
Clock Gate on Abort: Towards Energy-Efficient
Hardware Transactional Memory

Sutirtha Sanyal1, Sourav Roy2, Adrian Cristal1, Osman S. Unsal1, Mateo Valero1

1Barcelona Supercomputing Center, Barcelona, Spain; 2Freescale Semiconductors, India
1{sutirtha.sanyal,adrian.cristal,osman.unsal,mateo.valero}@bsc.es;2sourav.roy@freescale.com

Abstract—Transactional Memory (TM) is an emerging
technology which promises to make parallel programming
easier compared to earlier lock based approaches. However,
as with any form of speculation, Transactional Memory too
wastes a considerable amount of energy when the specula-
tion goes wrong and transaction aborts. For Transactional
Memory this wastage will typically be quite high because
programmer will often mark a large portion of the code
to be executed transactionally[4].

We are proposing to turn-off a processor dynamically by
gating all its clocks, whenever any transaction running in
it is aborted. We have described a novel protocol which can
be used in the Scalable-TCC like Hardware Transactional
Memory systems. Also in the protocol we are proposing
a gating-aware contention management policy to set the
duration of the clock gating period precisely so that both
performance and energy can be improved.

With our proposal we got an average 19% savings in
the total consumed energy and even an average speed-up
of 4%.

Keywords: Hardware Transactional Memory, Clock Gat-
ing, Distributed Shared Memory architecture, Transaction
Abort, Low-power architecture.

I. INTRODUCTION

Recent emergence of multi-core processors has gen-
erated interest in writing concurrent programs for main-
stream applications. However, writing parallel programs
for shared memory multiprocessors is difficult. The
classical lock-based way of handling this issue is error-
prone and non-composable.

The Transactional Memory[10], [5], [14], [12], [7] is
a technology where programmers just need to wrap a
portion of the code in what is known as a transaction.
It is then the responsibility of the TM framework to
enforce Atomicity and Isolation properties to guarantee
correctness. Scalability issue is also handled by the
runtime. Applications can scale too if the system has
sufficient number of processors to run all the threads
simultaneously and conflict rate among threads is low.

However Transactional Memory relies on a bulk
amount of speculation to deliver optimistic concurrency
control. If that speculation goes wrong, a processor needs
to roll-back to its check-pointed architectural state and

start execution afresh. This is known as “Abort” in the
Transactional Memory.

If a thread undergoes abort for n number of times
before committing its transaction, evidently all the work
done in the previous n executions but the last one are
completely wasted and so does the energy spent in doing
that. We name those aborts as Futile Abort. Theoretically
a parallel program with transaction support can still pro-
duce correct output if all those Futile Aborts are elimi-
nated. However, it will not be possible to predict whether
an abort is going to be futile or fruitful. Therefore a
scheme comprising of both contention management and
energy saving techniques is required where some of the
wasted execution time and energy can be saved.

Ferri et al. has proposed a basic scheme to reduce the
energy consumption for transactional memory[8]. How-
ever it assumes a simple hardware transactional mem-
ory with explicit transactional cache which is suitable
only for embedded systems. Li and Martinez proposed
“Thrifty Barrier”[13], which applies the energy-saving
techniques at the synchronization points.

Our major contributions are:
• We have used a well-known energy saving tech-

nique, clock gating[1], [15] in the context of Hard-
ware Transactional Memory (HTM) to save energy.
Processor can be pushed into this state immediately
by zeroing out all its clocks (reducing dynamic
power consumption to zero). Processor can also be
pulled out from this state instantaneously. We have
proposed a novel protocol which gates processors
dynamically on each abort and un-gates it depend-
ing on the number of aborts it has suffered and the
state of its conflicting transaction.

• We have sketched out a simple contention manage-
ment scheme which determines the period for clock
gating a processor. This scheme has been shown to
produce significant savings in the energy consump-
tion. Execution time reduces as well because of the
efficient conflict management among threads.

• A comprehensive power model has been developed
for Alpha 21264 in 65nm. This model enables us
to quantify the benefit of our proposed scheme.



