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Abstract. We investigate in this paper how the method of moments can be used to estimate the probability
density function PDF of a random variable (RV) modeled by a Markov chain. The procedure departs from
the computation of the higher-order moments of the data and can be generally used as a linear parametric
approach to the estimation of any unimodal PDF. One of the petential applications is speech recegnition.
Although Hidden Markov Models (HMM) have been proven to be one of the most successful approaches to
the problem, its major weakness is that the state duration probability density functions (DPDF) are
constrained to be exponential. In order to cope with this impairment it is possible to model the data
(representing the duration of an speech event) through another Markov chain, and preserve the features of
the training and recognition stages.

1. Introduction! linear optimization and can be used very generally to
Since the early B0's the success of HMM has been obtain parametric PDF estimations. Relations have
demonstrated in speech recognition. However, in its been found for continuous RV and for diserete-lattice
most simple form, the probability of duration a state type cnes.

turns out to decrease exponentially with time, which is

not an adequate representation, in light of the 2. Parametric PDF estimation
experimental data. In order to cope with this deficiency 2.1 Continuocus RV

Russell and Cooke [2] proposed to replace each state of We assume first that the observed RV {x} is the sum of
the HMM by another Markov chain (sub-HMM) such p exponentially distributed RV, and hence, the PDF of
that the DPDF for a given state is the overall DPDF of the data is the convolution of the individual exponential

the associated sub-HMM. Thus modeled, the DPDF of PDF:
the observed RV measuring the duration happens to be

the summation of exponentially distributed RV, since fj(®) =4, exp(=hjx) 2.1
the duration in one state is the summation of the f(x) = f()* fo (x)%...* o (x) 2.2)
duration in each state of the sub-HMM. Henceforth, the )
use of multiple exponentials as an alternate model The Laplace transform of equation (2.2) (particularizing
allows, from one point of view, improve the fit between for s=jo the characteristic function is obtained) is the
the model and the data, and from another point of view, product of the individual Laplace transforms of each
to preserve the Markov chain structure which allows an PDF. It will be very valuable to recover the parameters
easy training and recognition task. Other approaches p and & ; Therefore, for the model we are dealing with,
have been used in the past to improve the duration we obtain:

modeling [1]-[2], based on other parametric funections, o

as the Gamma function. Its main drawback is the ®(0) = tD(s)is: Jo = Iu f(x)exp(sx)dx p=jo =

complexity of the training as well as the recognition
stage. = ﬁ _ =
The goal of the paper is to use the methoed of moments i=1 (1= 49y 1 £ (o) o

to estimate the parameters of such a RV from the A +§ 7o/ (2.3)
estimated moments of the data. The desirable feature of =
this approach is the linear relationship appearing
between the moments and the unknowns which allow
an easy estimation procedure which do not need non-

1 1

where the zeros of the denominator are real. According
to [5], the characteristic function (CF) can be developed
in a Taylor series, where the coefficient of each term of
order % corresponds to the kth-order moment my, of the
RV {x}:

I ak(D(m)
dwf

= (- j) @,

1This work has been supported by the Spanish National my = (=J) o0 (2.4)
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where:
1 _ P

1+i(jﬂ))i a - P(jm)
i=1

(130:

(2.5}
Although unnecessary, we have introduced the term
P{0) in equation {2.5) for reasons that will become
apparent in section 2.2. To obtain a general expression
of the a; coefficients in equation (2.3) as a function of
the moments of the observed process, it is useful to
introduce the second characteristic function (SCF):

¥, = In{P(0)) - In(P( ju))
Fnd@) 3" nPje)
dot duw*
By developing (2.4) and (2.6) and applying the
derivation chain rule for the polynomial model, it is

easy to show that the CF and the SCF are related
through the recursions:

k=lrp 1
Dy = 2( ; }l‘k—iq’i

0

¥, = (2.6)

(2.7)

LD

— k-1 (i+1)
= 2( JP (o) Dyiy (2.8)

where the j order derivative of the pelynomial is written
as:

@, ., _ P(w)

P (_]0)) = a{Di (29)

Since the polynomial F(jo ) is of finite order p the
suceessive derivatives particularized for © =0 are given
by the expression:

pin (Jm}] {

"nla, n<p

0 nsp (2.10)

Now, by combining equations (2.7),(2.8),(2.9} and (2.10)
it is easy to derive an expression for the kth-order
moment as a function of the coefficients of the
polynomial and the moments up to order -1, in the
way:

k=lh—i-1 —ie1
my=-3 3 (n+ 1){ J( J“nﬂmi M i1
i=0 n=0 n
mg =1

(2.11)

Not much effort is required to construct a linear relation
between a; and m;.

