Annex

A. **NECESSITATS TÈRMIQUES**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1. Necessitats d’ACS</td>
<td>3</td>
</tr>
<tr>
<td>A.2. Consum de calefacció</td>
<td>4</td>
</tr>
<tr>
<td>A.2.1. Càrrega tèrmica per transmissió de calor</td>
<td>4</td>
</tr>
<tr>
<td>A.2.2. Càrrega tèrmica per ventilació</td>
<td>11</td>
</tr>
<tr>
<td>A.2.3. Estimació de la demanda energètica</td>
<td>12</td>
</tr>
<tr>
<td>A.2.4. Comparació consum teòric amb consum real</td>
<td>14</td>
</tr>
</tbody>
</table>

B. **SISTEMA DE CAPTACIÓ**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1. Col·lectors solars tèrmics</td>
<td>16</td>
</tr>
<tr>
<td>B.2. Dimensionament amb productes de mercat</td>
<td>17</td>
</tr>
<tr>
<td>B.2.1. Característiques captadors solars tèrmics estudiats</td>
<td>17</td>
</tr>
<tr>
<td>B.2.2. F-Charts per a calefacció</td>
<td>20</td>
</tr>
<tr>
<td>B.2.3. F-Chart per a ACS</td>
<td>26</td>
</tr>
</tbody>
</table>

C. **INSTAL·LACIÓ SOLAR**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1. Acumuladors</td>
<td>28</td>
</tr>
<tr>
<td>C.2. Circuit primari</td>
<td>28</td>
</tr>
<tr>
<td>C.2.1. Fluid caloportador</td>
<td>28</td>
</tr>
<tr>
<td>C.2.2. Xarxa de canonades</td>
<td>29</td>
</tr>
<tr>
<td>C.2.3. Volum canonades</td>
<td>33</td>
</tr>
<tr>
<td>C.2.4. Característiques vasos d’expansió Heatwave-Likitech</td>
<td>34</td>
</tr>
<tr>
<td>C.2.5. Singularitats xarxa canonades</td>
<td>34</td>
</tr>
<tr>
<td>C.2.6. Característiques bomba de circulació ALPHA1</td>
<td>35</td>
</tr>
<tr>
<td>C.2.7. Característiques Purgador Automàtic 250031</td>
<td>36</td>
</tr>
<tr>
<td>C.2.8. Característiques Vàlvules</td>
<td>36</td>
</tr>
<tr>
<td>C.2.9. Característiques controlador TDS 100-2 (Junkers)</td>
<td>36</td>
</tr>
</tbody>
</table>

D. **MANTENIMENT**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.1. Pla de vigilància</td>
<td>37</td>
</tr>
<tr>
<td>D.2. Pla de manteniment</td>
<td>37</td>
</tr>
</tbody>
</table>

E. **ESTUDI ECONÒMIC**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1. Cost inicial</td>
<td>40</td>
</tr>
<tr>
<td>E.1.1. Instal·lació per a calefacció</td>
<td>40</td>
</tr>
<tr>
<td>E.1.2. Instal·lació per a ACS</td>
<td>42</td>
</tr>
<tr>
<td>E.1.3. Instal·lació calefacció + ACS</td>
<td>43</td>
</tr>
<tr>
<td>E.2. Valor Actual Net (VAN)</td>
<td>44</td>
</tr>
</tbody>
</table>
E.2.1. VAN instal·lació calefacció... 45
E.2.2. VAN instal·lació ACS.. 45
E.2.3. VAN instal·lació calefacció i ACS... 46
A. Necessitats tèrmiques

A.1. Necessitats d’ACS

<table>
<thead>
<tr>
<th>Criterio de demanda</th>
<th>Litros/dia-unidad</th>
<th>unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivienda</td>
<td>28</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hospitales y clínicas</td>
<td>55</td>
<td>Por persona</td>
</tr>
<tr>
<td>Ambulatorio y centro de salud</td>
<td>41</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel *****</td>
<td>69</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel ****</td>
<td>55</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel ***</td>
<td>41</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hotel/hostal **</td>
<td>34</td>
<td>Por persona</td>
</tr>
<tr>
<td>Camping</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Hostal/pensión *</td>
<td>28</td>
<td>Por persona</td>
</tr>
<tr>
<td>Residencia</td>
<td>41</td>
<td>Por persona</td>
</tr>
<tr>
<td>Centro penitenciario</td>
<td>28</td>
<td>Por persona</td>
</tr>
<tr>
<td>Albergue</td>
<td>24</td>
<td>Por persona</td>
</tr>
<tr>
<td>Vestuarios/Duchas colectivas</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Escuela sin ducha</td>
<td>4</td>
<td>Por persona</td>
</tr>
<tr>
<td>Escuela con ducha</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Cuarteles</td>
<td>28</td>
<td>Por persona</td>
</tr>
<tr>
<td>Fábricas y talleres</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Oficinas</td>
<td>2</td>
<td>Por persona</td>
</tr>
<tr>
<td>Gimnasios</td>
<td>21</td>
<td>Por persona</td>
</tr>
<tr>
<td>Restaurantes</td>
<td>8</td>
<td>Por persona</td>
</tr>
<tr>
<td>Cafeterías</td>
<td>1</td>
<td>Por persona</td>
</tr>
</tbody>
</table>

![Figura A.1 Taula de consums d'aigua en funció de la tipologia d'habitatge. Font: [11]](image)

El consum mensual, doncs, es calcula multiplicant el consum d’un habitatge pel nombre d’ocupants del mateix, en aquest cas 3, pel nombre de dies del mes.

\[C_{mes} = n_p \cdot C_h \cdot d \]

Equació A.1 Consum mensual

on \(n_p \) és el nombre de persones, \(C_h \) el consum de l’habitatge per persona i \(d \) el nombre de dies que té el mes corresponent.

Seguidament, per a calcular la temperatura de l’aigua de la xarxa s’utilitza l’Equació 1.2.

\[T_{x,municipi} = T_{x,capital} - (0,00495 \cdot \Delta h) \]

Equació A.2 Càlcul temperatura de l’aigua de la xarxa municipal
Així doncs, com a dades considerades constants es troben a la Taula 1.1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Quantitat</th>
<th>Unitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura Collsuspina</td>
<td>900</td>
<td>m</td>
</tr>
<tr>
<td>Habitatjos</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Persones</td>
<td>3 pax</td>
<td></td>
</tr>
<tr>
<td>Consum/persona*dia</td>
<td>28 l/pax*d</td>
<td></td>
</tr>
<tr>
<td>Calor específic H2O</td>
<td>4,182</td>
<td>kJ/kg*ºC</td>
</tr>
<tr>
<td>Densitat aigua</td>
<td>1 kg/l</td>
<td></td>
</tr>
<tr>
<td>T servei</td>
<td>60 ºC</td>
<td></td>
</tr>
</tbody>
</table>

Taula A.1 Dades constants pel càlcul d'energia necessària per a l'ACS.

Finalment, a la Taula 1.2 es pot veure un resum del càlcul de les demandes mensuals.

<table>
<thead>
<tr>
<th>Mes</th>
<th>Díes</th>
<th>Txarxa BCN (ºC)</th>
<th>Txarxa Collsuspina (ºC)</th>
<th>Salt térmic (ºC)</th>
<th>Consum ACS (l)</th>
<th>Necessitats Energètiques (kJ)</th>
<th>kWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>31</td>
<td>10,27</td>
<td>5,815</td>
<td>54,185</td>
<td>2604</td>
<td>590070,749</td>
<td>163,91</td>
</tr>
<tr>
<td>Febrer</td>
<td>28</td>
<td>10,72</td>
<td>6,265</td>
<td>53,735</td>
<td>2352</td>
<td>528540,899</td>
<td>146,82</td>
</tr>
<tr>
<td>Març</td>
<td>31</td>
<td>12,39</td>
<td>7,935</td>
<td>52,065</td>
<td>2604</td>
<td>566984,101</td>
<td>157,50</td>
</tr>
<tr>
<td>Abril</td>
<td>30</td>
<td>14,15</td>
<td>9,695</td>
<td>50,305</td>
<td>2520</td>
<td>530146,285</td>
<td>147,26</td>
</tr>
<tr>
<td>Maig</td>
<td>31</td>
<td>16,63</td>
<td>12,175</td>
<td>47,825</td>
<td>2604</td>
<td>520810,807</td>
<td>144,67</td>
</tr>
<tr>
<td>Juny</td>
<td>30</td>
<td>19,39</td>
<td>14,935</td>
<td>45,065</td>
<td>2520</td>
<td>474923,812</td>
<td>131,92</td>
</tr>
<tr>
<td>Juliol</td>
<td>31</td>
<td>20,91</td>
<td>16,455</td>
<td>43,545</td>
<td>2604</td>
<td>474201,915</td>
<td>131,72</td>
</tr>
<tr>
<td>Agost</td>
<td>31</td>
<td>22,44</td>
<td>17,985</td>
<td>42,015</td>
<td>2604</td>
<td>457540,325</td>
<td>127,09</td>
</tr>
<tr>
<td>Setembre</td>
<td>30</td>
<td>21,53</td>
<td>17,075</td>
<td>42,925</td>
<td>2520</td>
<td>452371,122</td>
<td>125,66</td>
</tr>
<tr>
<td>Octubre</td>
<td>31</td>
<td>19,07</td>
<td>14,615</td>
<td>45,385</td>
<td>2604</td>
<td>494239,382</td>
<td>137,29</td>
</tr>
<tr>
<td>Novembre</td>
<td>30</td>
<td>14,95</td>
<td>10,495</td>
<td>49,505</td>
<td>2520</td>
<td>521715,373</td>
<td>144,92</td>
</tr>
<tr>
<td>Desembre</td>
<td>31</td>
<td>11,7</td>
<td>7,245</td>
<td>52,755</td>
<td>2604</td>
<td>574498,152</td>
<td>159,58</td>
</tr>
</tbody>
</table>

Taula A.2 Resum càlcul demandes mensuals per a l'ACS.

A.2. Consum de calefacció

A.2.1. Càrrega tèrmica per transmissió de calor

Per a calcular les pèrdues per transmissió es fa ús de l’Equació 1.3.

\[
Q_t = \sum_{i=1}^{n_t} A \times U \times (T_{int} − T_{ext})
\]

Equació A.3 Càlcul calor perduda a través d’un tancament

En aquesta es pot veure que és necessària conèixer, a part de les temperatures, la transmitència tèrmica i l’àrea dels tancaments.
La transmitància dels tancaments, al seu temps, es calcula a partir de l’Equació 1.4.

\[
\frac{1}{U} = \frac{1}{h_{\text{int}}} + \sum_{i=1}^{n} \frac{e_i}{\lambda_i} + \frac{1}{h_{\text{ext}}}
\]

Equació A.4 Càlcul coeficient de transmissió tèrmica d’un tancament.

Per a conèixer la resistència de convecció s’utilitza la Figura 1.2.

Pel que fa als coeficients de convecció, a la Taula 1.3 es troben les conductivitats d’aquells materials que conformen els tancaments de l’habitatge.

<table>
<thead>
<tr>
<th>Material</th>
<th>(\lambda) (W/m · K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedra natural</td>
<td>1,5</td>
</tr>
<tr>
<td>Guix</td>
<td>0,17</td>
</tr>
<tr>
<td>Rajola</td>
<td>1</td>
</tr>
<tr>
<td>Fusta de pi</td>
<td>0,12</td>
</tr>
</tbody>
</table>

Taula A.3 Conductivitats materials tancaments habitatge. Font: [3]

Per a calcular el coeficient de transmissió de la façana que separa l’interior de l’habitatge amb l’exterior, els valors utilitzats es poden trobar a la Taula 1.4.

<table>
<thead>
<tr>
<th>Flux horitzontal</th>
<th>Paret interior-exterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior</td>
<td></td>
</tr>
<tr>
<td>1/hi</td>
<td>0,13</td>
</tr>
<tr>
<td>Exterior</td>
<td></td>
</tr>
<tr>
<td>1/he</td>
<td>0,04</td>
</tr>
<tr>
<td>Mat.1</td>
<td>Pedra natural</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>Cond.</td>
<td>1,5 W/m°C</td>
</tr>
<tr>
<td>Gruix</td>
<td>0,48 m</td>
</tr>
<tr>
<td>Resist.term</td>
<td>0,32 m²·°C/W</td>
</tr>
<tr>
<td>Mat.2</td>
<td>Guix</td>
</tr>
<tr>
<td>Cond.</td>
<td>0,17 W/m°C</td>
</tr>
<tr>
<td>Gruix</td>
<td>0,02 m</td>
</tr>
<tr>
<td>Resist.term</td>
<td>0,117647059 m²·°C/W</td>
</tr>
</tbody>
</table>

TOTAL

| Resist.term | 0,607647059 m²·°C/W |

| U | 1,645692159 W/m²°C |

Taula A.4 Càlcul U façana exterior

Per a calcular els coeficients de transmissió de les parets que separen l’interior de l’habitatge amb l’escala que porta als pisos de dalt i de baix (ambdós no escalfats), els valors utilitzats es poden trobar a la Taula 1.5.

