of bj b bk in J* could still satigfy the total
demand D, then it “was supposed that this substitution
improved the solution if IP-’H{J<S--V. , because the
contribution of this variable to the &%algty gap was greater
or equal than the estimate of the increment in the objective
function value.

The computational experience done in our earlier work
did not detected any inconsistency with these assumptions,
however, further computational experience with mnew test
problems suggested to us by L.N.Van Wassenhove, has shown
that
a) When problems are very tight, that is when.éJQ.,
total capacity of plants included in the solutgon,jis
very close to the total demand D, then the
generaliced assignment subproblem (GA) can not have
feasible solutions. That was implicity recogniced in
our work but it raises the question of: what to do
then, and how this affects the heuristic performance.

b) The interchange proposed by comparision between
estimators |P-’ Pk| and Sj Vj fails in some cases
providing worsé solutions.



2. ALTERNATIVE HEURISTICS

A further insight into our argument shows that the
proposed estimate is a bad one because the amounts involved
can not allways be compared. The reasoms for that are that if
vector g , is a feasible vector of multipliers for the
lagrangean of (P) with respect to constraints (2):

L(ﬁ,x):min{): [ (c, ,—G.)x., + f.y. ] + Z E}
leg jer 3t 373 jer *t

(L) s.t.
(3), (4), (5) and (6).

then the vector (x,y) to be used in computing 1if (x,y,u)
gsatisfies the optimality conditions or not, should be the
optimal solution toO problem (L), and only in some cases this
vector x will be also feasible for problem (GA) and
reciprocally a vector X feasible for problem (GA) can be not
optimal for problem (L), and consequently estimator S4. V.,
computed from the feasible solution to (GA) could”™ be
meaningfulless.

Thus we must redefine the heuristic reducing it to only
two phases: the plant selection phase and the phase of
assignment of centers to plants; eliminating the interchange.
But doing that does not answer the question of what to do
when assignment is infeasible. To deal with these situation
we propose the following interchange:

a) Identify the plant with the greatestr.

b) Penalice the plant jdentified increasing its P R
coefficient by an arbitrarily large amount and solve
again knapsach problem (K1).

However, when problems are SO tight that assignments
could be infeasible it can happen also that the simpler
assignment heuristic proposed in, 1 , eventually fait or it
tooks a very large number of iterations for getting a
feasible solution, in such circumstances a complementary
assignment procedure has proven ijts efficiency in reducing
the time required.

With these changes the proposed heuristic works as
follows:



Heuristic

Step

Step

Step

Compute multipliers U, as in (6), for each
center i€I . 1
Compute amounts Fj , as in (7), for each plant

j&€J
(Plant selection)

Solve knapsack problem (K1). Let J*Cc J be the
set of selected plants.

(Assignment Procedure)
3.1 Direct assignment
V. € I define: 1l =min C..
i k jGJ*{ 13}
Set:Xjk=1
Define: Is= {iEI Ixij=l} r Vyeg®
Calculate:

=b.- .Z_ d,
537037 ser4%1 ¢ Tea (8)

If S4 > O, V5eg* , STOP (the assignment is
feasible and optimal) otherwise go to 3.2.

3.2 Reassignment
Define V={j€J‘ISj< 0} (set of plants whose
capacity is violated by the previous
assignment).
Define the penalties of reassigning the
centers from violated plants to other
plants:

For keVv and 1€Iywhile V#¢ @ .

Define, =MIN { > < }
Pin M 1 Cin Cik 0, and d; < sy

Pih == ° otherwise
Solve

min z F z .
i€T) ih 1



Reassign step by step

After

If zi=1 and Sh=di®0 (s, can have been
modified by a previous reassignment),
then:

L=, -{i} , T =L,V {i}
Otherwise do not reassign.

reassignments:
Compute again SjrvjeJ* as in (8)

Redefine V= { JET* | sj<b }

1f V=g, STOP, a feasible assignments has
been obtained.
Otherwise repeat, or after repetitions go to

3.3.

1f after r repetitions of 3.2 still V#D ,

then,

3'3.1

For k&€ V such that sk<0 and 1€ET*\ V

such that Sl>0 .

