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Abstract. The presented work deals with the simulation of problems related to dry
fabric materials. Especially draping over double curved molds is a huge field for industrial
simulation methods. Although industrial solutions are available, there are still many open
issues. The main reason for these issues is the fact that the mechanical behavior of dry
fabric layers is not describable with a standard continuum mechanical approach because
the fabric is not a continuum. The idea of the approach presented here is to model the
inner structure of the fabric with a unit cell consisting of crossed beams and to couple this
inner structure with a macroscopic membrane element (coupled multi-scale approach).
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1 INTRODUCTION

In [1] a cross beam model is presented. It is developed for the implicit Software PAM
LISA [2]. This cross beam model is embedded in a FE formulation of an elastic Lagrange
membrane element [3] in convected coordinates. At each Gauss point a unit cell with
crossed beams is implemented instead of a classical constitutive law. Shearing is not
considered in that unit cell. Hence shearing effects are taken into account via a elastic
membrane material.

This paper proposes a way to implement inner structures in the user material environ-
ment of the industrial explicit FE software PAM-Crash[4] by using a similar approach,
and is a starting point for more complex extensions for this method. Referring to [1] the
implemented inner structure is developed for plain weave fabrics.

2 KINEMATICS

The user material environment for shell elements MAT180 in PAM-Crash is reduced
to a membrane by using one Gauss point over thickness. Input variables for the user
routine are strain increments, the deformation gradient as well as the node coordinates of
the element. With the node coordinates the kinematics can be formulated in convected
coordinates independent from the element formulation in PAM-Crash.
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Figure 1: Undeformed and deformed element with coordinate systems
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The used coordinate systems are represented by their respective base vectors in Figure
1. To define the kinematics four coordinate systems are needed:

- global Cartesian coordinate system Xi

- local Cartesian coordinate system Yα,yα

- local natural convected coordinate system Aα,aα

- fiber normalized convected coordinate system Fα,fα

The coordinate lines Ξα, ξα with the base vectors Aα,aα are material related. Yα and yα
are orthogonal Cartesian coordinate systems in the undeformed and deformed membrane
element which act in the same plane as Ξα and ξα rotated around the angle ᾱ and α. The
fiber system directions F1,f1 are showing in warp fiber direction, direction F2,f2 in weft
fiber direction. Angle α is the rotation between the first fiber direction and the first axis
of the natural convected coordinate system. Angle δ is the fiber shear angle. The bar
symbol over the angle ᾱ and δ̄marks the reference configuration.

With the convected base in the reference configuration Aα, the metric can be written
as,

Aαβ = Aα ·Aβ (1)

and in the current configuration as

aαβ = aα · aβ . (2)

The components of the Green-Lagrange strain tensor ααβ in the Aα base can be written
as,

ααβ =
1

2
(aαβ − Aαβ) . (3)

With the transformation rule [3],

Yα = d̄βα · Aβ (4)

where d̄βα is

(
d̄11 d̄21
d̄12 d̄22

)
=




1√
A11

cos ᾱ− A12√
A·A11

sin ᾱ
√

A11

A
sin ᾱ

− 1√
A11

sin ᾱ− A12√
A·A11

cos ᾱ
√

A11

A
cos ᾱ


 (5)

the coordinates of the Green-Lagrange strain tensor can be transformed in the Cartesian
system Yα by

Eαβ = d̄γαd̄
δ
βαγδ , E = Eαβ

�Yα ⊗ �Yβ . (6)
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From the transformation A12 and A11 are components of Aαβ and A is

A = det(Aαβ) . (7)

To get the strain of the fibers it is nessesary to transform the strain Eαβ in the fiber
system. The transformation for the base vectors Yβ to the fiber system Fα is

Fα = c̄βα · Yβ, (8)

where c̄βα is

(
c̄11 c̄21
c̄12 c̄22

)
=

(
1 0

cos δ̄ sin δ̄

)
. (9)

The Green-Lagrange strain in the fiber system follows as

βαβ = c̄γαc̄
δ
βEγδ . (10)

