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Abstract: The probability distribution for binary search trees could be considered a more
realistic distribution to do statistics on trees than the general uniform distribution. The
average analysis of algorithms for binary search trees, yields very different results from
those obtained under the uniform distribution. Moreover, the analysis itself is a lot more
complex. In this work we carry out this analysis for the computation of the average size
of the intersection of two binary trees. The development of this analysis involves Bessel
functions which appear in the solutions of partial differential equations, and the result is
an average size of O(n2v2—2 /V/log n), contrasting with the unrealistic O(1) which appears
as solution when considering a uniform distribution.

Resum: Per a calcular cost mitja d’operacions o algorismes sobre arbres, la distribucié
de probabilitat per als arbres binaris de recerca es pot considerar com una distribucié més
realista que la distribucié uniforme utilitzada normalment. En aquest treball, realitzem la
computacié de la talla mitjana de la interseccié de dos arbres binaris. El desenvolupament
d’aquesta analisi involucra funcions de Bessel que apareixen com a resultat d’una equacié
diferencial. El resultat es una talla mitjana de O(nz‘/z_‘z/\/log n), la qual cosa contrasta
amb el O(1) que apareix com a solucié, quan es considera una distribucié uniforme.
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Abstract

The probability distribution for binary search trees could be con-
sidered a more realistic distribution to do statistics on trees than the
general uniform distribution. The average analysis of algorithms for
binary search trees, yields very different results from those obtained
under the uniform distribution. Moreover, the analysis itself is a lot
more complex. In this work we carry out this analysis for the compu-
tation of the average size of the intersection of two binary trees. The
development of this analysis involves Bessel functions which appear in
the solutions of partial differential equations, and the result is an av-

erage size of O(n2V2-2/,/log n), contrasting with the unrealistic O(1)
which appears as solution when considering a uniform distribution.

1 Introduction

Most results on average analysis of algorithms on trees have been done by
considering a uniform distribution over all the trees with the same number
of nodes. As most of the binary trees of a given size are very skew, this
distribution has the drawback that the average statistics obtained often are
not the ones expected by ”common sense”.

Moreover there have been some statistics on trees which consider other
types of distributions. In particular, a great amount of work has been done
on statistics for Binary Search Trees. Most of this work relates to the average
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analysis of algorithms associated with the manipulation of this particular
data structure [Knu73).

Recall that binary search trees are binary trees whose nodes are labeled
in a certain way. The model underlying this random tree model is that of
random permutation. Each permutation on the symmetric group of size n
is taken with a uniform probability of 1/n!, and this uniform distribution
induces a nonuniform probability distribution on the set B, of all binary
trees with n internal nodes [Knu73,Fla88]. This distribution, which from
now on we shall denote as bst-distribution, can also be used as the underly-
ing distribution to do statistics on non-labeled binary trees. Devroye proved
that the average height of binary trees under the bst-distribution is asymp-
totically O(log n) [Dev86]. This result marks a difference with the average
height of binary trees under the uniform distribution model, which tends to
O(y/n) [FO82).

We believe that there are two reasons for using the bst-distribution as the
canonical distribution to do statistics on binary trees. On the one hand, the
bst-distribution tends to assign higher probability of existence to the more
balanced binary trees, which in many cases makes the distribution look more
realistic than the uniform distribution. On the other hand, we think there
are reasonable chances that it is feasible to compute the average complexity
of many algorithms without getting bogged down at the difficulty of the
mathematical computations, as the present work indicates.

The computation of the average size of the intersection of binary trees,
appears in a natural way in the analysis of a number of algorithms; for
example in processes involving tree matching [FS87] or unification [CDS89)].
In fact the intersection of binary trees taken as operation between binary
trees is exactly the kernel of the algorithm of Shuffle of two trees described
in [CKS89]. As a matter of fact, the average time complexity of the Shuffle
of two binary trees coincides with twice the average size of the intersection
of the two trees.

We have chosen to study the average size of the intersection of two
binary trees, because of its simplicity. Our first consideration has been
to investigate the kind of analysis which we shall deal with, when doing
statistics under the bst-distribution. That is the reason why we selected
a problem which yields a very elementary development and solution, when
considering the uniform distribution . (Under the uniform distribution, the
average intersection of two trees is always the constant 2, regardless of the
size of the trees [CKS89]). The use of the bst-distribution introduces a
partial differential equation which has a solution in terms of Bessel functions,






Figure 1: Binary trees T (left) and T% (right)
which seems to correspond to the structure induced by this distribution.

