ABOUT LOG-ON LANGUAGES

Preliminary Version

R.Casas
J.Gabarró

RR 85/02
ABOUT LOG-ON LANGUAGES

Preliminary Version

R. Casas
J. Gabarró (&)

Facultat d'Informàtica de Barcelona
Universitat Politècnica de Catalunya, 08034 Barcelona
Spain

(&) Aquest treball ha estat realitzat, en part, durant una estada a França, possible gràcies a un ajut concedit per la CIRIT, Diari Oficial de la Generalitat nº 486, 16 de Novembre de 1984.
Abstract: We deal with on-line log-space Turing Machines, with markers in the work tapes.

In this type of machines we prove the existence of a language L satisfying

$$L \in \text{NSPACE}_f(\log n), \quad \overline{L} \in \text{NSPACE}_f(\log n)$$

and

$$L \not\in \text{DSPACE}_f(\log n)$$

We give a explicit definition of L. The main theorem uses minimisation techniques of deterministic finite automata.

Resum: Tractem amb Màquines de Turing que tenen marcadors en les cintes de treball.

En aquest tipus de màquines demostrem l'existència d'un llenguatge L que satisfà

$$L \in \text{NSPACE}_f(\log n), \quad \overline{L} \in \text{NSPACE}_f(\log n)$$

$$L \not\in \text{DSPACE}_f(\log n)$$

Donem la definició explícita de L. El teorema principal utilitza les tècniques de minimització d'automats finits.
Our model of machine is the on-line log-space Turing machine. When the machine has markers in the work tape, we note MT_{\log}.
More specifically we are interested in on-line log-space TM with markers. Schematically:

We denote the complexity classes defined by these machines by a subindex \log. For example $\text{NSPACE}_{\log}(\log n)$ is the class of languages defined by a non-deterministic on-line log-space Turing machine with markers.
Let us define the language L.

Definition 1: Let us consider the language L over $\{0,1,a\}^*$ which is given by:

$$L = \{ g_1a g_2a \ldots g_ka \mid k \geq 1, \text{for every } 1 \leq i \leq k \text{ the bloc } g_i \text{ belongs to } \{0,1\}^* \text{ and one half of the blocs have a letter } l \text{ in position } \left\lfloor \log k \right\rfloor \}$$

Throughout the paper $\frac{1}{2}k$ or $\log k$ will mean $\left\lfloor \frac{1}{2}k \right\rfloor$ or $\left\lfloor \log k \right\rfloor$.

The language L satisfies
Lemma 1: The defined language verifies

\(L \in \text{NSPACE}(\log n) \)

\(\overline{L} \in \text{NSPACE}(\log n) \)

Proof. Let \(w \in L \) be such that \(w = g_1ag_2a...g_ka \), then \(l \leq k \leq w \).

The following algorithm simulates a non-deterministic TM which accepts \(L \) in \(\log n \) space:

(i) The machine guess \(k \). This can be done in \(\log \) space.

(ii) Find \(\log k \).

(iii) Count the number of blocks \(g \) in \(w \) having \(l \) in position \(\log k \).

Let \(y \) be that number.

(iv) Test if \(y = \frac{1}{2}k \)

(v) Test if \(k \) is the number of blocks.

A similar non-deterministic machine to accept \(\overline{L} \) could be obtained by changing:

(iv)' Test if \(y \neq \frac{1}{2}k \).

Remark: By a small change in the last lemma it can be proved that

\(L \in \text{NSPACE}(\log n) \)

\(\overline{L} \in \text{NSPACE}(\log n) \)

We study a deterministic machine for \(L \).

Lemma 2: \(L \in \text{DSPACE}(\log^2 n) \)

Proof. Let \(w \) be in \(L \) with \(w = g_1ag_2a...g_ka \), then \(l \leq k \leq |w| = n \).
as $0 \leq \lfloor \log k \rfloor \leq \lfloor \log n \rfloor$ then:

$$\log k \in \{0, 1, 2, \ldots, \lfloor \log n \rfloor - 2, \lfloor \log n \rfloor - 1, \lfloor \log n \rfloor \}$$

Consider a TM whose which uses a tape as counter for every value

$$\{0, \ldots, \lfloor \log n \rfloor \}$$

When the current block g has a 1 in position $t, 1 \leq t \leq \log n$, the

$p(t)$ counter increases by 1 the content.

