
Development of an Excel VBA library for the Internet of Things Pág. 1

Abstract

The objective of this project is to create a library of functions and procedures for Microsoft

Excel. This library is used to treat data generated by Internet of Things devices.

To accomplish this goal, it’s necessary to bridge the gap existing between the data

generated and the spreadsheet program of choice that could easily handle this data, in this

case Microsoft Excel.

This missing link comes in the form of a library written in “Visual Basic of Applications”

(VBA), the language that Microsoft Excel uses for user defined operations.

This project contains the background and state of the art of the technologies involving the

“Internet of Things” at the moment of its conception.

An Evaluation Board is used to emulate the behavior of different possible devices that could

belong to the Internet of Things category.

The project contains explanations of the main concepts related to the “Internet of Things”, it

also explores and discusses how to best approach the conception of the library. Once the

objectives are narrowed, it presents the code implemented with detailed explanation of the

structures used.

The main objective is to properly retrieve and present data obtained with the evaluation

board. This is accomplished by structuring a library with four modules related to each other.

These modules are used to: (1) retrieve the data information using Http requests, (2) format

the data in a way that is useful to treat and interpret, (3) create a program that automates

these procedures and presents data reports that make it easy to manage data, and finally

(4) present library description and provide help to the user so doubts and issues

encountered can be solved.

After the library code is explained, validation tests are made to demonstrate the

performance of the processes and functions contained in the library.

The result of the project is a solid library written in “Visual Basic for Applications”, composed

by four modules that can be upgraded or changed individually to perform new custom

applications.

This library accomplishes the objective of providing a useful tool to both users and

researchers.

Pág. 2 Report

Development of an Excel VBA library for the Internet of Things Pág. 3

Table of contents

ABSTRACT ___ 1

TABLE OF CONTENTS ___ 3

1. PREFACE __ 7

1.2. Project origin .. 7

1.3. Motivation ... 7

1.4. Prerequisites .. 8

2. INTRODUCTION ___ 9

2.1. Project Objectives .. 9

2.2. Long term goal ... 9

3. STATE OF THE ART ______________________________________ 11

3.1. The Internet of Things .. 11

3.2. Low Power Wide Area Network ... 14

3.3. SIGFOX technology ... 18

3.4. EVB TD 1204 ... 20

3.5. IoT device emulation .. 22

4. LIBRARY DEVELOPMENT _________________________________ 26

4.1. Research: API, SENSOR, JSON language and VBA language.................. 26

4.2. Desired functionality of the library. ... 31

4.3. Code structure and implementation ... 40

4.3.1. General considerations ... 40

4.3.2. TDdeviceAPI library .. 42

4.3.3. Program structure ... 49

4.3.4. Report format .. 55

4.3.5. User interface ... 56

4.3.6. TDfunctionsDescriptions ... 59

4.4. Library diagram .. 60

5. TEST AND VALIDATION ___________________________________ 62

5.1. TDdeviceAPI functions ... 62

5.2. Report Generation Program ... 63

5.3. User interface parameters ... 65

5.4. Miscellanea .. 66

Pág. 4 Report

6. BUDGET __ 67

7. ENVIRONMENTAL IMPACT ________________________________ 68

CONCLUSIONS __ 69

ACKNOWLEDGMENTS __ 71

BIBLIOGRAPHY __ 73

Development of an Excel VBA library for the Internet of Things Pág. 5

Development of an Excel VBA library for the Internet of Things Pág. 7

1. Preface

1.2. Project origin

The idea of this project was born after the realization that most data generated by devices

connected to the internet of things networks lacked interpretation and study. In particular,

the evaluation boards used in research projects, where the data study should be a major

part to arrive at conclusions with confidence.

Therefore, there is a need to create or use an existing tool to be able to treat this data. This

tool chosen is “Microsoft Excel”, which can be useful because of its widespread knowledge

and easy access.

To reconcile the idea of using “Microsoft Excel” to treat the data created by the devices

connected to IoT networks is necessary to bridge the gap between these two.

The missing element is a library of functions and procedures, written in the “Microsoft Excel”

language: Visual Basic for Applications (VBA).

1.3. Motivation

The main motivation of this project is to gain insight of the raising technologies revolving the

Internet of Things. This motivation comes from the realization that the tendency of the world

is to interconnect everything, to either gain control over things or optimize procedures and

requirements.

It is also worth noticing that this kind of new technologies are well accepted and assimilated

by the majority of population, making it a good field to innovate and produce new ideas.

Even though some people might argue there is no need to dedicate efforts to develop this

kind of technologies, I believe that researching every type of new technology aids in the on-

going process of acquiring knowledge, and at worst, makes it clear that certain line of work

is not to be continued, only to discover a better path to be followed.

The possibilities are infinite and most of the scenarios that could arise by developing this

kind of technologies could take huge leaps in reduction of energy consumption, monitoring

Pág. 8 Memoria

health, reduce environmental and economic cost of logistics followed by a plethora of

benefits and utilities.

1.4. Prerequisites

In order to conceive this project, it is necessary to possess an understanding of the state of

the art of the technologies involved, such as “low power-wide area” networks (e.g.

SIGFOX), emission of messages using this technology, gateways and device operational

features and structure.

It was also necessary to achieve a high degree of understanding of the language the library

is to be written in: Visual Basic for Applications, as well as a fluent use of Microsoft Excel

and achieving even higher competence is tied to learning the language above mentioned.

Furthermore, it is required to have access to the support material used. The hardware used

is an evaluation board (EVB TD 1204) that emulates the behavior of some devices that

could be used in real applications related to the IoT.

Finally, it is also essential to understand how this evaluation board operates and how to use

it correctly.

Development of an Excel VBA library for the Internet of Things Pág. 9

2. Introduction

2.1. Project Objectives

The objective of this project is to create an Excel VBA library for the IoT (Internet of Things).

The successful creation of this library will be determined upon functionality and reliability of

the code implemented. The code structure must be solid and support different operational

conditions.

Additional objectives are the test and validation of all the structures contained in the

designed in a library as well as providing explanation of the library within the code and

outside the code.

As a consequence, the VBA library has the purpose of aiding future users of devices

connected to Internet of Things networks. It should be easy to understand and use to both

advanced users and beginners.

Another objective is to get to understand how the data is generated and retrieved by the

devices connected to Internet of Things networks.

To achieve this objectives, comprehension of the “Evaluation Board TD1204” will be

quintessential. This evaluation board contains a microcontroller and several external devices

that generate data to simulate the behavior expected in an actual device.

The creation of applications in a network environment or the creation of Internet

communications applications is excluded from the original objective list.

Thus focusing mainly on data retrieval and data presentation.

2.2. Long term goal

The final goal of this project is to provide a tool for users of devices that belong to the

Internet of Things, as well as provide a framework to develop new projects related to the

IoT.

If the project succeeds, users of mentioned devices should be able to comfortably treat data

generated by their devices using the widely known worksheet program “Microsoft Excel”.

Pág. 10 Report

The project should be able to provide either a starting point, or a tool to be used in future

projects involving the IoT.

