e JLWoooHiJ

KEEPING CONTROL TRANSFER INSTRUC-
TIONS OUT OF THE PIPELINE IN AR-
CHITECTURES WITHOUT CONDITION CODE

J. Cortadella
J.M. Llaberia
A. Gonzialez

RR 87/11

FACULTAT D'INFORMATICA |
BIBLIOTECA
R.3473C 16 JUL 1887

KEEPING CONTROL TRANSFER INSTRUCTIONS OUT OF
THE PIPELINE IN ARCHITECTURES WITHOUT CONDITION CODES

Jordi Cortadella,
Josep M. Llaberia and Antonio Gonzalez

Departamento de Arquitectura de Computadores
Facultad de Informatica de Barcelona (UPC)
Pau Gargallo, 5, 08028 Barcelona (SPAIN)

This work was funded by the Ministry of Education
(CAICYT) under contract Number 314-85

KEEPING CONTROL TRANSFER INSTRUCTIONS OUT OF
THE PIPELINE IN ARCHITECTURES WITHOUT CONDITION CODES

L'execucid de les instrucciones de salt suposa una
pérdua de rendiment en el processadors segmentats. En aquest
treball es presenta un mecanisme que permet 1'execucid
d'aquest tipus d'instruccions amb un cost nul de temps.
Aquest mecanisme és adequat per arquitectures sense codis de

condicid.
Abstract

The execution of branch instructions involves a loss of
performance in pipelined processors. In this paper we present
a mechanism for executing this kind of instruction with a
Zero delay. This mechanism has been proposed for
architectures without condition codes.

1. INTRODUCTION

The execution of control transfer instructions causes a
loss of performance in pipelined processors. Two operations
must be performed to execute them: condition evaluation (in
the case of conditional ©branches) and target address
computation. Two kind of architectures can be distinguished
considering the way of computing the condition evaluation:
with condition codes and without them. In the first case the
condition is established by some instruction that precede the
conditional branch. Statistics of instruction sequences have
shown that +this instruction is wusually the one that
immediately precedes the branch and is a compare Or test

instruction. For this reason some architectures have benefit
of this fact +to introduce a ‘"compare&branch" in 1its
instruction set and to eliminate condition codes. Lately,
RISC architectures have followed this approach. (MIPS-X,
SPUR, HP Spectrum)/Par86,Kat85,Mah86/. However, the execution
frequency of +this kind of instructions (20-30%) still
involves a great penalization in processor performance.

So far several mechanisms have been proposed to reduce
this negative effect in RISC architectures. Most of them have
been implemented in existing processors (Delayed Branch,
Squashed Branch) /FPar86/. In /Kat8%/ an Instruction Fetch
Unit has been proposed to execute conditional and
unconditional branches efficiently. This IFU keeps
unconditional branches, transparent to the Execution Unit and
allows %o ?xecute compare&branch instructions without any
extra delay. Target address computation is performed in the
IFU while comparison is computed in the EU. Compare&branch
instructions spend one c¢ycle only. A dual-port instruction
memory 1s needed to prefetch the two candidate instructions
that can be executed after a branch.

In this paper we propose an execution mechanism for
RISC-1ike architectures that keeps "cmp&br" instructions out
of the pipeline. Comparisons are computed in the EU in
parallel with another useful instruction. In this way, a
meaningful improvement of the useful instruction throughput
can be achieved. (We name useful instructions those that are
neither control transfer instructions nor NOP. Cmp&br are
considered as non-useful instructions). We have also assumed
that the IFU can accede to a2 dual-port instruction memory.

This mechanism is based on several points:

- A simple modification of the machine language.

- The desing of an Instruction Fetch and Sequencing Unit
(IFSU) that executes control transfer instructions.
Some simple modifications must be also introduced in
the EU.

- A technique for optimizing +the computation of
comparisons at compile-time.

Next sections are dedicated to describe these point in
more detail.

2. MODIFICATION OF MACHINE LANGUAGE

We can represent the code of a program as a graph of
Basic Blocks (BB). An important property of BBs is that all
their instructions are executed without any sequence break.
Branches are always at the bottom of BBs.

Condition evaluation depends on the execution of
instructions that precede the branch. On the opposite, branch
target address computation does not (except in some rare
cases). The model we present uses this feature to make an
advanced two-way prefetch of candidate instructions to be
executed after a branch. To make it possible we introduce the
following modifications (see fig. 1).

a) Control transfer instructions are put at the top of the BB
they belong to. However its execution isn't effective

until BB ends.

b) Compare&branch instruction have the following format:

Operation code.

Condition to be evaluated.

Immediate (to be compared).

Offset (to do target address computation).

c) Two bits are included in the coding of every instruction.
One of them (the "branch-bit") indicates wheter or not
this is the last instruction in a BB with a control
transfer instruction. The other one ("comparison-bit")
indicates that the result computed by the instruction must
be compared with another value when next conditional
branch is executed.

You can notice that cmp&br instructions need not to
specify registers to be compared because their values will be
set and gathered during the execution of other instructions.
The optimization technique explained in section 4 takes
advantage of this property.

