
1

Abstract—Many image processing algorithms have a very high

execution time if only a processor is used for processing them.

Using a SIMD parallel structure for its execution could reduce

this time. This is particularly important in the case of algorithms

that must be processed in real time. The use of networks of PCs is

an appealing solution that besides its low cost, takes advantage

from both, the high speed of actual interconnection networks,

and the high-performance of PCs. In this paper we present a

model that explicitly considers system parameters, network

parameters, and application parameters. So, the speed and

communication model of the considered network, the

workstations and PCs computing power, the per-pixel

computational cost of the algorithms (that can be constant or

variable), and a variable number of computers have been

considered.

We don’t aim to evaluate the processing of high and medium-

level algorithms of a MISD structure, but we present the first

results of our evaluations for iterative low-level image processing

applications. Specifically, we give a prediction model to

distribute the data to each processor of a distributed system,

minimizing the processors idle time.

Index Terms—Distributed systems, Load balancing, Low-level

image processing, real time image processing.

I. INTRODUCTION

YPICAL real-time computer vision tasks require huge

amount of computing power, larger than can be achieved

by current state-of-art workstations and personal computers.

Parallel processing appears to be the only solution [1] to

obtain enough computing power for handling real-time

computer vision applications. As an alternative, special-

purpose hardware or vector supercomputers have often been

used.

In the nineties parallel processing started to dominate the

supercomputers and more specifically the mesh machines. But from

the end of the nineties it has increased the interest in distributed

parallel computing. Although this architecture has been available for

many years, two developments have served as catalysts to the rapid

This work has been supported in part by the Spanish Ministry of Science

and Technology under projects DPI2004-07993-C03-03 and TIC2002-02791.

P. Millán is with the Computer Engineering and Mathematics Department,

University Rovira i Virgili, Av. Països Catalans, 26, 43007 Tarragona, Spain

(e-mail: pere.millan@urv.net).

E. Montseny is with the Computer Engineering and Automatic Control

Department, Technical University of Catalonia, Pau Gargallo, 5, 08028

Barcelona, Spain (phone: +34-93-4011691; fax: +34-93-4017045; e-mail:

eduard.montseny@upc.edu).

growth in the use of clusters-based computing. First, high

performance workstations and PCs with microprocessors that

challenge custom-made architectures are widely available at

relatively low cost. Second, several software packages have been

developed to assist the programmer in process management, inter-

process communication, and program monitoring/debugging in a

distributed environment [2], [3]. Moreover, the increasing

performance of inter-connection networks as for security and data

transfer speed has also been crucial for increasing the use and interest

in the research of this kind of architecture.

A PC cluster comprises a certain number of general-

purpose computers interconnected by a local area network

(LAN). Besides their cost advantage over other architectures,

very powerful nodes with large memories and I/O capabilities

characterize clusters of PCs. Also, clusters are relatively

flexible, in that additional computing power and

communication capacity can be easily configured into the

system.

An increasingly number of low-level image processing

algorithms and a lot of medium-level ones, have SIMD

structure. Among the first, are especially usual those which,

after evaluating image characteristics, analyse them at a local

level and just at the final of the process take a decision about

classification and scene interpretation. A good solution for

reducing the processing time of this type of algorithms

consists in processing them within a general-purpose

computers network.

However, two important problems must be considered

when using this kind of platform: the way tasks have to be

distributed among the network nodes and the number of nodes

to be used so that the algorithm can be processed with the

minimum execution time.

In this paper, we have studied several ways of partitioning

an image for distributing the workload among a network of

PCs that will perform a low-level processing task. The

restrictions imposed to the system are as follows:

a) One of the PCs owns the image data, and act as a master.

b) All the working processors must process the same volume

of data.

c) There is a fixed computational cost per pixel.

d) The results obtained for each pixel have to be sent back to

the master.

e) The image is partitioned into a number of areas that

depends on the number of processors, and the size of all

these areas is almost the same according to b).