2 A recursive definition of the bst-distribution

We begin by introducing a new recursive way to look at the bst-distribution.
Unless otherwise stated, we shall use the definitions and notation as in [Knu69]

Given a binary tree T let us denote by T" and T" respectively the right
and left subtrees of the root of T. Let us define the following probability
distribution over the set of binary trees with n nodes,

P = TY-p(TT .
ﬁ(—ﬁ‘)‘-l%-(ﬁ')T otherwise

where p reads probability, |T| denotes the size (number of internal nodes)
of the tree T, and O denotes the leaf of a binary tree.

For example, given the binary tree T} described in Fig. 1, its probability
is p(Th) = 3174, while for the tree T3 in the same figure, the probability is
p(T2) = 355-

It is easy to verify that this probability corresponds to the frequency of
all the binary search trees whith the same shape T'.

The recursive manner in which we express this probability distribution,
is very handly to simplify a lot some of the classical proofs about average
behavior of binary search. The interested reader could convince himself by
proving, using the propossed formulation, some well known facts about the
expected behavior of random binary search trees.

In a natural way, we can extend the above definition to pairs of binary
trees in the following way, given binary trees 77 and T5,

p(T1) - p(T2)

T, Ty) =
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Figure 2: Intersection of trees in figure 1

Notice that for all n > 0, this definition satisfies the condition

Z p(Tl)T2) =1

[T1]+|T2|=n

3 Average Size of the Intersection of Two Trees

Let B denote the set of all binary trees. Given trees T1,T, € B we wish
to compute the average size of the intersection of the two trees, where the
intersection of 17 and T3 is given by:

Intersection (71,T3)

If Ty or Tz is O then (T3 NT2) = O
else (11 NT2) = (gingyy~®~(1ynTy)

where (T3 N T3) denotes the intersection of trees 73 and T%.
Figure 2, shows the result of the intersection of the trees in Figure 1.

We shall define the size of the intersection of trees T} and T3 by

B 0 if O e {T].,T2}
s(Th, T2) = { 14+ s(T{,TQI) + s(T7,T3) otherwise

We wish to compute the average value of s(Ty,T2) over all the pairs
(T, T2) with |T1} + |T2| = n. Let 3(n) denote this average value, then we
get

3(n) = Z s(T1,T2) - p(Th, T2)
[T1[+{Tz|=n

Following the standard techniques [FV87,GJ83] let us define the follow-
ing generating function:

S(z)= Y. s(Ty,T)- p(T1,T3) - 2T T (1)
(T11T2)€32






We have to evaluate

3(n) = [2"]5(2) (2)
where [27]5(z) denotes the n** coefficient in the expansion of S(z). For this
let us define another generating function of two variables

Szy)= Y, s(T1, T2)p(T1)p(T2)z ! "1y T! (3)
(Th,T2)€B?

It follows that 1 e
S() = / S(t, 1)dt (4)
0

We use the following descomposition of the cartesian product of binary
trees

B=(0,0)+0x (B-0)+(B-0)x0+(B-0)  (5)

From equation (3) and using (5) we get the following hyperbolic partial
differential equation

92S(x,y) 1 25 (2, y) (6
dzdy — (1—2)2(1—-9)*  (1-2a)(1l-1) )

subject to the boundary conditions: for all z and y, S(z,0) = 0 and S(0,y) =
0. These boundary conditions are given by the intersection of a tree and a
leaf and the intersection of a leaf and a tree respectively.

Equation (6) can be rewritten using

1
S(z,y)=¥(z,y) — ————————= 7
(@) = ¥ - T hay) 7)
where ¥(z,y) satisfies the homogeneous equation

v 20
0z0y ~ (1-=z)(1-y)

with boundary conditions ¥(z,0) = 72= and ¥(0,y) = 1171,
Making the change of variables

{ X = —v2In(1 - x)

Y = —v2In(1 — y)

and making G(X,Y) be ¥(1 — e'X/‘/E, 1- e'y/ﬁ), we finally obtain the
hyperbolic differential equation
0°G
oxoy = © ®)
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subject to boundary conditions G(X,0) = eX/‘/E, G(0,Y) = Y2,

This system can be solved by the method of Riemann (Chapter 5 of
[Cop75]) to yield

G(X,Y) = % /0 ¥ eVi g, (%/(X—t)y) dt +

% /0 Y iy, (Qi‘/(Y - t)X) dt + Jo(2iVXY)  (9)

where Jy denotes the Bessel function of the first kind of order 0.