II. SCALABLE TCC PROTOCOL

Our base line system is modeled after the Scalable
TCC[5]. The Scalable TCC protocol relies on the dis-
tributed shared memory structure. In the system, multiple
directories are present which maps different segments
of the physical memory. Processors load data from
directories and then update them speculatively in their
own private L1 data cache. A centralized token vendor
generates a token id when a processor reaches the
commit stage. This token id (TID) acts as a timestamp
for the transaction commit. When two conflicting trans-
actions attempt to commit in the same directory, they
get serialized based on their timestamp value. The older
transaction will possess low TID and will be able to
commit first. After a successful validation phase where
no invalidation message is received, a processor can
start committing. All speculative stores are committed in
the directories and sharer of those cache-lines are sent
invalidations.

III. PROPOSED ARCHITECTURAL CHANGES IN THE
DIRECTORY

As discussed in the previous section, a transaction gets
aborted only when a cache line that it has read in its local
L1 speculatively, gets committed in a directory by some
other thread. The abort message can come when the
abortee is still in the middle of a transaction or spinning
in its own commit instruction to get access to directories.
Whenever this message comes, the transaction is aborted
immediately and retried.

With our proposal we are gating all the clocks of
the processor whenever it is aborted by any committing
thread. After a processor is gated, it is to be ungated
again by applying an algorithm which is described in the
section V. However, to use this algorithm, some relevant
information need to be stored in the directory before
gating any processor.

Fig. 1. Proposed Additional table in each Directory

Figure 1 shows the additional fields we are proposing
in the directory structure. A new table is added in each
directory to hold a) Aborter Processor information b)
The id of the Transaction which is responsible for the
abort c) Abort Counter d) Renew Counter e) A Timer

which keeps the count of the clock cycles the corre-
sponding processor was off and f) Current state of the
processor (OFF). Aborter processor information stores
the processor id which aborted the victim processor in
this directory. This field is set whenever the directory
sends an invalidation to any processor. Along with the
aborter information, the transaction which is causing
the abort is also tracked and stored. A transaction is
identified by the program counter value of the instruction
which started the transaction. Therefore 64 bits for the
Transaction id field is sufficient. The directory in which
the abort takes place is responsible for querying and
storing this information from the committing processor.

Abort count is an up-counter which stores the number
of aborts the current running transaction has suffered till
now. Whenever the processor commits, this field is reset
to 0. A 8 bit counter may be sufficient for all practical
applications. However, if a transaction aborts more than
255 times, abort count field will be saturated. Renew
count field stores the number of times a processor has
been gated at the current abort level. Use of this field is
detailed in the section V.

The counter which counts the number of clock cycles
a processor was gated for is stored in the next field.
This counter is preset to a positive value every time
either the Abort count field or the Renew count field is
changed. After that, it is decremented in every directory-
local clock tick. Once it hits 0, the gating period for that
processor expires. The duration for which the processor
will be turned off is discussed in the section VI. Finally
one bit is kept corresponding with every processor entry
to store its current state. If this bit is 1, the processor is
gated. By default this bit will be set to 0.

IV. MODELING ENERGY REDUCTION AND EFFECT
ON EXECUTION TIME

Let us suppose that with clock-gating the execution
of the parallel section of an application takes N2 units
of time. Here we have measured the parallel execution
time as the difference between the end time of the
last transaction to the start time of the first transaction.
Then the total energy consumed during the gated parallel
execution Eg is given by

Eg = [N2 ∗ p−
∑p

i=1Xi ∗ i] ∗ Prun +∑p
i=1Xi ∗ i ∗ αi ∗ Pmiss +∑p

i=1Xi ∗ i ∗ βi ∗ Pcommit +∑p
i=1Xi ∗ i ∗ (1 − αi − βi) ∗ Pgate (1)

Where Xi denotes the total amount of time during the
whole execution when exactly i number of processors
were “gated or waiting for a cache miss or performing
commit”. p is the total number of processors. αi denotes



the proportion of processors within i number of proces-
sors which are serving cache miss in the interval Xi. βi

denotes the proportion of processors performing commit
in the same interval.
Prun is the dynamic run mode power. Pmiss is the

power consumed while serving a L1 miss. Pcommit is the
power a processor dissipates during commit. In all these
power numbers contribution due to leakage is already
included. Pgate denotes the leakage power when the
processor clock is gated.