Schematically:

![Diagram]

- Counts the length of input
- Counts the number of blocks
- Counts the length in a current block

Array \vec{p} of dimension $[\log n] + 1$
When the machine has read a left factor $w = g_1 g_2 a...g_n a$
for every $0 \leq i \leq \lfloor \log n \rfloor$, $p(i) = t$ iff there exists exactly t
blocs g with l in position i.
When we have read the entire input word, the acceptance condition is
\[p(\lfloor \log y \rfloor) = \left\lfloor \frac{y}{2} \right\rfloor \]

We shall study memory bounds. The counters x, y, z are bounded by $\log n$. As $p(i) \leq \log n$ then
\[\frac{\log n}{\sum_{i=0}^{\lfloor \log n \rfloor}} p(i) \sim (\lfloor \log n \rfloor)^2 \]

In the next lemmas, we shall consider configurations like $c = (x, y, z, \vec{p})$.

Therefore our interest lies in some components of vector \vec{p}.
We cut \vec{p} in three parts. Look at the next figure.
We shall study components between $1 + \frac{1}{2} \log n$ and $1 + \frac{3}{4} \log n$.

If a word is accepted using the counter $1 + \frac{1}{2} \log n$ then
\[p(1 + \frac{1}{2} \log n) = \frac{1}{2} \cdot 2^{1 + \frac{1}{2} \log n} = \sqrt{n} \]

In general for every counter
\[1 + i + \frac{1}{2} \log n \quad , \quad 0 \leq i \leq \frac{1}{4} \log n \]

we have
\[p(1 + i + \frac{1}{2} \log n) = 2^i \sqrt{n} \]

We are interested in an accessibility problem for a non-polynomial number of configurations.
To study that problem, we fill the vector \mathbf{p} in such a way that:

(i) $p(i) = 0$, $0 \leq i \leq \frac{1}{2} \log n$

(ii) $p(i) = x$, $1 + \frac{1}{2} \log n \leq i \leq 1 + \frac{3}{2} \log n$, $x \in \sqrt{n}$

(iii) $p(i) = 0$, $2 + \frac{3}{2} \log n \leq i \leq \log n$

The values of \mathbf{p} and the accessibility of these configurations induce us to define the set \mathcal{Q} and the words $g_{\mathcal{Q}}$.
Definition 2 For every n, let Q be the set of vectors

$$Q = \{0\}_{\frac{1}{2}\log n}, \{0,1,\ldots,\sqrt{n} - 1\}_{\frac{1}{4}\log n}, \{0\}_{\frac{1}{4}\log n}$$

for every $\vec{q} \in Q$ consider the word

$$g_{\vec{q}} = g_1 a g_2 a \ldots g_i a \ldots g_{\sqrt{n}} a$$

such that for each $1 \leq i \leq \sqrt{n}$ we have

$$g_i = 0_{\frac{1}{2}\log n}^{1_{\frac{1}{2}\log n}} u_1 u_2 \ldots u_m \ldots u_{\frac{1}{4}\log n}$$

with

$$u_m^i = \begin{cases} 1 & \text{if } q(1+m)_{\frac{1}{2}\log n} \geq i \\ 0 & \text{otherwise} \end{cases}$$

Given any $j, 0 \leq j \leq \sqrt{n}$ we denote by $g_{\vec{q},j}$ the left factor of $g_{\vec{q}}$ containing j blocks, formally

$$g_{\vec{q},j} = g_1 a g_2 a \ldots g_j a$$

notice that

$$g_{\vec{q},\sqrt{n}} = g_{\vec{q}}$$

We are interested in values for n such that $\frac{1}{2}\log n, \frac{1}{4}\log n, \sqrt{n}$ are naturals, let us consider

$$n = 2^{4x}, \quad x \geq 1$$

then $\sqrt{n} = 2^{2x}, \frac{1}{2}\log n = 2x, \frac{1}{4}\log n = x$

This we obtain a second version of the last definition
Definition 3: Let $n = 2^{4x}$, $x \geq 1$ then consider the set

$$Q = \{0\}^{1+2x} \cdot \{0, 1, \ldots, 2^{2x} - 1\}^x \cdot \{0\}^{2x}$$

for every $\vec{q} \in Q$ let us consider the word

$$g_{\vec{q}} = g_1 a g_2 a \ldots g_{1} a g_{2x} a$$

such that for each $i, 1 \leq i \leq 2^{2x}$ we have

$$g_i = 0^{2x+1} u_1^i u_2^i \ldots u_m^i \ldots u_x^i$$

with

$$u_m^i = \begin{cases} 1, \text{if } q(1 + 2x + m) \geq i \\ 0, \text{otherwise} \end{cases}$$

