
Replan: A Release Planning Tool
David Ameller1, Carles Farré1, Xavier Franch1, Antonino Cassarino2, Danilo Valerio2, Valentin Elvassore1

1 Universitat Politècnica de Catalunya
Barcelona, Spain

{dameller, farre, franch}@essi.upc.edu,
valentin.elvassore@gmail.com

2 Siemens AG Österreich
Vienna, Austria

{antonino.cassarino, danilo.valerio}@siemens.com

Abstract—Software release planning is the activity of deciding
what is to be implemented, when and by who. It can be divided
into two tasks: strategic planning (i.e., the what) and operational
(i.e., the when and the who). Replan, the tool that we present in
this demo, handles both tasks in an integrated and flexible way,
allowing its users (typically software product managers and de-
veloper team leaders) to (re)plan the releases dynamically by
assigning new features and/or modifying the available resources
allocated at each release. A recorded video demo of Replan is
available at https://youtu.be/PNK5EUTdqEg.

Index Terms—Software Release Planning, Feature Schedul-
ing, Resource Allocation

I. INTRODUCTION

Software Release Planning (SRP) solves the problem of
finding the best combination of features or requirements to
implement in a sequence of releases. SRP seeks to maximize
business value and stakeholder satisfaction without neglecting
the constraints imposed by the availability of adequate re-
sources and the existence of dependencies between features1,
among other constraints [1].

The SRP activity is composed of two phases: Strategic
planning, the selection of features to be included in the next
release(s); and Operational planning, the assignment of these
features to a concrete team of developers [2]. Although this
distinction between the two planning phases is neat from a con-
ceptual perspective, it may provoke some practical problems.
Consider for instance the case in which strategic planning takes
into account the priority of features and operational planning
considers the skills of the available developers. In this situa-
tion, it could happen that one feature selected during the strate-
gic planning phase cannot be assigned to any developer during
the operational planning phase because none of them has the
required skills.

The tool presented in this demo, Replan, handles both phas-
es together making it possible to consider all the release plan-
ning objectives in a single execution. Moreover, Replan sup-
ports flexible release re-planning by allowing the modification
at any time of the features to be included in the releases, as well
as of the resources available in each release. The intended users
of our tool are software product managers that need a reliable

1 For the sake of brevity, from now on we will refer only to features, not
requirements.

This work is a result of the SUPERSEDE project, funded by the EU’s H2020
Programme under the agreement number 644018. https://www.supersede.eu/

and usable tool to (re)plan product releases as well as software
team leaders that need a flexible tool to (re)plan the assignment
of tasks to developers.

We must point out that the features that Replan deals with
are already prioritized. Therefore, tasks like feature negotiation
and prioritization, which can be considered part of the strategic
planning activity, are not currently supported by our tool.
However, a simple API is provided to allow any external tool
to send its prioritized features to Replan.

The source code of Replan as well as an online demo ver-
sion are available at http://www.essi.upc.edu/~gessi/replan.
The rest of the paper is divided as follows: Section II, related
work; Section III, the conceptual idea behind the tool; Section
IV, the architectural and technical aspects of the tool; Section
V, our preliminary evaluation results; and Section VI, the con-
clusions and future work.

II. RELATED WORK

A literature review of the SRP models proposed in the aca-
demic literature can be found in [3]. In that survey, in which
some of the authors of this paper participated, up to 17 SRP
models published in 2009-2016 were identified and analysed.
Among the conclusions of that survey, we highlight the follow-
ing:
 Most of the SRP models examined focused only on

strategic planning. In this way, no inputs such as re-
quired skills and resource availability are considered
by those models.

 Poor industry validation of the SRP models due to
scarce industry involvement.

 Poor tool support for the proposed SRP models. Most
of these solutions only provided some proof-of-concept
tool support.

The only exception to the last point is ReleasePlanner [4], a
commercial SRP tool used by some of the SRP models dis-
cussed in [3]. However, ReleasePlanner only addresses strate-
gic planning. Moreover, ReleasePlanner requires its users to
provide a huge amount of complex input to produce a release
plan, which impacts negatively on its perceived usability.