<table>
<thead>
<tr>
<th>Flux horitzontal</th>
<th>Paret 35cm</th>
<th>Paret 10cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/hi</td>
<td>0,13</td>
<td>0,13</td>
</tr>
<tr>
<td>Exterior</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/he</td>
<td>0,13</td>
<td>0,13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mat.1</th>
<th>pedra</th>
<th>pedra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond.</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Gruix</td>
<td>0,33</td>
<td>0,08</td>
</tr>
<tr>
<td>Resist.term</td>
<td>0,22</td>
<td>0,053333333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mat.2</th>
<th>guix</th>
<th>guix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cond.</td>
<td>0,17</td>
<td>0,17</td>
</tr>
<tr>
<td>Gruix</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Resist.term</td>
<td>0,117647059</td>
<td>0,117647059</td>
</tr>
</tbody>
</table>

TOTAL

| Resist.term | 0,597647059 | 0,430980392 |
| U | 1,673228346 | 2,320291174 |

Taula A.5 Càlcul U parets escala

Finalment, els resultats corresponents al terra i al sostre es troben a la Taula 1.6. Aquestes transmittàncies, però, no tenen en compte el coeficient de reducció de temperatura. En aquest cas també cal tenir en compte la cambra d’aire que es crea degut a les bigues. Per a trobar a quina resistència equival aquesta cambra, s’ha utilitzat com a referència la Figura 1.3.
Seguidament, doncs, cal introduir el coeficient de reducció de temperatura b per aquells tancaments que es troben entre un espai interior habitable i un espai interior no habitable, és a dir, entre un espai interior escalfat i un espai interior no escalfat.
Aquest coeficient depèn, primerament, de la relació que hi ha entre l’àrea que es troba entre l’espai interior escalfat i el no escalfat i l’àrea que es troba entre l’espai no escalfat i l’exterior. Seguidament, aquest també depèn de el possible aïllament d’aquests espais i de la ventilació que reben.

En el cas d’estudi ens trobem amb un espai molt ventilat, segons el DA-DB-HE-1, CAS 2, en el que cap dels dos espais es troba aïllat. Així doncs, mitjançant la Figura 1.4 ja es podrà trobar el coeficient de reducció de temperatura, b.

A la Taula 1.7 podem veure el coeficient de reducció en cada cas.

<table>
<thead>
<tr>
<th>Cas</th>
<th>Paret escala 35cm</th>
<th>Paret escala 10cm</th>
<th>Sostre</th>
<th>Terra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah-nh</td>
<td>171,45</td>
<td>171,45</td>
<td>171,45</td>
<td>171,35</td>
</tr>
<tr>
<td>Anh-e</td>
<td>318,16</td>
<td>318,16</td>
<td>318,16</td>
<td>108,07</td>
</tr>
<tr>
<td>Ah-nh/Anh-e</td>
<td>0,538879809</td>
<td>0,538879809</td>
<td>0,538879809</td>
<td>1,585546405</td>
</tr>
<tr>
<td>b</td>
<td>0,77</td>
<td>0,77</td>
<td>0,77</td>
<td>0,56</td>
</tr>
<tr>
<td>U</td>
<td>1,288385827</td>
<td>1,786624204</td>
<td>0,990166415</td>
<td>0,578723404</td>
</tr>
</tbody>
</table>

Seguidament, doncs, cal calcular els coeficients de transmissió térmica de les portes i finestres. Per a trobar els coeficients de les portes s’utilitzarà la Figura 1.5 coneixent que tenim tres portes, les tres de fusta, i que la porta 1 i la porta 3 són de vidre doble mentre que la porta 2 és opaca. Per a trobar aquestes transmitàncies s’entendrà que fan de separació amb l’exterior i posteriorment se’ls hi aplicarà el coeficient de reducció, b, en cas de ser necessari.
Pel que fa a les finestres, totes elles són verticals, de vidre doble, amb una cambra d’aire d’uns 9 mm i marc de fusta. Per a trobar-ne la seva transmissió cal observar la Figura 1.6.

Els resultats definitius d’aquests tancaments queden representats a la Taula 1.8.

<table>
<thead>
<tr>
<th>Tancament</th>
<th>$U_f (\frac{W}{m^2} \cdot K)$</th>
<th>b</th>
<th>$U_{int} (\frac{W}{m^2} \cdot K)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porta 1 (interior-pis baix)</td>
<td>3,3</td>
<td>0,56</td>
<td>1,85</td>
</tr>
<tr>
<td>Porta 2 (interior-pis dalt)</td>
<td>3,5</td>
<td>0,77</td>
<td>2,7</td>
</tr>
<tr>
<td>Porta 3 (interior-exterior)</td>
<td>3,3</td>
<td>1</td>
<td>3,3</td>
</tr>
<tr>
<td>Finestres (interior-exterior)</td>
<td>3,1</td>
<td>1</td>
<td>3,1</td>
</tr>
</tbody>
</table>

Figura A.5 Coeficient de transmissió tèrmica segons tipus de porta. Font: [6]

Figura A.6 Coeficient de transmissió tèrmica segons tipus de finestra. Font: [6]

Taula A.8 Transmitància portes i finestres habitatge.
Finalment, amb les transmitànies, els coeficients d'orientació i les temperatures interiors i exteriors es pot calcular la calor que es perd per cada tancament. Recordar que la temperatura interior és de 21ºC i l'exterior de -6,3ºC. Així doncs, a la Taula 1.9 s'hi pot apreciar l'energia que es perd per cada tancament.

<table>
<thead>
<tr>
<th>Tancament</th>
<th>Àrea ((m^2))</th>
<th>(U_f) ((W/m^2K))</th>
<th>Coeficient corrector d'orientació</th>
<th>(U) ((W/m^2K))</th>
<th>Pèrdues ((W))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Façana Sud</td>
<td>30,27</td>
<td>1,65</td>
<td>1</td>
<td>1,65</td>
<td>1359,87</td>
</tr>
<tr>
<td>Finestres Sud</td>
<td>2,16</td>
<td>3,10</td>
<td>1</td>
<td>3,10</td>
<td>182,95</td>
</tr>
<tr>
<td>Façana Nord</td>
<td>29,11</td>
<td>1,65</td>
<td>1,2</td>
<td>1,97</td>
<td>1569,53</td>
</tr>
<tr>
<td>Finestres Nord</td>
<td>1,41</td>
<td>3,10</td>
<td>1,2</td>
<td>3,72</td>
<td>142,88</td>
</tr>
<tr>
<td>Porta Nord (Balcó)</td>
<td>1,91</td>
<td>3,30</td>
<td>1,2</td>
<td>3,96</td>
<td>206,56</td>
</tr>
<tr>
<td>Façana Est</td>
<td>27,73</td>
<td>1,65</td>
<td>1,1</td>
<td>1,81</td>
<td>1370,20</td>
</tr>
<tr>
<td>Finestres Est</td>
<td>0,71</td>
<td>3,10</td>
<td>1,1</td>
<td>3,41</td>
<td>66,05</td>
</tr>
<tr>
<td>Façana Oest</td>
<td>25,60</td>
<td>1,65</td>
<td>1,1</td>
<td>1,81</td>
<td>1265,26</td>
</tr>
<tr>
<td>Finestres Oest</td>
<td>2,83</td>
<td>3,10</td>
<td>1,1</td>
<td>3,41</td>
<td>263,72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coeficient corrector de temperatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paret 0,5 amb pis dalt</td>
</tr>
<tr>
<td>Paret 0,35 amb pis dalt</td>
</tr>
<tr>
<td>Paret 0,1 amb pis dalt</td>
</tr>
<tr>
<td>Porta amb pis dalt</td>
</tr>
<tr>
<td>Sostre amb pis dalt</td>
</tr>
<tr>
<td>Paret 0,35 amb pis baix</td>
</tr>
<tr>
<td>Paret 0,1 amb pis baix</td>
</tr>
<tr>
<td>Porta amb pis baix</td>
</tr>
<tr>
<td>Terra amb pis baix</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Taula A.9 Resum de les pèrdues per transmissió.
A.2.2. Càrrega tèrmica per ventilació

Per a calcular les pèrdues degudes a la ventilació s’utilitza l’Equació 1.5.

\[Q_{v,local} = n_{r} \cdot V \cdot \rho \cdot c_{e} \cdot (T_{int} - T_{ext}) \]

Equació A.5 Càlcul pèrdues màximes per renovació d’aire

El cabal de ventilació mínim exigit pel CTE es troba a la Figura 1.7.

<table>
<thead>
<tr>
<th>Local</th>
<th>CAUDAL DE VENTILACIÓ MÍNIM EXIGIT q, en l/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Por ocupante</td>
</tr>
<tr>
<td>Dormitorios</td>
<td>5</td>
</tr>
<tr>
<td>Salas de estar y comedores</td>
<td>3</td>
</tr>
<tr>
<td>Ascens i cuartes de baño</td>
<td>2</td>
</tr>
<tr>
<td>Cocines</td>
<td></td>
</tr>
<tr>
<td>Trasteros i zones comunes</td>
<td>0.7</td>
</tr>
<tr>
<td>Aparcament i garages</td>
<td></td>
</tr>
<tr>
<td>Almacenes de residuos</td>
<td>10</td>
</tr>
</tbody>
</table>

(1) En les cases amb sistema de coccó per combustió o dotades de càmeres no estancs està estandaritzat el cabal a incrementar en 8 l/s.

(2) Està el cabal corresponsant a la ventilació adicional específica de la cocina (vegeu el pàrrafo 3 del apartat 3.1.1).

Figura A.7 Cabal de ventilació mínim exigit. Font: [12]

Aquests locals es poden separar en locals d’admissió d’aire i locals d’extracció.

El procediment és calcular el cabal d’admissió i el d’extracció i igualar-ho al més gran, ja que el cabal d’entrada ha de ser el mateix que el de sortida. Tot el procediment està desenvolupat a l’apartat 6.2.2 del treball.

Per a calcular les renovacions per hora cal, en conegut el cabal d’admissió de cada sala, aplicar l’Equació 1.6.

\[n_{r} = \frac{q}{V} \cdot \frac{3600}{1h} \cdot \frac{1}{1000} \ m^{3} \]

Equació A.6 Càlcul renovacions per hora

Sent q el cabal de renovació en l/s i V el volum de la sala en m³.

Cal comentar que les renovacions per hora calen per a totes les sales però només generaràn pèrdues les sales que tenen un cabal d’admissió, ja que les que tenen cabal d’extracció o de circulació rebran l’aire ja tractat i per tant a la temperatura desitjada.
En el cas d’estudi partim de les constants que es troben a la Taula 1.10.

<table>
<thead>
<tr>
<th>Constant</th>
<th>Valor</th>
<th>Unitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alçada local (h)</td>
<td>2,35</td>
<td>m</td>
</tr>
<tr>
<td>Tint</td>
<td>21ºC</td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td>-6,3ºC</td>
<td></td>
</tr>
<tr>
<td>(\rho_{aïr} \text{ (10ºC)})</td>
<td>1,29</td>
<td>kg/m³</td>
</tr>
<tr>
<td>(c_{eïr})</td>
<td>0,278</td>
<td>Wh/kgºC</td>
</tr>
</tbody>
</table>

Taula A.10 Constants pel càlcul de les pèrdues per ventilació

Finalment, les pèrdues les podem veure desenvolupades a la Taula 1.11.