Given any $j, 1 \leq j \leq 2^{2x}$ let $g_{\vec{q}, j}$ denote the left factor of $g_{\vec{q}}$ with j blocks

$$g_{\vec{q}, j} = g_1 a g_2 a \ldots g_j a$$

notice that

$$g_{\vec{q}, 2^{2x}} = g_{\vec{q}}$$

In the next lemma we shall see that after reading $g_{\vec{q}}$ the MT\# satisfies

$$\vec{p} = \vec{q}$$
Lemma 3: Take \(\vec{q} \in Q \) and \(1 \leq m \leq \frac{1}{4} \log n \).

(a) When the TM has read the prefix \(g_{\vec{q}}, j \), the counter
\[1 + \frac{1}{2} \log n + m \] satisfies
\[p(1 + \frac{1}{2} \log n + m) = \begin{cases}
 j & \text{if } u_m^j = 1 \\
 q(1 + \frac{1}{2} \log n + m) & \text{otherwise}
\end{cases} \]

(b) When the TM has read the complete word \(g_{\vec{q}} \) it is in the
configuration
\[c_{\vec{q}} = (\sqrt{n}(2 + \frac{3}{4} \log n), \sqrt{n}, 0, \vec{q}) \]

Proof: We denote \(r = 1 + \frac{1}{2} \log n + m \).

(a) When the TM has read the block \(g_{\vec{q}}, j \) there are two
possibilities.
If \(1 \leq j \leq r \) the counter \(p(r) \) has value \(j \).
By construction the blocks \(g_{\vec{q}},1,g_{\vec{q}},2,\ldots,g_{\vec{q}},r \) satisfy:
\[u_m^1 = u_m^2 = \ldots = u_m^r = 1 \]
If \(r < j \leq \sqrt{n} - 1 \) the counter \(p(r) \) has value \(q(r) \).
The blocks \(g_{\vec{q}},r+1,g_{\vec{q}},r+2,\ldots,g_{\vec{q}},\sqrt{n} - 1 \) satisfy
\[u_m^{r+1} = u_m^{r+2} = \ldots = u_m^{\sqrt{n} - 1} = 0 \]

(b) We denote \(c_{\vec{q}} = (x, y, z, p) \)

(i) After reading the complete word \(g_{\vec{q}} \) we have processed an
exact number of blocks.
That means \(z = 0 \).
(ii) By construction the number of blocks is \sqrt{n}, then $y = \sqrt{n}$.

(iii) Every block $q_i \cdot a$ has a length of:

$$1 + 1 + \frac{1}{2} \log n + \frac{1}{4} \log n = 2 + \frac{3}{4} \log n$$

As there are \sqrt{n} blocks we come to

$$x = |q_d| = \sqrt{n} (2 + \frac{3}{4} \log n)$$

(iv) Considering that $g_{\overrightarrow{q}} \sqrt{n} = g_{\overrightarrow{q}}$ we come to $\overrightarrow{p} = \overrightarrow{q}$

\[\text{Lemma 4 : For every } \overrightarrow{q} \in \Omega \text{ we have } \overrightarrow{q} \notin L. \]

\[\text{Proof The word } g_{\overrightarrow{q}} \text{ has } \sqrt{n} \text{ blocks. If } \overrightarrow{q} \in L \text{ we need } q(\log n) = \frac{1}{2} \sqrt{n}. \]

By construction $q(\frac{1}{2} \log n) = 0$ then $g_{\overrightarrow{q}} \notin L$.

\[\text{Lemma 5 : Consider } \overrightarrow{q}, \overrightarrow{q}' \text{ in } \Omega, \text{with } \overrightarrow{q} \neq \overrightarrow{q}', \text{we cannot merge the configurations } c_{\overrightarrow{q}} \text{ and } c_{\overrightarrow{q}'} \].