The rest of the paper is organized as follows. Section II

On Real Time Image Processing on a Network

of PCs

Pere Millán and Eduard Montseny

T

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

2

introduces load-balancing restrictions. Section III summarizes

load-balancing strategies. In the next two sections we will

explain how to obtain the optimum size of the data messages,

the number of communications needed to distribute the image

and to collect the results from each one of the slave

processors. We present some comparative results at section VI

assuming two types of interconnection networks: Ethernet [4]

and Myrinet [5]. Finally, section VII presents some

conclusions and ongoing and future developments.

II. LOAD-BALANCING RESTRICTIONS

The load-balancing problem is central to all approaches of

parallel processing. Many studies have been carried out on

both, static and dynamic load balancing strategies [6], [7]. The

workload can be either in the form of tasks or pieces of data.

In the case of a network of PCs performing low-level

computer vision algorithms, which uses a SIMD structure, the

only solution for load balancing consists in a correct workload

distribution among the different processors. This is because

for such parallel applications, it is quite inefficient to migrate

the processes because of the large overheads that may incur

[2].

For modeling our load-balancing scheme, we have

considered that:

All the processors are only devoted to process the

vision algorithm.

All the processors hold the same computing features.

All the processors analyse the same volume of data.

One processor act as a master and the others (slaves)

are devoted to process the data.

We only consider algorithms that need to be executed

in real time.

The workload distribution should be performed attending to

the objective of minimising the idle time of the processors

and, at the same time, minimising the total execution time of

the algorithm.

III. LOAD-BALANCING STRATEGY

The execution model of our study consists of a master

processor and a collection of slave processors. The master is

responsible for partitioning a given image into a set of sub-

images, distribute them to all the slaves’ processors and

collect back the results (Fig. 1).

Master

Slave 1 Slave 2 Slave p

Communication Channels

Fig. 1. Execution model.

It is supposed that the slave processors can compute and

communicate in parallel. This could be achieved using, for

example, MPI-2 One-sided Communications [8] at the

software level, and Remote DMA [9] at the network level. So,

it will be the responsibility of the master assuring that all the

slave processors have data to be processed, and asking the

slaves for the results in the most efficient way.

The image processing tasks considered in this work involve

mainly low level image processing algorithms. For this type of

image operations, a new pixel’s value depends on the pixel

itself and its neighbors. Therefore, after partitioning the

image, each slave is expected to process a block of

consecutive pixels rather than a set of unrelated pixels. In

order to make the communication simple and efficient, a strip-

wise partition is adopted since images are stored by rows in

the memory. Moreover, it has to be taken into account that the

transfer of data stored in consecutive memory positions has

less communication cost [10].

As shown in Fig. 2-a, the first function of the master

consists in partitioning the image into as many strip-wises as

slave processors the system owns, in such a way that each

strip-wise has the same number of lines (rows). Then, the

master assigns each strip-wise to one of the processors, that is,

the master sends the strip data by smaller messages to the

slaves in the most efficient way.

Next, the master divides internally all the strip-wises into

sub-blocks of data (lines) of variable size (Fig. 2-b). The

master uses a message for sending each sub-block to the

corresponding slave processor.

SWi
j

SWp

SW1

SW2

Master

SWp

Slaves

1

2

i

p

SW1

SW2

SWi

SWi
1

SWi

SWi
2

a b

Master

Fig. 2. Internal partition method used for sending the data to the slaves.

The master will collect, using messages, the results

obtained by the slave processors. For sending the results, the

slaves will group together the results into sub-blocks of

variable size, so that the communications can be carried out in

the more efficient way. All the slave processors will group the

results in the same way, but according to the size specified by

the master, that is in charge of calculate them. All these

actions must be performed minimising total system execution

time.

It is assumed that the first task has a fixed computational

cost that will be reduced as much as possible, considering that

during the time the master is busy distributing the image, the

other processors are idle and waiting for the data.

Next we will study in detail the tasks of data distribution

and collection of results.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

3

IV. DATA DISTRIBUTION

Let us start by defining some parameters used at this and

next sections.

p number of slave processors in the system.

m number of lines/rows of the image.

n number of pixels (columns) in each line of the image.

SWi strip of rows associated to slave processor i.

