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ABSTRACT

The class PSPACE/poly of sets decided within polynomial
space by machines with polynomial advices is characterized in
several way: we give an algebraic characterization, an
parallel model characterization, a Kolgomorov complexity
characterization. Finally we define a dual class and state
some of its properties.

RESUM

Caracteritzem 1la classe PSPACE/poly, utilitzant eines
algebraigues; models paral.lels i complexitat de Kolgomorov.
Definim una classe dual a la PSPACE/Poly i establim algunes
de las seves propietats.
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Abstract:

Non-uniform complexity measures originated in Automata and

Formal Languages Theorv are characterized in terms of well-known

uniform complexity classes. The initial index of 1langquages

introduced by means of several computational models. It is shown to

be closely related to context-free cost, boolean circuits, straight

line programs, and Turing machines with sparse oracles and time or

space bounds.,
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T, o Inbroduchkion,

The =studv of Ehe complexity of formal languages has been  done

71'

Ceom  seveyal dirfferent  viewpeints., Our work is centered on twe of
the wost succ==ful of them: on the one hand, bounds on concrete
resources used by aloorithms in deciding the languages, such as time
and meworv:; ©on the other, functions describing the agrowth of
descraiptions ©of the finite initial subsets of the lanquage. We call
these two approaches, respectively, "uniform complexitv" and
"non-uniform complexity", following the usual practice. Names seem
to be corigined bv the fact that the tirst approach studies the
complexity of algorithms deciding the whole language in a uniform
manner, while the second allows a different description for each
initial subset without askinag a&all of them to perform similar

somputations.,

The unaform measures wa s3hall usge vrelv on the multitape Turing

r,In

machine ¢ TM for short ) as a formal meodel of algorithm. This model
Ls describad later. Time is identified with number of elementary
steps 111 the computation: memorv 1s identified with space used in
" the work tapes. Bounds on these resources will define our wuniform
complexity  c¢lasses., Sometimes our model will have restrictions on
the moves of the input tape head: we consider ‘“"on-line" machines,
whose 1tnput can be read only once. Nondeterministic machines will

alsc be used.

3cme non-unifuorm measures are classical notions of the Theory of
Computing: one of the most widelv used ones is the circuit size
measure « see, v, gr., C193 ). It is defined by countinag the number
of boolean gatcs needed to svnthesize the characteristic function of
4 Zinite set. Other non-uniform measures have originated from
aurcmata and Language Theory, like context-free cost Cel, or initial

lndsx [9]. =also, straight line proqrams with set-theoretic
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1 rae~ H <~ h S - PN Ve S - - 1S J
~his wori Is based on & characterization isually  credited Lo
A, Mewer, He uzed oracles in ordey to "break up" the uniformness of
-~ [aal V)] — < hl ~ -
“he TM t can be described by a rolynomially

recognize this ==t by a TM within polynomial time, with the aid of =2
"o~ -~ - 1 P U I 1 - - - - - 1 = -
sparse c¢racie. <Sparse oracles have only a peclynomially growin
- - - -~ T N : < - - - < -
wmber  of  words., We use similar techniques to characterize
b T — e = h I e o g = - L o, RIS R I S P, T=
Frivnomial classzs:z under several non-unifocrm complexity measurss. WHe

5 Y a o] 1
growing set of context-free grammars if and only if i1t is possible
Lo recognize this set by an on-line TM within logarithmic space,
with the ald of a sparse o and of an unbounded pushdown stovre.

' s

o o

ven along the way.

In particular, we analyze the initial index, measured with

finite automata, in section II. We characterize the polynomial class
for this measure and we obtain several interesting consequences

Y

about the uniform class NLOG&E: this class is not closed under

complementation. We study in section III the context-free cost,

it in terms of straight line programs, initial

ured by pushdown automata, and on-line versions of the
+

SuU
auxiliary pushdown machines <f Cook [81. We show <+that

he class
Zefined by neondeterministic auxiliary pushdown machines working in
poirnonial  time and con-line 1s not closed under complementaticon.
it iz interesting tc note that the off-line classes defined by these
machines are however closed under complementation, as shown by Ccok.
Section IV iz devoted to the study of circuit size complexity, which
ws characterize by means of more powerful versions of straight line
programs. In & shevrt final section we revise the results of the
previcus  ones, and succest some lines of further research and a
conjecture about formula size and off-line log-space.