3.3.2

search for

MAX d.-d: >0 and d;-d. < s}
i€T jEIi 0 3 t)
Then:

Ip= (k- {3} v 45}
=(I;- {3}V 4i} |
For k €V such that 8Skg<0 and hgJ\V such
that sp 20
Search for:
.MIN {'cih'cik+cjk'cjh| shtd5-4;>0 s+ di'dj< sk}
i€ly, i€,
Then:

n=(g-{ihv{s}
=g -{5hudil



Step 4:

The following example ilustrates how the heuristic 1

3.3.3 Compute again Sj, VjEJ"‘ as in (8).
Redefina V=}jer* | s, <o}

If V=¢ STOP a feasible assignment has
been found.

Otherwise either try with an exact
branch and band algorithm to verify
that the generaliced assignment
subproblem is infeasible or, consider
it as infeasible and go to step 4.

Alternative.

Search for the plant k &€J*, such that Sy £o,
with tha greatest Fk .
Penalice this plant:

set Px =Pkt M (M an arbitrarily large
amount) and go to step 2 to solve again the
knapsack problem (K1) and find a new set J* of
open plants.

’

works. Let the problem defined by

Ci4 dy uj

2 3 10 12 5 67.7894
3 2 12 16 7 93.3043
4 5 15 20 13 174 .5652
1 3 16 18 9 119.4210
2 1 14 17 8 405 .343¢

b, 19 23 20 25 |T4q, = 42

£ 250 300 450 500

Py | 4-203 | 1.3982 451.5288 362.5723




The corresponding knapsack problem (K1) is
min 4.2036y, + 1.3982y, + 451.5288y; + 362.5723y,
V4 TV, tyy tyy £ 2

19y, +23y, +20y, +25y, 2> 42

yi € {03 1} ’ i= 1,2, 3,4
and has the solution Y4 =Y =1, ¥3 =yy =0, but the
corresponding assignment subproblem is infeasible. The

proposed heuristic gives:
14: {4,3} , s, =14

and 2= Ch3 (oLl'cc‘h'\rc -Func‘tt'on vafue )
L= {245}, s=-4

plant 1 is the one with the greatest P, so penalizing py and
solving again the knapsack one obtains the solution y, = Yy, =
1, y4= y3= 0 which yields a feasible generalized assignment
subproblem.

However by inspection it is possible to find that the
choice ya= y3= 1, 4= Yy =0 gives a better solution. This fact
arises the questions of wether or not 1is posible make a
better choice of plants improving the first selection.

Trying to answer these questions one can think that the
way of calculatins the amounts Py could be not very rea%_istic
in some cases, given that the computation of the M4y 1is
based on the LP relaxation of problem (P) consisting on the
substitution of constraints (5) and (6) by

Xy 30 Viel, Vjed , and ¥;30, Vjed

and then (7) computes Pj as if the problem were an
uncapacitated problem and that represents an overrelaxation.
This suggests that perhaps taking into account the fact that
plants have limited capacities in calculating Py could
provide a more realistic approach. Consequently to include
the capacities in the computation of amounts fy , we
substitute (7) by:

b

Py = MR T e+ dify o) 2
] tel ]

s.t.
(K2) Y Aoz ) by

vel
Z; ¢ {0,4} , Vie I

and then we define heuristic 2 as follows:



Heuristic 2

Step 1: Compute multipliers e, Viel , as in (6)
Compute amounts Pmj by solving (K2) for each jeJ

Step 2: Solve knapsack problem (K1) using P,q instead

of Py - .
Steps 3 and 4 remain unchanged

3. COMPUTATIONAL EXPERIENCE WITH HEURISTIC 1 AND HEURISTIC 2

A serie of 20 problems of sizes 20 x 10 each (20
centers and 10 plants) 10 problems of 30x10, and 5 problems
of 50 %20 have been solved wusing both heuristics and
computational results are shown in Table 1. All this problems
were generated using a random test problem generator with the
following features. Given the parameters DMIN, minimun value
of the demand, DPROM approximate average value of the
demands, CMIN, minimun transportation cost value, CPROMNM,
approximate average transportation cost, and DCOEF average
ratio between the capacity of K plants and the total demand
D; problem data are generated in the following way: K, limit
member of plants to be open, is generated in the interval
(0.1n, n), being n the number of centers; demands d{ are
generated as randomly distributed in an interval centered on
CPROM which has CMIN as lower 1limit; once the demands are
generated BPROM, average plant capacities, is computed as,

