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Abstract. We investigate the dynamical properties of 1D solitary waves in

confined immiscible mixtures of Bose-Einstein condensates with repulsive interparticle

interactions. We perform numerical simulations of the coupled Gross-Pitaevskii

equations for two-components harmonically trapped in presence of dark and grey

solitons, and we study the reflection and transmission of this matter wave after the

collision with the interphase between the two immiscible species. Our numerical

results show different scenarios depending on the ratio between the interspecies and

intraspecies strength interactions, where the immiscibility plays an important role in

the dynamical behaviour of the matter wave.
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1. Introduction

In the last two decades, the phenomenon of Bose-Einstein condensation has become

an increasingly active area of research, both experimentally and theoretically. A Bose-

Einstein condensate (BEC) is a state of matter that a bosonic system reaches below

a certain critical temperature. When the thermal de Broglie wavelength becomes

comparable to the mean interparticle separation the transition to this state occurs.

When this condition is attained, a macroscopic fraction of the bosons occupies the

lowest single-particle quantum state. Bose-Einstein condensation plays remarkable roles

in atomic, elementary particle, nuclear, condensed matter physics and astrophysics [1].

The prototype of a system of bosons undergoing Bose-Einstein condensation is the

superfluid 4He, but due to the strong interaction between helium atoms the condensate

fraction, i.e. the ratio N0/N between the number of condensed particles N0 and the total

number of particles N , is dramatically reduced. For this reason it is advisable to look for

weakly interacting systems like ultracold atomic gases. Currently available systems that

fulfill this condition are Bose-Einstein condensates of ultracold gases. The first BECs
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of alkali atoms were realized in 1995 by using powerful laser-cooling methods [2, 3],

providing unique opportunities for exploring quantum phenomena on a macroscopic

scale. Due to the fact that in a BEC most of the atoms occupy the same quantum state,

the condensate can be very well described in terms of a mean-field theory if the number

of atoms is large enough. This is the so-called Gross-Pitaevskii (GP) theory, which has

reproduced with excellent agreement different experimental results [4, 5], e.g. energy

spectrum, quantized vortices, the superfluid response of the system against rotation, or

the generation and motion of topological defects as solitons.

The amazing development in trapping techniques for BECs has allowed

experimentalists to simultaneously confine atomic clouds in different hyperfine spin

states or different atomic species. The first experiment involving interaction between

multiple-species BECs was performed in rubidium atoms which demonstrated the

possibility of producing long-lived multicomponent condensate systems [6]. A mixture

of BECs can be produced experimentally by simultaneously trapping atoms in different

hyperfine states or two isotopes of the same element or of different species. These

multicomponent condensates can present new dynamics and scenarios due to the

intercomponent interactions.

In this work we analyze the dynamical features of solitonic waves (solitons),

which are analytical solutions of the one dimensional GP equation and have the

peculiarity that they maintain their shape while propagate, in harmonically trapped one

dimensional two-component BECs with repulsive interatomic interactions. We start by

characterizing the solitons in homogeneous systems, in single-component BECs. Then,

we perform numerical simulations to investigate the dynamical behaviour of dark solitons

in two-component trapped condensates, in the immiscible case, where the repulsion

between the species favours their spatial separation. Additionally, taking advantage of

the oscillatory motion of dark solitons in harmonic traps we study the behaviour of

this matter wave in the interphase between both species, defining a transmission and

reflection coefficients from the conserved energy of the system.

2. Theory

The Gross-Pitaevskii theory is a mean-field approximation that provides a nonlinear

Schrödinger equation for the wave function ψ(~r, t) (also called the order parameter) that

describes the condensate. It is valid when the system is dilute and weakly interacting,

that is, when the s-wave scattering length as is much smaller than the average distance

between atoms and the number of atoms in the dilute system becomes large enough [4].

The time-dependent GP equation is [4, 5]

ih̄
∂

∂t
ψ =

(
− h̄2

2m
∇2 + Vext(~r) + g|ψ|2

)
ψ , (1)

where g = 4πh̄2as/m is the interaction strength, m is the mass of the particles, Vext(~r)

is an external confining potential (needed to trap the particles), and ψ is normalized to

the total number of particles
∫
d~r|ψ|2 = N .
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For stationary solutions ψ(~r, t) = ψ(~r) exp(−iµt/h̄), where µ is the chemical

potential, and the GP equation (1) becomes(
− h̄2

2m
∇2 + Vext(~r) + g|ψ|2

)
ψ = µψ . (2)

In the absence of interactions (g = 0) this equation reduces to the usual Schrödinger

equation for the non-interacting hamiltonian. However, is precisely the effect of the

interactions that yields the non-linear term in equation (2) and leads to interesting fea-

tures such as solitonic solutions.