L)



o oar opindoen,.  an  interesting meodel which
should e studied mors deeply: when the memory bounds are less than
linwar . we= conglder that ¢iff-lines machines are somewhat unrealistic,
whole input file in beth directions is not
tial riles ¢o not usually allow to oo back
2 the previous vyecord, while random access files should be
consldered as work space and taken in  account when measuring the

space complexity of Lhe alacrithms that use them.

We consider that the tfacts proven in  this paper, and the
techniques wused 1in the proofs, support as an intuitive consequence
that the borderline between Automata and Formal Language Theory and
complexity Theory lies in some sense nearby the question of whether
the computational model chosen has the abilityv of reading Dback 1its
input. WUn-line models are more adequate when dealing with notions

arisen tfrom Automata Theoryv than are off-line models.

W= assume that the reader is tamiliar with the basic concepts of
Formal Language Theorv, like finite and pushdown automata in their
Jeterministic and nondeterministic versions: their eguivealent
concepts  in terms of grammars: multitape Turing machines and
compliexity classes: and languages as subsets of the free monoid over
a finite ailphabet, 8ee [151 for detfinitions and elenentarv

properties of all these notions.

e



The first non-uniform measure which we consider is the initial
index., due to Gabarrd L£91].

. - : E - 2 . * . - - -
efinition 1. Given a language L € Z , we define the initial index

of L as the function ap N --> N given by:
a,'n) = min 1 JJAl}] / A 1s a nondeterministic automaton
-l

such that L(Ay = L N Z:n 3

whers | |A1| denotes the number of states in A, 1n the same

manner we define the deterministic initial index daL as:

daLin) = min { |JA]}l /7 A is a deterministic automaton
such that L&) = L A X" 1.

From these two complexity measures we define the following
complexity classes:

Fcl. = ¢ L 7 3 k € N with aL(n) = O(nk) 3
(=8 -

521 = (L 3 h € N with da.in) = 0(n51 1.
la L

It is casy to show that if Lp ig the set of palindromes over a
Lwo letter alphabst, then its comp¢ement Ep has the property
Lp € Fol, but Ly ¢ Poly,
¢ see [21 ) and therefore Poldl gg FPol_.
cl a



He consiler as our flrst uniform comglexity model the on-line
¢ Turiny machines wogking within space logarithmic in the
tength of  the 1nput. On-line machines have been considered

previcusly in the liftervature C121. C131.

An on-line oracls machine M is & multitape Turing machine,

dsterminigtic oY nondeterministic, wWith & read-only input tape: Kk
read-write work tapes: a distinquished write-onlv tape cailed the
gquery tape; and ithree distinguished states called QUERY, YES, and
0. The input head moves left to right, and it cannot back to the
lert, At some moments 1n the computation, M can write symbols on the
querv tape; when M enters the QUERY state, it transfers to the state
YES if *the contents of the query tape is in a fixed oracle set B;
othaerwise, M transfers into the state NO. In either case the query
tape igs instantly erased.

As usual, Turing machines are described as tuples ( 0,2, k., 5,
I P> where ( is the set of states, Z 1is the alphabet, k is the

number ot tapss, é» 13 the transition function, a4, is the initial

is the set of accepting states. The language accepted

ui

]

state, and

by suck a machine M relative tu an oracle B, denoted L(M,B), is

a
Adef in=sd alsc in the usual way.

1'[|

]

A machine M mav be forced to operate within loug-space. The
Gachiine is started in an initial configuration in which the work
tapes have begin and end markers, leaving 1in between only a
logarithm of the length of the input as work space. If an attempt is
made to cross to the left of the beain marker or to the right of the
end marker, then the computation is aborted and the machine stops in
a reiecting state. Observe that no bound is set over ths length of

the cracle taps.