TOTAL DEMAND/ DCOEF * K, and then capacities by are generated
as randomly distributed in the interval (BMIN, 2%*BPROM-BMIN),
where BMIN is fixed to DMIN. Transportation costs are

computed as &y = 4cf+-Tq'Ac , assuming that they have two
components, the first one G« a fixed component depending on
the plant, determined randomly, and the second 'h'di s

proportional to the demand. Fixed costs ff are computed
assuming also that they are proportional to capacities plus a
random component in such a way that they satisfy some
proportionality with transportation costs.

Test problems have been generated in such a way that

ratio D/B, between total demand D and B= Z,bj |, total
jed A

capacity offered by open plants, were as high as possible,
greater than 0.9 in general, in order to get problems very
tight, with capacities closer to total demand, expecting to
generate infeasible assignment subproblems, however that
happened only in two cases.



Heurestie 4 Heunstie 2
Test
Problem Size fabs Ratio Zhew - Zoest . Ratio Zheu - Zbest
rlumbcr nxm s -DIB A=-—£—-——'—'4 'D/B 4z —0/m
best Zypest
1 20x10 a 0.9506 0.45 0.9506 0.45
2 20x10 b 0.9469 2.94 0.9768 0.0
3 20x10 c 0.9857 1.38 0.9741 1.46
4 20x10 c,e 0.9761 1.87 0.9609 1.72
5 20x10 c,e 0.9747 1.54 0.9658 1.55
6 20x10 c 0.8729 11.02 0.9584 0.83
7 20x10 b 0.9786 1.14 0.9838 1.12
8 20x10 - 0.9729 2.10 0.9875 0.75
9 20x10 c,e 0.9621 2.63 0.9151 6.58
10 20x10 c 0.9294 7.74 0.9526 3.70
11 20x10 c 0.9835 0.42 0.9693 1.93
12 20x10 d,c 0.9705 0.29 0.9365 6.29
13 20x10 e 0.9781 1.42 0.9623 2.63
14 20x10 e 0.7679 27.70 0.9801 0.34
15 20x10 a 0.9887 0.0 0.9313 5.87
16 20x10 d 0.9666 1.98 0.9812 1.12
17 20x10 b,e 0.8776 9.94 0.9714 0.0
18 20x10 c 0.9679 1.11 0.9132 3.71
19 20x10 c,e 0.9107 7.89 0.9344 4,92
20 20x10 - 0.9712 1.87 0.9986 1.86
21 30x10 a,e 0.9932 0.0 0.9809 2.99
22 30x10 a,c 0.9987 0.0 0.9058 3.77
23 30x10 - 0.9583 2.18 0.9681 0.90
24 30x10 - 0.8053 7.33 0.9953 8.27
25 30x10 c,a 0.9495 0.0 0.9630 (*)
26 30x10 c,a 0.9988 0.64 0.9859 1.36
27 30x10 a 0.9884 0.30 0.9633 3.75
28 30x10 c,a 0.9586 0.0 0.9820 0.0
29 30x10 c 0.8920 7.40 0.9564 (*)
30 30x10 c 0.9778 1.60 0.9712 1.06
31 50x20 c 0.9915 5.56 0.9975 4.94
32 50x20 c 0.9621 4.55 0.9798 2.01
33 50x20 - 0.9897 0.54 0.9913 0.51
34 50x20 - 0.9942 8.43 0.9695 10.76
35 50x%20 c,a 0.9994 0.31 0.9867 (*)

TABLE 1

%



Problem status a in Table 1, means that heuristic 1
gives the best solution, of at least the best selection of
plants (the small differences in problems 1, 27 and 35 are
due to ehe assignments heuristic), while problem status b
means that is heuristic 2 who provides the best solution. To
get the best solutions problems have been solved by a special
branch and bound code wusing lagrangean relaxation and
subgradient optimitation. Problem status e means that
optimality was not proved by the branch and bound code, but
it was not able to improve the best solution in less than 10
CPU minutes of a VAX 11/780.