<table>
<thead>
<tr>
<th>LOCAL</th>
<th>ÀREA (m²)</th>
<th>VOLUM (m³)</th>
<th>CABAL (l/s)</th>
<th>RENOV/H</th>
<th>PÈRDUES (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorm 1</td>
<td>13,23</td>
<td>31,09</td>
<td>10,00</td>
<td>1,16</td>
<td>352,45</td>
</tr>
<tr>
<td>Dorm 2</td>
<td>11,845</td>
<td>27,84</td>
<td>5,00</td>
<td>0,65</td>
<td>176,23</td>
</tr>
<tr>
<td>Dorm 3</td>
<td>18,25</td>
<td>42,89</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Despatx</td>
<td>15,01</td>
<td>35,27</td>
<td>9,00</td>
<td>0,92</td>
<td>317,21</td>
</tr>
<tr>
<td>Sala gran</td>
<td>34,08</td>
<td>80,09</td>
<td>9,72</td>
<td>0,44</td>
<td>342,58</td>
</tr>
<tr>
<td>Sala petita</td>
<td>17,22</td>
<td>40,47</td>
<td>9,00</td>
<td>0,80</td>
<td>317,21</td>
</tr>
<tr>
<td>Bany</td>
<td>14,88</td>
<td>34,97</td>
<td>15,00</td>
<td>1,54</td>
<td>0,00</td>
</tr>
<tr>
<td>Cuina</td>
<td>13,86</td>
<td>32,57</td>
<td>27,72</td>
<td>3,06</td>
<td>0,00</td>
</tr>
<tr>
<td>Passadissos</td>
<td>7,125</td>
<td>16,74</td>
<td>4,99</td>
<td>1,07</td>
<td>0,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1505,67</td>
</tr>
</tbody>
</table>

Taula A.11 Pèrdues per ventilació.

A.2.3. Estimació de la demanda energètica

Primerament cal conèixer les pèrdues màximes totals. Coneixent que les pèrdues màximes de transmissió són de 14558,39 W i les pèrdues màximes de ventilació són de 1505,67 W, es troba que les pèrdues màximes totals són de 16064,06 W.

Un cop conegudes les pèrdues màximes totals cal conèixer com es distribuirà la demanda energètica mensual. Per a realitzar-ne un càlcul aproximat s’utilitzarà el mètode dels graus-dia per a calefacció (Heating Degree Day, HDD).

En aquest cas s’utilitzen els graus-dia amb una base de 15ºC, ja que és la que s’utilitza per a sistemes de calefacció.

A través de la pàgina www.degreedays.net s’obtenen els graus-dia dels últims 3 anys al municipi de Moià, molt proper a Collsuspina. A la Taula 1.12 se’n poden veure les dades obtingudes i a la Taula 1.13, la mitjana calculada.
Seguidament cal establir les hores d’utilització de la calefacció. En aquest cas, es considera que la calefacció funcionarà entre les 06:00h i les 00:00h, és a dir, durant 18h.

Així ja es pot calcular el consum energètic mensual en kWh a partir de l’Equació 1.7.

\[
D_E = \frac{Q_T \cdot HDD \cdot h_{cal}}{1000 \cdot (t_{base} - t_{min})} \cdot c_r
\]

Equació A.7 Equació demanda energètica mensual en kWh. Mètode graus-dia.
Així doncs, partint de les dades que es recullen a la Taula 1.14 podrem calcular els consums mensuals.

| Pèrdues màximes |
|------------------|------------------|
| Transmissió | 14558,38796 W |
| Ventilació | 1505,67 W |
| Total | 16064,06 W |
| Hores ús calefacció | 18 h |
| Tbase (graus-día) | 18 °C |
| Tmín | -6,3 °C |
| Coeficient reescalament | 1,1 |

* Taula A.14 Dades per a càlcul del consum mensual.

Finalment, els consums mensuals de calefacció es troben a la Taula 1.15.

<table>
<thead>
<tr>
<th>HDD</th>
<th>Consum (Wh)</th>
<th>Consum (kJ)</th>
<th>Consum (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gener</td>
<td>323</td>
<td>4227823,074</td>
<td>15220,16</td>
</tr>
<tr>
<td>Febrer</td>
<td>251</td>
<td>3285398,117</td>
<td>11827,43</td>
</tr>
<tr>
<td>Març</td>
<td>204</td>
<td>2670204,047</td>
<td>9612,73</td>
</tr>
<tr>
<td>Abril</td>
<td>135</td>
<td>1767046,796</td>
<td>6361,37</td>
</tr>
<tr>
<td>Maig</td>
<td>70</td>
<td>916246,487</td>
<td>3298,49</td>
</tr>
<tr>
<td>Juny</td>
<td>14</td>
<td>183249,2973</td>
<td>659,70</td>
</tr>
<tr>
<td>Juliol</td>
<td>3</td>
<td>39267,70657</td>
<td>141,36</td>
</tr>
<tr>
<td>Agost</td>
<td>2</td>
<td>26178,47105</td>
<td>94,24</td>
</tr>
<tr>
<td>Setembre</td>
<td>17</td>
<td>222517,0039</td>
<td>801,06</td>
</tr>
<tr>
<td>Octubre</td>
<td>60</td>
<td>785354,1315</td>
<td>2827,27</td>
</tr>
<tr>
<td>Novembre</td>
<td>166</td>
<td>2172813,097</td>
<td>7822,13</td>
</tr>
<tr>
<td>Desembre</td>
<td>287</td>
<td>3756610,595</td>
<td>13523,80</td>
</tr>
</tbody>
</table>

* Taula A.15 Consums mensuals de calefacció.

A.2.4. Comparació consum teòric amb consum real

- **Consum real**

Actualment, el sistema de calefacció de la casa és una caldera de pellets (biomassa). Els pellets tenen un PCI de 5,23 $kW\cdot h/k.g$.

El PCI correspon al poder calorífic que no aprofita l’energia de condensació de l’aigua. D’altra banda, el PCS sí que aprofita aquesta energia i per tant amb la mateixa quantitat de combustible es genera més calor. Per a aprofitar el PCS es necessiten unes calderes específiques conegudes com a calderes de condensació. [17]
Coneixent el rendiment d’aquesta caldera i la massa de combustible comprada anualment ja es pot calcular l’energia útil destinada anualment a la calefacció de l’habitatge.

Finalment, coneixent els mesos que s’utilitza la calefacció i mitjançant els HDD es pot trobar com es distribueix aquesta energia mensualment. S’obté els resultats representats a la Figura 1.8.

![Figura A.8 Consum teòric contra consum real](image)

Es pot apreciar com el consum de l’últim any és lleugerament inferior al consum teòric, aproximadament un 4%. Es considera bo el càlcul teòric ja que s’entén que cada any aquest consum pot variar depenent de les temperatures exteriors.
B. Sistema de captació

B.1. Col·lectors solars tèrmics

A la Taula 2.1 es poden veure les característiques facilitades pels fabricants i què signifiquen.

<table>
<thead>
<tr>
<th>Característica</th>
<th>Significat</th>
<th>Unitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muntatge</td>
<td>En quin sentit es munta la placa.</td>
<td>Vertical / Horitzontal</td>
</tr>
<tr>
<td>Mesures</td>
<td>Ample x Llarg x Gruix</td>
<td>mm</td>
</tr>
<tr>
<td>Àrea total</td>
<td>Ample x Llarg (carcassa)</td>
<td>m²</td>
</tr>
<tr>
<td>Àrea d’obertura</td>
<td>Superfície visible del captador per a la radiació solar.</td>
<td>m²</td>
</tr>
<tr>
<td>Àrea de l’absorbidor</td>
<td>Suma de les àrees de les aletes i canonades internes exposades a la radiació. Equival a l’àrea activa.</td>
<td>m²</td>
</tr>
<tr>
<td>Volum de l’absorbidor</td>
<td>Volum total de les canonades internes.</td>
<td>l</td>
</tr>
<tr>
<td>Cabal nominal</td>
<td>Cabal òptim del captador.</td>
<td>l/h</td>
</tr>
<tr>
<td>Factor d’eficiència (η_0)</td>
<td>Percentatge dels rajos solars que penetren a l’àrea de l’absorbidor que és absorbit.</td>
<td>%</td>
</tr>
<tr>
<td>Coeficient pèrdues lineals (k_1)</td>
<td>Coeficient lineal de pèrdues (per a temperatures baixes)</td>
<td>$\frac{W}{m^2 \cdot K}$</td>
</tr>
<tr>
<td>Coeficient pèrdues secundàries (k_2)</td>
<td>Coeficient quadràtic de pèrdues (per a temperatures baixes)</td>
<td>$\frac{W}{m^2 \cdot K^2}$</td>
</tr>
</tbody>
</table>

Taula B.1 Característiques panells solars tèrmics
B.2. Dimensionament amb productes de mercat

B.2.1. Característiques captadors solars tèrmics estudiats

- **SKR500 (Sonnenkraft)**

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
<th>Unitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muntatge</td>
<td>Vertical</td>
<td></td>
</tr>
<tr>
<td>Mesures</td>
<td>1240x2079x95 mm</td>
<td></td>
</tr>
<tr>
<td>Àrea total</td>
<td>2,57 m²</td>
<td></td>
</tr>
<tr>
<td>Àrea d’obertura</td>
<td>2,36 m²</td>
<td></td>
</tr>
<tr>
<td>Àrea de l’absorbidor</td>
<td>2,30 m²</td>
<td></td>
</tr>
<tr>
<td>Volum de l’absorbidor</td>
<td>1,45 l</td>
<td></td>
</tr>
<tr>
<td>Cabal nominal</td>
<td>23-80,5 l/h</td>
<td></td>
</tr>
<tr>
<td>Factor d’eficiència (η_0)</td>
<td>80,6 %</td>
<td></td>
</tr>
<tr>
<td>Coeficient pèrdues lineals (k_1)</td>
<td>3,758 W/m²·K</td>
<td></td>
</tr>
<tr>
<td>Coeficient pèrdues secundàries (k_2)</td>
<td>0,0106 W/m²·K²</td>
<td></td>
</tr>
<tr>
<td>Nombre captadors utilitzats per calefacció</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Àrea total d’absorció</td>
<td>41,4 m²</td>
<td></td>
</tr>
<tr>
<td>Preu unitari</td>
<td>620,6 €</td>
<td></td>
</tr>
</tbody>
</table>

Taula B.2 Característiques SKR500
FKT-2 S (Junkers-Bosch)

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
<th>Unitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muntatge</td>
<td>Vertical</td>
<td></td>
</tr>
<tr>
<td>Mesures</td>
<td>1175x2170x87 mm</td>
<td></td>
</tr>
<tr>
<td>Àrea total</td>
<td>2,55</td>
<td>m^2</td>
</tr>
<tr>
<td>Àrea d’obertura</td>
<td>2,426</td>
<td>m^2</td>
</tr>
<tr>
<td>Àrea de l’absorbidor</td>
<td>2,23</td>
<td>m^2</td>
</tr>
<tr>
<td>Volum de l’absorbidor</td>
<td>1,6</td>
<td>l</td>
</tr>
<tr>
<td>Cabal nominal</td>
<td>111,5</td>
<td>l/h</td>
</tr>
<tr>
<td>Factor d’eficiència (η_0)</td>
<td>79,4</td>
<td>%</td>
</tr>
<tr>
<td>Coeficient pèrdues lineals (k_1)</td>
<td>3,863</td>
<td>$\frac{W}{m^2 \cdot K}$</td>
</tr>
<tr>
<td>Coeficient pèrdues secundàries (k_2)</td>
<td>0,013</td>
<td>$\frac{W}{m^2 \cdot K^2}$</td>
</tr>
<tr>
<td>Nombre captadors utilitzats per calefacció</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Àrea total d’absorció</td>
<td>40,14</td>
<td>m^2</td>
</tr>
<tr>
<td>Preu unitari</td>
<td>579,7</td>
<td>€</td>
</tr>
</tbody>
</table>

Taula B.3 Característiques FKT-2 S
QR-D (Chromagen)

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
<th>Unitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muntatge</td>
<td>Vertical</td>
<td></td>
</tr>
<tr>
<td>Mesures</td>
<td>1090x1900x90 mm</td>
<td></td>
</tr>
<tr>
<td>Àrea total</td>
<td>2,071</td>
<td>m²</td>
</tr>
<tr>
<td>Àrea d'obertura</td>
<td>1,87</td>
<td>m²</td>
</tr>
<tr>
<td>Àrea de l'absorbidor</td>
<td>1,77</td>
<td>m²</td>
</tr>
<tr>
<td>Volum de l'absorbidor</td>
<td>1,2</td>
<td>l</td>
</tr>
<tr>
<td>Cabal nominal</td>
<td>79,65</td>
<td>l/h</td>
</tr>
<tr>
<td>Factor d'eficiència (\eta_0)</td>
<td>69,6%</td>
<td>%</td>
</tr>
<tr>
<td>Coeficient pèrdues lineals (k_1)</td>
<td>4,821</td>
<td>(\frac{W}{m^2 \cdot K})</td>
</tr>
<tr>
<td>Coeficient pèrdues secundàries (k_2)</td>
<td>0,015</td>
<td>(\frac{W}{m^2 \cdot K^2})</td>
</tr>
<tr>
<td>Nombre captadors utilitzats per calefacció</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Àrea total d'absorció</td>
<td>40,71</td>
<td>m²</td>
</tr>
<tr>
<td>Preu unitari</td>
<td>503,3</td>
<td>€</td>
</tr>
</tbody>
</table>