In the (1), the first term corresponds to the energy
consumed during the parallel execution when some or
all of the processors are consuming full run mode power.
To obtain this, we subtract all Xi intervals multiplied by
the number of processors consuming low power from
the total run time multiplied by the total number of pro-
cessors. Next two terms add up the energy contribution
from processors which are stalled because of cache miss
or because of commit, respectively. Finally, the last term
accounts for the leakage power which is present even if
we gate the clock.
Xi, αi and βi are derived in the following way:

Xi =
l∑

k=1

∆i
k (2)

αi =
∑l

k=1 n
i
mk

∆i
k

i ∗Xi
(3)

βi =
∑l

k=1 n
i
ck

∆i
k

i ∗Xi
(4)

Here l is the total number of intervals during the gated
execution when exactly i number of processors were
“gated or waiting for a cache miss or performing com-
mit”. So, Xi is the sum of length of all such intervals,
denoted by ∆i

k. αi is the ratio of contribution from
processors stalled because of cache misses in Xi to
the number of all processors accounted in Xi. To find
it, we calculate a weighted sum on processors serving
cache misses. Therefore, ni

mk
denotes the number of

processors stalled because of cache misses in the kth
instance of an interval which contributed to Xi. Similarly
ni

ck
denotes the number of processors doing commit.

For the ungated parallel execution one can obtain an
equation like (1) for the total consumed energy, Eug:

Eug = [N1 ∗ p−
∑p

i=1 Yi ∗ i] ∗ Prun +∑p
i=1 Yi ∗ i ∗ δi ∗ Pmiss +∑p

i=1 Yi ∗ i ∗ (1 − δi) ∗ Pcommit (5)

N1 denotes the execution time of the parallel section
without gating any processor. Yi denotes the total amount
of time in the complete execution when exactly i number
of processors are “waiting for a cache miss or performing
commit”. Here δi is analogous to αi and obtained in the

same manner. Since no processors are gated, therefore
if a processor is not stalled for a cache miss and
still accounted within Yi, then it must be because of
commit-stall. The factor (1−δi) corresponds to that. An
equivalent way to compute the total energy consumption
is to track and sum up the individual contribution of each
processor in each state.

Therefore the energy savings can be expressed as:

EnergyReduction =
Eug

Eg
(6)

Savings in the average power dissipation is given by:

AveragePowerReduction =
Eug

Eg

N2

N1
(7)

In (1) and (5) we have assumed that leakage is present
since power is not gated. However it is possible to gate
power too in a fine-grained manner along with the clock
gating using technologies like “State Retention Power
Gating”[11].

Total parallel execution time decreases too along with
the decrement in the consumed energy. This happens
as a direct consequence of the gating-aware contention
management scheme. In normal case, when no clock
gating is applied, a processor can waste cycles by
spinning at the commit instruction while some other
processor is committing in the contended directory.
The spinning processor ultimately gets aborted by the
committing processor. However, that happens only when
the committing processor finally commits the conflicting
cache line in the directory. Therefore, till that moment all
processors spinning at their commit instruction are wast-
ing execution time by doing a futile spin, because they
get aborted eventually. However, as we apply contention
management along with the clock gating, it happens that
a thread is delayed by a small amount of time which
results in the two commits being skewed. In that scenario
the time wasted in the futile spin is eliminated. Because
the committing thread will abort the other conflicting
thread while it is still in the middle of a transaction
before reaching to the commit point. However sometime
a processor will be gated for more than the duration
which is required to maintain the same performance
level. In that case it will result in a slowdown.