Solutions provided by heuristic 1 are on average within
the 3,54% of the best solution, and only in two cases
(problems 6 and 14) presented a big deviation, but in these
cases heuristic 2 gave an almost optimal solution. However in
19 cases out of 35, heuristic 2 gave either a solution as
good as that of heuristic 1 or a better one only allowing the
violation of constrait (3) on the limit number of plants,
(problem status c¢ in Table 1). This situation occurs mainly
when there are many small plants able to be included in the
set of open plants, in that case all they present an
attractive value of Pm . In problems marked with (%)
solution of heuristic 2 was better than the optimal but only
because of violation of constrait (3).

Two cases out of 35, presented unfeasible assignments
subproblems, these were problems 12 and 16 identified by
status d in Table 1, in both of them heuristic 1 gave an
almost optimal solution.

4. AN ALTERNATIVE INTERCHANGE HEURISTIC.

Computational experience with heuristic 2 dissappointed
its systematic use, nevertheless we can not forget that it
gives 1in some cases better results than heuristic 1,
specially when small plants can satisfy the demand
requirements. The analysis of these situations suggests that
when a plant k, not included in the solution of heuristic 1, K%J”f

, has a capacity b« such that b is smaller than bj:
capacity of plant j included in the solution of heuristic 1,
JCJ* , then if substitution of plant j » by plant k in the
solution gives a new feasible solution then if Pmx ®the new
solution can be better thanm the former one. The modified
amounts Pm computed by (K2) become in that way the basis of
a 1l-interchange procedure that substitutes a plant j in the
solution by a plant k not in the solution.

(#) ts smaller than Pmy

11



This analysis from computational results can be also
extended to a 2 interchange procedure, that means a procedure
which substitutes plant j in the solution by plants k and L,
not in the solution in the following way: if the sum of the

capacities bk + b, of plants k,L g J¥ , is smaller than
capacity of plant H , jed* | and replacing j by k and L,
provides a feasible solution, then if Pmux + Pmt , are

smaller than Pmy the new solution can be better than the
former one.

As consequence of this analysis we propose heuristic 3:

Heuristic 3

Step l: Compute multipliers T as in (6), for each

center vel .
Compute amounts Py , as in (7), for aech plant
jed

Step 2: (Plant Selection).

Solve knapsack problem (K1) with Py as cost
coefficients. Let J'€ J be the set of open
plants.

Step 3: (Assignment Procedure).

The same as heuristic 1, except that:

a) when a feasible assignment is detected then
go to step 5.

b) if infeasibility 1s due to a solution
provided by a l-interchange or a
2-interchange then goto step 6.

As a heuristic 1.

(Interchange Procedure).

5-1 (l-Interchange)

Search for a candidate to enter the
solution.
For seJ* search for a plant ee INJI*
such that:

'D.. (Z b)'bs) Y4 be (Bs
je3

5~

Step
Step

w

12

If such a plant exists then compute Pme and Pms

, solving the knapsack (K2) for plants
e and s.

If Pwme & Pms then interchange s and e:

3= (34-3st)ude}



Step 6:

Go to step 3.
When all plants in J¥ have been examined
then proceed to

5-2 (2-Interchange).
If |]J#| =K then STOP ( a 2-interchange
would violate the constraint on the maximum
number of plants to be open) otherwise:

For sed” , search for plants
and e, such that,
D- (T brobg) < be + be, < bs
(l.eJ,j ¢

If such a plant exists then compute Pme,
and Pme, , and Pms solving the knapsack
(K2) for plants e, € and s.

If _Pé:e’ + Pme, < Pms > then interchange s and
s :

3%= (3%-4s}) Udest Ude}

Go to step 3.
When all the plants in J%¥ have been examined
then STOP.
(Infeasible assignments from solutions provided
by interchanges).

Infeasibilily from a l-Interchange: eliminate
plant e from further considerations for
1 - I n t e T c h a n g e

Go to step 5.1.