We are interested in obtaining asymptotics to the [2"]S5(z), but by (4)
we know that [2"]5(z) = nlﬁ - [2™]8(z, 2), which together with (7) gives

1
n+1

3(n) = [2"]¥(z, 2) - 1 (10)

To obtain an asymptotic value for [2"]¥(z, 2) we need the following re-
sult,

Lemma 1
[2M¥(z,2) & e1 - [2"]Jo(—=2V2 - i - In(1 — 2))
where ~ stands for asymptotical equivalence, and ¢, = 3 + 2v/2

The highly technical proof of this lemma is given in the appendix at the
end of the paper.

On the other hand, using the Laplace method for integrals (see for ex-
ample chapter 4 of [DB58] ) we derive the asymptotics for the n** coefficient
in the expanssion of the Bessel function,

n2V2-1
[2"]]0(4-2\/2_- ) . ln(l - z)) ~Cy m . (1 + O(@)) (11)

where the value of constant ¢, is given by

| JioEe
ég = o8¢ = 0.0910284

2 25/4,/x - F(gﬁ)

Lemma 1 together with (10) and (11) gives the following result,







Theorem 1 Under the bst-distribution, the average size of the intersection
of two trees behaves asymptotically as

. n2v2-2 1
in)y=c- = (1 + O(logn))

with ¢ = ¢1co = 0.530552 - - -

Again, it should be emphasized, that under the usual uniform distribu-
tion, the average size of the intersection of two trees is the constant 2, which
is a quite different result from the one we just obtained.

As said in the introduction, it also follows from Theorem 1 that under
the bst-distribution, the average complexity of the algorithm of Shuffle of
two trees is also

n2V2-2 1
. 1 —_
2 Viegn ( + O(logn))
while with the uniform distribution the average complexity of the Shuffle
algorithm is 4(1 4+ O(1)) [CKS89)].

4 Conclusions

It seems that the apparition of a hyperbolic partial differential equation
as the one in section 3, depends directly on the definition of probability
distribution given in section 2, and it is rather independent of the nature
of the problem under consideration. Current work by the authors seems
to confirm this hypothesis. For instance, when considering other simple
algorithms, like the equality of trees, the same methodology works and it
also yields a hyperbolic differential equation. The present paper could be
considered as a first formulation of the kind of framework inhereht to the
statistics on trees under the bst-distribution.

Acknowledgment

We thank Josep Grané for pointing us to the solution of equation (6);
Carles Simé for his advice in obtainning Lemma 1 and Philippe Flajolet for
many interesting suggestions.






A Appendix: Proof of Lemma 1

Let G(Z, Z) = A(Z) + Jo(2iZ) with

A(Z) = \/ifoz et!V2 7, (21',/(2 - t)Z) dt

Let us recall the series expansion

Jo() = Z (—1)* (%)%

& (k)2

then

AZ)=+v2 | elV? Z)* B(Z
@=vi[ (;}W t))) f;)(,)z «2)
where

Z 1/ 2Z\
o(Z2)= | etNV2(Z - t)kdt = 2’°+1-k!-§:_( )
K(2) /0e ( ) v2) j>kj! V2
so we get

a2y =2y BV Z( )

k>0 >k

Let us consider the coefficient a, = [Z™]A(Z), we can distinguish three
different cases;

if n = 0 then ao = 0,

if n =2p+1, then

e 2 X": 2p+ 1
2p+1 — (ﬁ-)?p+l(2p+ l)l

k=0
if n = 2p, then

2 ’f 29\
P or(2p)l L\ K

so we can conclude that

2V
A2p+1 = Cp : (p')2 . p_-|- 1
_ " 2
TRy



|



and it is straightforward to prove that c;, and ¢, tend to 1 as p tends to oo.
So we conclude that G(Z, Z) is asymptotically equivalent to

3Jo(2iZ) +V2- %JO(MZ)

and we get the statement of the lemma, by making the change of variable

Z = —\/iln(l - 2).
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