Taula B.4 Característiques QR-D
B.2.2. F-Charts per a calefacció

SKR500

<table>
<thead>
<tr>
<th>Mètode F-Chart - SKR500 Calefacció</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gener</td>
</tr>
<tr>
<td>Febrer</td>
</tr>
<tr>
<td>Març</td>
</tr>
<tr>
<td>Abril</td>
</tr>
<tr>
<td>Maig</td>
</tr>
<tr>
<td>Juny</td>
</tr>
<tr>
<td>Juliol</td>
</tr>
<tr>
<td>Agost</td>
</tr>
<tr>
<td>Setembre</td>
</tr>
<tr>
<td>Octubre</td>
</tr>
<tr>
<td>Novembre</td>
</tr>
<tr>
<td>Desembre</td>
</tr>
</tbody>
</table>

Taula B.5 F-Chart calefacció SKR500

Eu (anual) = 16573,52 kWh

CA (%) = 82,65%
Figura B.1 Demanda i energia útil produïda pels captadors (SKR500)
FKT-2 S

Mètode F-Chart – FKT-2 S

<table>
<thead>
<tr>
<th>N</th>
<th>t</th>
<th>Ts (ambient)</th>
<th>DE</th>
<th>Irradiació</th>
<th>Ea</th>
<th>D1</th>
<th>K1</th>
<th>Ep</th>
<th>D2</th>
<th>f</th>
<th>Energia útil</th>
</tr>
</thead>
<tbody>
<tr>
<td>dies</td>
<td>hores</td>
<td>°C</td>
<td>kWh</td>
<td>kWh/m²·dia</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td>kWh</td>
<td></td>
</tr>
<tr>
<td>Gener</td>
<td>31</td>
<td>744</td>
<td>4,5</td>
<td>4227,82</td>
<td>4,20</td>
<td>3784,46</td>
<td>0,90</td>
<td>0,82</td>
<td>8545,87</td>
<td>2,02</td>
<td>0,62</td>
</tr>
<tr>
<td>Febrer</td>
<td>28</td>
<td>672</td>
<td>5,3</td>
<td>3285,40</td>
<td>4,96</td>
<td>4036,76</td>
<td>1,23</td>
<td>0,82</td>
<td>7654,19</td>
<td>2,33</td>
<td>0,79</td>
</tr>
<tr>
<td>Març</td>
<td>31</td>
<td>744</td>
<td>6,8</td>
<td>2670,20</td>
<td>5,80</td>
<td>5226,16</td>
<td>1,96</td>
<td>0,82</td>
<td>8340,05</td>
<td>3,12</td>
<td>1,05</td>
</tr>
<tr>
<td>Abril</td>
<td>30</td>
<td>720</td>
<td>8,8</td>
<td>1767,05</td>
<td>5,19</td>
<td>4525,65</td>
<td>2,56</td>
<td>0,82</td>
<td>7897,82</td>
<td>4,47</td>
<td>1,13</td>
</tr>
<tr>
<td>Maig</td>
<td>31</td>
<td>744</td>
<td>12,6</td>
<td>916,25</td>
<td>5,36</td>
<td>4829,69</td>
<td>5,27</td>
<td>0,82</td>
<td>7821,04</td>
<td>8,54</td>
<td>1,34</td>
</tr>
<tr>
<td>Juny</td>
<td>30</td>
<td>720</td>
<td>16,7</td>
<td>183,25</td>
<td>5,58</td>
<td>4865,73</td>
<td>26,55</td>
<td>0,82</td>
<td>7213,69</td>
<td>39,36</td>
<td>257,29</td>
</tr>
<tr>
<td>Juliol</td>
<td>30</td>
<td>720</td>
<td>19,7</td>
<td>39,27</td>
<td>5,80</td>
<td>5057,57</td>
<td>128,79</td>
<td>0,82</td>
<td>6953,89</td>
<td>177,08</td>
<td>42040,60</td>
</tr>
<tr>
<td>Agost</td>
<td>31</td>
<td>744</td>
<td>19,5</td>
<td>26,18</td>
<td>5,91</td>
<td>5325,27</td>
<td>203,39</td>
<td>0,82</td>
<td>7203,59</td>
<td>275,12</td>
<td>171079,22</td>
</tr>
<tr>
<td>Setembre</td>
<td>30</td>
<td>720</td>
<td>17,0</td>
<td>222,52</td>
<td>5,54</td>
<td>4830,85</td>
<td>21,71</td>
<td>0,82</td>
<td>7187,71</td>
<td>32,30</td>
<td>126,64</td>
</tr>
<tr>
<td>Octubre</td>
<td>31</td>
<td>744</td>
<td>12,4</td>
<td>785,35</td>
<td>5,01</td>
<td>4514,32</td>
<td>5,75</td>
<td>0,82</td>
<td>7838,94</td>
<td>9,98</td>
<td>1,43</td>
</tr>
<tr>
<td>Novembre</td>
<td>30</td>
<td>720</td>
<td>7,9</td>
<td>2172,81</td>
<td>4,16</td>
<td>3627,50</td>
<td>1,67</td>
<td>0,82</td>
<td>7975,76</td>
<td>3,67</td>
<td>0,92</td>
</tr>
<tr>
<td>Desembre</td>
<td>31</td>
<td>744</td>
<td>5,1</td>
<td>3756,61</td>
<td>3,94</td>
<td>3550,18</td>
<td>0,95</td>
<td>0,82</td>
<td>8492,18</td>
<td>2,26</td>
<td>0,63</td>
</tr>
</tbody>
</table>

Taula B.6 F-Chart calefacció FKT-2 S

Eu (anual) = 16201,84 kWh

CA (%) = 80,8%
Figura B.2 Demanda i energia útil produïda pels captadors (FKT-2 S)
Jené Vinuesa, Marc: Instal·lació per ACS i calefacció solar a una masia.

Annex pàg. 24

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Mes</th>
<th>Días</th>
<th>Hores</th>
<th>Temperatura (°C)</th>
<th>DE</th>
<th>Irradiación (kWh)</th>
<th>Ea</th>
<th>D1</th>
<th>K1</th>
<th>Ep</th>
<th>D2</th>
<th>f</th>
<th>Energia útil (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gener</td>
<td>31</td>
<td>744</td>
<td>4,5</td>
<td>4227,82</td>
<td>4,20</td>
<td>3364,47</td>
<td>0,80</td>
<td>0,82</td>
<td>10816,64</td>
<td>2,56</td>
<td>0,52</td>
<td>2198,61</td>
</tr>
<tr>
<td></td>
<td>Febrer</td>
<td>28</td>
<td>672</td>
<td>5,3</td>
<td>3285,40</td>
<td>4,96</td>
<td>3588,76</td>
<td>1,09</td>
<td>0,82</td>
<td>9688,03</td>
<td>2,95</td>
<td>0,68</td>
<td>2277,35</td>
</tr>
<tr>
<td></td>
<td>Març</td>
<td>31</td>
<td>744</td>
<td>6,8</td>
<td>2670,20</td>
<td>5,80</td>
<td>4646,17</td>
<td>1,74</td>
<td>0,82</td>
<td>10556,14</td>
<td>3,95</td>
<td>0,93</td>
<td>2560,03</td>
</tr>
<tr>
<td></td>
<td>Abril</td>
<td>30</td>
<td>720</td>
<td>8,8</td>
<td>1767,05</td>
<td>5,19</td>
<td>4023,41</td>
<td>2,28</td>
<td>0,82</td>
<td>9996,40</td>
<td>5,66</td>
<td>1,02</td>
<td>1894,63</td>
</tr>
<tr>
<td></td>
<td>Maig</td>
<td>31</td>
<td>744</td>
<td>12,6</td>
<td>916,25</td>
<td>5,36</td>
<td>4293,70</td>
<td>4,69</td>
<td>0,82</td>
<td>9899,21</td>
<td>10,80</td>
<td>1,16</td>
<td>1195,66</td>
</tr>
<tr>
<td></td>
<td>Juny</td>
<td>30</td>
<td>720</td>
<td>16,7</td>
<td>183,25</td>
<td>5,58</td>
<td>4325,74</td>
<td>23,61</td>
<td>0,82</td>
<td>9130,48</td>
<td>49,83</td>
<td>171,81</td>
<td>7307,55</td>
</tr>
<tr>
<td></td>
<td>Juliol</td>
<td>30</td>
<td>720</td>
<td>19,7</td>
<td>39,27</td>
<td>5,80</td>
<td>4496,29</td>
<td>114,50</td>
<td>0,82</td>
<td>8801,65</td>
<td>224,13</td>
<td>29253,33</td>
<td>42746,43</td>
</tr>
<tr>
<td></td>
<td>Agost</td>
<td>31</td>
<td>744</td>
<td>19,5</td>
<td>26,18</td>
<td>5,91</td>
<td>4734,28</td>
<td>180,84</td>
<td>0,82</td>
<td>9117,69</td>
<td>348,27</td>
<td>119512,91</td>
<td>66539,71</td>
</tr>
<tr>
<td></td>
<td>Setembre</td>
<td>30</td>
<td>720</td>
<td>17,0</td>
<td>222,52</td>
<td>5,54</td>
<td>4294,73</td>
<td>19,30</td>
<td>0,82</td>
<td>9097,60</td>
<td>40,88</td>
<td>83,52</td>
<td>5326,01</td>
</tr>
<tr>
<td></td>
<td>Octubre</td>
<td>31</td>
<td>744</td>
<td>12,4</td>
<td>785,35</td>
<td>5,01</td>
<td>4013,33</td>
<td>5,11</td>
<td>0,82</td>
<td>9921,86</td>
<td>12,63</td>
<td>1,20</td>
<td>1032,44</td>
</tr>
<tr>
<td></td>
<td>Novembre</td>
<td>30</td>
<td>720</td>
<td>7,9</td>
<td>2172,81</td>
<td>4,16</td>
<td>3224,93</td>
<td>1,48</td>
<td>0,82</td>
<td>10095,05</td>
<td>4,65</td>
<td>0,79</td>
<td>1776,29</td>
</tr>
<tr>
<td></td>
<td>Desembre</td>
<td>31</td>
<td>744</td>
<td>5,1</td>
<td>3756,61</td>
<td>3,94</td>
<td>3156,19</td>
<td>0,84</td>
<td>0,82</td>
<td>10748,69</td>
<td>2,86</td>
<td>0,53</td>
<td>2023,03</td>
</tr>
</tbody>
</table>

Taula B.7 F-Chart calefacció QR-D

\[
\text{Eu (anual)} = 14605,67 \text{ kWh}
\]

\[
\text{CA (%)} = 72,84\%
\]
Figura B.3 Demanda i energia útil produïda pels captadors (QR-D)
B.2.3. F-Chart per a ACS

- **FKT-2 S (1 captador)**

| Mètode F-Chart – FKT-2 S (ACS) |
|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| N | t | Ts | Tx | Tacs-Tx | DE | Irradiació | Ea | D1 | K1 | K2 | Ep | D2 | f | Energia útil |
| dies | hores | ºC | ºC | kWh/mes | kW/m²·dia | kWh | kW | kWh |
| Gener | 31 | 744 | 4,5 | 5,815 | 54,19 | 163,91 | 4,2 | 210,25 | 1,28 | 0,82 | 0,99 | 469,33 | 2,86 | 0,79 | 129,62 |
| Febrer | 28 | 672 | 5,3 | 6,265 | 53,74 | 146,82 | 4,96 | 224,26 | 1,53 | 0,82 | 1,00 | 423,38 | 2,88 | 0,90 | 132,77 |
| Març | 31 | 744 | 6,8 | 7,935 | 52,07 | 157,50 | 5,8 | 290,34 | 1,84 | 0,82 | 1,04 | 483,49 | 3,07 | 1,02 | 157,50 |
| Abril | 30 | 720 | 8,8 | 9,695 | 50,31 | 147,26 | 5,19 | 251,43 | 1,71 | 0,82 | 1,09 | 478,25 | 3,25 | 0,96 | 141,01 |
| Maig | 31 | 744 | 12,6 | 12,175 | 47,83 | 144,67 | 5,36 | 268,32 | 1,85 | 0,82 | 1,15 | 497,95 | 3,44 | 1,00 | 144,67 |
| Juny | 30 | 720 | 16,7 | 14,935 | 45,07 | 131,92 | 5,58 | 270,32 | 2,05 | 0,82 | 1,22 | 487,38 | 3,69 | 1,05 | 131,92 |
| Juliol | 30 | 720 | 19,7 | 16,455 | 43,55 | 131,72 | 5,8 | 280,98 | 2,13 | 0,82 | 1,25 | 482,13 | 3,66 | 1,08 | 131,72 |
| Agost | 31 | 744 | 19,5 | 17,985 | 42,02 | 127,09 | 5,91 | 295,85 | 2,33 | 0,82 | 1,32 | 529,86 | 4,17 | 1,10 | 127,09 |
| Setembre | 30 | 720 | 17 | 17,075 | 42,93 | 125,66 | 5,54 | 268,38 | 2,14 | 0,82 | 1,31 | 523,78 | 4,17 | 1,05 | 125,66 |
| Octubre | 31 | 744 | 12,4 | 14,615 | 45,39 | 137,29 | 5,01 | 250,80 | 1,83 | 0,82 | 1,26 | 547,08 | 3,98 | 0,96 | 132,18 |
| Novembre | 30 | 720 | 7,9 | 10,495 | 49,51 | 144,92 | 4,16 | 201,53 | 1,39 | 0,82 | 1,14 | 503,15 | 3,47 | 0,81 | 117,53 |
| Desembre | 31 | 744 | 5,1 | 7,245 | 52,76 | 159,58 | 3,94 | 197,23 | 1,24 | 0,82 | 1,04 | 489,85 | 3,07 | 0,76 | 120,57 |