V. PROPOSED PROTOCOL FOR GATING/UNGATING
PROCESSORS

In this section we will now present the complete
algorithm used for gating and ungating a processor.
The following algorithm assumes the baseline directory
structure as per the scalable TCC protocol and our
proposed changes in addition as described in the section
III.



As shown in the Figure 2(a), there are four processors
and corresponding four directories. An arrow between a
processor and a directory denotes that the processor has
read data from that directory and modified it during the
transaction.

Now let us suppose that P0 has reached its commit
instruction and started commit. Also let us assume that
processor P1 and P2 are in the middle of a transaction
at that instance and P3 has reached its commit point.

Now P0 has started the commit process earlier. As
a result, it possesses a TID which is lower than P3.
Therefore P0 can start committing into the directories
D0, D1 and D2. Meanwhile P3 has to spin till it can
get an access into the directory D0 which is currently
servicing P0.

When P0 flushes its writeset into the directories, each
directory updates the owner information of the cache
line which gets committed. Earlier P0 was marked as
the Sharer of the line and its new coherence state is
the “Owner” (Figure 2(b)). Other processors marked as
sharer (P1 and P2) will be sent invalidations.

At this point, we apply our protocol to clock gate all
the processors which are getting aborted because of the
commit from P0. The directory logs the aborter thread
id in the additional table. As shown in the Figure 2(c),
since P0 is aborting P1, the aborter proc id contains P0.
The Abort count is set to 1 and Renew count is set to
0. Similar information are logged into the entries for
P2 (in D1) and P3 (in D0). Immediately after entering
these values, the directory starts the timer Wt and sends
the “Stop Clock” signal to the victim processor P1. The
value of the timer Wt is determined by the gating-aware
contention management scheme which we present in the
next section. When the “Stop Clock” signal arrives, a
processor stops fetching any further instruction and goes
to standby mode after finishing the execution of the cur-
rent in-flight instruction. However the directory still does
not have the information about the transaction which is
responsible for the abort. This information is required
to be stored in the “Aborter Tx Id” field. To obtain this
information, directory sends out a message designated
as “TxInfoReq” to the current committing processor. On
receiving this message the processor replies with the id
of the transaction that it is executing. The id is a program
counter value which started the transaction. After getting
the reply from P0, directory D1 stores it in the table as
shown in the Figure 2(d).

After the timer expires, the gated processor will get
a chance to turn on its clock. However, in the protocol
we are proposing that if a) The aborter thread is still
present in that directory and b) If the aborter thread
is executing the same transaction which earlier killed
the abortee transaction, then instead of sending the “on”
signal, directory simply renews its gating time and loads

a new timer value in the “gating timer” field. To check a
and b, we are proposing the circuit shown in the Figure
2(e). In this circuit diagram, a bitwise “OR” is performed
between all the processor ids which have expressed their
intention to commit by marking the “Marked” bit. If
none of these processor ids match with the id which was
responsible for abort, then it will be prudent to turn on
the victim processor. However, if the enemy processor
is present in the directory, we further check to find out
the transaction it is currently executing. This is done
again using a “TxInfoReq” message. After receiving the
reply, the answer is compared with the “Aborter TX”
field stored earlier. If this further check turns out to
be negative, then also the gated processor is sent an
“on” command. In the case the processor P0 has itself
been turned off by some other processor, the reply to
the “TxInfoReq” message will be null and therefore
the comparator output will be zero, turning the victim
processor on. However, if this further check turns out to
be positive because the enemy processor is executing the
same transaction which earlier invalidated the victim, the
gating period is extended. A fresh value for the timer,
W ′t is loaded in the table. After a “renewal” the directory
keeps track of the number of times a stopped processor
renewed its gating period (Figure 2(f)). As the number
of renewals goes up so does the initial value of the
timer. Renew count field is reset to 0 whenever Abort
count field is incremented. Abort count field is reset
to 0 whenever a thread commits. The circuit will take
multiple cycles to generate the “on” command because
of the high fan-in bitwise “OR”. That will extend the
clock gating period further by a small amount of time.