III. CONCEPTUAL IDEA

Figure 1 summarizes the main concepts managed by Re-
plan. At the core of our tool lies a Next Release Problem (NRP)
solver whose mission is to produce a release plan consisting of
a set of features that are not only scheduled but also assigned to



the resources that will implement them. Its execution is trig-
gered whenever the user adds/changes/removes a release fea-
ture or resource. Each NextReleaseProblem instance must have
defined the number of weeks that the release will last
(num_of_weeks) and the amount of time (hours_per_week) that
a full time employee may work in the release.

Obviously, the features that we propose to be considered in
the release must be also specified. For each Feature, two key
parameters must be defined: its duration (i.e. an estimation of
the time effort that its implementations will require) and its
priority. Priority is composed of two values: its level (on a 1-5
scale, from highest to lowest) and its business_value. The busi-
ness value allows us to define a weighted value for the priority
of a feature. For instance, a priority with level = 1 may have a
business value = 16, whereas with a level = 2 we may have
business value = 8 (the greater the value, the better).

Precedence dependencies among features are modelled by
indicating, for each feature, which other ones need to be im-
plemented previously. We can also model the different Skills
that each feature Requires in order to be implemented.

Apart from features, a NextReleaseProblem should include
the (human) resources that are available to implement the fea-
tures assigned to a release. For each Resource (e.g. a develop-
er) we need to know his/her week_availability (the percentage
of his/her working time that s/he can devote to the release) and
the skills that s/he Has.

An instance of a PlanningSolution for a given NextRe-
leaseProblem will consist of several PlannedFeatures. Each
PlannedFeature is a Feature assigned to a Resource, during a
well-defined time slot [start_time, end_time] given in relative
terms to the start of the release.

Due to the NP-hardness of NRP [5], we adopt the common
approach of formulating it as an optimization problem that is
solved in a reasonable amount of time by searching for good
solutions that are not necessarily the best ones. In particular,
our approach is that of a bi-objective optimization problem
where we want to achieve the following objectives:

 Maximize the sum of the business value of the planned
features.

 Minimize the total duration of the release implementa-
tion

Without violating any of the following constraints:
 Features must be implemented by employees that have

the necessary skills.
 The week availability of employees.
 The precedence dependencies among features.
 The number of weeks of the release.

IV. TOOL DESCRIPTION

The architecture of the Replan tool is depicted in Figure 2.
It consists of two main parts: a dashboard for the web-based
front-end, and a service-based backend. This latter is divided
into two services: the controller that manages all the communi-
cations and persistence needs, and the optimizer that executes
the main functionality of the tool. Having this separation has
several benefits. First, since the optimizer may require more
computational power, being an independent web service facili-
tates the possibility of moving it to a dedicated machine. Sec-
ond, we facilitate the possibility of having several independent
implementations of the optimizer service and the controller can
use the one that is the most appropriate in each case. For in-
stance, we can have an optimizer service that is more adequate
for situations with many constraints and an optimizer service
that is more adequate for situations with many resources.
Moreover, the controller offers a separate API that allows ex-
ternal tools, such as decision support systems, to feed Replan
with lists of the prioritized features to be enacted.

The normal workflow of the Replan tool is driven by the
user who will interact with the dashboard. When the user de-
cides that it is time to update a release plan, s/he will make the
adaptations (e.g., include or remove a particular feature, rede-
fine some dependency, etc.) and request a release plan. This
will trigger the communication from the dashboard to the con-

num_of_weeks : Integer
hours_per_week : Double

NextReleaseProblem

name : String
week_availability : Double

Resource

level : Integer
business_value : Integer

Priority
name : String
duration : Double

Feature

PlanningSolution

start_time : Double
end_time : Double

PlannedFeature

name
Skill

Assignment

1

*

1 *

*

1

Precedence

*nextprevious *

*

1

*

1

Has
*

*

Requires
*

*

Fig. 1 Problem and solution domains



troller, which in its turn, will ask the optimizer to produce the
release plan.

Also, most of the CRUD operations available in the tool re-
quires the dashboard to communicate with the controller. In
addition, please note that all the persistence of the tool is man-
aged by the controller.