With the general definition of the Green-Lagrange strain [5]

dx · dx− dX · dX = l2 − L2 = 2dX ·EdX , (11)

the strain in fiber direction 1 can be written as

β11 =
1

2

l21 − L2
1

L2
1

. (12)

With the known warp fiber length L in the reference configuration, the actual fiber length
l can be calculated based on formula (12) by

l1 =
√

2 · β11 + 1 · L1 . (13)

The displacement of a unit cell in fiber direction 1 follows as

u1 = l1 − L1 =
√

2 · β11 + 1 · L1 − L1. (14)

The same is applied to fiber direction 2. These displacements can be seen as movements
of master-nodes with regard to a homogenization method. In [6] and [7] a master node
concept is shown to calculate linear elastic material properties. This could be used to
implement general unit cells.
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Figure 2: Undeformed and deformed element with fibers

3 KINETICS

From a given force Fwarp and Fweft in fiber directions, shown in picture 2, the stress
in the element can be calculated. The PAM-Crash user material uses Cauchy stresses
as stress quantity. With the fiber length, L2, and standard thickness t = 1 the one
dimensional first Piola-Kirchhoff (1st PK) stress in fiber direction are calculated as

P11 =
Fwarp

L2 · t
, P22 =

Fweft

L1 · t
. (15)

In order to get the second Piola-Kirchhoff (2nd PK) stress the transformation [8]

S = F−1 · P (16)

is used. The 2nd PK is formulated in the reference configuration. The deformation
gradient F for the 1D case in fiber direction is given as

F11 = λ1 =
l1
L1

. (17)

So the 2nd PK stress componentsm11 for warp Fiber in the fiber system Fα can be written
as

m11 = F−1
11 · P11 =

P11

λ1

(18)
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The component m12 and m21 are zero so the components of mγδ can be written as

mαβ =

(
m11 0
0 m22

)
. (19)

In order to get the 2nd PK stress in the Cartesian system Yα, mγδ is transformed by
using(8)

Sαβ = c̄αγ c̄
β
δmγδ , S = Sαβ

�Yα ⊗ �Yβ . (20)

With

σcross beam = J−1 · F · S · F T , (21)

the 2nd PK stress can be transformed to Cauchy stresses, where σcross beam is the stress
part coming from the cross beam model. In (21), F is the deformations gradient in the
membrane element which is defined as

gα = FGα , (22)

and J is the Jacobian determinate

J = det(F ). (23)

The computed stresses in the membrane element are equivalent to the forces in the unit
cell.

4 MATERIAL LAW

4.1 Cross beam model

Picture 3 shows a deformed membrane element with inner structure. Warp and weft
fiber directions are pointing in the direction of the convected base vectors. That means
the value of angle ᾱ is 0◦. Because of visibility this example has only one unit cell, which
is equivalent to an under-integrated element with one Gauss point. Fully integrated ele-
ments are possible in the same way. In red the warp and in green the weft fiber is pictured.
The contact element is shown in light blue.

In the kinematics section a way is shown to solve displacements for a fiber. With these
displacements a unit cell is loaded on the master nodes N1 and N2 shown in figure 4. The
material model, shown in this section, is based on a unit cell for a plain weave fabric. The
unit cell is modeled with three beam elements. Because of symmetry only half of the unit
cell is modeled. In Figure 4 the 3D unit cell is shown in 2D where �f1 and �f2 are falling
together. The warp fiber is modeled with beam element 1, the weft fiber is modeled with
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Figure 3: Membrane element with inner structure

beam element 2 and the contact between the fibers is represented by beam 3.

For the shown discrete mechanical system, the global stiffness matrix K can be con-
structed with KE the elastic and KG the geometrical stiffness matrix.

K = KE +KG (24)

The global stiffness matrix KE consists of the Young’s moduli of the fibers, which are
Ewarp and Eweft, the contact Young’s modulus E3, as well as the geometrical properties
of the fiber Iwarp, Iweft, which are the second moment of inertia of the beams, the cross-
sections of the fibers Awarp, Aweft and the dimensions L1, L2, L3.

The system of equations can be then written as follows.