The machine 1z allowed to know also the length of 1its input.
Thus, 1n +ths Initial configuration the length of the input is

written « in binaryv ) in a distinguished work tape. Observe that

cr
*+
e,
w
’..4

ength can be written within logarithmic space.

pe contiguration of a machine we mean a description

b2

a
ot the contents of =ach work tape, including information about the
rk
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the wo tape head.

This model of  Ccomputaticn defines the followina complexity

NLOG By = £ L+ [ i1s accerted by & nondeterministic

| on-line machine with oracle B within log-space }
OLoG . (BEY = £ L v L 1s accepted bv a deterministic on-line
e

machine «with cracle B within log-space }

In order to compare unifcecrm an non-uniform measures we will

"break up" the uniformity with the aid of sparse oracles. A set § is
sparse 1f there is a polvnomial p(.) such that for every n it holds
that

A S < pin.

Given an alphabet X , SF will denote the «class of all sparse
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Lol Wee  shall show Cirs

that it L = L(M,S8) for some
nondeterministic on-line machin M within log-space with a sparse

racle 3, then L has polvnomioal tnitial index.

For any input w with |(w| = n, the log-space bound implies a
polvnomial bound on the number of possible work tape configurations
sf M. Hence, for each n we can construct from M a new
nondeterministic machine Mn accepting L N Z & which uses the sane
oracle § and nc work space, by incorporating into the finite control
ot M all the work tape configurations of M on words of length n.

n
The number of states of Mr is bounded bv & polynomial in n.
1

The working time of MF being bounded bv a polynomial, only words
af polvnomial length can Qe queried bv Mn to 3, which implies bv the
sparseness of S that onlyv a polynomial number of words can be
sueried by M with positive answer. We shall construct a new machine
M

i

M which incorporates also in its finite control a finite automaton

o]

va

“n tor  the accesible part of 8. These automata An can be trivially

constructed having size polyvnomially bounded on n.

Thus, the stats

es of M’ will be ot the form < g, r, C >, where g
s & state of M, r 1is

R

a state of An' and C is a work tape
coniiguration of M. For anyv svmbol x currently scanned by the input
head, the transitions of Mn' are of the form:

Vg, ¥, C 0y X)) e gt v, CF 2, K

where k = 1 [f the input head moves and k = ¢ if it does not
move., The state ¢ g, v, C' » 1s defined as follows:



e I g is oot Lhe YUERT stabte and M does not write on  the  query
fape when in configuration ¢ g, C ¢, then v = v and q' and C°

are such that 7 g, T 7 p—<gq’', C° > is a transition of M:

i1i) if M writes svmbol v on the guerv tape, then C = C', ' 1is given

H,

a
bv the Lransition function o M, and r’ is given by the

transition function of An applied to ( r, v );

(iiiy» 1if q is the querv state, then g° is the YES state if r 1is a

final state of An. and g’ 1s the NO state otherwise; moreover r’

b

a
s the initial state of An' and C' = C.

This machaine is & finite automaton with ')—transitions and size
polviomial in n. The elimination of the ) -transitions does not
increase the number of states bv more than a polynomial [151.

On the contrary, let L € Pol_. Then there exists a family

{ An -n o2 0 % of nondeterministic finite automata such that

. ri , . .
LA )y = L f\Z:‘. We construct an on-line nondeterministic machine
with a sparse oracle S which accepts L within logarithmic space.

Let An = <Z . Qn, Sn' 0, Fr‘ >, where Qn is assumed to be a
sequence O0f nonnegative integers. and 0 is considered the initial
state. Let $ be a new svmbol. We encode the family of automata in

the cracle & bv defininag:

S Lii,x), and u = 1

7y
H
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Q0 otherwise 3.

and u
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AS the size of the automata grows polynomially, it is easy to
see that § 1s sparse. Let p(.) be a polynomial bounding the number
of words in S and let b be an integer such that pin) can be written
in log n svmbols in base b.

The machine M will have three tapes, named 1, 2.'and 3, which at
fach time wi1ll hold representations of, respectively, the current
state ol Aﬁ. the next state of An and the length of the input ( in
binarv ). e shall denote bv L and i the contents of tapes 1 and 2
respectivelv., Let x denote the svmbol currently scanned by the input
head., The following nondeterministic procedure accepts input w, with
lwl = n, 1iff w € L(Anl, and M can be programmed according to it.