In the remaining of this section, we present in more detail
each one of the three components of Replan.

A. Replan Dashboard
The main purpose of this component is to provide a usable

human interface in order to facilitate the access to the main
functionality of the tool. This component also allows the user
(e.g. product manager or developer team leader) to provide the
additional information required by the tool (e.g., the resources
available for each release). In order to minimize the amount
and complexity of the input required to produce a release plan,
we worked in several directions to produce a highly usable
tool. Among the desired usability characteristics we remark the
following:
 Gather features from different sources. Since the fea-

tures can be obtained from sources such as feature pri-
oritization tools, Replan users should not need to intro-
duce them manually.

 Minimize the input required. Only the fundamental in-
formation required to execute the algorithm is request-
ed before generating the release plan. Also, the user
will be guided to introduce the missing information.

 Flexibility to make changes. We want to give freedom
to the user to modify any information (e.g., ability to
refine or adapt the features produced by external tools).

Figures 3-5 show some screenshots of the Replan Dash-
board in order to illustrate the normal use of the tool when
planning a software release.

Screenshot #1 (Fig. 3): the user sees the current candidate
features for release (left) and the list of releases available for
the project (right). From this screen, s/he can also create or
modify new releases, and configure the resources of the pro-
ject. To include a feature in a particular release, the user only
needs to drag and drop the feature to the desired release. This
action will trigger the release planning.

Once a feature is added into a release, the tool checks for
completeness (e.g., by prompting the user to provide missing
information) and compliance (e.g., by notifying that postponing
a release is necessary to accommodate the newly added fea-
ture). For example, Screenshot 2 (Fig. 4) shows the response of
the tool when an added feature does not contain the effort re-
quired for implementation. These checks are fundamental to
avoid or reduce user mistakes.

Screenshot 3 (Fig. 5) shows the representation of a release
plan. It presents the resources and their allocation during the
release timeline. The red dashed lines show the dependencies
among tasks, and the red vertical line on the right shows the
deadline of the release.

In order to create a new release, the user clicks the “+ Add
release” button in the main screen (Screenshot #1, Fig. 3). This
triggers a new screen, not shown here, where s/he can set a
release name, description, and deadline. When creating a new
release, the user should assign a set of resources (e.g. develop-
ers) to it.

Finally, there is a project resource management screen, not
shown here, which can be accessed by clicking the “Edit pro-
ject config.” button in the main screen (Screenshot #1, Fig. 3).
Here it is possible to add, edit, or remove project resources. For
each resource, the user can specify the availability and a set of
skills (which will be used for the assignment of tasks during the
release planning)

The Replan Dashboard component has been implemented
as a rich web application written in Java (server-side) and Ja-
vaScript (client-side). The server side relies on Spring Boot,
while the client side uses the AngularJS framework. For the
construction of the UI, considering the focus on usability and
learnability, we used the popular JQwidgets and Bootstrap

Fig. 2 Replan Architecture

Fig.3 Replan Dashboard Screenshot #1: Main page



frameworks. This combination provides all the necessary ele-
ments for a modern UI design focused on quality of experience.

B. Replan Controller
This component is responsible for the management and

storage of the internal representation of the domain knowledge,
i.e. the information about features, releases, resources, release
plans, etc. Therefore, this component provides all the infor-
mation that the Replan Dashboard needs to show to its users
and applies the requests that they make: feature assignments to
releases, resource updates, etc. To do this, we implemented the
Replan Controller component as a web service that exposes a
well-defined REST API2 to the Replan Dashboard.

As mentioned earlier, external tools can provide the Replan
Controller with lists of prioritized features to be scheduled. For
this reason, the Replan Controller exposes a dedicated and sim-
ple REST API3.

When the Replan Controller receives a request to generate a
release plan from a Dashboard user, it collects all the necessary
information about the involved release, features, and resources
(i.e. creates an instance of a NextReleaseProblem, according to
Fig. 1) and sends it to the Replan Optimizer. The release plan

2 https://supersede-project.github.io/replan/replan_controller/API-UI.html
3 https://supersede-project.github.io/replan/replan_controller/API-WP3.html

that this latter returns (an instance of a PlanningSolution in Fig.
1) is then stored and sent back to the Replan Dashboard.

