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Disclaimer 

This study has been carried out by the student in collaboration with the company. The company 

has solely provided access to the data for the analysis but has had no influence on their 

treatment nor process. All the information and results shown in the report are the outcome of 

the student’s work. The company refuses all responsibilities for mistakes in the data collection 

nor it analysis and does not confirm that the results are legit nor represent the reality. 
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Abstract 

Energy demand forecasting has become a relevant subject in the energy management field. 

Different techniques are being currently applied to forecast the energy demand for different 

time horizons and for diverse types of loads. Some of them are based in complex Machine 

Learning (ML) algorithms, which maps the energy consumption to a set of influence 

parameters or inputs, such as the historical data consumption, the weather or other variables, 

making it possible to predict the energy demand. 

Important management decisions from different stakeholders in the Energy sector are based 

on these predictions and, therefore, it is important to rigorously assess the performance of 

these predictive models. A specific methodology is presented in this dissertation through its 

application over a real-building case-study in which energy demand predictions are being 

carried out by a ML model. All the steps in the evaluation process are explained and 

exemplified, including the data gathering, evaluation period selection, data preprocess with 

special emphasis in the data abnormalities an its relation to the process dynamics and, finally, 

the data process itself. The accuracy of the model and the main parameters of influence are 

evaluated through four different metrics and data visualizations, based mainly in box-and-

whisker plots. 

Several anomalies when predicting energy consumption in a disaggregated load (single 

building) have been found in the study. By removing them the stability of the case-study model 

is around 88%. The metrics yield a MAPE (Mean Absolute Percentage Error) of 18.05% and 

a MBPE (Mean Biased Percentage Error) of -4.67%. While being values within the literature 

range they show a poor accuracy. Nevertheless, there is space for improvement and by re-

training, refining and calibrating the model it will be possible to improve its performance. The 

day of the week, the working calendar and the hour of the day showed to have a strong 

influence over the error metrics analyzed. 

Other alernative Machine Learnings methodologies have been applied to the same dataset 

and their performance have been analyzed. Artificial Neural Network, k-Nearest Neighbors 

and Random Forest based models have been compared after training with more than 1-year 

hourly Energy Consumption data and other influence variables. The Random Forest achieved 

the best accuracy when re-trained, showing a MAPE below 10%. The importance of passing 

a detailed working calendar to the model, using accurate weather variables forecasts and 

defining an adequate re-training strategy have been proved to improve model accuracy. 
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1 Preface 

1.1 Origin of the project 

This master thesis project is born in the R&D Energy & Systems department of the firm where 

the student has completed his master internship. Within the company, the focus of his work 

was mainly on writing project proposals for the European Union founding program 

Horizon2020. One of the projects in which the firm participated in the previous years had led 

to the creation of a new company. This company, to which this document will refer as 

“THESTARTUP” has developed a product for improving the energy management in tertiary 

buildings. It is formed by a suite of application with different specific objectives and 

functionalities. One of these, to which this document will refer as “PREDICTION”, produces 

energy demand forecasts that predicts hourly energy consumption from 24h to 48h ahead in 

Smart Buildings. As these forecasts have been running in some pilot buildings for a long time 

now, it is of importance to be able to assess its performance. The firm and the student agreed 

to start a project to design a methodology that allows this evaluation in a simple and scalable 

way. PREDICTION is intended to be installed in a wide set of different buildings to which each 

performance should be assessed. With a proper assessment corrective measures could be 

suggested to improve the model. In addition, alternatives to the technology behind the 

PREDICTION model should be considered to improve the accuracy given the case the 

evaluation shows a deficient performance of the current implementation. 

1.2 Motivation 

Energy systems are facing several challenges in the last decades that requires an optimized 

management of the system. From renewable distributed generation to building energy 

consumption, it is crucial to be able to anticipate the energy needs and resources of the grid. 

The system must work to fit the energy requirements and knowing what these will be in 

advance will optimize their performance (Wahid and Kim, 2016). Utilities and retailers will take 

advantage of being able to forecast the needs of the power systems at network and distribution 

level. Accurate load forecast enables demand management and energy efficiency initiatives 

that will optimize the power flow and avoid expensive electricity network infrastructure 

investment (Yildiz, Bilbao and Sproul, 2017). In addition, at users’ level, predictive models 

enable mechanism for the building users to make a smarter energy usage through peak 

shifting, smart contracts or demand response.  
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On the other hand, although all these agents will benefit from energy (Demand or generation) 

forecast models, they are hardly understood due to its complexity. It is common that these 

models are developed by third parties, with not precise specifications on how they work. As a 

result, it becomes essential to be able to assess their performance and to understand how well 

they are making the predictions. 