Taula B.8 F-Chart ACS FKT-2 S

Eu (anual) = 1592,25 kWh

CA (%) = 92,66%
Figura B.4 Demanda i energia útil ACS produïda amb un captador FKT-2 S
C.Instal·lació solar

C.1. Acumuladors

<table>
<thead>
<tr>
<th>Model</th>
<th>S-ZB Solar 160</th>
<th>MVV 300 SB</th>
<th>Unitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitat</td>
<td>160</td>
<td>3000</td>
<td>m^3</td>
</tr>
<tr>
<td>Tipus acumulador</td>
<td>Acer vitrificat</td>
<td>Acer vitrificat</td>
<td></td>
</tr>
<tr>
<td>Altura</td>
<td>1172</td>
<td>2305</td>
<td>mm</td>
</tr>
<tr>
<td>Diàmetre</td>
<td>540</td>
<td>1660</td>
<td>mm</td>
</tr>
<tr>
<td>Intercanviador</td>
<td>Serpentí</td>
<td>Serpentí</td>
<td></td>
</tr>
<tr>
<td>Volum serpentí</td>
<td>4,86</td>
<td>23,8</td>
<td>l</td>
</tr>
<tr>
<td>Superfície d’intercanvi</td>
<td>0,69</td>
<td>5</td>
<td>m^2</td>
</tr>
<tr>
<td>Potència màxima d’intercanvi</td>
<td>19,3</td>
<td>143,6</td>
<td>kW</td>
</tr>
<tr>
<td>Preu</td>
<td>496,81</td>
<td>6838,95</td>
<td>$€$</td>
</tr>
</tbody>
</table>

Taula C.1 Característiques acumuladors

C.2. Circuit primari

C.2.1. Fluid caloportador

<table>
<thead>
<tr>
<th>Instal·lació</th>
<th>Volum fluid (l)</th>
<th>% Etilenglicol</th>
<th>Volum Etilenglicol (l)</th>
<th>Volum Aigua (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>85,76</td>
<td>35</td>
<td>30,016</td>
<td>55,744</td>
</tr>
<tr>
<td>Calefacció</td>
<td>7,43</td>
<td>35</td>
<td>2,6</td>
<td>4,83</td>
</tr>
</tbody>
</table>

Taula C.2 Fluid caloportador de cada instal·lació
C.2.2. Xarxa de canonades

Mètode per al dimensionat

Primerament cal imposar una pèrdua de càrrega unitària inicial \((hf_l) \) de 20 \(mmca/m \), ja que aquest s’ha de trobar entre 10 i 40 \(mmca/m \). Partint de la pèrdua de càrrega unitària, el cabal \((Q) \), la viscositat cinemàtica \((\nu) \), i la rugositat interior del conducte \((\varepsilon) \) es podrà trobar el diàmetre de conducció, és a dir, el diàmetre interior de les canonades \((D_i) \). Els càlculs es realitzen per a una L=1m. Es segueixen els següents passos:

1. Es dona un valor al coeficient de fregament \((f) \) de la canonada.
2. Es calcula el diàmetre a partir de l’equació de Darcy (Equació 3.1):

\[
D_i = \sqrt[5]{\frac{8 \cdot L \cdot Q^2}{h f_l \cdot g \cdot \pi^2 \cdot f}}
\]

Equació C.1 Equació de Darcy

3. Es calcula el nombre de Reynols a partir de l’Equació 3.2:

\[
Re = \frac{v \cdot D_i}{\nu} = \frac{4 \cdot Q}{\pi \cdot D_i \cdot v}
\]

Equació C.2 Equació per al càlcul del nombre de Reynolds

4. Es troba la rugositat relativa amb l’Equació 3.3:

\[
e = \frac{\varepsilon}{D_i}
\]

Equació C.3 Equació per al càlcul de la rugositat relativa

5. Amb el Reynolds i la rugositat relativa, a partir de l’àbac de Moody (Figura 3.1) es troba un nou valor per al coeficient de fregament \((f_{nou}) \).
6. Es repeteix el càlcul fent servir el nou coeficient, iterativament.
7. Un cop els dos coeficients siguin molt propers es donarà el càlcul per finalitzat.

A la Taula 3.3 es poden trobar les dades constants referents al fluid caloportador i el material de les canonades necessàries per a realitzar els càlculs, i a la Taula 3.4 es pot veure el càlcul iteratiu i els diàmetres òptims en cada canonada.
Figura C.1 Àbac de Moody.

Dada

| Viscositat cinemàtica (fluid calloportador) | $1,3 \cdot 10^{-6}$ | m^2/s |
| Rugositat interior del conducte | $1,5 \cdot 10^{-6}$ | m |

Taula C.3 Característiques constants pel dimensionat de les canonades
Predimensionat canonades

<table>
<thead>
<tr>
<th>q [L/h]</th>
<th>2007</th>
<th>1003,5</th>
<th>892</th>
<th>780,5</th>
<th>669</th>
<th>557,5</th>
<th>446</th>
<th>334,5</th>
<th>223</th>
<th>111,5</th>
</tr>
</thead>
<tbody>
<tr>
<td>q [L/s]</td>
<td>5,58E-01</td>
<td>2,79E-01</td>
<td>2,48E-01</td>
<td>2,17E-01</td>
<td>1,86E-01</td>
<td>1,55E-01</td>
<td>1,24E-01</td>
<td>9,29E-02</td>
<td>6,19E-02</td>
<td>3,10E-02</td>
</tr>
<tr>
<td>q [m3/s]</td>
<td>5,58E-04</td>
<td>2,79E-04</td>
<td>2,48E-04</td>
<td>2,17E-04</td>
<td>1,86E-04</td>
<td>1,55E-04</td>
<td>1,24E-04</td>
<td>9,29E-05</td>
<td>6,19E-05</td>
<td>3,10E-05</td>
</tr>
<tr>
<td>hfl [mca/m]</td>
<td>0,02</td>
</tr>
<tr>
<td>f inicial</td>
<td>0,02</td>
</tr>
<tr>
<td>Di</td>
<td>0,0303</td>
<td>0,0230</td>
<td>0,0219</td>
<td>0,0208</td>
<td>0,0195</td>
<td>0,0182</td>
<td>0,0166</td>
<td>0,0148</td>
<td>0,0126</td>
<td>0,0095</td>
</tr>
<tr>
<td>Re</td>
<td>1,80E+04</td>
<td>1,19E+04</td>
<td>1,11E+04</td>
<td>1,02E+04</td>
<td>9,31E+03</td>
<td>8,35E+03</td>
<td>7,30E+03</td>
<td>6,14E+03</td>
<td>4,82E+03</td>
<td>3,18E+03</td>
</tr>
<tr>
<td>e (rug rel)</td>
<td>4,95E-05</td>
<td>6,53E-05</td>
<td>6,84E-05</td>
<td>7,22E-05</td>
<td>7,67E-05</td>
<td>8,25E-05</td>
<td>9,03E-05</td>
<td>1,01E-04</td>
<td>1,19E-04</td>
<td>1,57E-04</td>
</tr>
<tr>
<td>f 2</td>
<td>0,0264</td>
<td>0,029</td>
<td>0,0294</td>
<td>0,03</td>
<td>0,0306</td>
<td>0,0314</td>
<td>0,0326</td>
<td>0,0342</td>
<td>0,0364</td>
<td>0,0420</td>
</tr>
<tr>
<td>Di 2</td>
<td>0,0321</td>
<td>0,0248</td>
<td>0,0237</td>
<td>0,0225</td>
<td>0,0213</td>
<td>0,0199</td>
<td>0,0183</td>
<td>0,0165</td>
<td>0,0142</td>
<td>0,0111</td>
</tr>
<tr>
<td>Re 2</td>
<td>1,70E+04</td>
<td>1,10E+04</td>
<td>1,02E+04</td>
<td>9,42E+03</td>
<td>8,55E+03</td>
<td>7,63E+03</td>
<td>6,62E+03</td>
<td>5,52E+03</td>
<td>4,27E+03</td>
<td>2,74E+03</td>
</tr>
<tr>
<td>e 2</td>
<td>4,68E-05</td>
<td>6,06E-05</td>
<td>6,33E-05</td>
<td>6,65E-05</td>
<td>7,05E-05</td>
<td>7,54E-05</td>
<td>8,18E-05</td>
<td>9,10E-05</td>
<td>1,06E-04</td>
<td>1,35E-04</td>
</tr>
<tr>
<td>f 3</td>
<td>0,0268</td>
<td>0,0294</td>
<td>0,03</td>
<td>0,0304</td>
<td>0,0312</td>
<td>0,0322</td>
<td>0,0338</td>
<td>0,0358</td>
<td>0,0382</td>
<td>0,0420</td>
</tr>
<tr>
<td>Di def</td>
<td>0,0322</td>
<td>0,0248</td>
<td>0,0238</td>
<td>0,0226</td>
<td>0,0214</td>
<td>0,0200</td>
<td>0,0185</td>
<td>0,0166</td>
<td>0,0143</td>
<td>0,0111</td>
</tr>
<tr>
<td>Re def</td>
<td>1,70E+04</td>
<td>1,10E+04</td>
<td>1,02E+04</td>
<td>9,39E+03</td>
<td>8,52E+03</td>
<td>7,59E+03</td>
<td>6,57E+03</td>
<td>5,47E+03</td>
<td>4,23E+03</td>
<td>2,74E+03</td>
</tr>
<tr>
<td>e def</td>
<td>4,66E-05</td>
<td>6,04E-05</td>
<td>6,31E-05</td>
<td>6,64E-05</td>
<td>7,02E-05</td>
<td>7,50E-05</td>
<td>8,13E-05</td>
<td>9,01E-05</td>
<td>1,05E-04</td>
<td>1,35E-04</td>
</tr>
<tr>
<td>f def</td>
<td>0,0268</td>
<td>0,0294</td>
<td>0,03</td>
<td>0,0304</td>
<td>0,0312</td>
<td>0,0322</td>
<td>0,0338</td>
<td>0,0358</td>
<td>0,0382</td>
<td>0,0420</td>
</tr>
</tbody>
</table>

Taula C.4 Càlcul iteratiu dimensionat canonades
Dimensionat canonades

Seguidament cal trobar quin diàmetre dels que es comercialitza és l’adequat per a cada canonada. Un cop escollit el diàmetre definitiu caldrà calcular la velocitat del fluid, el coeficient de fregament i la pèrdua de càrrega unitària. És a dir, un cop seleccionat el diàmetre adequat, es seguiran els següents passos:

• Determinació de la velocitat amb l’Equació 3.4:

\[v = \frac{Q}{D_l} \]

Equació C.4 Equació per al càlcul de la velocitat del fluid

• Càlcul del nou Re mitjançant l’Equació 3.2.

• Càlcul del nou valor de la rugositat relativa e amb l’Equació 3.3.

• Determinació del nou valor del coeficient de fregament f a partir del nombre de Reynold i la rugositat relativa amb el diagrama de Moody.

• Determinació del nou valor de pèrdua de càrrega lineal unitària, \(hf \ [\frac{mmca}{m}] \), a partir de l’Equació de Darcy (Equació 3.5):

\[hf l = \frac{f \cdot v^2}{D_l \cdot 2 \cdot g} \]

Equació C.5 Equació de Darcy per a calcular la pèrdua de càrrega lineal unitària

A la Taula 3.5 es troben les canonades escollides per a cada tram i les característiques que comportaran.