Infeasibility from a 2-Interchange:
1f be, £ be, ,eliminate plant e, , from
further considerations for 2-Interchange,
otherwise eliminate plant eg , g0 to step
5.2.

Heuristic 3 applied to the former example gives the same
first solution but in this case the l-Interchange step (step
5.1) gives the following results:

s=2

D-(.%,bj- bs y=19 so plant 2 could be
inte%%hanged with plants such that 19<be < 2.3,
plant 3 is the only plant filling these
conditions but Pmz =0 and Pwms =209.1305 and do
not proced to interchange.

13



s=4 D- (.E‘bj-b; y=17, and then plants 1 and 3 are
candfﬁ%te to interchange, Pmg =0.4874,

Pmy =212.3561, so interchange of 4 by 1 is

proposed, but J* =3 4,2} ,gives an infeasible

assignment, aliminating 1 by step 6, as Pmi < Pwmy

14

interchange of 4 by 3 is proposed, and J¥ =323}

gives:

I, =4{4.4,58}

12,3}

2% ¥BY

i3

and no more interchanges are possible.
5. COMPUTATIONAL EXPERIENCE WITH HEURISTIC 3.

A serie of 45 test problems, covering a wide variety of
situations, were solved using heuristics 3. The first 35 were
the ones used for testing heuristic 1 and 2, the remaining
10, of sizes 40x15 and 40x20, were generated with the same
generator and with the goal of covering the intermediate
cases. As before problems were generated as tight as
possible, that is with a ratio D/B (where B is the amount of
the capacity offered by the last solution) as high as
possible. In this second series of computational experiences
we have found that a second parameter could give some
complementary information that helps to explain the behaviour
of the heuristic. Such a parameter is the average ratio
between the fixed cost :f and the sum of tramnsportation cost
by es| , for each plant.
tel

Computational results are shown in Table 2. For each
problem the Table includes the following information: size,
average ratio ¥f/c§ L5 , the total number of interchanges
attempted by the¥ heuristic, the number of feasible
interchanges (the remaining ones giving infeasible assignment
subproblems), the type of interchanges (1 for l-interchanges,
2 for 2-interchanges), the improvement provided by the
interchange, the final status of the problem (a for those
problems for which the heuristic provided the best solution,
where, as before, best solution means the optimal in certain
cases or at least a solution which could not be improved in
less than 10 CPU minutes of a VAX 11/780 using a special
branch and bound code, status b means that best solution and
heuristic solution include different plants by their
objective function values differ in less than 1%, d means, 2s
before that first heuristic solutions, before proceeding to
interchange, gave infeasible assignment subproblems, and
status ¢ is for the special cases when interchanges start
improving the solution but after a certain number of them the
soiution becomes worse but allways within a certain range
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about the best one), Table 2 also includes the difference
with respect to the best solution and the final ratio D/B,
that is the ratio for the last of the heuristic solutionms.

In 32 cases out of 45 the heuristic provided either the
best solution (status a), or an equivalent solution (status
b), with an average difference of 3.21% with respect to the
best solution in the remaining cases. In 7 cases the
heuristic produced a serie of interchanges with the following
behaviour (status c): it starts improving the solution and
after a series of improvements it produces worse solutions.
Analysing these cases one can notice that with exception of
problems 40 and 42 all the remaining cases correspond to
problems with a very low ratio IiAEcq, that means problems
for which the sum of transportation cost are very much higher
than the fixed costs. In problem 23, for existance, the one
with the highest difference, this ratio is of 0.1107 meaning
that on average transportation costs for each plant are ten
times the fixed cost of opening the plant. However, in
despite of these ratios in the remaining cases the behaviour
of the heuristic could be interpreted as a search on a
bounded neighborhood c¢f the best solution. In some other
cases, as in 42, the small difference is due to the effect of
the assignment heuristic (in some of them later manual
adjustements eliminate the difference). Many of these effects
could be interpreted taking into account the way in which
were defined amounts Pm (knapsack problem K2), and looking

at what happens when cg}q>>¥j and also &g
present wide dispersions among them, but in all the
remaining cases, when > L cp , and ¢&j do not present

Lel .
so wide dispersions heuristic 3 seems toO produce systematic

good results as computational experience shows.
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