The “on” command is delivered to the output of the
main pll of the processor which is assumed to be always
running. When the “on” signal goes high, the output
from the main pll becomes available to all other plls like
core pll, io pll and cache plls. After this wake-up, the
processor needs to do a “Self Abort” of the transaction
it was executing at the time of freeze. This is required
to maintain the correctness of the program. However,
this “Self Abort” event is not tracked by any of the
directories.

It should be noted that a directory turns off or turns on
a processor based on its local knowledge about the abort
behavior of the processor. Therefore it may happen that
a processor which is marked as “off” in one directory is
marked as “on” in some other directory. However that
will pose no problem since once turned off, a processor
will not issue any load/store. On the other hand, it may
happen that a processor has been turned on by a directory
while it is still marked as “off” in some other directory.
In this scenario, if any load/store request comes from
a processor which is marked as off, directory assumes
that it has been turned on by some other directory. Then



(a) An exemplary NUMA
system configuration.

(b) D1 entries during commit. (c) Entries added in D1, P1 Clock-Gated.

(d) Txp0 obtained. (e) Expiration of Timer triggers the Control
Circuit to Ungate.

(f) Entries in D1 in the case of a renewal for P1.

Fig. 2. Protocol States for Gating/Ungating a Processor

it resets the “OFF” bit as well in its local table. This
protocol is deadlock-free. A cycle of dependencies can
not form because, once a processor is gated it can not
cause abort to any other processor.

VI. GATING-AWARE CONTENTION MANAGEMENT
SCHEME

Several contention management policies exist for the
Transactional Memory[17]. All of them have their re-
spective pros and cons. In this section we are presenting
a simple contention management policy which resembles
polite back-off and is also aware that the processor
is going through a clock gating phase because of an
abort. We are proposing that if a processor executing
a transaction is aborted by another transaction, then the
victim processor should back off and as a consequence
should be clock gated for an interval Wt where:

Wt = W0(2dlg Nae + 2dlg Nre) (8)

In (8) Na denotes the Abort count and Nr denotes
the Renew count. The ceiled logarithms ensure that
the gating period models a “Staircase Function” where
the gating timer value increases only after the abort
count (or the renew count when the abort count remains
same) exceeds a specific range. However, unlike con-
ventional staircase function, this has discontinuities at
exponentially spaced intervals. This results in a situation
where the gating period is moderately high for highly-
conflicting applications to get a reasonable savings in
the energy. On the other hand the protocol described
in the previous section biases slightly more on “turning
on” the processor. That bias effectively balances out the

loss of performance due to gating. However, if both
the abort count and the renew count are low for any
application, a processor will not be gated substantially.
For those applications, performance will remain close
to the base-line performance and the amount of energy
savings will also be limited. Please note that a basic
contention management scheme like exponential polite
back-off does incur significant performance penalty for
highly contentious applications and hence not applicable
in such cases.

The constant factor W0 has a first order significance.
For large number of processors, this constant should be
small since the number of aborts will be high. For small-
scale systems this constant should be preset to a high
value. The firmware which calculates Wt, can also preset
W0. Other contention management schemes based on the
momentum of the transaction at the time of abort are
possible. We have left them as future works.

VII. ALPHA 21264 POWER MODEL IN 65NM

In this section we build an analytical power model
for the Alpha 21264 in 65nm technology based on
practical assumptions and simulations. The Alpha 21264
consists of 64KB L1 instruction and data caches, but
does not have any L2 cache. It was last fabricated in 0.35
micron technology. We assume that the Alpha 21264 is
scaled in technology without any change in functionality,
consistent with the M5 simulation model.