¥ := first symbol of input;
write ¢ on tape 1; -- initial state

£

hile input last loop
guess ) on tape 2; ; -- next state
guess whether u = 0 or u = 1; -~- in the finite control
write on the query tape 0n$x$i$j$u:
-- n 1is known
-- copv i from tape
-- copv J from tape
Jquerv the oracle about this word:
if the answer is YES then
copy contents of tape 2 on tape 1;
X := next svmbol of input
t

else reiec -- wWrong gquess

end while

i¥ w = 1 thern accept
2lse reqect

=nd.

10



e have w & LZiM, 8 4ifF w & L.o&A 0. This shows that [ € NLOG (<3
n

Th
difference vrelies on the fact that the procedure describing the

M

procf of the second part of the theorem is similar. The only

actions of the log-space machine which simulates the finite automata
must no longer pbe nondeterministic., and a svstematic search over all

possible new states i is substituted for the quesses. Qbserve that

(=

irnn Ethe nondeterministic case no such systematic search could
substitute the guesses, because 1if &a wrong computation of the
Simulated nondeterministic automaton is taken there 1is no
possibility of backtrackinag the input head.

rollarv of theorem 1, we can state the following known
C

corollarv 1. DI , L{ :
Corollarvy 1 “OGon S; N OGon

n’ because its

0o, The set of the palindromes is not 1in NLOGO
initial index is exponential [91. However, its complement is; hence

WLOG n s not closed under complements.

In C1863 non-uniform complexity measures are defined by means of

d e functions". The classes of the form C/poly, of the problems
decidable bv machines of the form C with the aid of a polynomially

nag a&advice function, have been characterized by Schdning [21] as
the union of C{(S) over all & € SF, under very weak sufficient
onditicns. The proof does not work divectly tor our on-line model
of computation., Howevayr, a similar characterization mav be proposed
by repeating several times the advice in between each two svmbols of
+

he input, in the same wav as dcocne above for the automata. If

(=]
—



~
—

odings of the advice h(|x]) for x are allowed in the following way:

hijx)|rx n(lxl)x,h(lxl)...xnh(lxl)

1

then & similar characterization holds and it can be proven that
Fel = NLOG /pclv.
on

Diana Schmidt has shown how to apply diagonalizations to
vomplete sets tor NLOGDn and other similar classes, showinag that
there exist inlfinite families of incomparable ( with respect to
log-space reductions ) non-complete sets in NLOGon' See CZ201].



IT. Context-rree complexitvy.

'n the previcus section we have characterized the languages with
polvnomial Appreximations in terms of tinite automata. We shall now
Jdeal with languages haeving polyvnomial approximations in terms of

contezt-fre

Q

e crammars., The size {|Gl] of a context-free grammar G is
ined as the number of rules it contains. This measure has Dbeen
used before in LCel.

Definition 2. Given a language L, the context-free cost of L is
given by

cf.(n) =min £ [|G]| / LG) =L A F" 3.

It is easy to prove that every context-free language L has
CILin) = O(ndJ. It suffices to construct the intersection of a
Jgrammar for L and the n+l state automaton recognizing Zfrﬁ Using
this complexity measure we define the following complexity class:

Eol =L/ 3 k €N with chén) = O(nﬁi 3.

The straight line programs are another way of measuring the

[

-

}

omplexity of finite functions [4]. These programs have been used by
-od

P

Goodrich, Ladner, and Fischer [103 to compute finite languages. They
introduced <+the union-concatenation cost, which consists of counting

the number of operations needed by a straight-line program, using
nls

s) - unions and concatenations.

More formailv, given an alphabet Z:, a straight-line program
witlh unions an

d concatenations ( uc-slp ) is defined as a sequence

o steps such that:

.—J
LI



Step one has the torm 1 <(--- x, X E.Z?.
Step 1 has one of the following two forms:

(a} 1 (--- %, % € 2 :

(tby 1 {--- 4 8 k

where 1 and k are previous steps of the program, and © € U, 1.