Development of an Excel VBA library for the Internet of Things Pág. 11

3. State of the Art

3.1. The Internet of Things

The Internet of Things is a broad concept that is used to define the internetworking of

physical devices, vehicles, buildings and other items. This items are embedded with

electronics, software, sensors, actuators, and network connectivity that enable these objects

to collect and exchange data.

"Things," in the IoT sense, can refer to a wide variety of devices such as heart monitoring

implants, biochip transponders on farm animals, electric clams in coastal waters,

automobiles with built-in sensors, DNA analysis devices for environmental/food/pathogen

monitoring or field operation devices that assist firefighters in search and rescue operations.

These devices collect useful data with the help of various existing technologies and then

autonomously flow the data between other devices.

This kind of data flow between devices is known as machine to machine communications

(M2M).

The range of possibilities that the Internet of Things may offer is enormous and many fields

can incorporate elements of it to increase efficiency and enhance performance in many

problems that may arise.

Some of the current fields that are developing applications related to the Internet of Things

are the following:

1- Smart Home: e.g. Smart Thermostat, Smart Fridge, Connected Lights, Smart Door

lock.

2- Wearables: e.g. Smart Watch, Activity Tracker, Smart Glasses.

3- Smart City: e.g. Smart Parking and Smart Waste Management.

4- Smart Grid: e.g. Smart Metering.

5- Industrial Internet: e.g. Remote Asset Control.

6- Connected Car: e.g. Remote Car Control.

Pág. 12 Report

7- Connected Health: e.g. Cardiac Pacemaker monitoring.

8- Others fields like Smart Retail, Smart Supply-Chain and Smart Farming.

A quotidian example of what the Internet of Things may offer if fully operational is shown in

the next figure (Figure 4-1.).

Figure 3-1. Internet of Things list. [1]

Figure 4-1. describes a day cycle where the devices collect and send data to optimize

various procedures.

This procedures and operations could be automated and treated by the user by using a

remote device, for example a smartphone.

Development of an Excel VBA library for the Internet of Things Pág. 13

Using a remote device, the user could control all kinds of devices. The following figure

(Figure 4-2.) shows a model of communication between the user and the devices.

Figure 3-2. IBM model for the Internet of Things [2]

To sum up, the Internet of Things is a broad term that involves the M2M communications

between devices and the applications developed in many fields with the purpose of using

data to optimize processes and increase efficiency in any way possible.

Pág. 14 Report

3.2. Low Power Wide Area Network

M2M and IoT will give rise to billions of nodes that require connecting. Most of these will

require only low bandwidth to transfer small amounts of data. Some will also require this to

be connected over distances greater than those achievable simply by a transmitter on its

own.

For many of these applications, the traditional cellular phone systems are too complex to

allow low power operation, and too costly to be feasible for many small nodes (devices). In

contrast, Low Power Wide Area Network technologies are a proper way to achieve low

power operation of the devices.

The requirements of these kind of devices (IoT devices) must be supported by the network

chosen.

One fundamental characteristic of these type of devices is very low power consumption

which ensures a large lifetime without the need to change or recharge batteries. This is

essential characteristic since one of the premises of the Internet of Things is the ability to

control “Things” from afar and/or ensure that M2M communications are not interrupted.

Another important characteristic is the ability to have long range transmissions since some

applications may involve collecting and sending data from devices that are far from one

another. It is also important to have excellent geographic coverage, even in rural areas, for

the same reasons that it is important to have long range transmissions.

Furthermore, because of the nature of the M2M communications in the IoT, the amount of

information inside a message can be small (a few hundred bit/s or less).

Different wireless technologies cover different applications regarding range and bandwidth

(Figure 4-3.). Long-range applications with low bandwidth requirements commonly found in

IoT and M2M scenarios are not well supported by existing technologies (look Figure 4-3.).

LPWAN technologies target these emerging applications and markets.

Development of an Excel VBA library for the Internet of Things Pág. 15

Figure 3-3. Range and Bandwidth array of networks. [3]

LPWAN technologies support the requirements needed for IoT communications. The

advantages of direct connectivity or gateway connectivity as explained in “Overview of

Emerging Technologies for low power wide area networks in internet of things and M2M

scenarios.” [3] are:

The wireless portion of LPWAN networks uses a star topology. This obviates the need for

complicated wireless mesh routing protocols which would greatly complicate the

implementation of end devices and drive up power consumption.

A. Direct device connectivity (base station):

1- A base station provides connectivity to a large number of devices.

2- The traffic is backhauled to servers (cloud) through TCP/IP based networks

(Internet).

3- The base station is responsible for protocol translation from IoT protocols

such as MQTT or CoAP to device application protocols.

B. Indirect device connectivity through a LPWAN gateway:

1- In setups where devices cannot be directly reached through LPWAN, a local

gateway bridges LPWAN connectivity to some short range radio (SRD)

technology (e.g. ZigBee, BLE).

Pág. 16 Report

2- The gateway usually runs on mains power since it serves a larger number of

devices and must convert between LPWAN and SRD radio technologies and

protocols.

3- Gateways may help to improve security, since more powerful security

algorithms can be implemented on the gateway than on the constrained

devices.

In the still evolving IoT and M2M markets, a few competing radio technologies are

emerging. These kind of technologies have in common the use of frequencies lower than

2.4GHz or 5.8GHz to achieve better penetration into buildings or underground installations.

Work is still in progress in most of these technologies but the ability to have long-ranged

emissions, big geographical coverage and allow little power consumption, make this kind of

technologies a good candidate for IoT communications.

Some of the LPWAN technologies are:

“Greenwaves”: a low-power, long range offering.

“Haystack”: a DASH7 low-power wireless network development platform.

“LoRaWAN”: LoRa Alliance’s Long Range WAN.

“LTE-MTC”: a development of LTE communications for connected things.

“RPMA”: On-Ramp Wireless’s Random Phase Multiple Access.

“Symphony Link”: from Link Lab.

“ThingPark Wireless”: Actility’s development of the LoRaWAN.

“UNB (Ultra Narrow Band)”: from various companies including Telensa, NWave and Sigfox.

“Weightless”: from the Weightless SIG.

“WAVIoT”: Narrowband M2M protocol.

Each one of them has different operational procedures, and some parameters like

bandwidth and power consumption may vary slightly from one to another. Furthermore,

some have open standards while others don’t, for example LoRaWAN uses “Semtech”

chips only.

Development of an Excel VBA library for the Internet of Things Pág. 17

The LPWAN technology used in this project is SIGFOX technology, which uses UNB (Ultra

narrow band). This is due to the fact that the evaluation board used to emulate the IoT

devices send data to SENSOR, which is a platform of “Telecom Design”, that uses the

SIGFOX network.

Pág. 18 Report

3.3. SIGFOX technology

SIGFOX technology’s name is given after the French company that created it (“SIGFOX”).

SIGFOX employs a cellular style system that enables remote devices to connect using ultra-

narrow band (UNB) technology [4].

When a message is sent from the device, there is no signaling, nor negotiation between the

device and the receiving station. The device decides when to send the message, picking up

a pseudo-random frequency.

It's up to the network to detect the incoming messages, as well as validating & reduplicating

them.