The power consumption of the processor changes
based on its operations. During cache miss and commits
the processor will consume lesser power, since the core
is idle during such operations and only the data cache



and I/O interfaces are active. It is to be noted that though
power reduces, energy consumption increases due to the
long waiting time for cache miss or commit to complete.
The power distribution for the original Alpha 21264, that
are of interest to us, is as follows[9] :
• Caches 15%
• Clock 32%
• I/O 5%
• Leakage 2.8%

In standard 65nm technology, without any optimization,
the leakage component in a typical superscalar micro-
processor is 30-40% of the total power. However with
the advent of leakage saving techniques like usage of
high-Vt cells in non-critical timing paths, and stacked
transistors the leakage can be controlled significantly. In
standby mode, leakage can be further reduced with the
help of sleep transistors and body biasing techniques.
However in this work we are only concerned with leak-
age in active mode. In active mode, with the use of above
mentioned techniques, the leakage power can be safely
reduced to less than 20%. Recent product datasheets and
publications[16], [3] also substantiate that leakage ratio
can be assumed to be 20% in 65nm technology. When
the processor is clock gated, apart from leakage, only
the PLL is active. The PLL consumes few milliWatts,
whereas the leakage power in 65nm technology is several
Watts. Hence its contribution is negligible. Therefore
we conclude that in clock gated state, the processor
consumes 20% of the total power.

The data cache that supports TCC consumes more
power than a normal data cache. We used CACTI[18]
to find out the power increase due to additional RW
bits. Figure 3 shows the normalized power of a TCC
data cache, assuming the normal data cache consumes
100 units of power. The RW bit resolution is varied
from the cache-line size of 64B to 1B for various cache
sizes in 65nm technology. For a 64KB cache with word
level(2B) state tracking the power increase is limited to
5%. However the power increases considerably due to
the addition of store address FIFO, commit controller
and other control circuitry. We used power estimation
tools (PowerTheater) to estimate power on representative
RTL of write buffers (implemented with standard flip-
flops) of various depths and also the commit controller.
For a 64KB cache with 64B line, we require a store
address FIFO of 1024 words each of 10 bits. Adding up
the individual contributions, the power of the entire data
cache that supports TCC is, conservatively, 1.5 times
that of the normal data cache. In Alpha, 15% of the
power is contributed by caches, among which data cache
contributes 10% of the total power. Hence the TCC data
cache consumes 1.5 ∗ 10 = 15% of the total power.

In 0.35 micron technology, the leakage power con-
tribution is negligible. Hence the power distribution of

Fig. 3. Power Consumption of data cache supporting TCC

individual modules in 0.35 micron technology can be
directly applied to the dynamic power in 65nm tech-
nology. During commit the core is idle. But the data
cache including the store address FIFO and commit
controller, I/O interfaces and their clocks are active. As
discussed before, the contribution of the TCC data cache
to the dynamic power is 0.15. From the original Alpha
21264 published results the I/O interfaces and the clocks
to the data cache and interfaces contribute 0.05 and
0.10 respectively. The fraction of total power consumed
during commit is then given by,

Commit Power = 0.2 + 0.8 ∗ (0.15 + 0.05 + 0.1)
= 0.44

During cache miss the core is stalled. After miss is
detected, the cache (instruction or data) writes the new
tag corresponding to the miss address in the tag memory,
waits for the miss data to arrive and then writes it in the
data memory. Further the data cache frequently performs
a dirty line replacement on cache miss, by writing it to
the next level of memory. The I/O interfaces are typically
active during cache miss. In [6], the typical cache miss
dynamic power is measured to be approximately 50%
of the cache dynamic power during hits or high activity.
This is a conservative average estimate and large miss
penalties can further reduce the cache miss power.

Cache-Miss Power = 0.2 + 0.8 ∗ 0.5 ∗ (0.15 + 0.05 + 0.1)
= 0.32

Finally we assume that at synchronization points the
processor consumes full run mode power while executing
spin-locks. Run mode power is the power consumed
while executing normal code or transactions. Based on
the above discussion, the power factors consumed during
various operations are shown in table I. We are not
interested in the absolute power values in this work.
However to get a quick estimate of the absolute power
values, a simple way is to scale the original Alpha 21264
area (by 0.5 every technology node) and then apply a
typical average power density number corresponding to



TABLE I
POWER MODEL OF ALPHA 21264

Operation Power Factor
Run 1.0

Cache Miss 0.32
Transaction Commit 0.44

Clock Gated 0.20

a superscalar out-of-order microprocessor.