Given a uc-slp ﬁ , we associate a language Li to each step i of
in the following manner:

if 1 i{--- x then Li =4ix }:

if 1 <--- i 8 k then Li = L_i e L

For a uc-sip [3 with k steps, the language Lﬁ generated by ﬁ
is Lk. Now we can define formally the union-concatenation cost of a
language:

Datrinition 3., For a language L, 1its wunion-concatenation cost 1is

given by the function

uc-slp with k steps
Lnz"o

m

uc, 'n) = min { k / there is
et
such that L

With respect to this measure we define the following complexity

k
P = { / i i in) = .
Pc_uc { L /7 3 k with ucL n! Gin ) 3

14



It was pcinted ocut in C1C] that uc-slip's are closely related to
context-free orammars; as a matter of fact it is straightforward to
prove that these measures are polvnomially related and therefore

On the other hand it is easv to show that the set o¢of the

palindromes over a two letter alphabet has linear uc cost; hence

One more wav of characterizinog the class PolCf is in terms of
pushdown automata ( pda . If P =( Q0,27 , .5, dgr Zg- F ), then
its size | |Pj|] 1is the total number of symbols which are necessary to
describe it, i. e.:

M

(9]

1IEH = zzjltl with t = tq,u,z)p—___(q’,zlzz... k) S
£ es

It is well known that a lanquage is context-free if and only if
it 1is recognized by a pda. As the size of grammars and the size of
equivalent pda can be polynomially related, we can define PolCf in
terms of pda, in just the same way as the initial index of section

IT:



Fol =+ L 7 3 k and & familv of pda's F_, such

n n > G,
that |!P_|! < n™ and L(P) ns s

The model of unifcrm computation we shall use in this section is

0
o]

on-line wversion of the Auxiliarv Pushdown Automata ( apda ) due

to Cook [8], studied also in [%] and recently in ([7]1 ( see also

M

123 V. He consider nondeterministic on-line apda working within

loa-space and using sparse oracles $. The convention regarding space

bounds ( markers at both ends of work tapes. no bound on oracle

tape ) is the same as in the log-space machines of the section II.

as well &as the convention regarding the length of the input. 0f

course, no bound is impcsed on the pushdown store. Fix an oracle §S.
£

We define the following uniform complexity class:

ANLOGoniS) = i L / there exists an on-line log-space apda M
such that L = L(M,S) 1.

Using this model, we can prove a second equivalence between
uniferm and non-uniform classes:

Theorem 2. Polc, ( J ANLOG n(S).

4

Eroof. The initial segments of anyv language accepted by an apda
a racle «an be accepted by a family of pda's of

polvnomial size. This can be proved exactly as the analogous part of
G v i1ncludina the work tape contigurations of the apda, as
well as an automaton for the cracle §, In the finite control of the

L -

gda's. The pushdown of the apda becomes the pushdown of the pda’s.

—
[}]



For the ceonverse, let L € Polcf. There exists a polynomial pt(.)
and a family of pda's P.=tQ., T, PB' Sn' qyr Z4r F, ) such
that i!Pnll < pin) and L(Fn‘: =L N2 . Observe that the
cardinality of the pushdown alphabet is bounded by pin). Let s be
great enough so that in base s the value p(n) mav be written within
loa n cells. Thus we can enccde each svmbol in T’n as a number ot

A

lenath loog n in base s.

Encode the automata in the oracle S as follows:

S =¥ 0n$x$i$j$z$zls...$zk$u /
(qj,zl...zy) e d n(qi,x,z) and u = 1 iff j € Fn 3.

¢

We construct an apda M with oracle S which accepts L. M will
have five work tapes:

1. Tape 1 will contain the current state of the Pn being simulated.

|

Tap=s 2 will contain the next state of Pn.

3. Tape 2 will contain the top symbol of the pushdown of Pn'

=

Tape 4 will contain the lencth of the currently applied
transition ot Pn.