The message is then available in the SIGFOX cloud, and forwarded to any third party cloud

platform chosen by the user. In this project, SENSOR platform from Telecom Design is

chosen as the third party cloud.

The SIGFOX network is aimed at providing connectivity for a variety of applications and

users.

 The SIGFOX network performance is characterized by the following:

1- Up to 140 messages per object per day.

2- Payload size for each message is 12 bytes.

3- Wireless throughput up to 100 bits per second.

However, these limitations do not prevent the transmission of coded messages to

implement actions at the backend, due the fact that with 12 bytes one can represent plenty

of coded actions.

This fact provides either a way to exchange simple information, or complex codes that can

be decoded at the backend.

The SIGFOX network is relying on Ultra-Narrow Band(UNB) modulation, and operating in

unlicensed sub-GHz frequency bands [5].

This protocol offers a great resistance to jamming & standard interferers, as well as a great

capacity per receiving base stations.

Development of an Excel VBA library for the Internet of Things Pág. 19

 SIGFOX complies with local regulations, adjusting central frequency, power output and

duty cycles.

The following table shows which frequency and regulation is applied in each region:

(Figure 4-4.).

Region

Frequency Regulation

Europe, Middle East - Radio Zone 1 868MHz ETSI 300-220

North America - Radio Zone 2

902MHz FCC part 15

South America, Australia, New Zealand - Radio

Zone 4

920MHz

ANATEL 506, AS/NZS
4268

Figure 3-4. SIGFOX network frequency and regulation[5]

Regarding security of the information sent, every message is signed with information unique

to the device (including a unique private key) and to the message itself.

Encryption and scrambling of the data are supported by the technology.

The information sent with the device will be accessed through the platform SENSOR of the

third party chosen: TD (Telecom Design).

Pág. 20 Report

3.4. EVB TD 1204

To emulate the behavior of an IoT device, an evaluation board containing a SIGFOX

gateway will be used. This evaluation board contains the gateway TD 1204, which was

designed by Telecom Design, and manufactured and supplied by “AVNET Silica”.

TD1204 devices are high performance, low current SIGFOX gateways, RF transceiver and

GPS receiver.

The TD1204 device versatility provides the gateway function from a local Narrow Band ISM

network to the long-distance Ultra Narrow Band SIGFOX network.

The TD1204 device offers a RF sensitivity of –126 dBm while providing an output power
of up to +14 dBm.

The TD1204 device versatility provides the gateway function from a local Narrow Band
ISM network to the long-distance Ultra Narrow Band SIGFOX network.

Moreover, the fully integrated on-board GPS receiver combines sensitivity with ultralow
Power.

The next figure shows a detail of the TD1204 on the evaluation board (Figure 4-5).

Figure 3-5. TD1204. [own source]

Development of an Excel VBA library for the Internet of Things Pág. 21

The Evaluation Board of the TD1204 incorporates:

An ARM Cortex M3 processor of 32 bits banded base.

A RF transceiver.

High efficiency GPS receiver

3D accelerometer with movement detector and free fall detector.

Digital and Analog interface.

Low potency LVTTL UART

I2C Bus.

Timers capable of counting pulses(input) or PWM(output).

Two High Resolution A/D converter ad one D/A converter.

Many input and output pins (GPIO).

The next figure shows the Evaluation Board EVB TD1204 (Figure 4-6.).

Figure 3-6. EVB TD1204. [own source]

Pág. 22 Report

3.5. IoT device emulation

The EVB TD 1204 is used to simulate the behavior of IoT devices.

To begin with, the EVB TD1204 must be connected to the terminal from where it will receive

the orders. In this project, a PC was used as the terminal.

In order to send messages, I installed an FDTI VPC driver, which allowed me to use the

USB port as an VPC (Virtual Port Channel).

I used the FDTI VPC driver that was suggested by Telecom Design [6].

The EVB TD1204 is connected using the USB port of the PC, (Figure 4-7).

Figure 3-7. EVB TD1204 connected to the PC with antenna. [own source]

Then I installed “PuTTy”, which is a HyperTerminal session program. Using “PuTTy” I was

able to communicate with the EVB using the VPC created by the FDTI VPC driver. I chose

the Serial option in the communications interface of “PuTTy” (Figure 4-8.).

Development of an Excel VBA library for the Internet of Things Pág. 23

Figure 3-8. Putty connections interface. [own source]

The Evaluation Board TD 1204 contains an “AT” command shell to interconnect the EVB

TD 1204 with another device that operates as host sending commands in AT mode and

receiving responses to these commands.

This way AT commands can be sent using a personal computer (PC), an external

microprocessor or programming the internal ARM Cortex.

I used a PC to send the AT commands.

It is useful to send commands to the EVB 1204, so after the messages are sent via

SIGFOX technology and arrive to the TD servers, the data we can retrieved.

To produce enough database to analyze the type of messages to be retrieved by the library

functions, it was necessary to learn how the AT commands worked.

Once inside “PuTTy” and using the TD1204 Reference Guide I sent many messages of

each kind of message that could be emulated with the evaluation board.

Pág. 24 Report

Each message belonged to one these categories:

1. Register: Device registration to the TD platform SENSOR.

2. Event: A discrete event regarding one of the next categories

2.1: Battery

2.2: Temperature

2.3: Switch

2.4: Connection

2.5: Rssi

3. Data: GPS data message with latitude, longitude, altitude, quality and satellites in

view parameters. Or represents the data of a PHONE number.

4. Service: Data of either an SMS message or a TWEET message.

5. Keepalive: Signal sent by the device periodically to monitor certain parameters like

voltage, temperature and frequency.

6. Raw: Hexadecimal message with no codification. It can be retrieved as raw

message or as an ASCII conversion of the message.

Development of an Excel VBA library for the Internet of Things Pág. 25

The next figure shows the console to interact with the evaluation board (Figure 4-9.).

Figure 3-9. PuTTy Console. [own source]

After sending enough messages, I was able to begin the library development.

Pág. 26 Report

4. Library development

4.1. Research: API, SENSOR, JSON language and VBA

language

Before making the library, it was mandatory to understand what an API was (Application

Program Interface). I needed to comprehend what concepts were involved, what kind of

structure was presented and how the information flow worked.

An application programming interface (API) is a set of routines, protocols, and tools for

building software applications. An API expresses a software component in terms of its

operations, inputs, outputs, and underlying types. An API defines functionalities that are

independent of their respective implementations, which allows definitions and

implementations to vary without compromising each other. A good API makes it easier to

develop a program by providing all the building blocks.

An API may be used for a web-based system, an operating system, a database system,

computer hardware, or software library.

A simpler way to understand it, for the illiterate in the matter (as I was when I started the

project) is to think about an API as all the structures (protocols, definitions, subroutines,

etc.) that allow the programmer to create a program in a higher level of abstraction without

worrying about the levels underneath the API.

A good metaphor using quotidian concepts for web based API is the following:

In a restaurant, a customer sitting at a table makes an order. The action of ordering food

may be compared to the action of requesting information. The kitchen is where the

ingredients are and the food is prepared, so it may be compared to the database. What is

missing? You may ask.