VIII. SIMULATION SETUP AND RESULTS

Simulations are done in a substantially modified ver-
sion of the M5 full-system simulator[2] simulating Alpha
21264 architecture with added support for a Scalable-
TCC system. Table II lists the parameters used in the
simulation.

TABLE II
PARAMETERS USED IN THE SIMULATION

Feature Description
CPU 1-16 single issue in-order cores
L1D 64KB 64 byte line size

2-way associative 1 cycle latency
Interconnect Common Split-Transaction Bus

Directory Full-bit vector sharer,
10 cycle latency

Main Memory 1GB, 100 cycle latency,
Single Read/Write Port

For preliminary evaluation purpose we have used 3
applications from the STAMP benchmark suite[4]. They
are: genome, yada and intruder. Figure 4 reports the total
execution time spent inside the parallel section. We have
measured it for 4,8 and 16 processors configurations.
Data are represented as 3 pairs for these 3 configurations.
Each pair contains values corresponding to “without
clock-gating” and “with clock-gating” settings. Speed-up
number with respect to the ungated version is denoted on
top of the bar representing the value with clock-gating.
A number n denotes a speed-up of nx times.

As mentioned in the section IV, in most of the cases
we have observed speed-ups. However in one case we
have observed slowdown. As shown in the Figure 5,
moderate to significant energy reductions are noted in
all cases. The factor by which the energy consumption
reduces is mentioned on top of the bar representing
the gated version. For highly-conflicting application like
“intrduer”, abort rate is high and as a result savings
in the energy is also reasonable. On the other-hand
for moderately conflicting applications like “yada” and
“genome”, there are conflicting transactions which are
either long or repeated several times inside loops. In

Fig. 4. Total Parallel Execution Time for 3 applications

Fig. 5. Energy Consumption W and W/O Clock Gating

Fig. 6. Average Power Dissipation W and W/O Clock Gating

Fig. 7. Speed-Up as a function of W0 and Np

those cases the renew counter tends to become high with
the abort counter still remaining low. That too results
in a large gating window and significant savings in the
energy. In Figure 6, we have shown the savings in the
average power dissipation. Figure 7 presents a sensitivity



analysis of the speed-up as a function of W0 and the
number of processors (Np). For our experiments, we
have used W0=8 and speed-up is obtained for all the
cases (except for genome with 8 threads). As processor
number changes, W0 can further be adjusted to extract
more performance. Across these 3 applications and 4,8
and 16 processors cases, we got average speed-up of 4%.
Average reduction in the energy consumption is 19%.
Reduction in the average power dissipation is 13%.

IX. CONCLUSION

In this paper, we have sketched out a mechanism
which can be used to save energy in the Hardware Trans-
actional Memory. We achieve this by clock gating to
halt processors which are wasting energy in transaction
abort. In the course of doing so, we have also recov-
ered some wasted execution time by efficient contention
management. This resulted in an overall speed-up. As per
our knowledge, this is the first work that targets energy
efficient HTM in large-scale multi-processor systems.
The initial results are very promising and in future we
plan to explore several other schemes on a larger suite
of applications.

ACKNOWLEDGMENTS

This work is supported by the Barcelona Supercom-
puting Center (Centro Nacional de Supercomputación)
and Microsoft Research Lab, Cambridge vide the col-
laboration contract no TIN2007-60625; by the European
Network of Excellence on High-Performance Embedded
Architecture and Compilation (HiPEAC) and by the
European Commission FP7 project VELOX (216852).
Sutirtha Sanyal is also supported by a scholarship from
the Government of Catalunya.

REFERENCES

[1] Clock Gating Recommendations
http://www.amd.com/epd/processors/6.32bitproc/x19195/19195.pdf.

[2] N.L. Binkert, R.G. Dreslinski, L.R. Hsu, K.T. Lim, A.G. Saidi,
and S.K. Reinhardt. The M5 Simulator: Modeling Networked
Systems. IEEE MICRO, pages 52–60, 2006.