2.2 Discrete lattice-type RV

This case is specially well suited when trying to
estimate the parameters of a Markov chain, as stated in
the introduction. Equations (2.1)-(2.11) are strongly
related to the continuous nature of the RV assumed in
section 2.1. If the data are known to be discretely
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distributed, the derivations exhibit many similarities
but the final counterpart of equation is completely
different. The main reason for that is the definition of
the discrete PDF and hence, the use of the z-transform
to obtain the CF and the SCF. The PDF of the data is
still the convolution of the individual exponential PDF:

filer= (1-—exp(—7\.j))exp(—ljt}

(2.12)
and hence the CF turns out to be:
D)= D(2)|_w = 3, F)Z = (2.13)
! e ®
(o) [T-e™)
N | _ A __P)
i=1 (l—ze_?”') P(el®)

LIENRY;

pmeis 14 ) (eJ&J) ;
i=1
The relationship between the CF and the SCF given by
equation (2.7) still holds. Note however that the first
difference arise in the CF, where the term P({1) appears
in the numerator. This term is not the unity as in
section 2.1, but it is the summation of all a; coefficients.
Therefore, equation (2.8) becomes:

he1
1 [kl ].JP(&I)( Jm)d’k—z )

TR & (2.14)

where the j derivative of the polinomial with respect to
@ and particularized for @ =0 is now given by the

expression:

P el
Lit

4
i L} 3
=3 i
=0 i=1

and by combining equations we obtain the counterpart
of (2.11) for the discrete lattice-type RV:

1 ARELN 1Y k-i-1) &
w52 2 TS e

§=0 r=0 t r=}

(2.15)

mk ==
mg =1
(2.16)

The tecursion is different but there is still a linear
relation between moments and parameters a. For the
particular case p = 2 the linear equations are

(om 2]

for the continuous RV, and

(2.1D

1+m1 2+m} al - m1 (2,18)
142my+my d+dmy+mg )l as my
for the discrete lattice-type RV. The proposed

estimation procedure may be summarized in the
following steps:



1. Set an upper bound of the true order p.

2. Compute p moments from the data by averaging.
3. Solve the a; using the linear set of equations.

4. Decision on the true order p* based on the a;.
5.Ifp’+ p then goto 3.

6. Compute the A; from the roots of P(joo ).

Moreover, if the true order p is known, we can even use
more than p moments of the estimated data to construct
an overdetermined system of linear equations. We could
also think of estimating the poles directly, that is by
building a relationship similar to {(2.16), thus bypassing
the estimation of the parameters a. Unfortunately, the
relation in no longer linear, so an estimation procedure
should be based on the iterative optimization of a cost
function. As it will be shown in the simulations, the
computational burden of this approach do not justify the
improvements of the results with respect to the
computation of the coefficients a and extraction of the
roots,

It might seem that this framework is only capable to
estimate one sided PDF. Note however that, for the
continuous RV case, the poles are not restricted to be
positive. Positive poles are the contribution to the right
hand side of the PDF while negative poles render the
left hand side of the PDF. On the other hang, for the
discrete lattice-type RV, if e*>1 we obtain a
contribution to the left hand side PDF, and vice versa.
The issue of uniqueness of the seclution is outside the
scope of this communication. it is of course guaranteed
in the continuous RV case, because of the triangular
nature of the system matrix. For the discrete-lattice
type RV, it is always possible to find a PDF whose
moments do not specify a unique solution to equation
(2.18). A particular solution ean be found under a given
criterion. It should be stressed here that the moments
of a RV do not necessarily specify a PDF. Some
examples of different PDF sharing the same set of
moments can be found in [6].

3. Theoretic asymptotic performance
In general, the linear systems shown in equations {2.17)
and (2.18) can be expressed as:

Am)a=m (3.1)

for which the unknowns are the coefficients a;, arranged
in vector a. In equation {3.1), A{m) is supposed to be a
K x M fullrank matrix with K2 M, and mis a K x 1
vector containing the moments. The estimation
procedure consist of computing the sample moments
from the data to construet an estimate of the vector m,
and then solve equation (3.2) using standard weighted
least squares:

A=[[A() TWAR T ULAGRITW {(3.2)

where W is a positive definite weighting matrix which
compels the estimate of equation (3.2) to be efficient.
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The analytical study of the performance of the
estimates thus obtained has been established in [3]. The
normalized asymptotic covariance matrix of the
estimates & depends on the covariances of the estimated
moments in the following way (Theorem 4, [3]):