The messenger is missing, the waiter or waitress that takes the order and brings it to the

kitchen and after the order is processed brings the food to the customers. So an API is the

messenger that gets the requests of information, gets the message to the proper

destination, and when the information is ready to be delivered back, is the one that does it.

Development of an Excel VBA library for the Internet of Things Pág. 27

The kind of API the project will work with is a Remote API implemented in the platform

SENSOR (TDNEXT SENSOR). [7]

SENSOR is a platform developed by Telecom Design that is in charge of data gathering

and storage, global M2M operation management, metrics computation and business service

provider through DSL’s remote endpoint exposition.

According to the developer, SENSOR is designed to cope with the worst environments; as

poor bandwidth, low memory or low CPU consumption. These are fitting requirements for

the Internet of Things.

Sensor has two API’s: (Figure 5-1.)

Figure 4-1. Sensor TD1202 remote Interfaces. [7]

1- A Live API that is related to the Callback of an event, which provides real time

notification upon event broadcast. The user can either check the notifications

through an on-line Dashboard or via the user’s backend in case an application is

configured. The next figure shows the device dashboard provided. (Figure 5-2.)

Pág. 28 Report

Figure 4-2 Device Dashboard overview. [7]

The information provided inside the on-line dashboard is a summary of basic

parameters and basic message information.

The following figure (Figure 5-3.) shows the message information that was sent with

the AT commands using the HyperTerminal program “PuTTy”.

Figure 4-3. Device API Message Information. [7]

2- A remote API that is used to retrieve and send information. The way of doing so is

by making requests via SSL against the URL of the remote API.

URL: [https://sensor.insgroup.fr]

https://sensor.insgroup.fr/

Development of an Excel VBA library for the Internet of Things Pág. 29

This remote API consists of two sub-API’s. The first one is the device API [8], which can

handle module operations as well as access to the stored data.

The second is the developer API which can be used to handle personal information and

the applications built by the developer.

At first glance, the access to the stored data becomes the most appealing feature of the

API. In particular Fetching messages history (Figure 5-4.).

Figure 4-4. Device API. Fetching History messages detail [8]

At this point, the structure of the URL requests displayed the need to understand the

language in which the information was stored. The language is JSON (JavaScript Object

Notation).

At the beginning of the project I had some knowledge about XML but none of JSON.

Therefore, I researched to understand the structure and behavior of this language. I used a

visualization tool throughout the project that I found very useful [9].

This tool allowed me to understand the structure of the arrays and fields present within a

message written in JSON.

Pág. 30 Report

The next figure shows the text in JSON inside the left window and the structure of the text in

the right window (Figure5-5.)

Figure 4-5. JSON parser Tool online. [9]

At this point I also researched the GET and POST methods used to make the requests [10].

This linked with the research and understanding of the language I was going to program the

library with: VBA (Visual Basic for Applications).

VBA is an implementation for “Microsoft Office” programs like ”Microsoft Excel” and

“Microsoft Access” of the event-driven language VB (Visual Basic).

VBA enables building user-defined functions (UDFs), automating processes and accessing

Windows API.

Before I was confident enough to begin writing code, I researched and practiced examples

of different sources as “VBATutorialPoint” [11], MSDN VBA [12] and the content of the

website of “Pearson Consulting” [13].

Development of an Excel VBA library for the Internet of Things Pág. 31

4.2. Desired functionality of the library.

When all the basic concepts were consolidated it was time to determine what shape the

library for the Internet of Things would have and also to understand how it could be useful.

The creation of a library of functions for “Microsoft Excel” in VBA is to create a tool that

helps people conciliate the relatively new and arising technologies related to the Internet of

Things and the comfort of managing data with a well stablished program like “Microsoft

Excel”.

“Microsoft Excel” is a program used mainly as a calculation tool via spreadsheets, pivot

tables and macros. This means the main functionality of the library should be a way to

introduce the data related to the Internet of things into “Microsoft Excel” so the user could

easily use and tweak data.

Having this insight, it is only natural to focus especially on the data retrieval of the messages

emitted by the Internet of Things devices, which in our case are emulated by the TD EVB

1204.

To retrieve automatically the data sent with an IoT device, that is stored at SENSOR, HTTP

requests to the SENSOR site must be made. This requests are done according to the API’s

presented in the previous chapter 5.1.

Therefore, I proceeded to examine the list of requests that could be made using the Remote

API and I figured out what functions could be made that benefited from these data requests.

The list of requests available in the Device API is: [8]

1. Authentication request:

Using the GET method and sending the ID and the Key numbers of the module, the

API returns a token used as a Header for all other requests of the device.

2. Device information request. Get PAC serial number:

Using the POST method and posting the ID and Key numbers of the module, the

API returns the device’s PAC number.

3. Device messages request. Fetch messages history:

Pág. 32 Report

Using the GET method, sending the ID and Key numbers of the module and the

optional parameters “number of messages to retrieve” and “date limit”, the API

returns the list of messages (default to 20) stored since the first use of the module

until the Date limit (default to the date and time of the request, also referred as

“now”).

4. Device messages request. Fetch recent messages:

Using the GET method, sending the ID and Key numbers of the module and the

optional parameters “number of messages to retrieve” and “date limit”, the API

returns the list of messages (default to 20) stored since the date limit (default to

now) until now.

5. Device messages request. Fetch raw messages history:

Using the GET method, sending the ID and Key numbers of the module and the

optional parameters “number of messages to retrieve” and “date limit”, the API

returns the list of raw messages (default to 20) stored since the date of module first

use until date limit (default to now). Raw messages are messages coded by the

module and not decoded.

6. Device message request. Fetching devices:

Using the GET method, sending the ID and Key numbers of the module, the API

returns an Array of IoT devices registered behind a gateway module.

7. Device message request. Clear messages request:

Using the POST method and posting the ID and Key numbers of the device, clears

all the messages stored in the record.

8. Device Operations. Changing device functional status:

Using the POST method and posting the ID and Key numbers and also the new

device state value, updates the device state value.

9. Device Operations. Toggle device active flag:

Using the POST method and posting the ID and Key numbers and also the new

active flag value, updates the device active flag value.

10. Device Operations. Toggle device monitoring flag:

Development of an Excel VBA library for the Internet of Things Pág. 33

Using the POST method and posting the ID and Key numbers and also the new

monitoring flag value, updates the device monitoring flag value.

11. Device Operations. Change device “bidir” (bidirectional) value: Using the POST

method and posting the ID and Key numbers and also the new “bidir” value, updates

the device “bidir” value.

To successfully Authenticate and make an HTTP request is essential to automate the data

retrieval. (adding the parameters needed depending on what is needed for each function.)

Unlike the Device API the Authentication token used for the header in the requests is not

available via request itself. It can only be obtained by entering the Developer Dashboard

once registration of the developer account has been created.

The next figure (Figure 5-6.) shows the developer dashboard and the Authentication token

present as a String at the right of the screen.

Figure 4-6. Developer Dashboard. [7]

The list of requests available in the Developer API is:

1. Developer Information. Update password:

Using the POST method by using basic HTTP authentication provided by the

developer token in the developer dashboard and sending as parameters the email,

Pág. 34 Report

the old password, the new password and the new password again for confirmation,

updates the password of the developer account.