SWi
j sub-block j of strip i.

RBi
j results obtained by processor i for the sub-block j.

ts start-up message communication time.

tw per-byte transfer time.

tc per-pixel processing time.

Tc
i time taken by processor i to compute all its data.

tsBj time taken for sending sub-block j of a strip.

tpBj time taken by a slave to compute sub-block j.

tsRj time needed for collecting the sub-block j of results.

tpRj time taken by a processor for obtaining the sub-block

j of results.

RB number of resultant bytes per pixel.

N(T) maximum number of messages that can come about.

Nbp maximum number of bytes per network packet.

As our study is focused on algorithms that must be executed

in real time, one of the main aims of our model is to minimize

total image processing time. So, we will try to carry out in

parallel the distribution of data to all the slaves, and the task

of data processing by the slaves.

For verifying if this parallel processing is possible, the

master must evaluate if the maximum number of transfers,

including data and results, can be performed during the time

the slaves are processing their own information.

This will be possible if next conditions are satisfied:

The time taken by slave processor i to process all its

own data, as given by (1), must be equal or greater than

the time needed by the master for distributing all the

data and collect all the results from all the slaves (2).

i c
c

n m t
T

p
 (1)

i

c s wT N(T) t 1 RB n m t (2)

The case in which (2) is not verified, is not analysed in this

work but it will be considered in future research.

Once the master has obtained all the parameters, it would

have to verify that N(T) is greater than the real number of

necessary transfers.

In order to the master can distribute all the data, first of all

it must calculate the size of all the messages. For getting the

size of the messages, two conditions have been taken into

account. The first of these conditions can be enounced as

follows:

Condition 1: For each slave processor i, its first block of

data is the smallest assuring that:

1-1- All the processors can begin their computation with the

minimum delay.

1-2. When the first processor receives the second message

with data SWi
2, it still has first message data to be processed.

So, the amount of data within the first message (SWi
1) must

contain enough lines as to assure that all the processors can

begin to work with the minimum delay and guaranteeing that,

when the data have been sent to the last processor, the first

one still has data to continue working, as can be deduced

observing Fig. 3.

tsB1

tsB1

tsB2

tsB1

tsB1

tpB1

p tsB1

slave 1

slave 2

slave 3

slave p

Fig. 3. First communication/processing time scheme.

If the first block of data contains b lines of pixels, that will

be processed, plus the a lines that are necessary to process the

b previous ones, if the network fragments message into

packets of at most Nbp bytes, the communication time of all

these lines will be given by:

sB1 s w
bp

(b+a) n
t t (b+a) n t

N
 (3)

Otherwise, the communication time will be given by:

sB1 s wt t (b+a) n t (4)

Moreover, as processing time of first block is given by:

pB1 ct b n t (5)

The number of lines (b) will be the first integer value

satisfying the following condition:

sB1 ct b n tp (6)

Second condition to obtain messages’ size is the following:

Condition 2: After the first message has been sent, the

remainder data have to be distributed with the minimum

number of messages, but taking into account that the

processors must have at all times data to be processed.

The number of messages must be minimised since the

connection has to be established with each message in order to

transfer the data (ts). This implies that the new data have to be

delivered to all the processors in a time equal or lower than

the processing time a slave needs for processing the data

received in the previous transfer.

So, while the last slave is computing the data of first

message, the master besides of finishing sending first message

to the last processor it must send the second message to all the

slaves. It implies that the number of lines of the second

message have to be equal to the maximum number verifying

that computing time is greater than sending time. This

situation can be observed in the second

communication/processing time scheme depicted by Fig. 4.

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

4

tsBi

tsBi

tsBi-1 + (p-1) tsBi

slave 1

slave 2

slave 3 tsBi

tsBi
slave p tsBi-1

tpBi-1

Fig. 4. Second communication/processing time scheme.