<table>
<thead>
<tr>
<th>Q [L/h]</th>
<th>Di [mm]</th>
<th>Dext [mm]</th>
<th>v [m/s]</th>
<th>Re</th>
<th>e</th>
<th>f</th>
<th>hf l [mmca/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>33</td>
<td>35</td>
<td>0,65</td>
<td>16546</td>
<td>4,55E-05</td>
<td>0,027</td>
<td>17,72</td>
</tr>
<tr>
<td>1003,5</td>
<td>26</td>
<td>28</td>
<td>0,53</td>
<td>10500</td>
<td>5,77E-05</td>
<td>0,03</td>
<td>16,21</td>
</tr>
<tr>
<td>892</td>
<td>26</td>
<td>28</td>
<td>0,47</td>
<td>9334</td>
<td>5,77E-05</td>
<td>0,0306</td>
<td>13,06</td>
</tr>
<tr>
<td>780,5</td>
<td>20</td>
<td>22</td>
<td>0,69</td>
<td>10617</td>
<td>7,50E-05</td>
<td>0,03</td>
<td>36,41</td>
</tr>
<tr>
<td>669</td>
<td>20</td>
<td>22</td>
<td>0,59</td>
<td>9100</td>
<td>7,50E-05</td>
<td>0,0308</td>
<td>27,46</td>
</tr>
<tr>
<td>557,5</td>
<td>20</td>
<td>22</td>
<td>0,49</td>
<td>7584</td>
<td>7,50E-05</td>
<td>0,0322</td>
<td>19,94</td>
</tr>
</tbody>
</table>
C.2.3. Volum canonades

Per a entendre les longituds de les canonades cal tenir en compte les mesures dels captadors FKT-2 S i que s’utilitzen 4m de canonada per a connectar la xarxa del sostre amb els dipòsits acumuladors. D’altra banda, per acabar de trobar unes mesures properes a les que serien en un cas real, s’ha confeccionat la Figura 3.2.

![Figura 3.2 Esquema del sostre amb mesures de la xarxa hidràulica](image)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>446</td>
<td>20</td>
<td>22</td>
<td>0,39</td>
<td>6067</td>
<td>7,50E-05</td>
</tr>
<tr>
<td>334,5</td>
<td>16</td>
<td>18</td>
<td>0,46</td>
<td>5688</td>
<td>9,38E-05</td>
</tr>
<tr>
<td>223</td>
<td>14</td>
<td>16</td>
<td>0,40</td>
<td>4334</td>
<td>1,07E-04</td>
</tr>
<tr>
<td>111,5</td>
<td>12</td>
<td>14</td>
<td>0,27</td>
<td>2528</td>
<td>1,25E-04</td>
</tr>
</tbody>
</table>

Taula C.5 Característiques xarxa canonades

Instal·lació ACS a la Taula 3.6:

<table>
<thead>
<tr>
<th>Cabal [L/h]</th>
<th>Di[mm]</th>
<th>Longitud [m]</th>
<th>Volum [l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>111,50</td>
<td>12,00</td>
<td>8,57</td>
<td>0,97</td>
</tr>
</tbody>
</table>

Taula C.6 Volum canonades instal·lació ACS

Instal·lació calefacció a la Taula 3.7:

<table>
<thead>
<tr>
<th>Cabal [L/h]</th>
<th>Di[mm]</th>
<th>Longitud [m]</th>
<th>Volum [l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>33</td>
<td>17,97</td>
<td>15,37</td>
</tr>
<tr>
<td>1003,5</td>
<td>26</td>
<td>12,34</td>
<td>6,55</td>
</tr>
<tr>
<td>892</td>
<td>26</td>
<td>4,8</td>
<td>2,55</td>
</tr>
<tr>
<td>780,5</td>
<td>20</td>
<td>4,8</td>
<td>1,51</td>
</tr>
</tbody>
</table>
C.2.4. Característiques vasos d’expansió Heatwave-Likitech

<table>
<thead>
<tr>
<th>Característica</th>
<th>ACS</th>
<th>Calefacció</th>
<th>Unitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volum</td>
<td>2</td>
<td>12</td>
<td>Litres</td>
</tr>
<tr>
<td>Material membrana</td>
<td>Butil</td>
<td>Butil</td>
<td></td>
</tr>
<tr>
<td>Temperatura màxima</td>
<td>100</td>
<td>100</td>
<td>ºC</td>
</tr>
<tr>
<td>Pressió màxima</td>
<td>10</td>
<td>10</td>
<td>Bar</td>
</tr>
<tr>
<td>Preu</td>
<td>30,54</td>
<td>46,2</td>
<td>€</td>
</tr>
</tbody>
</table>

C.2.5. Singularitats xarxa canonades

- **Instal·lació ACS**

<table>
<thead>
<tr>
<th>Cabal</th>
<th>Di [mm]</th>
<th>Singularitat</th>
<th>Quantitat</th>
<th>Lequiv [m]</th>
<th>Lsing [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>111,5</td>
<td>14</td>
<td>Colze 90º</td>
<td>2</td>
<td>0,5</td>
<td>1</td>
</tr>
<tr>
<td>111,5</td>
<td>14</td>
<td>Corba 90º</td>
<td>2</td>
<td>0,3</td>
<td>0,6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,6</td>
</tr>
</tbody>
</table>

- **Instal·lació calefacció**

<table>
<thead>
<tr>
<th>Cabal</th>
<th>Di [mm]</th>
<th>Singularitat</th>
<th>Quantitat</th>
<th>Lequiv [m]</th>
<th>Lsing [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>33</td>
<td>Colze 90º</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2007</td>
<td>33</td>
<td>Corba 90º</td>
<td>2</td>
<td>0,8</td>
<td>1,6</td>
</tr>
<tr>
<td>2007</td>
<td>33</td>
<td>Desviació</td>
<td>1</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>2007</td>
<td>33</td>
<td>Unió</td>
<td>1</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 5,6</td>
</tr>
<tr>
<td>1003,5</td>
<td>26</td>
<td>Colze 90º</td>
<td>2</td>
<td>0,8</td>
<td>1,6</td>
</tr>
<tr>
<td>Descripció</td>
<td>Unitats</td>
<td>Valors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desviació</td>
<td>2</td>
<td>1,5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unió</td>
<td>2</td>
<td>0,5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desviació</td>
<td>2</td>
<td>1,5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unió</td>
<td>2</td>
<td>0,5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desviació</td>
<td>2</td>
<td>1,5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unió</td>
<td>2</td>
<td>0,5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desviació</td>
<td>2</td>
<td>1,5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unió</td>
<td>2</td>
<td>0,5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desviació</td>
<td>2</td>
<td>1,5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unió</td>
<td>2</td>
<td>0,5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colze 90º</td>
<td>4</td>
<td>0,5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula C.10 Singularitats xarxa canonades calefacció

C.2.6. Característiques bomba de circulació ALPHA1

<table>
<thead>
<tr>
<th>Característica</th>
<th>ALPHA1 25-40 Grunfos</th>
<th>Unitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressió màxima</td>
<td>10</td>
<td>bars</td>
</tr>
<tr>
<td>Temperatura màxima</td>
<td>110</td>
<td>ºC</td>
</tr>
<tr>
<td>Preu</td>
<td>194,2</td>
<td>€</td>
</tr>
</tbody>
</table>

Taula C.11 Característiques bomba de circulació.
C.2.7. Característiques Purgador Automàtic 250031

<table>
<thead>
<tr>
<th>Característica</th>
<th>Purgador Automàtic 250031 Caleffi</th>
<th>Unitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressió màxima</td>
<td>10</td>
<td>bar</td>
</tr>
<tr>
<td>Temperatura màxima</td>
<td>180</td>
<td>ºC</td>
</tr>
<tr>
<td>Màxim etilenglicol</td>
<td>50</td>
<td>%</td>
</tr>
<tr>
<td>Preu</td>
<td>25,4</td>
<td>€</td>
</tr>
</tbody>
</table>

Taula C.12 Característiques purgador automàtic

C.2.8. Característiques Vàlvules

<table>
<thead>
<tr>
<th>Característica</th>
<th>Vàlvula seguretat 3127</th>
<th>Vàlvula esfera MH Solar</th>
<th>Unitats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca</td>
<td>Caleffi</td>
<td>Genebre</td>
<td></td>
</tr>
<tr>
<td>Pressió màxima</td>
<td>7</td>
<td>25</td>
<td>bar</td>
</tr>
<tr>
<td>Temperatura màxima</td>
<td>110</td>
<td>160</td>
<td>ºC</td>
</tr>
<tr>
<td>Preu</td>
<td>9,5</td>
<td>6,95</td>
<td>€</td>
</tr>
</tbody>
</table>

Taula C.13 Característiques vàlvules

C.2.9. Característiques controlador TDS 100-2 (Junkers)

<table>
<thead>
<tr>
<th>Característica</th>
<th>TDS 100-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sondes temperatura</td>
<td>3 entrades NTC</td>
</tr>
<tr>
<td>Sortides</td>
<td>1 sortida per triac</td>
</tr>
<tr>
<td>Antigelades</td>
<td>Sí</td>
</tr>
<tr>
<td>Muntatge</td>
<td>Sobre la paret</td>
</tr>
<tr>
<td>Preu</td>
<td>284,35 €</td>
</tr>
</tbody>
</table>

Taula C.14 Característiques vàlvules
D. Manteniment

D.1. Pla de vigilància

<table>
<thead>
<tr>
<th>Elemente de la instal·lació</th>
<th>Operació</th>
<th>Freqüència (meses)</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPTADORES</td>
<td>Limpiesa de cristals Crístals</td>
<td>A determinar</td>
<td>Con agua y productos adecuados</td>
</tr>
<tr>
<td></td>
<td>Juntes</td>
<td>3</td>
<td>IV condensaciones en las horas centrales del día</td>
</tr>
<tr>
<td></td>
<td>Absorvente</td>
<td>3</td>
<td>IV Agrietamientos y deformaciones</td>
</tr>
<tr>
<td></td>
<td>Conexions</td>
<td>3</td>
<td>IV Corrosión, deformación, fugas, etc.</td>
</tr>
<tr>
<td></td>
<td>Estructura</td>
<td>3</td>
<td>IV fugas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IV degeneració, índices de corrosión.</td>
</tr>
<tr>
<td>CIRCUIT PRIMARIO</td>
<td>Tublería, aislamiento y sistema de llenado Purgador manual</td>
<td>6</td>
<td>IV Ausencia de humedades y fugas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Vaciar el aire del botellín</td>
</tr>
</tbody>
</table>

D.2. Pla de manteniment

- Sistema captació

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Freqüència (meses)</th>
<th>Descripció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captadores</td>
<td>6</td>
<td>IV diferencias sobre original</td>
</tr>
<tr>
<td>Cristales</td>
<td>6</td>
<td>IV diferencias entre captadores</td>
</tr>
<tr>
<td>Juntas</td>
<td>6</td>
<td>IV condensaciones y suculadi</td>
</tr>
<tr>
<td>Absorvente</td>
<td>6</td>
<td>IV agrietamientos, deformaciones</td>
</tr>
<tr>
<td>Carcasa</td>
<td>6</td>
<td>IV corrosión, deformaciones</td>
</tr>
<tr>
<td>Conexions</td>
<td>6</td>
<td>IV deformación, oscilaciones, ventanas de respiración</td>
</tr>
<tr>
<td>Estructura</td>
<td>6</td>
<td>IV aparició de fugas</td>
</tr>
<tr>
<td>Captadores*</td>
<td>6</td>
<td>IV degeneració, índices de corrosión, y apríe de tornillos</td>
</tr>
<tr>
<td>Captadores*</td>
<td>12</td>
<td>Tapado parcial del campo de captadores</td>
</tr>
<tr>
<td>Captadores*</td>
<td>12</td>
<td>Desstapado parcial del campo de captadores</td>
</tr>
<tr>
<td>Captadores*</td>
<td>12</td>
<td>Vaciado parcial del campo de captadores</td>
</tr>
<tr>
<td>Captadores*</td>
<td>12</td>
<td>Lonado parcial del campo de captadores</td>
</tr>
</tbody>
</table>

*Operacions opcionals a realitzar en cas de no utilització durant l’estiu.
➢ Sistema d’acumulació

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Frecuencia (meses)</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depósito</td>
<td>12</td>
<td>Presencia de lodos en fondo</td>
</tr>
<tr>
<td>Anodos sacrificio</td>
<td>12</td>
<td>Comprobación de desgaste</td>
</tr>
<tr>
<td>Anodos de corriente Impresa</td>
<td>12</td>
<td>Comprobación del buen funcionamiento</td>
</tr>
<tr>
<td>Aislamiento</td>
<td>12</td>
<td>Comprobar que no hay humedad</td>
</tr>
</tbody>
</table>