2. Developer Information. Update GIT Alias:

Using the POST method by using basic HTTP authentication provided by the

developer token in the developer dashboard and sending as parameters the email,

and the developer’s GIT Alias, updates the GIT Alias.

3. Developer Information. Get all your PAC serial numbers:

Using the POST method by using basic HTTP authentication provided by the

developer token in the developer dashboard, it returns a text stream with all your

registered modules PAC key numbers.

4. Handling Apps. IoT application listing:

Using the GET method by using basic HTTP authentication provided by the

developer token in the developer dashboard, it returns the list of IoT applications in

the developer account.

5. Handling Apps. IoT application creation/update:

Using the POST method by using basic HTTP authentication provided by the

developer token in the developer dashboard, and sending a JSON serialized string

of the application information, it creates or updates the application information

created by the developer.

6. Handling Apps. IoT application deletion:

Using the DELETE method by using basic HTTP authentication provided by the

developer token in the developer dashboard, and sending a JSON serialized string

of the Application technical ID found in the developer dashboard, it deletes said

application.

The list of requests in the developer API contains extra requests to handle specifics of the

applications created with the developer functionality of SENSOR developer Dashboard.

Once the API requests have been explained it’s time to discuss which of them are useful

and why. Keeping in mind that the focus and main goal is to accomplish an effective and

efficient data retrieval of the messages emitted by the Internet of Things devices.

Development of an Excel VBA library for the Internet of Things Pág. 35

The most relevant to what I’m targeting are the following from the “device API”:

“1. Authentication request” and “3. Device messages request. Fetch messages history”.

Those two offer the possibility to retrieve all the data of each message of an IoT device.

Therefore, they will be the main way of retrieving data. It is important to note that the data is

obtained as a string of JSON format and should be formatted to a more desirable way to be

able to properly work with it.

Moving to the next category, the following are redundant in the purpose of retrieving the

data of each message:

“2. Device information request. Get PAC serial number”, “4. Device messages request.

Fetch recent messages” and “5. Device messages request. Fetch raw messages history”.

The PAC key is not needed for authentication if the Module Key is used, fetching messages

by recent is a way of rewording the content of fetching messages by history and fetching

raw messages that need to be decoded is a step back to working with clear data.

The API request “6. Device message request. Fetching devices” could be useful if a lot of

devices where connected forming a net. It could be used to link data between devices and

try to figure out patterns to optimize the network. However, in some applications the device

is an individual with a collection of sensors which would make this request rather useless.

The following five requests could be useful pointing in another direction than data study.

7. “Device message request. Clear messages request”, “8. Device Operations. Changing

device functional status”, “9. Toggle device active flag, “10. Device Operations. Toggle

device monitoring flag” and “11. Device Operations. Change device “bidir” (bidirectional)

value”. All these are designed to accomplish automated operational changes of the device

which is more in line with the last category. Nevertheless, they will be implemented.

Finally, the developer API requests are either for profile editing or for handling applications

created by the developer to automate the behavior of the devices.

The handling and creation of applications is on a different path from the target of this

project, which is more centered around data retrieval and clear data presentation.

Pág. 36 Report

Despite being a somewhat useful option to have these requests automated in the form of a

function inside “Microsoft Excel”, the fact that the main effort of the project differs from

application developing and also the need to have internet connection to check for the

authentication token that is required in the developer’s API, make this functions not a priority

for the library.

As a result of this analysis, from this lists of possible requests, a new list of possible

functions is created. Some are directly related to a particular request and some are derived

from a particular request.

The functions that will be implemented are:

(Note that are presented with the VBA header; the arguments are: “id” represents the

identification module number, “key” represents the key module number, “n” represents the

number of messages to be retrieved, “gmt” represents the date limit of the data retrieval,

“m” represents the position of a message in a chain of “n” messages, “value” represents the

new operational value for certain functions, “Adminpass” represents the administrator

password to make operational changes in the device)

1. Function GetToken (id, key) As String:

This function gets the authentication token for the device API requests. This function

is essential to make all the HTTP requests.

2. Function GetDataHistory (id As String, key As String, n As Integer, gmt As String)

As String:

This function gets all the data available contained in the messages at SENSOR.

This function is essential to retrieve full data information.

3. Function GetPayloadMessage (id, key, n As Integer, gmt As String, m As Integer)

As String:

This function gets punctual payload data from a single IoT message. It allows the

user to retrieve the payload of a punctual message

4. Function GetTypeMessage (id, key, n As Integer, gmt As String, m As Integer) As

String:

This function gets punctual type of message data from a single IoT message. It

allows the user to retrieve the type of a punctual message.

Development of an Excel VBA library for the Internet of Things Pág. 37

5. Function GetAsciiMessage (id, key, n As Integer, gmt As String, m As Integer) As

String:

This function gets punctual ASCII message data from a single IoT message. It

allows the user to retrieve the ASCII message encoded in the payload, being either

a raw type message or a data type message.

6. Function GetEncodedMessage (id, key, n As Integer, gmt As String, m As Integer)

As String:

This function gets punctual encoded message data from a single IoT message. It

allows the user to retrieve the encoded message of a punctual message.

7. Function Get Coordinates (id, key, n As Integer, gmt As String, m As Integer) As

String:

This function gets punctual coordinates data from a single IoT message. It allows

the user to retrieve latitude and longitude of a single message.

8. Function GetFieldData (id, key, n As Integer, gmt As String, m As Integer) As String:

This function gets the information of the field data from a single IoT message.

9. Function GetPAC (id As String, key As String) As String:

This function gets the PAC key of the module. It can be used by the user to replace

the key parameter if needed.

10. Function GetDataRecent (id As String, key As String, n As Integer, gmt As String)

As String:

This function gets all the data from IoT messages by method recent.

11. Function GetChildren (id, key) As String:

This function gets the children information of a gateway module.

12. Function ClearData (id, key, Adminpass As String) As String:

This function clears data from the IoT messages database providing the admin pass

first. The user can erase the database at SENSOR.

13. Function ChangeDfuncstat (id As String, key As String, value As Variant, Adminpass

As String) As String

Pág. 38 Report

This function changes the device functional status value. It needs password.

14. Function Toggleactiveflag (id As String, key As String, value As Variant, Adminpass

As String) As String:

This function toggles the active flag value of the module. It needs password.

15. Function Togglemonitorflag (id As String, key As String, value As Variant,

Adminpass As String) As String:

This function changes the monitoring flag value of the module. It requires password.

16. Function ChangeBidir (id As String, key As String, value As Variant, Adminpass As

String) As String:

This function changes the bidirectional value of the module. Requires password.

17. Function GetLastSeen (id, key, n As Integer, gmt As String, m As Integer) As String:

This function recovers the last date the device was operational. It requires the user

to state the date limit.

18. Function GetFirstSeen (id, key, n As Integer, gmt As String, m As Integer) As String:

This function recovers the first date the device was operational.

19. Function GetMessageSent (id, key, n As Integer, gmt As String, m As Integer) As

String:

 This function recovers the date on which a punctual message was sent by the

device.