Exact solutions: dark solitons

In the one dimensional (1D) homogeneous case, Vext = 0, the GP equation (2) admits

analytical solutions. One particular kind of these solutions are the so-called solitons

[4]. A soliton is a solitary matter wave that propagates preserving its intrinsic shape,

and can interact with other solitons emerging unchanged from the collision, except for a

phase shift [7]. There are mainly two different solitonic solutions depending on the sign

of the interaction: the bright and the dark (grey) soliton for attractive and repulsive

interactions, respectively. Both solutions correspond to a localized modulation of the

density profile characterized by an increase (bright) or a depletion (dark, or grey if the

suppression is not total) of the density with respect to the homogeneous value. The

typical length characterizing the extension of the density modulation is fixed by the

healing length ξ.

If the interaction is attractive (g < 0), the stationary solitonic solution corresponds

to a bright soliton with functional form ψ(x) ∝ sech(x/
√

2ξ) and negative chemical

potential. This type of solitons can move freely in space (along the x-direction) like

an ordinary particle. Although bright solitons are not stable configurations in higher

dimensional systems, they can be produced in traps with tight radial confinement, where

the mechanism of destabilization is reduced [8].

In this work we focus on the case of repulsive interparticle interactions (g > 0),

where there exists an analytical solution of an excited state of the GP equation (1) that

corresponds to a solitary matter wave moving with constant velocity v on a constant

background [9]:

ψs(x, t) =
√
n

iv
c

+

√
1−

(
v

c

)2

tanh

x− vt√
2ξ

√
1−

(
v

c

)2
 , (3)

where n is the background (ground state) constant density, c =
√
gn/m is the speed of

sound and the healing length is given by ξ = h̄/
√

2mgn. The density profile n(x) = |ψs|2
has a minimum at the center of the soliton corresponding to n(0) = nv2/c2. Notice that

for the static case (v = 0), i.e. the dark soliton, the minimum density is equal to zero.

The width of the soliton is fixed by the healing length ξ and amplified by the factor



Reflection and transmission of matter waves in two-component BECs 4

Figure 1. Density profile (left panel) and phase (right panel) of a 1D dark and

moving grey soliton with different velocities in an homogeneous background with

density n = 1/ξ.

1/
√

1− (v/c)2, which increases as v approaches c. The chemical potential is positive

and is fixed by the background density where the condensate is living, µ = gn.

In contrast to the bright soliton case, dark (and grey) solitons present topological

features that deserve further analysis. Dark solitons can be seen as topological defects

connecting two ground states with the same density but different phase [10]. The phase

S of the wave function ψs(x) =
√
n(x)eiS(x) undergoes a finite change as x varies from

−∞ to +∞:

∆S = S(∞)− S(−∞) = 2 cos−1
(
v

c

)
. (4)

For a static dark soliton the phase change is given by ∆S = π and its wave function

ψs(x) =
√
n tanh(x/

√
2ξ) becomes real.

Figure 1 shows the characteristic density profiles (left panel) and phases (right

panel) of moving grey solitons with varying velocity. As can be seen, the width of the

soliton, which is proportional to the healing length ξ, increases as v approaches c. On

the other hand, the phase change ∆S increases up to π as v approaches zero.

The excitation energy εs of the soliton can be evaluated as the difference between

the energies in presence and in absence of the soliton. It yields the following analytical

expression [11]:

εs(µ, v) =
4

3

h̄m

g

(
µ

m
− v2

)3/2

. (5)

It is worth noticing that the velocity of the soliton increases when its energy decreases.

As v → c the excitation energy of the soliton tends to zero, and the nonlinear solitonic

solution to the GP equation converges with the linear sound excitations (phonons) of

the constant ground state.

The topological nature of dark solitons makes them dynamically stable states (i.e.

stable in the absence of dissipation). However, in 2D and 3D systems, they are unstable
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with respect to fluctuations along the transverse directions (y and z). This instability

can be largely suppressed in experiments by squeezing the condensate in the transverse

direction, as highly elongated cigar-shaped traps do [12].

Coupled Gross-Pitaevskii equation

We consider a mixture of two coupled BECs confined in the same external potential Vext,

described by the wavefunctions ψ1 and ψ2, and with N1 and N2 atoms, respectively. The

system is described by two coupled GP equations in the mean-field regime [5]:

ih̄
∂

∂t
ψ1 =

[
− h̄2

2m1

∇2 + Vext + g11N1|ψ1|2 + g12
√
N1N2|ψ2|2

]
ψ1 ,

ih̄
∂

∂t
ψ2 =

[
− h̄2

2m2

∇2 + Vext + g21
√
N1N2|ψ1|2 + g22N2|ψ2|2

]
ψ2 , (6)

where gij = 2πh̄2aij/mij (i, j = 1,2) and mij = mimj/(mi + mj) is the reduced mass.