The Replan Controller component has been implemented
with Ruby on Rails, a well-known and mature Model-View-
Controller framework that provides a set of configuration de-
faults and built-in tools that allows API developers to setup and
running quickly.

C. Replan Optimizer
This component has the sole purpose of generating a release

plan. It has been developed as a stateless web service that given
all the required information generates a release plan that, pre-
serving the stated constraints, optimizes the use of the company
resources to develop the next release. This web service is pow-
ered by our current implementation of the NextReleaseProblem
solver, which relies on the application of state-of-the-art Genet-
ic Algorithms. In particular, we use jMetal4, a framework with
an extensive portfolio of available multi-objective optimization
algorithms: NSGA-II, MOCell, PESA-II, SPEA-II, etc. We
refer to [6] for more details

In order to develop an optimizer service, the only require-
ment is to implement a web service that exposes the API5 that
the Replan Controller needs to consume. The input/output of
the optimizer component is thus defined in the API specifica-
tion.

The Replan Optimizer component has been implemented
using Java-oriented technologies, Spring Boot in particular,
because jMetal is only available in that language.

V. PRELIMINARY EVALUATION

We ran a preliminary assessment of the tool by submitting a
mock-up version to three companies of different size and do-
main: two big enterprises and an SME (Small or Medium En-
terprise), all very active in software development and offering
very heterogeneous software products. The recipients (a set of
fourteen product managers, project managers, developer team
heads, and solution managers) were asked to inspect the mock-
up in a one-hour session and fill out a questionnaire6 measuring
their perception of the tool.

The theme of the questionnaires was centered around the
perceived usefulness and perceived ease of use of the tool,
which have been demonstrated in the literature [7] to be largely
correlated with one of the most important metrics for the suc-
cess of a software product, i.e., the intention-to-use. In addi-
tion, the questionnaires were designed to capture a set of attrib-
utes defined in the ISO25010 quality in use model [8]. This
allowed us to draw a conclusion on the perceived benefit of
adopting Replan for release planning activities.

The results of the evaluation are reported in Table 1, aggre-
gated for all participants from all three companies. The table
reports the Mean Opinion Score (MOS), in a Likert scale from
1 (Strongly disagree) to 7 (Strongly agree), the Standard Devia-
tion (SD), and the minimum and maximum rating given by all
test users. For lack of space we cannot report the exact formu-

4 http://jmetal.sourceforge.net/
5 https://supersede-project.github.io/replan/replan_optimizer/API-CTL.html
6 https://supersede-project.github.io/replan/Replan_eval_questionnary.pdf

Fig.4 Replan Dashboard Screenshot #2: Feature Form

Fig.5 Replan Dashboard Screenshot #3: Release Plan Display



lation of the statements, but only a shortened version (for ex-
ample, “Replan would improve my effectiveness” was formu-
lated as “Replan would enable me to perform software evolu-
tion and maintenance more effectively”).

The first and second groups of statements are related to the
perceived usefulness and ease of use of Replan, respectively.
We can see that all attributes scored above the mean of the rat-
ing scale. The tool is perceived to be useful to facilitate the
release planning tasks and handle them with more effectiveness
and efficiency. Replan is also perceived as easy to use, learn,
and control.

The third group of statements lists a number of potential
benefits produced by adopting the tool. The highest ratings are
related to the capacity of Replan to improve transparency, re-
source utilization, and organizational efficiency. On the lower
end, test users seem to slightly disagree with the fact that Re-
plan reduces costs of customer care. This indicates that the tool
was observed more from the perspective of ordinary software
evolution, rather than maintenance.

The final group contains attributes that did not fit in the cat-
egories above. Also here, none of the ratings falls below the
mean of the rating scale and the reception is generally positive.
Test users feel satisfied with the tool. However, when asked
whether they would trust the release plan suggested by the tool,
the rating was close to neutral (MOS=4.3). This might be
caused by the fact that some properties (like the speed and ex-
pertise of a developer) influence the release planning and task
assignments but cannot be easily synthesized in a model/tool.
This is confirmed by the functional completeness rating (again,
MOS=4.3), which measures if the proposed approach covers all
constraints to be considered in the release planning.