20. Function GetMessageReceived (id, key, n As Integer, gmt As String, m As Integer)

As String:

This function recovers the date on which a punctual message was received by

SENSOR.

21. Function GetTravelTimeMessage (id, key, n As Integer, gmt As String, m As

Integer) As String:

This function recovers the time difference between the date the message was

received by SENSOR and the date the message was sent by the device. Usually,

around 2 to 4 seconds.

Development of an Excel VBA library for the Internet of Things Pág. 39

22. Function GetCurrentMessagesServer (id, key, gmt As String) As String:

This function recovers the current number of messages stored at SENSOR.

23. Function GetTotalMessagesServer (id, key, gmt As String) As String:

This function recovers the total number of messages that have been stored at

SENSOR at some point.

Some of this functions are related directly to a function from the device API, and some are

derived from the functions in the API.

These functions constitute a wide range of possibilities to retrieve data that might be useful

to the user.

By retrieving punctual information that might constitute an interesting value to create an

application, or by retrieving full data information capable of explaining results or traits of the

devices or by creating a way to interact with the device operational state.

These functions will be part of the library. This will be implemented in a module called

“TDdeviceAPI”.

This module will contain three processes that will be discussed in the next chapter

“HttpRequest”, “HttpRequest2” and “FuncDesc”.

The module “TDdeviceAPI” is the part of the library where all basic actions will be

represented.

Pág. 40 Report

4.3. Code structure and implementation

4.3.1. General considerations

Once the functionality of the library is determined by the premise of presenting usable data,

some issues arise that need to be solved.

Once the first iterations of code were obtained, it was obvious that something was missing

in order to present all the fields containing information that were inside the string of JSON

text of the message. It was necessary to separate the information and allocate each field in

a different cell.

The next figure shows the JSON string obtained by using the function GetDataHistory

(Figure 5-7.).

Figure 4-7. JSON string from GetDataHistory. [own source]

At this point, the idea of creating a program that could automatically generate a report was

conceived. This idea will be developed and the code shown in “5.3.3 Program Structure”.

The second issue was about parsing the information in a JSON string in an effective way. It

is necessary to present the information in a format where each field can be sorted and used

for calculations individually.

This issue was addressed in some iterations, each iteration of the code made it better. In

order to solve a problem in the code I found a piece of code that did very well the same

thing I was attempting to do.

Development of an Excel VBA library for the Internet of Things Pág. 41

After checking the documentation and copyright I found out that it didn’t impose many

restrictions to use it. It stated that if significantly large sections of the code where used “As

Is” it was mandatory to reproduce the copyright text at the beginning of the code.

At first I was only going to take the piece of code I needed, which was a function that

counted and separated the blank spaces inside the JSON string, but I found it would be

more useful to the user to have the full library available so I left it “As Is”.

This library is named “JsonConverter” and the main functionality is to parse JSON string into

a format that “Microsoft Excel” can accurately use. It also contains a function to convert

strings of text to a JSON formatted string.

This second functionality was not used during the creation of the program, but was left

inside the library in case it could be useful in the future.

The next diagram shows the structure of the information flow within the modules we have so

far. 1.“TDdeviceAPI” and 2. “JsonConverter”. (Figure 5-8.)

IN OUT

Function Results

id

key

n

gmt

(m, Admin)

TD device API module

JSON Converter

module

Figure 4-8.Block diagram of the first modules. [own source]

The inputs are the variables id (identification number of the module), key (key number of the

module, n (number of messages to retrieve), gmt (date limit), m (position of a message

within n messages) and Admin (administrator password).

The outputs are the function results of each individual function.

Pág. 42 Report

4.3.2. TDdeviceAPI library

The functions of “TDdeviceAPI” work by a main procedure of Http Request. An Http

Request uses the HTTP protocol to gather data from an URL. The next diagram shows the

structure of the HTTP Requests. (Figure 5-9.)

OUT IN

Url + parameters

Method (GET,POST) IN OUT

Basic user and password (id,key)

SSL authentication (token) Response

Function of

TDdeviceAPI

HTTPRequest

Procedure

Figure 4-9. HTTP Request Procedure Structure. [own source]

I created two procedures within this library to accomplish this. The first is “HttpRequest” and

the second is “HttpRequest2”. The only difference between the two is that HttpRequest2

allows an extra input, needed in some functions as “Function Toggle monitoring active flag

“.

The code of “sub HttpRequest” is:

The header and local variable declaration. (Figure 5-10.)

Figure 4-10 HTTP Request Header and variables

With a select case structure, we create an array of the possible types of Http requests. Each

request is done by creating a “Microsoft.XMLHTTP” object. The methods used in the first

Development of an Excel VBA library for the Internet of Things Pág. 43

GET request are “.Open” to create the structure used in an artificial browser. It requires to

“.SetRequestHeader” to specify the authentication token and the content type. After that the

method “.Send” is used to try to stablish connection with the destination. After connection is

successful or unsuccessful, the fields “Response”, “answer” and “loading” are filled.

Figure 4-11. HTTP Request GET [own source]

The following types of requests are a GET request without the need of extra headers and a

POST request. In the POST request the parameters of “user” and “password” are sent

inside the message (inside .Send). By comparison the parameters in the GET request are

presented in the URL (inside .Open).

Pág. 44 Report

Figure 4-12. HTTP Request GET and POST [own source]

After the connection has been requested, (.Readystate) and (.Status) are checked. The

variable answer is checked to ensure the request code has been successfully delivered (Ok

is 200). Loading is checked to ensure no loading error has occurred. (Ok is 4).

After this, the value of the request in text format is loaded in the variable Response.

Figure 4-13. HTTP Request check connection [own source]

Development of an Excel VBA library for the Internet of Things Pág. 45

The code of a lot of functions is fairly similar. I will expose two interesting cases, “Function

GetDataHistory” as an example of information related to the API request. “Function

GetAsciiMessage” as an example of information derived from the API request and with the

messaged parsed and separated into the categories that are desired to present.

1- “Function GetDataHistory”: the id, key, n and gmt values are the inputs of the

function. The function first calculates the identification token with GetToken(id, key).

After that the URL, method of request and type of request are initialized.

Figure 4-14. GetDataHistory Header and variables [own source]

Next, the HttpRequest procedure is called. Then the Response is analyzed and it

either returns the information as an output or shows a message box indicating what

has gone wrong.

Figure 4-15 GetDataHistory output selection [own source]

Pág. 46 Report

An example of the GetDataHistory response:

Figure 4-16. GetDataHistory Example response. [own source]

2- “Function GetAsciiMessage”: The id, key, n, gmt values are inputs; ‘m’ is also an

input, that represents the position in the chain of “n” messages to be represented.

First the token, URL, request method and request type are initialized. After that the

HttpRequest procedure is called. Once it has a response it checks if there is any error

and properly displays a message box if is the case.

Development of an Excel VBA library for the Internet of Things Pág. 47

Figure 4-17 GetAsciiMessage header, variable and HTTP request [own source]

After that the JSON object is set to parse the information of the response string text.

Once it is done, it continues to evaluate the type of message. (raw or service) to

return the corresponding field (asciiraw or asciidata).