The coupling constants g11, g22, g12 = g21 are related to the intraspecies scattering

lengths a11 and a22, and to the interspecies scattering length a12 = a21, respectively.

The self-interaction is attractive in the case ajj < 0 and repulsive for ajj > 0, whereas

the interspecies interaction is repulsive when a12 > 0 and attractive when a12 < 0. The

wavefunctions are normalized to unity.

A key feature of mixtures is that they can exhibit miscibility or immiscibility

behaviour depending on the strength of the interactions. Miscibility, when the

interactions favour an overlap between the two species (g11 g22 > g212), and immiscibility,

when the repulsive interaction between the two species favours their spatial separation

(g11 g22 < g212) [13]. In this work we focus in the immiscibility behaviour.

3. Results and discussion: matter waves in two-component BECs

We want to study the behaviour and dynamics of dark solitons in two-component BECs

in the immiscible regime. In particular, the reflection and transmission of a matter

wave in one component when it collides with the interphase between the two species. In

order to do so it is necessary to perform a real time evolution, since the soliton is under

motion. With this aim is very important to choose properly the external potential.

We have considered two types of confinement: harmonic and box potential. If we use

box potentials the density is constant and the soliton remains static, thus a kick is

needed in order to make it move. This kick may cause slight vibrations of the whole

condensate which are not convenient for our work. In contrast, if we use harmonic

potentials the soliton motion is oscillatory which will cause the soliton to move towards

the interphase between the species as it is needed for this work. In what follows, we

consider a mixture of two BECs confined by the same 1D harmonic potential. One

dimensional harmonic potentials are experimentally accessible by using large harmonic



Reflection and transmission of matter waves in two-component BECs 6

frequencies in the transverse y–z plane, focusing on elongated geometries of the system

along the x-direction Vext(x, y, z) = 1
2
m(ωxx

2 +ω⊥(y2 + z2)), assuming that ω⊥ >> ωx,

so that the transverse degrees of freedom are frozen, and the system shows effective 1D

dynamics along the x-direction. As a consequence, the interaction strengths entering

the GP equation have to be renormalized as [4]

gij =
h̄2

mij

aij
a2⊥

, (7)

where a⊥ is the characteristic length of the transverse harmonic oscillator. In our

particular case, we have assumed that the mass of the atoms of both species is the

same (m1 = m2). This could be achieved, for instance, using the same atom for both

species but in different hyperfine states.

We start by characterising the different coupled states of the immiscible mixture

we are dealing with, namely solitonic and ground state in a 1D harmonic trap. To

obtain these states we solve numerically the coupled GP equations (6) by using the

Trotter-Suzuki Python package [14]. The heart of the Trotter-Suzuki Algorithm is

the decomposition of the dynamics into sets of small unitary evolutions, allowing

parallelization, which decreases the computational time of the numerical simulations.

In the soliton case, our initial ansatz contains a node at an off-center location.

Figure 2. Left panel: density profiles of the ground state (GS) in both components

(solid line) and of a dark soliton imprinted in the right component (DS) at x = 5

whereas the other component is in the ground state (dashed line), in a harmonic trap

with g11 = g22 = 1000 and g12 = 5000. Right panel: phase profile of the dark soliton.

All the quantities are expressed in the characteristic units of the harmonic oscillator.

Figure 2 shows the density profiles (left panel) of a dark soliton in the right

component imprinted at x = 5 (dashed line) and the ground state (solid line) for

g12 = 5000 and g11 = 1000 (all the quantities in this work are expressed in the

characteristic units of the harmonic oscillator), and the phase (right panel) for the dark

soliton. The phase jump ∆S of the dark soliton is π, whereas the ground state presents

a constant phase (not shown) all along the condensate. One can see that confinement
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plays an important role in the density profile; the trap enforces the density to go to

zero at the boundary of the condensate. However, in the trapped system there exists a

solitonic state even in the coupled immiscible mixture.

We can observe as well the immiscibility between the species with a small density

overlap. The interphase between both components will act as a potential barrier for

a particle-like object like a soliton that tries to pass through it. From the previous

consideration, we expect that the soliton will achieve lower transmission coefficients in

the high immiscibility regime where g12/g11 >> 1.

Reflection and transmission coefficient

With the aim of studying the dynamics of a grey soliton in the interphase between

both species, we have evaluated the reflection (R) and transmission (T ) coefficients.