Therefore, the motivation behind undertaking this dissertation comes from two sides. On one 

hand, to contribute to a subject that will have an impact in the upcoming years in the 

management of the different energy systems. On the other hand, from that need of assessing 

others` models when applied to propietary systems, help in its understanding and being able 

to study alternatives. 
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2 Objective 

The objective of this thesis can be split into two main lines. The first objective of this master 

thesis is to design a methodology, through the analysis of a real case-study, to assess the 

accuracy of energy demand forecast models being implemented in Smart Buildings. In addition 

to a general performance study, the methodology aims to reveal which circumstances most 

affect the accuracy.  The second objective is to compare , by using the designed methodology 

in the first part, alternative Machine Learning models when applied to the same Energy 

demand forecasting problem. 

2.1 Scope of the project 

This project aims to develop a methodology to assess forecast for Smart Buildings at individual 

level and to give an overview of current implementations in the field of Machine Learning (ML) 

applied to energy predictions. 

In this master thesis there is no algorithm development. The main models currently applied will 

be analyzed but the algorithmic behind them will remain as a, what is commonly referred in 

the field, black box. This study will remain more practical than theoretical and no complex 

mathematical equations will be shown. To assist the reader that is willing to go deeper in this 

sense, a set of references will be pointed out through-out the document. 

The scope will focus in whole building electrical consumption (WBE). Another well-known and 

related application of ML in Smart Buildings is the fault/diagnosis of energy building detection. 

In this document, this topic is not tackled and no analysis has been performed in this line. The 

energy consumption in the document refers solely to the WBE and no specific systems, like 

climate or lighting, will be considered. 

Another criterion that will not be considered throughout the report is the computational time for 

carrying out the models. As the dataset with which the models will be working is small this is 

not of importance at this level and it is not part of the scope of the project. Nevertheless, when 

working in bigger environments, like in building clusters, it is  parameter that should be 

considered in the analysis. 
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3 Introduction 

In this section the topic which this projects tackles, that is, Energy Demand Forecasting models 

and their accuracy, is presented. The importance of precise enough demand forecasting and 

the different methodologies being applied are explained in 3.1. More specifically, main Machine 

Learning (ML) models are shortly described in 3.2. Furthermore, a brief literature review and 

previous work on the topic is presented in 3.3. The expected contribution of this master thesis 

to the field is advanced in 3.4. The tools that have been used in the dissertation are described 

in 3.5. Finally, in 3.6, the structure of the remaining dissertation is described before going onto 

the next section. 

3.1 Energy Demand Forecasting in Buildings 

In the last decades there have been a lot of significant changes in the Electric systems. New 

players, such as EVs, Smart Customers, Renewable Energies, and the development of 

information and communications technologies (ICTs) have led to the creation of innovative 

concepts that completely implies changes in the management of the electrical grids. In this 

new scenario forecasting models, both for generation and demand, play a crucial role to 

harness energy at the lowest cost, and to guarantee optimal quality and reliability of the energy 

supply.  For all these recent concepts, such as Smart Grids (SGs), Distributed Generation 

(DG), Virtual Power Plants (VPPs), Demand Response (DR), Microgrids (MGs) and Smart 

Buildings (SBs), it is extremely valuable to be able to forecast the demand and generation 

within their domains (Hernandez et al., 2014). 

Accurate Energy Demand Forecasting (EDF) models will improve the real-time and long-term 

performance of power systems (Boroojeni et al., 2017). At the building level, deployment of 

measurement and intelligence devices enables an advanced metering infrastructure (AMI) and 

data is now more available and easy to collect. Regarding the building owners and facility 

managers, they can benefit from anticipating the energy demand of their assets in many ways: 

Demand side management and Demand Response for control of residential and industrial 

loads, optimization of O&M operations, cheaper energy procurement, energy-efficient building 

control strategies, etc. 

Energy Demand Forecasting methodologies 

Energy consumption in buildings is mainly due to heating/cooling load, hot water and electricity 

consumption. At the same time, there are several factors that have a strong and demonstrated 
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influenced over it, such as the weather conditions, the use of the building, construction 

materials, occupancy and schedule, etc. Consequently, Energy demand presents many non-

linearities which need to be detected and later transferred into equations that model it 

(Hernandez et al., 2014). 

There are different techniques for load forecasting. They can be divided into five categories 

such as engineering methods, statistical methods, gray-box modeling methods, machine 

learning and artificial intelligence methods (Fan, Xiao and Wang, 2014).  

The engineering methods are based in physical equations considering the systems in which 

the energy system of a building is based. Taking into consideration the thermal dynamics of 

the building and details of the machinery of the building systems (HVAC, lighting, etc.) and 

using complex equations the energy consumption can be modelled. The main difficulties of 

this technique are the difficulty of gathering all the data needed for the equations in a reliable 

way and the complexity of the equations that model the system. Software simulation tools, as 

the well-known EnergyPlus, are commonly used to model the energy consumption behavior 

of the building. Another drawback of this technologies is that tis tools required high skilled man 

labor to develop proper analysis. Nevertheless, these models, when properly implemented, 

are effective and accurate, and can represent closely to the actual energy consumption of the 

building. Once the model has been defined, given the new inputs it will be possible to 

accurately predict the energy consumption under the new conditions. 