Fwarp

Fweft

0
0


 =




K11 K12 K13 K14

K21 K22 K23 K24

K31 K32 K33 K34

K41 K42 K43 K44


 ·




u1

u2

u3

u4


 . (25)
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Figure 4: Discrete mechanical system

Due to the dependency of KG on the force Fwarp and Fweft, the system of equations is
nonlinear and has to be solved iteratively. With the so computed forces, stresses can be
calculated like shown in section kinetics.

4.2 Shear

Shear is modeled by a second layer of a material with a linear elastic shear behavior.
The material law is defined in the reference configuration. Due to the symmetry of the
2nd PK stress Sij, the constant model for this layer can be written as




S11

S22

S12


 =




0 0 0
0 0 0
0 0 G12


 ·




E11

E22

E12


 , (26)

where G12 is the constant shear modulus and Eij the components of the Green-Lagrange
strain tensor. With (21) the 2nd PK stress S is transformed to Cauchy stress σshear. The
total Cauchy stress in the membrane element is the sum of the shear stress and the stress
coming from the cross beam model. The returned stress to PAM-Crash is

σ = σshear + σcross beam . (27)
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5 RESULTS

As test case for the validation of the cross beam model, a double dome test is chosen.
The tool FE mesh is taken from a double-dome benchmark which has been performed by
several labs shown at http://www.wovencomposites.org in order to validate and com-
pare different approaches. Figure 5 shows the FE geometry of the draping test with fabric
(red), blank holder (green), die (dark grey) and punch (light grey). In the publications
[9] and [10], a draping experiment was done with the same tools geometry. Experimental
results are taken from these publications. The used plain weave fabric in the experiment

Figure 5: Double dome benchmark model

was a Twintex TPEET22XXX. The material properties of that fabric were studied in the
publications [11] and [12]. The roving of the fabric is a 12k roving. The specimen size is
470 mm x 270 mm. In the simulation only a quarter is simulated because of symmetry
reasons. The used material properties can be found in Table 1. The Young’s modulus

Table 1: Material parameters

Eweft,Ewarp 35.4 kN/mm2

E3 1 kN/mm2

shear modulus G12 0.001 kN/mm2

Cross-section Aweft,A2 1.0 mm2

Cross-section Awarp 17.6 mm2

second moment of inertia I1,I2 1.0e−4 mm4

L1,L2 2.5 mm
L3 0.8 mm
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E3 for the contact beam element is an assumption. The cross-section for beam 3 is the
contact area of two rovings in the plain weave fabric.

The simulation results from the cross beam model of the double dome test are shown
in Figure 6. On the left side the draw-in of the fabric is compared with the draw-in of
the double dome experiment from [9]. The green line is extracted from the experiment
picture in that publication. The draw-in can be simulated well with the cross beam
model. Only small differences at the corners can be found which are in the measuring
accuracy. At the right side of Figure 6 the fiber direction and the points for the shear
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Figure 6: Double dome test - experiment vs. simulation

angle measurements are shown. The points from 1 to 10 are on a diagonal line from the
corner points of the undeformed specimen (0, 235) and (135, 0). Point 1 and 10 are on
the border of the deformed part. The line segment from point 1 to 10 is divided in 9
even parts to build point 2 to 9. The shear angle of the experiment and the simulation is
compared in Diagram 7. The characteristics of the curves from experiment and simulation
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Figure 7: Shear angle - experiment vs. simulation

are comparable , with one high peak at point 5 in the area of the major shear deformation
and a small peak at point 9 where shearing is getting larger because of the hemisphere
geometry of the double dome.

6 CONCLUSIONS

Draping problems can be solved with a coupled multi-scale approach. For the imple-
mented inner structure for plain weave fabrics the approach delivers good results. Draw-in
of the fabric sheet while draping can be reproduced. Also the shearing between the fibers
can be predicted.

In a next step, the coupling between the inner structure and the membrane element will
be generalized for periodic fabric materials, to couple an arbitrary representative volume
element at Gauss point level. Also an extension to describe bending is planned.The
presented work is related to draping, but the method offers new opportunities for any
application where the inner structure of a material plays an important role.
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