We have computed the energy of each component (E1 and E2) and the energy of the

soliton εs. Initially, before creating the dark soliton, the system has a total energy

equal to Einitial = Einitial
1 +Einitial

2 . Assuming that the soliton starts moving in the first

component (right component), we can define the coefficients as:

R =
Efinal

1 − Einitial
1

εS
,

T =
Efinal

2 − Einitial
2

εS
, (8)

where the final state corresponds to the state of the system after the first collision

between the grey soliton and the interphase. It is easy to check that these definitions

fulfill:

R + T =
(Efinal

1 + Efinal
2 )− (Einitial

1 + Einitial
2 )

εS
=

=
Efinal − Einitial

εS
=
εS
εS

= 1 . (9)

We have imprinted a dark soliton in the right component at x = 2.5 and we have

solved the two coupled GP equations (6) in real time dynamics for different immiscibility

regimes. In Figure 3 we show the numerical results for the transmission coefficient of a

grey soliton in a harmonic trap initially at x = 2.5 as a function of the ratio between

the interspecies and intraspecies strength interactions. First of all, one can see that as

the immiscibility between the species increases the transmission coefficient decreases.

Theoretically, these systems will exhibit immiscibility behaviour when g12/g11 > 1.

Nonetheless, we have investigated systems deep in the immiscibility regime, so we have

started with g12/g11 = 2 (region II in the Figure 3), where the transmission coefficient

is nearly 0.9. As we increase the strength interaction ratio, the transmission coefficient

decreases exponentially until we reach an inflection point, where the value remains

almost constant at 0.5. Once we pass this inflection point, the transmission coefficient
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Figure 3. Transmission coefficient of the grey soliton imprinted at x = 2.5 in the

right component as a function of the ratio between the interspecies and intraspecies

strength interactions. Dashed line is a guide for the eye. We also noticed different

dynamics of the soliton in the four regions plotted (I, II, III and IV).

decreases again exponentially until we reach the high immiscibility regime, where the

value of the coefficient is close to 0.

We have also computed the transmission coefficients as a function of the ratio

between the interspecies and intraspecies strength interactions for grey solitons with

different energies, imprinting initially the soliton at different positions (the closer to the

interphase the higher the energy). We have obtained similiar results as Figure 3.

In Figure 4 we show snapshots of the density profiles of both components after the

dark soliton imprinted in the right component has collided with the interphase. Each

panel corresponds to a different regime I, II, III and IV labelled in Figure 3. Essentially,

we can distinguish four different behaviours. The first one, in the low immiscibility

regime I, where the grey soliton passes through the interphase almost clean and it is

transmitted to the left component without perturbations (this corresponds to a large

transmission coefficient close to 1). The next regime, corresponding to II, the grey

soliton also passes through the interphase, it is transmitted but one can observe the

formation of a bright soliton in the right component in the density gap corresponding

to the dark soliton. This gap in one component (which constitutes the component

supporting the dark soliton) is filled by a bright soliton in the other component. This

configuration corresponds to a dark-in-bright soliton, that were predicted theoretically
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Figure 4. Snapshots of the density profiles of moving grey solitons after their first

contact with the interphase between the two species. Each panel corresponds to a

different regime as labelled in Figure 3.

and have been observed also experimentally two- and multiple-dark-in-bright solitons

[15]. The third regime, corresponding to III, the grey soliton gets reflected once it

reaches the interphase, but it creates at the same time a dark-in-bright soliton. And

finally, the high immiscibility regime IV, where the dark soliton is reflected almost

completely without creating a dark-in-bright soliton and the other component remains

almost unaltered (the transmission coefficient tends to zero).

In order to study the stability of these solitons, we have computed a large real time

evolution corresponding to ten times the period of the oscillations in the region II. It

is important to stress that the solitons we have obtained are stable. Once created, the

dark and bright combination does not disappear, even after each collision against the

interphase, where the dark-in-bright soliton changes from one component to another.

4. Conclusions

We have analyzed the dynamical properties of a dark soliton imprinted in one component

of an immiscible one dimensional mixture. Our numerical results, obtained by solving

the 1D coupled Gross-Pitaeskii equations, show that as the immiscibility between

the species increases the transmission coefficient decreases. Furthermore, we can
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distinguish four different behaviours of the matter wave depending on the ratio between

the interspecies and intraspecies strength interactions in which the soliton can be

transmitted or reflected, and in between more complex dark-in-bright solitonic states

can be formed. In addition, we have demonstrated that dark and dark-in-bright solitons

in one dimensional harmonic trap under oscillatory motion are dynamically stable states

against decay to the ground state of the system.
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