As processing time of first data block is given by (5), if we

define l2 as the number of lines of the image delivered by the

second message, if the network fragments messages, the

following inequality must be satisfied:

2
c s 2 w

b

s w
b

l n
b n t (1) t l n t

N

(b+a) n
 t (b+a) n t

N

p

p

p

 (7)

Otherwise, the inequality to be satisfied is:

c s 2 w s wb n t (1) t l n t t (b+a) n tp (8)

Generalising previous inequalities, if li is the number of

image lines delivered in the i-th message, and the network

fragments the messages, the inequality to be satisfied is:

i
i-1 c s i w

b

i-1
s i-1 w

b

l n
l n t (1) t l n t

N

l n
 t l n t

N

p

p

p

 (9)

Otherwise:

i-1 c s i w s i-1 wl n t (1) t l n t t l n tp (10)

Equations (3) to (10) allow us to evaluate the size and the

number of different messages that have to be delivered to each

slave processor of the system.

V. COLLECTION OF RESULTS

The collection of results by the master must be carried out

while the slaves are finishing the processing of their image

data. So, the computation of the message’s size of the results

has been performed in reversed order with regard to the order

the communication of those messages is done.

This is why, first of all, we calculate the size of the last

message of results and then we deduce the size of the

remaining messages. These calculi have been carried out

considering that all the slaves have the same computation

time, and that all of them begin their processing with some

delay with regard the previous one, as depicted in Fig. 5.

Tc
1slave 1

slave 2

slave 3

slave p

tsB1

tsB1

(p-1) tsB1

Tc
2

Tc
3

Tc
p

tsB1

tsB1

Fig. 5. Computation/initial delay time scheme.

For getting the size of the messages of results, two

conditions have been taken into account. The first of these

conditions can be enunciated as follows:

Condition 3: The last message of results is the biggest

assuring that:

3-1. All the processors can start sending the last results

with the minimum delay (or immediately after they finish their

computation).

So, the number of results within the last message (Rn) of

the 1st processor must contain the maximum number of lines

as to assure that the 1st processor has sent the whole result

message when the 2nd processor has finished its work.

A scheme of this processing/collection behaviour is

depicted by next figure.

Tc
1slave 1

end processing

time of

slave 1

tsRn

tsB1

tsB1

slave 2 tsRn

end proces.

time of

slave 2

end proc.

time of

slave p

slave p tsRn

Fig. 6. Processing/collection time scheme of the last result message.

The delay with which slave i finish its computation with

regard to slave i-1 is the same than the delay with which slave

i begins its computation with regard to slave i–1.

As the communication time of first data message is given

by (3) or (4), if ln is the number of result lines delivered by the

processor i, in the case that the network fragments messages,

the following inequality must be satisfied:

n
s w s

bp bp

n w

l RB n(b+a) n
t (b+a) n t t

N N

 l RB n t

 (11)

Otherwise, the inequality to be satisfied is:

s w s n wt (b+a) n t t l RB n t (12)

The second condition we have taken into account for

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

5

calculate the size of the messages of results is the following:

Condition 4: Before the last message has been sent, the

remainder of the results must be collected using the minimum

number of messages, but taking into accounts that:

4-1. The processors must compute these results before

sending them.

4-2. When the first processor is computing the results of

block i all the processors must send, in a sequential way, the

results of block i-1.

Next figure gives a representation of previous condition.

slave 1

slave 2 Tc
1tsRn-1

tsRn-1slave p

tsRntsRn-1

tpRn

p tsRn-1

Fig. 7. Processing/collection time scheme of middle result messages.

As we have pointed out previously, the number of messages

must be minimised because of the overhead of ts. This implies

that new data have to be received by all the slaves in a time

equal or lower than the processing time a slave needs for

processing data received in the previous message.

So, in the case that the network fragments the messages, the

following inequality has to be satisfied:

i-1
i c s i-1 w

bp

l RB n
l n t p t l RB n t

N
 (13)

Otherwise, the inequality to be satisfied is given by:

i c s i-1 wl n t p t l RB n t (14)

VI. RESULTS

From the simulations we have carried out, some advantages

have been deduced of optimising data distribution, minimising

the time with which the slaves receive the first data and

minimising also the time they wait for the last slave to send

the data.