3. IFSU DESIGN

Fig. 2 shows a block diagram of the IFSU we propose.
Their main components are:

PC: Registers that keep addresses of the two prefetched
instructions. Each one has an ass>ciated validity bit

(V).

COND_IMM: Register that keeps the code of the condition that
EU must evaluate and the immediate value that can be
compared to establish the condition.

IQ: Queues of the instructions candidate to be sent to EU.
Each one stores one of the two possible instructions

streams to be executed after a branch.

SEL: Control logic that selects the instruction stream that
must be fed into EU.

TC: Logic to compute branch target address.

TAQ: Queues of target addresses of branches prefetched from
the opposite instruction stream. ‘

CIQ: Id. for conditions and immediates specified in branches.

BR: OSignal sent from EU to indicate the result of the
condition evaluation.

The general behavior of the IFSU is the following: In
each cycle, 1instructions addressed by PCa and PCb are
prefetched. Non-control +transfer instructions are sent +to
IQs. In +the case of those of control +transfer, its
information (target address, condition and immediate) is sent
to TAQ and CIQ respectively. These transmitted values will
fall to PC and COND IMM if they are invalid (V=0ff).

The execution of an instruction with the branch-bit on
can produce a change in the choice of the stream that must bve
fed into EU (if the branch is taken). However, in all cases
the following actions have to be done:

- Clear IQ of the non-selected stream (NSS).

- Clear TAQ and CIQ of the selected stream (SS).

- Define SEL to select IQ of the SS.

- Define PC of NSS and COND_IMM with the first element
of TAQ an CIQ of NSS. If these queues are empty, PC
and COND_IMM will become invalid (V=off).

Pigure 4 shows an example of the IFSU state during
execution of code according to the specified BB subgraph.

Some simple modifications must be introduced in the EU
to make condition evaluation efficiently (see Tigure 3). Two
latches are needed to gather the values that have to be
compared. They are loaded in a FIFO manner when an

instruction with the "comparison-bit" on is sent to the EU. A
comparator is also used to evaluate the condition. This can
be computed in parallel with the ALU operation from least to
most significant bits, following the ALU carry propagation.
The output of the comparator is valid at the end of each
cycle and can be read by the IFSU to take branch decisions.

4. OPTIMIZATION OF COMPARISONS

In a RISC-machine without condition codes, the condition
is established by the comparison of two registers or a
register and an immediate. In the machine language we have
proposed, the values that have to be compared are obtained
from the execution of instructions with the "compariscn-bit"
on. This fact may involve to insert some extra instructions
in the code to read the required registers before the end of
the BB. However, if we analyze the code that the compiler
generates we can see that compared registers are usually
defined in the basic block where they are comparesd. In some
cases, values defined at different basic blocks can also be
used.

This is the case of many conditions at the end of a
loop. For example:
for (i = 0; i> 50; i++)
is translated into

top_of loop:

cmp&br 1t, 50, top_of loop
last BB in
the loop

add R,, 1, Ry, (comparison, branch)
end of loop

The compiler can take advantage of this feature to do a
suitable optimization of —condition evaluation easily.
Comparison-bits save the explicit execution of a compare

instruction.
Statistics obtained from the execution of several
programs show that only 17% of conditional branches need

extra instructions to fetch the values to be compared.

5. PERFORMANCE EVALUATION

The mechanism we have proposed has been evaluated by the
simulation of the entire execution of several 1large
(zEx', cEM?, NROFF', YACC').

Measurements have been obtained using a evaluation

representative programs

methodology proposed in /COR87a/. We have designed a compiler
adding a new back-end to the ACK /TAN8%/ to generate a
machine language based on the one of Berkeley RISC-II
Processor.

Several mechanisms have been compared with the IFSU we
propose /FAR86/ /KAT83/:

Delayed branch

a)

b) Squashed branch

c) Profiled Squashed branch

d) IFSU(Kat83)

In order to compare all this mechanisms with the same
conditions, we have assumed that IFSU(Kat83) can execute any

1) Programs of UNIX Operating System (UNIX is a Trademark of
AT&T Bell Labs.)
2) C front-end of the ACK.

kind of cmp&br instructions in one cycle (even non-fast

comparisons).

Performance has been evaluated as the useful instruction
throughput rate +that EU can execute. Control transfer
instructions (cmp&br, unconditional brancnes, call,
return,...) are considered as non-useful instructions. Extra
instructions executed due to Dbranch execution are also
considered non-useful.

Table I shows the performance of several mechanisms. The
proposed IFSU can achieve an improvement of 6% to 21% in
processor performance compared with the other mechanisms.

Delayed Squashed Prof.Squashed IFSU-Kat83 IFSU

LEX 0.59 0.68 0.69 0.70 0.77
om os0 o063 o067 0.7 0.5
mec o8 o7 o6 013 0.6
worr 0.3 o068 o072 018 o8
worsge 0.63 068 0.7 075 0.80

Table I: Throughput (useful instructions per cycle)
achieved by several branch execution mechanisms

Ik
‘é_\ @,
o,
3

>
IBLIOTECA

=
B

Also, IF3U behavior with a dual-port instructions cache
has been evaluated. The interest of evaluating it in this
conditions lies in determining the extra main memory traffic
that could be generated. The two-way prefetching can pollute
instruction cache with some code parts that are not needed.
Statistics have shown that this extra traffic is similar to
the one produced by an "always prefetch" algorithm on cache
misses /Smi85/.