. Tape 5 will successively contain the svmbols of the right hand
side of Lhe currently applied transition of Pn'

The apda pertforms the following procedure:

17
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push the svmbels of Z, from tape 2 into the pushdown;

&
Ci
|__.
i
',_I
3
o
[
ct
‘._-
m
W
ct
},_
O
(8)

guess j on tape 2 -- next state
rit= on the query tape 0n$x$i$j$ ;
-- ¥ is the currently scanned
- input symbol,
-- i1 is the contents of tape 1
por log n svmbols from pushdown to tape 3;
-- top of pushdown
write= the contents of tape 3 on the query tape:
quess K on tape 4; -- in base s
-- it is the length of rule

JUESS :i on tape & ~- in base s
write zi$ on the querv tape;
push the svmbols of z,;

write u into the query tape:
-- now the content of the
-= query tape is:
-- On$x$i$j$z$zl$...$zk$u
queYvy;
if YES then

write tape 2 on tape 1i;
read next input symbol x;

& reiect; -- Wrong guess

‘.J
cT
oy
]
]

if last accepted u is accept else reject

18



N

Using deterministic pda's ( dpda ) for defining the non-uniform
& an detine a similar polynomial class. Taking
the deterministic versicn of apda’s, it is possible to characterize

i oa gimilar wavy  the pon-unitform class as the union over sparse
oraclies 5 of ADLOG_ 1S3, the class of the sets decidible by on-line
lapda’'s with oracle 3. The proot is similar. but more information

fizz  toe be encoded in the cracle in order to avoid the
nondeterministcic guesses in the procedure above. The idea is to put
in $ prefixzes of the codings of the transitions of the dpda’s to be
simulated, S0 that these transitions can e constructed
deterministically cne svmbol at each time.

In C10] it is proved that the set
fww s wEL O, 11 )
has exponential context-free cost. However it is easy ¢to
construct a log-space on-line nondeterministic Turing machine ( and
e a log-space on-line apda ) which accepts its complement.
O

ore, we can state the following corollaries:

Iy
")
~
0
I
1=
4
b
&
t“
(@}
]
’—‘-
w
ol
@]
la
n
'._4
Q
o
1{]
o
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ja]
(=Y
D
~
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o]
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D
=
M
3
o
W
ot
'—l.
Q
o

<

crcollary 4., Neither NLOGOn ‘- ADLOGOn nor ADLOGOn (- NLOGon'

o)

Corollary 2 1s inmediate when considering the set of squares
r a two letter alphabet, as indicated above. Corollary 3 follows

m Corollary two, because both ADLOGOn and P are <closed under

19



complementaticn., Corollary 4 follows from consideration, first, of
the complement of the set of squares, which is in NLOGQn but not in
ADLOGQR, and secondly or the set of palindromes with a central
separator, which is deterministic context-tree and hence in ADLOGon.
but not in NLOGan’

Corollary 3 contrasts the equality among the corresponding
off-line classes and F, which was proved by Cook L[81].



In this section we shall compare again two non-uniform measures
with a uniform measure, and relate the classes bv them defined with
the ones detfined in the previous sections. We shall restrict our
attention to lanquages recognized by deterministic off-line Turing
rnachines with sparse oracles £ within polynomial time, P(S); this is

the uniform measure for this section.

The first mcdel of non-uniform measure will be the size of
straiaht line proarams with union, concatenation, and intersection
v uci-slp ). This measure 13 just an extension of the uc-slp where
the set of operators 1s taken as 86 € {U, -, N1 [10].

Definition 4. For any given language L, 1its wunion-concatenation-

—inteysection ccst is given by the function

uci, (n) = min { k / there is a uci-slp B with k steps
such that Ly =L N Z" 3.

The second model of non-uniform measures 1is the circuit-size

comp.=x1ity ¢ alsc known as combinational complexity ). This measure
has been kKnown for a lonag time [C173, L£193.

Let us recall that & combinaticnal circuit over variables
Z,...X_ 18 like a straight line program where each step i has the
faorm:
ar 1 {---x



>l 1 === 1 A % where € {V.,.A}
I8 41 ¢(--- X, then the function calculated at step i is
fl(ul. .un) = u1
If 1 ¢(--- 3 A k then the function calculated at step i is
fi(ul...un) = rj(ul"'un)‘A fk(ul...un).