We have analysed eight different models, combining four

basic models (Table I) with two number of slaves’ processors

p (4 or 16). Basic models are selected depending on the size of

the image m n (640 320 or 2000 4500) and the algorithm

parameters a (2 or 8) and tc (5 s or 100 s). For comparative

purposes, we also show the time Tseq taken by a sequential

processor to process each algorithm.

Tables II, III and IV show the experimental results obtained

from the analysis of the models. We consider three different

interconnection networks: Fast-Ethernet (Table II; ts=700 s;

tw=80 ns; Nbp=1500), Gigabit-Ethernet (Table III; ts=150 s;

tw=8 ns; Nbp=1500), and Myrinet (Tables IV and V; ts=5.71

s; tw=2 ns).

Columns third and fourth of Tables II to V corresponds to:

Theoretical number of message packets that can be

collected per processor (Ntpt).

Real number of message packets collected per

processor (Ntpr).

Finally, the three last columns give the information that

corresponds properly to the proposed algorithm and the

improvements with regard to traditional systems:

Time taken by the proposed parallel system to process

the algorithm (Tpar).

Communication time improvement with regard to

traditional systems (Timprov.).

Percentage improvement of the proposed system over

traditional systems (Improv.).

To evaluate the improvements provided by the proposed

system, we have considered that the time used by the

traditional system is, according to Fig. 8, the time first slave

needs to receive all its data (tsD). Then, while this slave

processes its data the master continues sending data to the

remainder slaves of the system.

Finally, first processor must transmit its results to the

master and it waits till the other processors perform their

transmissions. The time used by the system has been deduced

from the time so obtained.

slave 1

TC

slave p

slave 2

tsRtsD TcD

tsRtsD TcD

tsRtsD TcD

Fig. 8. Communication/processing time scheme on traditional system.

So, if the network fragments the messages, the time first

slave needs to receive all its data is given by:

sD s w
pb

(n m) (n m)
t = t t

(N)p p
 (15)

Otherwise:

sD s w

(n m)
t =t t

p
 (16)

And the time taken by a slave for computing its data is

given by:

cD c

(n m)
T = t

p
 (17)

If the network fragments the messages, the time taken by a

slave to send a result message will be given by:

sR s w
pb

n m RB (RB n m)
t = t t

(N)p p
 (18)

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

6

Otherwise:

sR s w

(RB n m)
t =t t

p
 (19)

So, the total time we consider that a traditional system

needs to process the algorithm is:

c sD cD SRT =t T tp (20)

And then, the improvement time will be as follows:

improv. c parT =T T (21)

The results we have presented correspond to the models

that satisfy conditions 1-1 and 1-2. As it was expected, it has

been verified that there are more considerable improvements

for slow networks than for quick ones. It has also been

verified that improvements are almost independent of the

images’ size.

We must emphasise that the improvement is more notable if

the per-pixel computation time of the algorithm is small, what

corresponds to those that must to be processed in real time.

We have also observed that it is very interesting to study

the cases wherein the computation time is lower than

transmission and results reception times.

Other important conclusion is that as great the number of

slaves is, the great is the improvement.

Observing Table V we can deduce that for very quick

networks, such as Myrinet, if the per pixel communication

times are small the proposed system can be very

advantageous.

VII. CONCLUSIONS

The system shows a very good behavior using slow

interconnection networks and large number of processors. It

can be seen also that for applications that must be executed in

real-time, where they need a big amount of processors and

have short per-pixel computing time, is when the system

shows the best performance.

It is necessary to continue studying the cases with larger

times of distribution than computation, and also the

applications where the results are bigger than a byte per pixel.

REFERENCES

[1] A. Downton and D. Crookes, “Parallel architectures for image

processing”, Elect. & Comm. Eng. Jour., vol. 10, pp. 139-151, 1998.

[2] M. Hamdi and C. K. Lee, “Adaptive load-balancing of image processing

applications on clusters of workstations”, IEEE trans. On Computer, vol.

39, no. 10 pp.1477-1232, 1997.

[3] C. H. Cap and V. Strumpen, “Efficient parallel computing in distributed

workstations environments”, Parallel Computing, vol. 19, pp. 1221-

1234, 1993.