Figure 4-18. GetAsciiMessage output selection. [own source]

An example of the function GetAsciiMessage retrieving the “Ascii” code of a raw

message. (in this case the original data was a raw type data).

Pág. 48 Report

Figure 4-19. GetAsciiMessage response example. [own source]

This two examples illustrate the code developed to create the module TDdeviceAPI.

The next chapter “5.3.3 Program Structure” will discuss the code of the program

implemented. The code will be contained in another module called “TDdataprocess”.

Development of an Excel VBA library for the Internet of Things Pág. 49

4.3.3. Program structure

This chapter discusses the structure of the program created and the functionality of it.

The program contains a set of subroutine and functions that work together to generate data

reports. The reports present data on a spreadsheet with a header corresponding with each

field in a message.

After that, the value of each cell is assigned depending on the header and the message

field.

Next, the program performs format operations (will be explained in the next chapter “5.3.4

Report format”).

Finally, it assigns to a cell the value of the date and time the report was generated.

The program can generate two different kind of reports:

1- “Present Message Data”: report containing the fields that present information about

the message itself, not including the fields that contain information about the device

operational states and behaviors.

2- “Present Full Data”: report containing each field in each message (Up to 67 fields).

Contains both message information and device information.

The program procedure name is “Sub PresentData”:

The header of the program with the input variables id, key, n, gmt, mode, wsname.

“reporttype” is shown in (Figure 5-20).

Figure 4-20. PresentData header and variable declaration. [own source]

Pág. 50 Report

The inputs id, key, n and gmt are explained in the previous chapter “5.3.2 TDdeviceAPI”.

The input “reporttype” is used to select which kind of report is generated.

The input “wsname” is used to choose the name of the worksheet where the report will be

presented.

After variable declaration, a subroutine checks whether a worksheet with “wsname” name

exists or not. In case it already exists, it allows the user to change the name. Finally, the

new worksheet where the report is going to be presented is generated. (Figure 5-21).

Figure 4-21. PresentData worksheet creation. [own source]

Before gathering any data, a message box appears to indicate the user that depending on

the user’s Internet connection or the amount of data in the MS Excel file, the program will

require more time to finish running. This is important because while the program is running,

no other activity can be performed on “Microsoft Excel”.

If the user accepts, the program starts running. First, the data is retrieved using the function

GetDataHistory from the module TDdeviceAPI, after that the data is parsed using the library

“JsonConverter”.

Development of an Excel VBA library for the Internet of Things Pág. 51

The program manages to print the correct data in each cell by going through a matrix

structure. The columns of the matrix correlate to the fields of each message and the rows of

the matrix correlate to each one of the messages that is presented.

After the data is parsed, the counters “i”, “j” (columns) and “k” (rows) that are used to go

through the data are initialized.

Following the initialization of the counter, the program starts a loop for each message

(child). (Figure 5-22.)

Figure 4-22. PresentData Initializing. [own source]

Pág. 52 Report

Figure 4-23 PresentData special case. [own source]

Figure 4-24. PresentData assign values. [own source]

Development of an Excel VBA library for the Internet of Things Pág. 53

Figure 4-25. PresentData restart counters and format changes. [own source]

The first part of the loop is creating the field “msg number” that indicates the order of

messages of the report. (Figure 5-22.)

After that, the program evaluates if the message belongs to a problematic type (“event:

connection”), which may create display issues in the report because it has information

contained in different fields than the other type of messages. In case the message belongs

to this type, a temporal report type (3) is assigned to it. (Figure 5-23.)

Next, for each field (i) in the message, the array depth is checked and the correct

information is assigned to the correct cell. (Figure 5-24.)

After that, the counters advance (Figure 5-25.) and when the first message is completely

printed on the cells of the worksheet, it goes through the matrix again (Figure 5-22.)

Pág. 54 Report

When all the information of every field of every message is printed on the worksheet, the

date of the report generation is created beneath the last message. (Figure 5-25.)

The final stage of the report generation program is to change the format of the cells,

adjusting the width of the columns and transforming data types. (Figure 5-25.)

Development of an Excel VBA library for the Internet of Things Pág. 55

4.3.4. Report format

In order to improve the data presentation of the report, it is necessary to adjust the width of

the columns. To solve this, a process named “autosize” is called. (Figure 5-25.)

An additional display issue has to be solved, the fields “when” and “received” of the report

present the information as an Epoch timestamp by default.

The Unix epoch (or Unix time or POSIX time or Unix timestamp) is the number of seconds

that have elapsed since January 1, 1970 (midnight UTC/GMT), not counting leap seconds

(in ISO 8601: 1970-01-01T00:00:00Z). Literally speaking the epoch is Unix time 0 (midnight

1/1/1970), but 'epoch' is often used as a synonym for 'Unix time'. Many Unix systems store

epoch dates as a signed 32-bit integer, which might cause problems on January 19, 2038

(known as the Year 2038 problem or Y2038). [14]

To solve this problem two functions that transforms Epoch timestamp to date format were

created. (Figure 5-26.) This functions transform the Epoch timestamp to MS Excel

timestamp, which is the number of seconds that have elapsed since January 1, 1900

(midnight UTC/GMT).

Figure 4-26. Epoch to Date functions [own source]

The input of the first function is the epoch timestamp in milliseconds and the input of the

second function is the epoch timestamp in seconds.

Pág. 56 Report

4.3.5. User interface

The user interface developed is based on a message box system that tells the user what

parameters are needed in order to run the program.

The user is asked to enter the values of the parameters using Input boxes.

The data the user enters the program is one of the most problematic points of the program,

because in case the type of data does not match the expected data in the code, the

program may crash.

To avoid this issues, a lot of error handling and testing was done. (Figure 5-27. To Figure 5-

31.)

Figure 4-27. User interface 1. [own source]

Development of an Excel VBA library for the Internet of Things Pág. 57

Figure 4-28. User interface 2. [own source]

Figure 4-29. User interface 3. [own source]

Pág. 58 Report

Figure 4-30. User interface 4. [own source]

Figure 4-31. User interface 5. [own source]

Development of an Excel VBA library for the Internet of Things Pág. 59

4.3.6. TDfunctionsDescriptions

The last of the four modules developed, is created to help the user understand what the

functions built in the module TDdeviceAPI do.

The module uses “Application.MacroOptions” to incorporate the function description and the

function arguments description to the “Insert function” tab in MS Excel.

For example: (Figure 5-32. And Figure 5-33.)

Figure 4-32. Description GetAsciiMessage. [own source]

Figure 4-33. Description GetTotalMessagesServer. [own source]

Pág. 60 Report

4.4. Library diagram

The final library consists of the four modules explained in the previous chapters. These

modules are:

1- TDdeviceAPI: includes functions that use HTTP requests to retrieve data from

SENSOR (punctual data or full data) and the processes used to make HTTP

requests.

2- JsonConverter: auxiliary module used to parse JSON messages.

3- TDdataprocess: includes functions and processes that create the report generation

program.

4- TDfunctionsDescriptions: includes functions and processes to help the user.

These libraries are meant to be used together. But the user may choose to only use part of

them.

“TDdeviceAPI” is the cornerstone of the library.

“JsonConverter” is used in some functions of “TDdeviceAPI” and in the main process of

“TDdataprocess”.