➢ Sistema d’intercanvi

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Frecuencia (meses)</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercambiador de placas</td>
<td>12</td>
<td>CF afilión y prestaciones</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Limpieza</td>
</tr>
<tr>
<td>Intercambiador de serpintín</td>
<td>12</td>
<td>CF afilión y prestaciones</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>Limpieza</td>
</tr>
</tbody>
</table>

➢ Sistema de captació

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Frecuencia (meses)</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluido refrigerante</td>
<td>12</td>
<td>Comprobar su densidad y pH</td>
</tr>
<tr>
<td>Estanqueidad</td>
<td>24</td>
<td>Efectuar prueba de presión</td>
</tr>
<tr>
<td>Aislamiento al exterior</td>
<td>6</td>
<td>IV degradación protección uniones y ausencia de humedad</td>
</tr>
<tr>
<td>Aislamiento al interior</td>
<td>12</td>
<td>IV uniones y ausencia de humedad</td>
</tr>
<tr>
<td>Purgador automático</td>
<td>12</td>
<td>CF y limpieza</td>
</tr>
<tr>
<td>Purgador manual</td>
<td>6</td>
<td>Vacular el aire del botellín</td>
</tr>
<tr>
<td>Bomba</td>
<td>12</td>
<td>Estanqueidad</td>
</tr>
<tr>
<td>Vaso de expansión cerrado</td>
<td>6</td>
<td>Comprobación de la presión</td>
</tr>
<tr>
<td>Vaso de expansión abierto</td>
<td>6</td>
<td>Comprobación del nivel</td>
</tr>
<tr>
<td>Sistema de llenado</td>
<td>6</td>
<td>CF actuación</td>
</tr>
<tr>
<td>Válvula de corte</td>
<td>12</td>
<td>CF actuaciones (abrir y cerrar) para evitar agarrotamiento</td>
</tr>
<tr>
<td>Válvula de seguridad</td>
<td>12</td>
<td>CF actuación</td>
</tr>
</tbody>
</table>

➢ Sistema elèctric i de control

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Frecuencia (meses)</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuadrito eléctrico</td>
<td>12</td>
<td>Comprobar que está siempre bien cerrado para que no entre polvo</td>
</tr>
<tr>
<td>Control diferencial</td>
<td>12</td>
<td>CF actuación</td>
</tr>
<tr>
<td>Termostato</td>
<td>12</td>
<td>CF actuación</td>
</tr>
<tr>
<td>Verificación del sistema de medida</td>
<td>12</td>
<td>CF actuación</td>
</tr>
</tbody>
</table>

Sistema d'energia auxiliar

<table>
<thead>
<tr>
<th>Equipo</th>
<th>Frecuencia (meses)</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistema auxiliar</td>
<td>12</td>
<td>CF actación</td>
</tr>
<tr>
<td>Sondas de temperatura</td>
<td>12</td>
<td>CF actación</td>
</tr>
</tbody>
</table>

E. Estudi econòmic

E.1. Cost inicial

E.1.1. Instal·lació per a calefacció

- **Cost instal·lació**

<table>
<thead>
<tr>
<th>Component</th>
<th>Producte</th>
<th>Marca</th>
<th>Característiques</th>
<th>[u]</th>
<th>[€/u]</th>
<th>Preu total [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captador</td>
<td>FKT-2</td>
<td>Junkers-Bosch</td>
<td>Model S (Vertical). Accessorís inclosos.</td>
<td>18</td>
<td>579,7</td>
<td>10434,60</td>
</tr>
<tr>
<td>Estructura suport</td>
<td>FV 9 - 2</td>
<td>Junkers-Bosch</td>
<td>Per 9 captadors verticals</td>
<td>1</td>
<td>1155</td>
<td>1155,00</td>
</tr>
<tr>
<td>Dipòsit acumulador</td>
<td>MVV 3000 SB</td>
<td>Junkers-Bosch</td>
<td>3000 litres. Intercanviador serpentí inclòs.</td>
<td>1</td>
<td>6838,95</td>
<td>6838,95</td>
</tr>
<tr>
<td>Fluid Caloportador</td>
<td>Etilenglicol</td>
<td>PureChem</td>
<td>Volum: 5 litres</td>
<td>6</td>
<td>13,96</td>
<td>83,76</td>
</tr>
<tr>
<td>Canonada</td>
<td>Coure 33-35</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>17,97*</td>
<td>12,9</td>
<td>231,81</td>
</tr>
<tr>
<td></td>
<td>Coure 26-28</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>17,14*</td>
<td>9,08</td>
<td>155,63</td>
</tr>
<tr>
<td></td>
<td>Coure 20-22</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>19,2*</td>
<td>6,9</td>
<td>132,48</td>
</tr>
<tr>
<td></td>
<td>Coure 16-18</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>4,8*</td>
<td>5,76</td>
<td>27,65</td>
</tr>
<tr>
<td></td>
<td>Coure 14-16</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>4,8*</td>
<td>5,96</td>
<td>28,61</td>
</tr>
<tr>
<td></td>
<td>Coure 12-14</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>8,4*</td>
<td>4,72</td>
<td>39,65</td>
</tr>
<tr>
<td>Singularitat</td>
<td>Colze 90º</td>
<td>Comercial Bastos</td>
<td>Coure 33-35</td>
<td>2</td>
<td>9,18</td>
<td>18,36</td>
</tr>
<tr>
<td>Corba 90º</td>
<td>Comercial Bastos</td>
<td>Coure 33-35</td>
<td></td>
<td>2</td>
<td>7,61</td>
<td>15,22</td>
</tr>
<tr>
<td>Desviació</td>
<td>Comercial Bastos</td>
<td>Coure 33-35</td>
<td></td>
<td>1</td>
<td>23,7</td>
<td>23,70</td>
</tr>
<tr>
<td>Unió</td>
<td>Comercial Bastos</td>
<td>Coure 33-35</td>
<td></td>
<td>1</td>
<td>23,7</td>
<td>23,70</td>
</tr>
<tr>
<td>Colze 90º</td>
<td>Comercial Bastos</td>
<td>Coure 26-28</td>
<td></td>
<td>2</td>
<td>2,57</td>
<td>5,14</td>
</tr>
<tr>
<td>Desviació</td>
<td>Comercial Bastos</td>
<td>Coure 26-28</td>
<td></td>
<td>4</td>
<td>10,1</td>
<td>40,40</td>
</tr>
<tr>
<td>Unió</td>
<td>Comercial Bastos</td>
<td>Coure 26-28</td>
<td></td>
<td>4</td>
<td>10,1</td>
<td>40,40</td>
</tr>
<tr>
<td>Desviació</td>
<td>Comercial Bastos</td>
<td>Coure 20-22</td>
<td></td>
<td>8</td>
<td>8,42</td>
<td>67,36</td>
</tr>
<tr>
<td>Descripció</td>
<td>Unitat</td>
<td>Preu [€]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colze 90º</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purgador automàtic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vàlvula seguretat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Òmniums</td>
<td>Per concretar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E.1.2. Instal·lació per a ACS

- Cost instal·lació

<table>
<thead>
<tr>
<th>Component</th>
<th>Producte</th>
<th>Marca</th>
<th>Característiques</th>
<th>[u]</th>
<th>[€/u]</th>
<th>Preu total [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captador</td>
<td>FKT-2</td>
<td>Junkers-Bosch</td>
<td>Model S (Vertical). Accessoris inclosos.</td>
<td>1</td>
<td>579,7</td>
<td>579,70</td>
</tr>
<tr>
<td>Estructura suport</td>
<td>FV 1 - 2</td>
<td>Junkers-Bosch</td>
<td>Per 1 captador vertical</td>
<td>1</td>
<td>195</td>
<td>195,00</td>
</tr>
<tr>
<td>Dipòsit acumulador</td>
<td>S-ZB</td>
<td>Junkers-Bosch</td>
<td>160 litres. Intercanviador serpentí inclòs. Resist.Elèctrica</td>
<td>1</td>
<td>496,81</td>
<td>496,81</td>
</tr>
<tr>
<td>Fluid Caloportador</td>
<td></td>
<td>PureChem</td>
<td>Volum: 5 litres</td>
<td>1</td>
<td>13,96</td>
<td>13,96</td>
</tr>
<tr>
<td>Canonades</td>
<td>Coure 12-14</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>8,57*</td>
<td>4,72</td>
<td>40,45</td>
</tr>
<tr>
<td>Singularitats</td>
<td>Colze 90º</td>
<td>Comercial Bastos</td>
<td>Coure 12-14</td>
<td>2</td>
<td>0,65</td>
<td>1,30</td>
</tr>
<tr>
<td></td>
<td>Colze 90º</td>
<td>Comercial Bastos</td>
<td>Coure 12-14</td>
<td>2</td>
<td>0,8</td>
<td>1,60</td>
</tr>
<tr>
<td>Vas Expansió</td>
<td>HW 2L</td>
<td>Heatwave-Likitech</td>
<td>2 litres. Tmax: 100ºC. Pmax: 10 bar.</td>
<td>1</td>
<td>30,54</td>
<td>30,54</td>
</tr>
<tr>
<td>Bomba de circulació</td>
<td>Alpha 25-40</td>
<td>Grundfos</td>
<td>Tmax: 110ºC. Pmax: 10 bar. 180 mm</td>
<td>1</td>
<td>194,2</td>
<td>194,20</td>
</tr>
<tr>
<td>Purgador</td>
<td>Purgador automàtic</td>
<td>Caleffi</td>
<td>Tmax: 180ºC. Pmax: 10 bar. Max glicol: 50%.</td>
<td>1</td>
<td>25,4</td>
<td>25,40</td>
</tr>
<tr>
<td>Vàlvula seguretat</td>
<td>M-H 7 bar</td>
<td>Caleffi</td>
<td>Tmax: 110ºC.</td>
<td>1</td>
<td>9,5</td>
<td>9,50</td>
</tr>
<tr>
<td>Vàlvula esfera</td>
<td>M-H PN 25</td>
<td>Genebre</td>
<td>Tmax: 160ºC</td>
<td>2</td>
<td>6,95</td>
<td>13,90</td>
</tr>
<tr>
<td>Controlador</td>
<td>TDS 100-2</td>
<td>Junkers-Bosch</td>
<td>3 entrades per a sondes de temperatura.</td>
<td>1</td>
<td>284,35</td>
<td>284,35</td>
</tr>
<tr>
<td>Conductes</td>
<td>Per concretar</td>
<td>Per concretar</td>
<td>Acoblament amb circuit secundari. Preu aprox.</td>
<td>1</td>
<td>200</td>
<td>200,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2086,71</td>
<td></td>
</tr>
</tbody>
</table>

Taula E.3 Cost instal·lació ACS. *Les unitats són metres lineals

- Cost honoraris projectista

<table>
<thead>
<tr>
<th>Feines</th>
<th>Hores</th>
<th>Preu hora [€/h]</th>
<th>Total [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enginyer Junior</td>
<td>Càlcul necessitats tèrmiques + Instalació solar</td>
<td>80</td>
<td>36,3**</td>
</tr>
</tbody>
</table>

Taula E.4 Cost honoraris instal·lació ACS. **El preu té inclòs l’IVA del 21%.