If the combinational circuit ﬁ3 has k steps then the function
computed by p is fﬁ = fk' ‘Cbserve that each step correspond to one
gate of the circuit, and therefore we measure the size of the
boclean «c¢ircuit. A polvnomially related measure is the “"Horn

complexity" of C113.

L
(n
-+,

)efinition . For a finite language [ over the alphabet { 0, 1 13,

its boolean complexity is given by the function

(n) = min £ k / there is a circuit A with k steps
such that ¥ w |w|] = n, fﬁ (w) =1 1iff we€ L 1.

We can define the following two non-uniform complexity classes:



~1 - ST 7 - —~ -
Ea uei - Lo 3 kK with u;¢L~n) = 0(n ) %.
k
Fol = {L /7 3 k with cL(n) = O(n ) 3.

Using the lanquage of the squares defined in the 1last section,

Goodrich et al. have shown that Pol g; Pol . C101. On the other
uc uci

ever ( see [Z21 ) has proved that

Pol = L_) Peza.
C

We shall close the link among the above classes by establishing
the equivalence between Polc and POluci' In one direction it has
beern already shown in L1001 that there exists a constant k such that
uci. in) < k(cL(n7+n). We shall prove the converse. First let us

ent some definitions and a technical lemma.

He sav that a finite languace L has length n if and only if all
the words w in L are of length |w| = n, and that L has & length if

it has length n for some n. A uci—sl;>,6 has coherent lengths if and
onlyv if every variable i Gf,@ generates a language having a length.
We show in the following lemma that we may transform a uci-slp into

another having coherent lenoths, with small overhead.

Lemma 1. For everv uci-slp /6 which 1s optimal <for computing a
uci-slp X having

[y

lanquage L having lenath n, there exists
€

ccherent 1

F,.

n¥ths, computine L, whose size is 0O(n~) times the size of



Proot, We will have in b’ rariables of the form <i,p>, for each
i in /6 and each p <n : variable <(i,p> will compute the
lenath p ot the language computed by variable i of ﬂ .

We construct Y from F in the following way:

ia) If 1 <--- % 1s an instruction ofﬂ , <i,1> (---x 1is an
instruction of Y .

ib; If i <--- iU k is an instruction of p , then for each p add to
Y the following instruction: '

1. <i.p> <--- <j,p> U <k,p> if L_if\ Z-p and Lkﬂ P are
nonemptv. i

2. <i,p> (=-- <j,p> if Lanp is empty.

3. <,p> <-=- <k,p> if LN 7P is empty.

Fules uf tvpe 2 and 3 can be later eliminated by a renaming
of variables.

ic) Intersection is handled in an analoguos way.

(dy If i K=--- 1.k is an instruction of /_5 , then consider for each p
the following set:
Ii p T { {q,t> / g+t = p, Lj N Zq and
i t .
Lk N 7.~ are nonempty 3.

For everv p with Ii b nonempty add to '0’ the instruction:

Ci,p> <--- Z <§,q> <k,t>

Ii,p

24



srevicusiy  decomposed into less than p elementary

Jbserve that

Tz
h

cthe optimality of /3 implies that no intermediate
lanquage has length greater than n. The number of instructions
increases in this construction within a constant tactor of n3. This
vields the desired upper bound.

Now we prove that from a uci-slp it is possible to build boolean

circuits with small cverhead.

Thecrem 3. For every language L over the alphabet { 0, 1 3,

| = ®

e.in) = 0 ( nT.uci.in) .,
L L

. n
Proct, Letp be a uci-slp with coherent lengths for LNZ °,
obtained from the previous lemma. We construct a circuit over n
input gates e SRS accepting this language.

Gates are numbered <i,p,q>, p< g< n, 1 a variable of 3 . We
will manage to obtain output 1 in gate <i,p,q> if and only if the
word formed bv concatenation of the wvalues ( 0 or 1 ) of the input
gates xp...xq 1s in the lanauage computed by the variable i of 8 .
The output of the circuit will be the output of gate <k,1,n>, where

i is the last variabie Uf/s .



ig) If i1 :=--- 0 1is an instruction of /3 , then add to ¢ the
instruction <i.p,p> {--- —lxp for each p < n.

by LE L (=== 1 i3 an instruction of /3 , then add to ¢ the
instructzion <i,p.p7> «=-=-- xp for each p < n.

c It 1 === 1V k 18 an instruction of B , then add to ¢ the

irstruction <i,p,g» (--- <i,p,a> V <KkK,p,qg> for each p, q such
that the language Li has length q-p+l.

tdy If i 4--- i N k is an instruction of /3 , then add to ¢ the
instruction <i,p,q> <(--- <{j,p,94> A <k,p,q> for each p, g such
that the language 1'..i has length g-p+1l.