[4] R. Steifert, “Gigabit Ethernet: technology and applications for high

speed LANs”, Addison-Wesley, pp. 141-280, 1998.

[5] Myrinet, http://www.myri.com/myrinet/overview/ , 2004.

[6] F. Bonomi and A. Kumar, “Adaptive optimal load-balancing in a

nonhomogeneous multi server system with a central job scheduler”,

Parallel Computing, vol. 19, pp. 1221-1234, 1993.

[7] S. Miguel and Y. Robert, “Adaptive load-balancing for image processing

algorithms”, Parallel Computation Proc. 1st international, pp. 438-451,

1991.

[8] Message Passing Interface Forum, “MPI-2: A Message Passing Interface

Standard”, High Performance Computing Applications, 12(1-2):1-299,

1998.

[9] RDMA Consortium, http://www.rdmaconsortium.org/ , 2004

[10] F.J. Seinstra and D. Koelma, “Incorporating Memory Layout in the

Modeling of Message Passing Programs”, Proc. Of 10th EUROMICRO-

PDP’02, Canary Islands, Spain, pp. 293-300, September 2002.

TABLE I

SIMULATION MODELS

Image Algorithm

Model m n a tc Tseq tc' Tseq'

1 2000 4500 2 5 s 45 s 100 ns 900 ms

2 640 320 2 5 s 1.024 s 100 ns 20.5 ms

3 2000 4500 8 100 s 900 s 500 ns 4500 ms

4 640 320 8 100 s 20.480 s 500 ns 102.4 ms

TABLE II

RESULTS OBTAINED FOR FAST-ETHERNET

Model p Ntpt Ntpr Tpar (ms) Timprov (ms) Improv

1 16 122

1 4 3503 3006 11289 6110.64 54.13 %

2 16 2

2 4 79 74 262.21 136.77 52.16 %

3 16 4893 774 56604 4873.26 8.61 %

3 4 79842 3024 225089 6061.44 2.69 %

4 16 111 20 1306.1 98.42 7.54 %

4 4 1816 72 5126.5 136.46 2.66 %

TABLE III

RESULTS OBTAINED FOR GIGABIT-ETHERNET

Model p Ntpt Ntpr Tpar (ms) Timprov (ms) Improv

1 16 1111 756 2843.6 1001.65 35.22 %

1 4 18510 3006 11256 1207.22 10.73 %

2 16 25 21 69.046 19.65 28.45 %

2 4 421 72 256.63 27.04 10.54 %

3 16 23377 774 56320 962.77 1.71 %

3 4 374760 3024 225017 1197.50 0.53 %

4 16 531 20 1285.2 19.52 1.52 %

4 4 23377 774 56320 962.77 1.71 %

TABLE IV

RESULTS OBTAINED FOR MYRINET WITH tc

Model p Ntpt Ntpr Tpar (ms) Timprov (ms) Improv

1 16 30390 4 2813 19.22 0.68 %

1 4 490980 4 11250 22.53 0.2 %

2 16 691 4 64.122 0.53 0.83 %

2 4 11172 4 256.03 0.54 0.21 %

3 16 615302 4 56251 19.22 0.03 %

3 4 9849562 4 225000 22.53 0.01 %

4 16 224132 4 5120 0.54 0.01 %

4 4 14001 4 1280.2 0.53 0.04 %

TABLE V

RESULTS OBTAINED FOR MYRINET WITH tc'

Model p Ntpt Ntpr Tpar (ms) Timprov (ms) Improv

1 16 221 9 56.92 19.22 33.77 %

1 4 8274 8 225.13 22.53 10.01 %

2 16 5 7

2 4 188 7 5.15 0.54 10.5 %

3 16 2684 5 282.64 19.22 6.80 %

3 4 476792 5 1125.3 22.53 2.00 %

4 16 1084 5 25.65 0.54 2.11 %

4 4 61 5 6.59 0.53 8.07 %

Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception (CAMP’05)

0-7695-2255-6/05 $20.00 © 2005 IEEE