“TDdataprocess” requires “TDdeviceAPI” and “JsonConverter” to be operational.

“TDfunctionsDescriptions” is additional content independent of the other modules.

The following diagram shows how the modules that conform the library are interconnected.

(Figure 5-34.)

Development of an Excel VBA library for the Internet of Things Pág. 61

Functions

OUT

IN

Report

OUT

OUT

Help

JsonConverter

id

key

n

gmt

(wsname, reporttype)

(m, Admin,value)

TDfunctionsDescriptions

TDdeviceAPI

TDdataprocess

Figure 4-34. Library Diagram. [own source]

Pág. 62 Report

5. Test and validation

To validate the use of the library, tests were conduct on the functions and processes of the

library to determine their functionality.

5.1. TDdeviceAPI functions

The functions tested were all the functions contained in TDdeviceAPI module. Tests

changing each of the input parameters of each function were conducted.

The results of a sample test are shown in the following tables (Figure 6-1. and Figure 6-2.)

Figure 5-1. Function Test Sample1. [own source]

Figure 5-2. Function Test Sample2. [own source]

The sample tests of the functions that change the operational status of the device are not

shown because the output cannot be seen through screen.

Development of an Excel VBA library for the Internet of Things Pág. 63

5.2. Report Generation Program

The report generation program was tested in both modes: Message Data Report and Full

Data Report.

Tests changing values of the inputs were conducted

The results of a sample test are shown in the following tables (Figure 6-3. to Figure 6-6.)

Figure 5-3. Message Report Test Sample 1 [own source]

Figure 5-4. Message Report Test Sample 2. [own source]

Pág. 64 Report

Figure 5-5. Full Report Test Sample 1. [own source]

Figure 5-6. Full Report Test Sample 2. [own source]

Development of an Excel VBA library for the Internet of Things Pág. 65

5.3. User interface parameters

To avoid problems related to the data entered by the user, tests of every input parameter

were conducted.

Tests were conducted in which misspelling errors were forced to find a solution of the issues

that may be encountered.

The Error handling done can be seen in the figures (5-27. To 5-31.)

Pág. 66 Report

5.4. Miscellanea

The tests in the previous chapters (6.1., 6.2. and 6.3.) were conducted in MS Windows x64

systems and MS Windows x32 systems. Both systems supported the library and the results

were the same in each type of Windows system.

Tests using incorrect URL’s and parameters were conducted to check the outcome in case

of server failure. The errors that were displayed in screen were expect.

Speed tests of the report generation program were conducted under different conditions

(different Internet connection speeds and different volume of data in the spreadsheet), The

results were the same. Under optimal conditions, the program performed correctly and

quickly.

Development of an Excel VBA library for the Internet of Things Pág. 67

6. Budget

The work costs include all the money spent in the student during the months of work.

The Budget of this Project consists of three components:

1. The cost of the hardware and software used to develop the library:

Hardware and Software

Item Amount
Unitary
price(€/uni)

Total price
(€)

Laptop amortization 0,1 800 80
Microsoft Office
Subscription 6 10 60

EVB TD 1204 1 180 180

TOTAL 320

2. The cost of the hours worked on the project:

Engineer worked time

Concept Hours Revenue (€/h) Total price (€)

Engineering work 500 40 20000

3. The cost associated with the consumption of resources

Resource consumption

Concept Hours Price Total price (€)

Energy consumption (100W) 500 0,22 (€/kWh) 11

Internet
5
month 40 (€/month) 200

TOTAL 211

The Budget of the project is 20531 €.

Pág. 68 Report

7. Environmental Impact

This project’s environmental impact is minimal due to the fact it was fully developed working

with a PC and EVB TD 1204.

Therefore, neither the making of project, or the results obtained by it, produce any additional

environmental impact regarding fumes, waste and worn out tools.

Even so, some materials were used during the realization of this project, such as office

material, that do bear a significant environmental impact during their production.

Moreover, the waste generated through the transportation of this materials to their

destination and the recyclability and reusability of the components of this materials should

be taken into consideration when considering the environmental impact of this project.

Finally, we must consider the radio electric contamination derived from the messages

through the TD1204 module, which, in this project and according to the current Spanish

legislation on radio electric spectrum, operates inside acceptable parameters.

Development of an Excel VBA library for the Internet of Things Pág. 69

Conclusions

The objectives defined during the project were to create an Excel VBA library for the

Internet of Things.

This library had to be solid, robust and focused on presenting the data retrieved clearly and

in a way that it would allow the library’s user to work easily.

The code is refined and the tests of the functions and reports were successful.

The final goal of this project is to provide a tool for users of devices belonging to the Internet

of Things, as well as to provide a framework to develop new projects related to the IoT was

accomplished.

Development of an Excel VBA library for the Internet of Things Pág. 71

Acknowledgments

I would like to thank my project supervisor Juan Manuel Moreno for helping and advising me

when I most needed.

I would also thank Carme Lozano Farriol, Patrícia Sarmiento Lozano and Joan Sarmiento

Bueno to all their support throughout the years.

Finally, I would like to thank Claudia Sisquellas Hernández for all the support and advice

that gave me when I was stuck at some point.

Development of an Excel VBA library for the Internet of Things Pág. 73

Bibliography

[1] CUJO, Why aren’t we worried about the Internet of Things.

[https://www.getcujo.com/internet-of-things-security-device-cujo/, September 25, 2016]

[2] LARRY DIGNAN, Internet of things: Poised to be a security headache?, Between the

Lines, November 18, 2014

[3] PETER R. EGLI, Overview of Emerging Technologies for low power wide area

networks in internet of things and M2M scenarios. LPWAN (Low Power Wide Area

Network).

[4] SHIKAI ZHANG, UNB modulation salvages spectrum, April 16, 2009

[http://mwrf.com/markets/unb-modulation-salvages-spectrum]

[5] SIGFOX, About SIGFOX

[http://makers.sigfox.com/]

[6] TDNEXT, Evaluation Boards, November 2015.

[http://rfmodules.td-next.com/modules/]

[7] TDNEXT, SENSOR platform, November 2015.

[https://developers.insgroup.fr/iot/about.html]

[8] TDNEXT, SENSOR device API, November 2015.

[https://developers.insgroup.fr/iot/device.html]

[9] ALAIN CUENOT, JSON parser tool online

 [http://json.parser.online.fr/]

[10] MICROSOFT DEVELOPER NETWORK, HTTP Requests.

[https://msdn.microsoft.com/en-

us/library/system.net.httpwebrequest.method(v=vs.110).aspx]

Pág. 74 Report

[11] TUTORIALSPOINT, VBA (Visual Basic for Applications).

[https://www.tutorialspoint.com/vba/]

[12] MICROSOFT DEVELOPER NETWORK, VBA (Visual Basic for Applications).

[https://msdn.microsoft.com/en-us/library/office/ee814735(v=office.14).aspx#VBA

Programming 101]

[13] CPEARSON, VBA examples.

[http://www.cpearson.com/Excel/MainPage.aspx]

[14] MISJA.COM, Epoch Converter. 2016

[http://www.epochcoverter.com]