\[\text{Proof As } \overrightarrow{q} \neq \overrightarrow{q}' \text{ there exists } m, 1 \leq m \leq \frac{1}{4} \log n, \text{such that } \overrightarrow{q} \text{ and } \overrightarrow{q}' \]

differ in component

$$r = 1 + \frac{1}{2} \log n + m$$

suppose

$$x = q(r) > q'(r) = y$$

Take

$$g_{\overrightarrow{q}} = g_1 a g_2 a \ldots g_n a \quad \text{with } g_1 = 0, 1 + \frac{1}{2} \log n_{1} \overline{u_1} \overline{u_2} \ldots \overline{u_t}$$

$$g_{\overrightarrow{q}'} = f_1 a f_2 a \ldots f_n a \quad \text{with } f_1 = 0, 1 + \frac{1}{2} \log n_{1} \overline{v_1} \overline{v_2} \ldots \overline{v_t}$$

with $t = \frac{1}{4} \log n$

we have
\[g_x = 0 + \frac{1}{2} \log n u_1 \cdots u_{m-1} u_m^x \cdots u_t^x \]
\[f_x = 0 + \frac{1}{2} \log n v_1 \cdots v_{m-1} v_m^x \cdots v_t^x \]

When the machine has read the left factor \(g_{q, x} \), that counter \(r \) has his maximum value \(x \). That means \(p(r) = x \).

When the machine has read \(g_{q, y} \), the counter satisfies \(p(r) = y \).

We need to complete \(g_q \) with a word \(g \), such that \(w = g \) satisfies:

1. The word \(w \) has length \(n \).
2. The word \(w \) has \(2^r \) blocks.
3. The word \(w \) has exactly \(\frac{1}{2} 2^r \) blocks with a value \(1 \) in position \(r \).

Considering (1), (2) and (3) we conclude \(w \in L \).

We proceed step by step.

(a) Consider a word \(g \) of the form

\[g = h_1 a h_2 a \ldots h_i a \]

with \(h_j \in \{0, 1\}^* \), \(1 \leq j \leq i \). It is easy to see that

\[i = \sqrt{n(2^{m-1} - 1)} \]

(b) We need a total of

\[\frac{1}{2} 2^r = 2^m \sqrt{n} \]

occurrences of \(1 \) in position \(r \). As \(g \) contains \(x \) occurrences, \(g \) needs to contain

\[t = 2^m \sqrt{n} - x \]

occurrences of \(1 \) in position \(r \).

(c) We define

\[h = 0 + \frac{1}{2} \log n u_{m-1} 10^{ \frac{1}{4} \log n - m } \]
then $|h| = 1 + \frac{3}{4}\log n$ and h has only one occurrence of 1 in position m.

Take $h_1 = h_2 = \ldots = h_t = h$, when $t = 2^m\sqrt{n} - x$.

(d) In this moment we have

$$w = g_q^*(ha)^t h_{t+1}a \ldots h_1a$$

it is easy to see that $r - i = \sqrt{n}(2^m - 1) + x = s$

as $1 \leq m \leq \frac{1}{4}\log n$, $0 \leq x \leq \sqrt{n} - 1$ we come to $r - i \geq \sqrt{n} + x > 0$

(e) We take $h_{t+1} = \ldots = h_{i-1} = \lambda$, where λ is the empty word

and $h_i = \sigma^y$, taking γ to obtain a word of length n.

Finally

$$w = g_q^*(ha)^t \sigma^y a$$

with

$$n = |w| = (2^m\sqrt{n} + \sqrt{n} - x)(2 + \frac{3}{4}\log n) +$$

$$2^m\sqrt{n} - \sqrt{n} + y - 1$$

as $m \leq \frac{1}{4}\log n$, $2^m\sqrt{n} \leq n^{3/4}$, for increasing values of n, y becomes positive, and the word w exists.

(f) Consider the word $w' = g_q^*\vec{g}$, with the same g as in w. We have $w' \notin L$, then c_q^* and $c_{q'}^*$ cannot be merged.

Corollary 1: The language L has a deterministic space lower bound given by $\bigcup (\log^2 n)$ infinitely often.

Proof The cardinal of the set Q is given by

$$||Q|| = (\sqrt{n} + 1)^{\frac{1}{4}\log n} \sim n^{\frac{1}{8}\log n}$$

As for $\vec{q} \neq \vec{q'}$ we cannot merge configurations of deterministic
This machine has at least $|Q|$ configurations. To code these configurations we need at least

$$\frac{1}{8} \log n \log(n^{\frac{1}{8} \log n}) = \log^2 n$$

bits.

We can conclude:

Theorem 1: $L \notin \text{DSPACE}(\log n)$

In connection with initial index (Ga, 83) it is easy to prove that:

$$a_L(n) \sim \theta(n^{\frac{1}{8} \log n})$$

References