VI. CONCLUSIONS AND FUTURE WORK

Replan is a Software Release Planning tool that handles
both strategic planning and operational planning in an integrat-
ed and flexible way. Replan has been architected in such a way
that its components can be improved and scale up independent-

ly. At its core features a Next Realese Problem solver that is
powered by state-of-the-art genetic algorithms.

Preliminary evaluation shows that Replan is perceived as
convenient tool to perform release planning in an effective an
efficient way, and, at the same time, as a tool that it is easy to
use, learn, and control. Users also appreciate the ability of Re-
plan to improve transparency, resource utilization, and organi-
zational efficiency.

As an immediate future work, we will use and evaluate Re-
plan in three real industrial use cases, in the context of the SU-
PERSEDE Project. Moreover, we will adapt and evolve Replan
to support Continuous Software Release Planning in the terms
described in [9].

REFERENCES

[1] G. Ruhe and M.O. Saliu, “The art and science of software re-
lease planning,” IEEE Software 22(6), pp. 47-53, 2005.

[2] G. Ruhe, “Software release planning”, in Handbook of Software
Engineering and Knowledge Engineering, Vol 3, pp. 365-394,
2005.

[3] D. Ameller, C. Farré, X. Franch, and G. Rufian, “A Survey on
Software Release Planning Models,” in 17th International Con-
ference on Product-Focused Software Process Improvement
(PROFES), 2016, pp. 48–65.

[4] G. Ruhe, Product release planning: methods, tools and applica-
tions. CRC Press, 2010.

[5] R. Karp, “Reducibility among combinatorial problems,” In
Complexity of computer computations, pp. 85-103, 1972

[6] V. Elvassore, Experimenting with generic algorithms to resolve
the next release problem. Master Thesis, Universitat Politècnica
de Catalunya, 2016, http://hdl.handle.net/2117/89935.

[7] F.D. Davis, “Perceived usefulness, perceived ease of use, and
user acceptance of information technology,” MIS Quarterly, 13,
3, pp. 319-340, 1989.

[8] ISO/IEC 25010:2011, Systems and software engineering -- Sys-
tems and software Quality Requirements and Evaluation
(SQuaRE) -- System and software quality models.

[9] D. Ameller, C. Farré, X. Franch, D. Valerio, and A. Cassarino,
“Towards Continuous Software Release Planning,” in 24th IEEE
International Conference on Software Analysis, Evolution, and
Reengineering (SANER), 2017

TABLE 1. AGGREGATED RESULTS OF THE TOOL EVALUATION

Statement MOS SD Min Max Statement MOS SD Min Max
Usefulness (“Replan would…”)
…improve my effectiveness 4.9 1.2 3 6 …make my job easier 5.0 1.3 2 7
…increase my efficiency 5.1 1.1 3 7 …increase my productivity 5.1 1.0 4 7
…make me quicker 4.8 1.0 3 6 …be useful 5.7 1.0 4 7

Ease of use (“Replan is…”)
…easy to use 5.3 1.1 3 7 …controllable 5.5 1.2 4 7
…easy to learn 5.3 0.8 4 6 …flexible 4.4 1.0 2 6

Perceived relative benefits
Financial benefits 4.7 0.8 4 6 Resource utilization 5.3 1.1 4 7
Reduced customer care 3.5 1.2 1 5 Transparency 5.6 1.2 3 7
Employee satisfaction 4.6 1.3 3 7 Organizational efficiency 5.1 1.1 3 7
Employee/manager ratio 4.9 1.2 2 7

Others
Satisfaction 4.6 1.5 1 7 Functional correctness 4.9 1.1 3 6
Trust 4.3 1.6 1 6 Functional completeness 4.3 1.2 2 6
Intention to adopt 4.7 1.7 1 7 Functional suitability 4.9 1.1 3 6