[3] Ke Cao, Sorin Dobre, and Jiang Hu. Standard cell characteriza-
tion considering lithography induced variations. In Proceedings
of the Design Automation Conference, San Francisco, California,
2006.

[4] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle
Olukotun. Stamp: Stanford transactional applications for multi-
processing. In IISWC ’08: Proceedings of The IEEE International
Symposium on Workload Characterization, September 2008.

[5] H. Chafi, J. Casper, B.D. Carlstrom, A. McDonald, C.C. Minh,
W. Baek, C. Kozyrakis, and K. Olukotun. A Scalable, Non-
blocking Approach to Transactional Memory. Proc. of the
13th Intl. Symp. on High Performance Computer Architecture,
Phoenix, AZ, Feb, 2007.

[6] Lokesh Chandra and Sourav Roy. Estimation of energy con-
sumed by software in processor caches. In Proceedings of the
International Symposium on VLSI-DAT, Hsinchu, Taiwan, 2008.

[7] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. Proceedings of the
2006 ASPLOS Conference, 41(11):336–346, 2006.

[8] Cesare Ferri, Amber Viescas, Tali Moreshet, R. Iris Bahar, and
Maurice Herlihy. Energy efficient synchronization techniques for
embedded architectures. In GLSVLSI ’08: Proceedings of the
18th ACM Great Lakes symposium on VLSI, pages 435–440, New
York, NY, USA, 2008. ACM.

[9] Michael K. Gowan, Larry L. Biro, and Daniel B. Jackson. Power
considerations in the design of the alpha 21264 microprocessor.
In Proceedings of the Design Automation Conference, San Fran-
cisco, California, 1998.

[10] L. Hammond, V. Wong, M. Chen, B.D. Carlstrom, J.D. Davis,
B. Hertzberg, M.K. Prabhu, H. Wijaya, C. Kozyrakis, and
K. Olukotun. Transactional Memory Coherence and Consistency.
Proceedings of the 31st Annual International Symposium on
Computer Architecture (ISCA’04), 1063(6897/04):20–00.

[11] S. Henzler, G. Georgakos, M. Eireiner, T. Nirschl, C. Pacha,
J. Berthold, D. Schmitt-Landsiedel, I.T. AG, and G. Munich-
Neubiberg. Dynamic state-retention flip-flop for fine-grained
power gating with small design and power overhead. Solid-State
Circuits, IEEE Journal of, 41(7):1654–1661, 2006.

[12] M. Herlihy and J.E.B. Moss. Transactional memory: architec-
tural support for lock-free data structures. ACM New York, NY,
USA, 1993.

[13] J. Li, JF Martinez, and MC Huang. The thrifty barrier: energy-
aware synchronization in shared-memory multiprocessors. In
High Performance Computer Architecture, 2004. HPCA-10. Pro-
ceedings. 10th International Symposium on, pages 14–23, 2004.

[14] K.E. Moore, J. Bobba, M.J. Moravan, M.D. Hill, and D.A.
Wood. LogTM: Log-based transactional memory. Proc. 12th
Annual International Symposium on High Performance Computer
Architecture, 2006.

[15] Alon Naveh, Efraim Rotem, Avi Mendelson, Simcha Gochman,
Rajshree Chabukswar, Karthik Krishnan, and Arun Kumar. Power
and Thermal Management in the Intel CoreTM Duo Processor.

[16] Samuel Rodriguez and Bruce Jacob. Energy/power breakdown of
pipelined nanometer caches (90nm/65nm/45nm/32nm). In Pro-
ceedings of International Symposium on Low Power Electronic
Design, Tegernsee, Germany, 2006.

[17] W.N. Scherer III and M.L. Scott. Advanced contention manage-
ment for dynamic software transactional memory. In Proceedings
of the twenty-fourth annual ACM symposium on Principles of
distributed computing, pages 240–248. ACM New York, NY,
USA, 2005.

[18] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn,
and Norman Jouppi. Cacti 5.3, 2008.