Pla)= lim N E{(a-a)a-a)7 } = G@E@)G (@ 6.3

where 3{a} is the asymptotic covariance matrix of the
vector m, and G{a) is the Jacobian matrix of the
parameters with respect to the moments. Matrix W is
given by Theorem 5 in [3] and depends implicitly of the
parameters a. Note however, that the construction of
the weighting matrix W is a function of the (unknown)
true parameters a. Equation (3.1) becomes nonlinear,
and hence, cumbersome to solve. The same authors
have proposed in [4] the computation of W directly from
the data. The algorithm constructed in this way is less
efficient, but remains linear. However, it is worth to
consider the case K=L (same number of moments and
parameters). The expression (3.2) is then independent
of the weighting matrix W, and the solution remains
statistically efficient. In this case the asymptotic
covariance of & given by equation (3.3) is also greatly
simplified, and can be found using any symbolic
mathematical package. For the continuous RV case, and
for K=L=2, the corresponding vector of normalized
asymptotic covariances of the estimated a; and e, are
given by the diagonal terms of P(a):

N -cov(a)=

my —mi
md (3.6)

_T+ 6mimy — 2mymg — 4m +%1

where N represent the number of data used to compute
the averapging moments. Figures 1 and 2 show the result
of equation (3.6) versus positive values of the poles, for
the continuous case of section 2.1,

4, Simulations and results
The performance is illustrated in this section, both in
simulated and real data.
4.1. Estimation of continuous BV
Two sets of parameters have been used to generate
synthetic realizations of RV fitting the model in
equation (2.2), 50 Monte Carlo realizations of 2000 data
each have been run. The results can be found in Tables
1 and 2, for an order 2 and order 3 models respectively.
Notice that the theoretical variances are close to those
estimated. The non-linear procedure exhibits more
accurate means and lower variances, but the differences
do not justify the computational burden.
In another experience, we have generated 4000 random
zero-mean, unity variance, Gaussian data x, and modify
them through a non-linear equation of the form:

y={x+ 3)?



Table 1. Two exponentials model

True Linear Analytic Nonlinear
Param, Estirnates std. dev. Estimates
Ay=0,8 0,798 £ 0,124 _ 0,793 + 0,096
Az=0,2 0,202 + 0,009 0,201 £ 0,008

a;=-6,25 | -6,245 + 0,127 0,115 _
ay=625 | 6,328+0,730 | 0.610
Table 2. Three exponentials model

True Linear Nonlinear
Param. FEstimates Estimates
h ;=08 | 0,884+0,241 | 0,905 + 0,241
A 2=05 | 0,502+0,085 | 0,466 0,096
A 3=03 | 0,305+0,025 | 0,327 +0,072

ay=-6,44 | -6,427 + 0,068 ~
ap=12,59 | 12,50 +0,381
g = -7,40 | -7,460 + 0,850

A sixth order (p=7) model has been used to estimate the
PDF and simulated data from the estimated model have
been generated. Figure 3 shows the histograms of the
original data an the synthesized ones. The agreement
between both is remarkable.
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Figure 3. Histograms of 4000 realizations of a
continuous type RV (dashed line) and the same
number of realizations of the synthesized data
(solid line).

4.2. PDF estimation of real data

In order to verify the behavior of the method in real
data, we have collected 100 realizations of the RV
measuring the duration (in speech frames of 30 ms
each) of an HMM state, in a catalan digit data-base.
The utterances have been segmented using the Viterbi
algorithm and classical HMM methods, without using
the transition probabilities. The nature of the RV is
discrete and it takes on integer values, so that theory of
section 2.2 applies. As it has been said, one-sided
exponentials modeling allows the inclusion of the
duration information in a Markov chain, and hence in &
HMM-based speech recognition system in a very
straightforward manner. In a Markov chain, the
probability of staying n time steps in at given state is
measured as:
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pln=N)=(1~apalft=(1-™)e ™MD N5y

where 1-a, is the probability of jumping from state i to
state j, and correspondingly a; is the probability of
staying in state . Note that the reots of the polynomial
P(el® ) are directly e J, that is, the probability a;» Due
to this feature of the Markov chain the PDF of the
duration at a given state is constrained to be
exponential. This is in contradiction with observed data
histogram (figure 4). The parameters obtained through
the proposed estimation procedure bring a model that
fits the data very conveniently (figure 3), for as few as
100 realizations of the observed data. Results involving
larger data bases are to be generated in the future, as
well as its application in a HMM-based recognition
system.
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Figure 4. Histogram of the observed duration of
the phoneme /8/ through along 100 realizations of
the utterance zero (dashed line) and the estimated
PDF (solid line).
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