Simulations with several queue sizes have been runned.
They have shown that less than 1% of performance is lost with

IQs of size 3 and TAQs and CIQs of size 1.

6. CONCLUSIONS

In this paper, we present a mechanism to keep control
transfer instructions out of the pipeline of an architecture
without condition codes. It is based on an IFSU with a
dual-port instruction memory that executes branch
instructions. The machine language has been modified to allow
an advanced target address computation and a two-way
instruction prefetch. Comparisons are executed in parallel
with one useful instruction without spending pipeline cycles.
A comparator has been introduced in the EU +to compute
conditions quickly.

This mechanism achieves a meaningful improvement in
processor performance (6% to 21%). Also main memory traffic
generated by IFSU has been evaluated. It is similar to the
one produce by prefetch algorithms on cache misses.

ACKNOWLEDGEMENTS

Our appreciation to the "PFacultad de Informatica de
Madrid" for the permission to use a PDP-11/60 with UNIX.

REFERENCES

/Kat83/

/Smis5/

/Far86/

/Tan83%/

/Cor8Ta/

/Mah8§/

/Kat85/

Manolis G.H. Katevenis, "Reduced Instruction Set
Computer Architectures for VLSI", Ph. D.
Dissertation, University of California, Berkeley,
October 1983.

Alan J. Smith, "Cache Evaluation and the impact of
workload choice", Proc. of the 12th. Ann. Int. Symp.
on Comp. Arch., June 1985, pp. 64-73.

Scott Mc Parling and John Hennesy, "Reducing the
Cost of Branches", Proc. 13th. Ann. Symp. on Comp.
Arch., June 1986, pp. 396-403.

A.S. Tanenbaum et al., "A practical tool kit for
making portable compilers", Comm. ACM 26:9, 19873,
pp. 654-660.

J. Cortadella and J.M. ZLlaberia, "A ZLow Cos?
Evaluation Methodology for New Architectures", 5th.
Int. Symp. on Applied Informatics. Grindelwald
(Switzerland), February 1987.

Michael J. Mahon et al., "Hewlett—-Packard Precision
Architecture: The Processor", Hewlett-Packard
Journal, Volume 37 Number 8, August 1986.

H. Katz, editor, "Proceedings of CS292i:
Implementation of VILSI Systems,"Technical Report
UCB/CSD 86/259, Computer Science Division (EECS),
University of California, Berkeley, September, 1985.

Basic Block 1

CMP&BR cond,#imm,X

® | Rk« RjopR;

®*| Rp<—RmopRp

Comparison
between Rixand R,

Basic Blm

CMP&BR cond,#imm,Y X: JUMP 2

Basic Block 2

o Rj « #iop Rp

- ; Comparison
Y

N~—— .

Branch-bit “on”

¢| Comparison-bit “on”

Figure 1

Basic Block structure in the proposed Machine Language

BR

C a l l
on TA ‘L Y
nd |ad TAQa [ciqa TAQs [
i gr
tm e e _ _
I m [t s _ —_
0o e S
o v h
; % Y l
Va PC; Vb PCp V| COND-IMM
TCa TCh + 1 + 17
[44 ADDRj, R
ADDRp -
INSTR3
INSTRp
Y Y
1Qa Qb
Empty queue - - 2
_— NOP
Yy v .
Sel. Instruction l l l
S E L Branch-bit
» Kind of branch
INSTR.TO EU COND. and
IMM. TO EU

Figure 2

ALU

Phase 2 Y

>—!_ Latch 1

haaae o ——————— L= 5= |

-

Comparison

Phase 1 Y
>— Latch 2 and L

Condition
Evaluation
o—T
Comparison-bit Compate A
R-Ror R L\
s .

T Y
Instruction Immediate Condition Branch
from IFSU from IFSU fromIFSU Decision

to IFSU
Figure 3

EU Support for comparisons

SIA|ISWIALF 51T 3 INRIISUL AY) PRIISUI SUOINAISUL JO

sassaippe ay) 1nd aney am Bujpuejsiopun 19113q e 104
uoinlIaxa burinp Ns4| o aye3s

9

L +Y L+
¢ty ¢t
L-A L-IN
N
¢tIN
q0I LX
e#'puod A qod X
K _ A
q#puod 1 d# "puod A
01D a0v1 01D | ®0Vl

7 24nbi4
l1+1
1.
944
3q
Al..:u:m:m
e] #
L+A
A\
L899
eDd sdd
q9Od —> A
L+Y
¥ | A# "puodqyd

vad

tdd

1'q#"puod qg>

cad

H'e#'puod ggd

Lg4

X.AllmUn_

CtN
L+ IN

' ug-ypueig

N

\Am_c_

¢ Bunnyaxs
uolPniIsuj

L+
|