PREU TOTAL=4990,71€
E.1.3. Instal·lació calefacció + ACS

<table>
<thead>
<tr>
<th>Component</th>
<th>Producte</th>
<th>Marca</th>
<th>Característiques</th>
<th>[u]</th>
<th>[€/u]</th>
<th>Preu total [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captador</td>
<td>FKT-2</td>
<td>Junkers-Bosch</td>
<td>Model S (Vertical). Accessoris inclosos.</td>
<td>18</td>
<td>579,7</td>
<td>10434,60</td>
</tr>
<tr>
<td>Estructura suport</td>
<td>FV 9 - 2</td>
<td>Junkers-Bosch</td>
<td>Per 9 captadors verticals</td>
<td>1</td>
<td>1155</td>
<td>1155,00</td>
</tr>
<tr>
<td>Dipòsit acumulador calefacció</td>
<td>MVV 3000 SB</td>
<td>Junkers-Bosch</td>
<td>3000 litres. Intercanviador serpentí inclòs.</td>
<td>1</td>
<td>6838,95</td>
<td>6838,95</td>
</tr>
<tr>
<td>Dipòsit acumulador ACS</td>
<td>S-ZB</td>
<td>Junkers-Bosch</td>
<td>160 litres. Intercanviador serpentí inclòs. Resist. Elèctrica</td>
<td>1</td>
<td>496,81</td>
<td>496,81</td>
</tr>
<tr>
<td>Fluid Caloportador</td>
<td>Etilenglicol 99%</td>
<td>PureChem</td>
<td>Volum: 5 litres</td>
<td>7</td>
<td>13,96</td>
<td>97,72</td>
</tr>
<tr>
<td>Canonada</td>
<td>Coure 33-35</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>17,97*</td>
<td>12,9</td>
<td>231,81</td>
</tr>
<tr>
<td></td>
<td>Coure 26-28</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>17,14*</td>
<td>9,08</td>
<td>155,63</td>
</tr>
<tr>
<td></td>
<td>Coure 20-22</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>19,2*</td>
<td>6,9</td>
<td>132,48</td>
</tr>
<tr>
<td></td>
<td>Coure 16-18</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>4,8*</td>
<td>5,76</td>
<td>27,65</td>
</tr>
<tr>
<td></td>
<td>Coure 14-16</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>4,8*</td>
<td>5,96</td>
<td>28,61</td>
</tr>
<tr>
<td></td>
<td>Coure 12-14</td>
<td>Comercial Bastos</td>
<td>Coure inox. Gruix 1 mm</td>
<td>8,4*</td>
<td>4,72</td>
<td>39,65</td>
</tr>
<tr>
<td>Singularitat</td>
<td>Colze 90°</td>
<td>Comercial Bastos</td>
<td>Coure 33-35</td>
<td>2</td>
<td>9,18</td>
<td>18,36</td>
</tr>
<tr>
<td></td>
<td>Corba 90°</td>
<td>Comercial Bastos</td>
<td>Coure 33-35</td>
<td>2</td>
<td>7,61</td>
<td>15,22</td>
</tr>
<tr>
<td>Desviació</td>
<td>Comercial Bastos</td>
<td>Coure 33-35</td>
<td>Coure 33-35</td>
<td>1</td>
<td>23,7</td>
<td>23,70</td>
</tr>
<tr>
<td>Unió</td>
<td>Comercial Bastos</td>
<td>Coure 33-35</td>
<td>Coure 33-35</td>
<td>1</td>
<td>23,7</td>
<td>23,70</td>
</tr>
<tr>
<td>Colze 90°</td>
<td>Comercial Bastos</td>
<td>Coure 26-28</td>
<td>Coure 26-28</td>
<td>2</td>
<td>2,57</td>
<td>5,14</td>
</tr>
<tr>
<td>Desviació</td>
<td>Comercial Bastos</td>
<td>Coure 26-28</td>
<td>Coure 26-28</td>
<td>4</td>
<td>10,1</td>
<td>40,40</td>
</tr>
<tr>
<td>Unió</td>
<td>Comercial Bastos</td>
<td>Coure 26-28</td>
<td>Coure 26-28</td>
<td>4</td>
<td>10,1</td>
<td>40,40</td>
</tr>
<tr>
<td>Desviació</td>
<td>Comercial Bastos</td>
<td>Coure 20-22</td>
<td>Coure 20-22</td>
<td>8</td>
<td>8,42</td>
<td>67,36</td>
</tr>
<tr>
<td>Unió</td>
<td>Comercial Bastos</td>
<td>Coure 20-22</td>
<td>Coure 20-22</td>
<td>8</td>
<td>8,42</td>
<td>67,36</td>
</tr>
<tr>
<td>Desviació</td>
<td>Comercial Bastos</td>
<td>Coure 16-18</td>
<td>Coure 16-18</td>
<td>2</td>
<td>4,16</td>
<td>8,32</td>
</tr>
<tr>
<td>Unió</td>
<td>Comercial Bastos</td>
<td>Coure 16-18</td>
<td>Coure 16-18</td>
<td>2</td>
<td>4,16</td>
<td>8,32</td>
</tr>
<tr>
<td>Desviació</td>
<td>Comercial Bastos</td>
<td>Coure 14-16</td>
<td>2</td>
<td>2,28</td>
<td>4,56</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>------------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Unió</td>
<td>Comercial Bastos</td>
<td>Coure 14-16</td>
<td>2</td>
<td>2,28</td>
<td>4,56</td>
<td></td>
</tr>
<tr>
<td>Colze 90º</td>
<td>Comercial Bastos</td>
<td>Coure 12-14</td>
<td>4</td>
<td>0,65</td>
<td>2,60</td>
<td></td>
</tr>
<tr>
<td>Vas Expansió</td>
<td>HW 12L</td>
<td>Heatwave-Likitech</td>
<td>12 litres. Tmax: 100ºC. Pmax: 10bar.</td>
<td>1</td>
<td>46,2</td>
<td>46,20</td>
</tr>
<tr>
<td>Bomba de</td>
<td>Alpha1 25-40</td>
<td>Grundfos</td>
<td>Tmax: 110ºC. Pmax: 10 bar. 180mm</td>
<td>1</td>
<td>194,2</td>
<td>194,20</td>
</tr>
<tr>
<td>circulació</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purgador</td>
<td>Purgador</td>
<td>Caleffi</td>
<td>Tmax: 180ºC. Pmax: 10 bar. Max glicol: 50%.</td>
<td>2</td>
<td>25,4</td>
<td>50,80</td>
</tr>
<tr>
<td>Vàlvula seguretat</td>
<td>M-H 7 bar</td>
<td>Caleffi</td>
<td>Tmax: 110ºC.</td>
<td>1</td>
<td>9,5</td>
<td>9,50</td>
</tr>
<tr>
<td>Vàlvula esfera</td>
<td>M-H PN 25</td>
<td>Genebre</td>
<td>Tmax: 160ºC.</td>
<td>2</td>
<td>6,95</td>
<td>13,90</td>
</tr>
<tr>
<td>Controlador</td>
<td>TDS 100-2</td>
<td>Junkers-Bosch</td>
<td>3 entrades per a sondes de temperatura.</td>
<td>1</td>
<td>284,35</td>
<td>284,35</td>
</tr>
<tr>
<td>Disipador</td>
<td>Disip Eco1</td>
<td>Salvador Escoda</td>
<td>Vàlvula termostàtica, bateria de dissipació i accessoris.</td>
<td>1</td>
<td>399</td>
<td>399,00</td>
</tr>
<tr>
<td>Conductes</td>
<td>Per concretar</td>
<td>Per concretar</td>
<td>Acoblament amb circuit secundari. Preu aprox.</td>
<td>1</td>
<td>700</td>
<td>700,00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Taula E.5 Cost instal·lació calefacció i ACS. *Les unitats són metres lineals

- **Cost honoraris projectista**

<table>
<thead>
<tr>
<th>Feines</th>
<th>Hores</th>
<th>Preu hora [€/h]</th>
<th>Total [€]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enginyer Junior</td>
<td>200</td>
<td>36,3**</td>
<td>7260,00</td>
</tr>
</tbody>
</table>

**Taula E.6 Cost honoraris instal·lació ACS i calefacció. ** El preu té inclòs l’IVA del 21%.

PREU TOTAL=28901,43€

E.2. Valor Actual Net (VAN)

Per a calcular el VAN s’utilitzarà l’Equació 5.1.

\[
VAN = \sum_{t=0}^{n} \frac{Q_t}{(1 + k)^t} = -Q_0 + Q_1 \cdot (1 + k)^{-1} + Q_2 \cdot (1 + k)^{-2} + \ldots + Q_n \cdot (1 + k)^{-n}
\]

Equació E.1 Càlcul del VAN
E.2.1. VAN instal·lació calefacció

<table>
<thead>
<tr>
<th>Any</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>25</th>
<th>26</th>
<th>...</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversió</td>
<td>26401,09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estalvi energia anual</td>
<td>0,00</td>
<td>1065,05</td>
<td>1097,00</td>
<td>...</td>
<td>2165,03</td>
<td>2229,98</td>
<td>...</td>
<td>2509,86</td>
</tr>
<tr>
<td>Cost energia auxiliar</td>
<td>0,00</td>
<td>-204,53</td>
<td>-210,67</td>
<td>...</td>
<td>-415,77</td>
<td>-428,24</td>
<td>...</td>
<td>-481,99</td>
</tr>
<tr>
<td>Cost manteniment</td>
<td>0,00</td>
<td>-50,00</td>
<td>-50,00</td>
<td>...</td>
<td>-50,00</td>
<td>-50,00</td>
<td>...</td>
<td>-50,00</td>
</tr>
<tr>
<td>Flux tresoreria</td>
<td>-26401,09</td>
<td>810,52</td>
<td>836,34</td>
<td>...</td>
<td>1699,26</td>
<td>1751,74</td>
<td>...</td>
<td>1977,87</td>
</tr>
<tr>
<td>VAN</td>
<td>-26401,09</td>
<td>802,50</td>
<td>819,86</td>
<td>...</td>
<td>1325,03</td>
<td>1352,43</td>
<td>...</td>
<td>1467,43</td>
</tr>
<tr>
<td>VAN Acumulat</td>
<td>-26401,09</td>
<td>-25598,59</td>
<td>-24778,74</td>
<td>...</td>
<td>-281,33</td>
<td>1071,09</td>
<td>...</td>
<td>6765,54</td>
</tr>
</tbody>
</table>

Taula E.7 VAN instal·lació calefacció

Figura E.1 VAN Acumulat instal·lació calefacció

E.2.2. VAN instal·lació ACS

<table>
<thead>
<tr>
<th>Any</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>22</th>
<th>23</th>
<th>...</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversió</td>
<td>4990,71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estalvi energia anual</td>
<td>0,00</td>
<td>235,14</td>
<td>239,84</td>
<td>...</td>
<td>356,39</td>
<td>363,52</td>
<td>...</td>
<td>417,57</td>
</tr>
<tr>
<td>Cost energia auxiliar</td>
<td>0,00</td>
<td>-17,25</td>
<td>-17,25</td>
<td>...</td>
<td>-26,15</td>
<td>-26,67</td>
<td>...</td>
<td>-30,63</td>
</tr>
<tr>
<td>Cost manteniment</td>
<td>0,00</td>
<td>-25,00</td>
<td>-25,00</td>
<td>...</td>
<td>-25,00</td>
<td>-25,00</td>
<td>...</td>
<td>-25,00</td>
</tr>
<tr>
<td>Flux tresoreria</td>
<td>-4990,71</td>
<td>192,89</td>
<td>197,59</td>
<td>...</td>
<td>305,25</td>
<td>311,85</td>
<td>...</td>
<td>361,94</td>
</tr>
<tr>
<td>VAN</td>
<td>-4990,71</td>
<td>190,98</td>
<td>193,70</td>
<td>...</td>
<td>245,24</td>
<td>248,06</td>
<td>...</td>
<td>268,53</td>
</tr>
<tr>
<td>VAN Acumulat</td>
<td>-4990,71</td>
<td>-4799,73</td>
<td>-4606,03</td>
<td>...</td>
<td>-208,54</td>
<td>39,52</td>
<td>...</td>
<td>1857,13</td>
</tr>
</tbody>
</table>

Taula E.8 VAN instal·lació ACS
E.2.3. VAN instal·lació calefacció i ACS

<table>
<thead>
<tr>
<th>Any</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>22</th>
<th>23</th>
<th>...</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversió</td>
<td>28926,86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estalvi energia anual</td>
<td>0,00</td>
<td>1300,19</td>
<td>1336,84</td>
<td>...</td>
<td>2337,70</td>
<td>2404,27</td>
<td>...</td>
<td>2927,43</td>
</tr>
<tr>
<td>Cost energia auxiliar</td>
<td>0,00</td>
<td>-209,92</td>
<td>-216,22</td>
<td>...</td>
<td>-390,51</td>
<td>-402,23</td>
<td>...</td>
<td>-494,69</td>
</tr>
<tr>
<td>Cost manteniment</td>
<td>0,00</td>
<td>-50,00</td>
<td>-50,00</td>
<td>...</td>
<td>-50,00</td>
<td>-50,00</td>
<td>...</td>
<td>-50,00</td>
</tr>
<tr>
<td>Flux tresoreria</td>
<td>-28926,86</td>
<td>1040,27</td>
<td>1070,63</td>
<td>...</td>
<td>1897,19</td>
<td>1952,04</td>
<td>...</td>
<td>2382,74</td>
</tr>
<tr>
<td>VAN</td>
<td>-28926,86</td>
<td>1029,97</td>
<td>1049,53</td>
<td>...</td>
<td>1524,19</td>
<td>1552,73</td>
<td>...</td>
<td>1767,81</td>
</tr>
<tr>
<td>VAN Acumulat</td>
<td>-28926,86</td>
<td>-27896,89</td>
<td>-26847,36</td>
<td>...</td>
<td>-1156,25</td>
<td>396,49</td>
<td>...</td>
<td>12110,19</td>
</tr>
</tbody>
</table>

Figura E.2 VAN Acumulat instal·lació ACS

Taula E.9 VAN instal·lació calefacció i ACS

Figura E.3 VAN Acumulat instal·lació calefacció i ACS