(e) PFinally, if i ¢(--- j.k is an instruction of,@ , then for each p,
g such that Li has length g-p+l1 and for each t, p <t < g, add
to ¢ the instruction <i,p,q <——-\/t <j,prt> A <k,t+l,q>, previ-
ously decomposed intc less than g-p elementary instructions.

It 1s easy to check that the language accepted by the boolean
circuil ¢ 1s the same as the language computed by the uci-slp/s .
_ L L 2 . X ‘
Each varlable-lrl/g vields at most n~ variables in c¢. The result

As a corellary of the theorem we establish the desired result:
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In the previcus sections we have shown how to characterize
several known non-uniform complexity measures in terms of uniform
ones; sparse oracles have been allowed to the machines specifying
the wunitorm classes. In this wayv, the families of sets with
pclynomial non-uniform measure have been shown to coincide with the
cnes defined by standard uniform complexity classes relativized to
sparse oracles.

Getting together the previous results we obtain the following
diagram of the complexitv classes we dealt with:

Pcl Fol
C C
\ i

Pcl ol : bPol
C-ict P Pol . ? Pol, + da

! h
U Bog UANLOG\’S) \J nroces) \J oroces

f

wh=2re all the unions are taken over all sparse sets S.

Several variants ¢f the presented results can be easily
obtained. For example, 1t 1is straightforward to prove that if
initial index 1s measured with bidirectional finite automata, then
the polvyniomial class is the same as LOGOff with sparse orac;es. This
ciass fulfills the conditions proven sufficient in CZ13 for Dbeing
the same as the corresponding "advice" class LOGOff/poly in the
notation of Llel.



tack mav be substituted tfor the pushdown in the initia
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and the prootf works in this case if the uniform

iy}
r—
Qi
Ui
n

is defined bv auxiliary stack machines. A stack is a pushdown

with Lhe additional feature that svmbols not in the top can be read,
glthouagh can not be changed. For a study of the stack automata, see
121, For machines with an auxiliary stack, see [B1.

n along this line of research. We would
th
v

Manv Lines remaln oOpe
ike Lo poeint out one of em, which will be cne of our subjects of
research. It 1s not known whether restricting boolean circuits to

ates of fan-out one restricte the polvnomial non-uniform class. We
gbserve that circuits with fan-out one are somehow similar to

D

ropositional tormulae: in order to get twice the same result you
ave to copy the whole synthesizing circuit. Evaluation of fully
parenthesized propositional formulae can be done within log-space
£183. We coniecture that polvynomial size boolean circuits with
fan-out one are equivalent to polynomial size propositional
formulae. On the other hand, off-line log-space can be shown easily
6 correspond, ~modulo sparse oracles, to polynomial size branching
proagrams ( see, e.ag,, [31 ). Is it true that polynomial size
propositional formulae describe exactly the languages which can be
recoognized bv off-line deterministic Turing machines within
loa-space and with access tc a sparse oracle? If not, we propose a

second uniform class which possibly corresponds to polynomial

T

tormulae: &l

a ernating logarithmic time. ( This class was suggested
bv M. Sigser., 1 Cbserve that a <«¢lassical result of Spira ( see
(123 7 allcws to transforn a polvnomial formula into a circuit cf
logarithmic depth, hence 1n a new tformula of logarithmic depth. An
alternating nachine can evaluate such a formula in lcogarithmic time,
provided some kind of  “random access" to it. A point remains

unclear, however: how to encode the formulae in a sparse oracle?
fhich kind of "oracle device" is appropriate for a logarithmic time
mackine? We consider that all those questions are worth to study.
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