On the other hand, statistical models correlate the energy consumption with some influencing 

variables. In this case the main challenge to design an accurate model is to gather enough 

historical data. Although there is no need of complex physical equation and knowledge about 

the equipment and systems in the building, the models are completely based on the data 

gathered to use as inputs. The main advantages of these models are their relative simplicity 

to the engineering models. They accuracy is limited. Between this method it is worth 

mentioning the Auto-Regressive model with eXtra inputs (ARX), the Auto Regressive 

Integrated Moving Average (ARIMA) and the ARIMA with eXternal inputs (ARIMAX). One of 

the main drawbacks of these methods is error produced when abrupt changes in environments 

or sociological variables (e.g. changes of the weather, type of the day, etc.) occurs.  

Grey-box modeling combines both previous methodologies partially. These models integrate 

qualitative and quantitative knowledge. Regarding EDF they include a simplified model of the 

engineering systems involved in the energy system of the building and other data of some 

influence variables such as weather, solar irradiation, cloud clover, etc. When some parameter 

of the engineering method is unknown, the data-base methods are used to fill in that missed 

information (Hauth, 2008). 

 



Page. 20 Energy Demand Forecasting in Smart Buildings 

 

 

The machine learning and Artificial Intelligence methods can be grouped together as back-box 

models. For these models, opposite to the engineering methods, there is not differential 

equations modelling the behavior of the energy system. They are all data-driven based and 

can include complex algorithms that find relationship between desired output and some 

influence variables.  Within this group the most widely used one is the Artificial Neural Networks 

(ANNs), Supper Vector Machines (SVM), Random Forest (RF), etc. The main drawback of this 

models is their interpretability.  

Forecast time horizons 

When referring to prediction models it is relevant to always specify the time horizon of the 

predictions. Which methods to apply and the data inputs and preprocess is highly influenced 

by the time horizon. Furthermore, the accuracy and error tolerance can vary substantially 

depending on the horizon desired. Researchers agrees on three main categories when 

referring to load forecast time horizon (Raza and Khosravi, 2015): 

• Long term load forecast (LTLF): It refers to horizons from 1 year to 10 years ahead. 

Typically used for long term power system planning (e.g. assets utilities plan). 

• Medium term load forecast (MTLF): Horizons from 1 Month to 1 year ahead. Aiming to 

the efficient operation and maintenance of the power system. 

• Short term load forecast (STLF): For horizons from 1h or 1 day to 1 week ahead. Used 

mainly for adjust generation and demand. This category has a strong influence on 

optimum unit commitment, control of spinning reserves, evaluation of sales/purchase 

contracts between various companies, etc.  The focus of this study is in this category. 

3.2 Machine Learning applied to Energy Demand Forecasting 

As it has been already mentioned the Energy System physical approaches involves complex 

physical differential equations. In contrast to that, machine learning model derives functional 

dependencies between an output and certain inputs, directly from the observations. 

(Heinermann and Kramer, 2016). Compared to physical models, ML are much easier to be 

implement although it is harder to identify the optimum parameters and they require data over 

a prolonged period for a proper training process. (Zhou et al., 2008) 

Tom Mitchell, a recognized eminence in the topic, defines machine learning by defining 

learning problem as follows: “A computer program is said to learn from experience E, with 

respect to some task T, and some performance measure P, if its performance on T as 
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measured by P improves with experience E”. Following this definition and applying to the case 

of this study the learning problem includes the task T (to predict the energy consumption 24 

and 48 hours ahead), which performance is measured by P (the error metrics defined in 4.3.1), 

and that is improving with experience E (each prediction when compared to the final real 

consumption, so every hour predicted and then checked can be assumed to be a gained 

experience). 

With ML it is possible to model the energy behavior of a building while not knowing the technical 

specifications but just considering the historical data and related variables. The development 

of this models is heavily based in the amount and quality of data available, the capabilities of 

the algorithm utilized and computing time to learn from this data. As main drawback, this 

modelling strategy needs data available and there is a cost associated to the acquisition and 

deployment of the sensors that will provide the data. Some authors argue that it is nowadays 

not feasibly to heavily instrument a building cost-effectively (Edwards, New and Parker, 2012). 

Nevertheless, sensor developing and costs are dropping with the same transistor density 

sound every 18 months as defined by Moore’s Law (Schaller, 1997). In addition, accuracy 

depends on the target variable to predict and when predicting hourly whole building electrical 

(WBE) consumption, it is easier to obtain satisfactory results thatn when focusing in more 

specific variables. 

3.3 Prediction models’ evaluation  

To design a good forecast model, the load data should be closely analyzed and dynamics 

should be clearly understood (Raza and Khosravi, 2015). In order to assess their performance, 

the same should stands. In the literature it is agreed that there is no single metrics that can be 

universally used to evaluate the performance of forecast models.(Mehdiyev et al., 2016). 

In the accuracy measures field there are many several types of metrics used. There are scale-

dependent measures, such as the Mean Absolute Error (MAE), an easy interpretable metric 

to assess the error. This metrics are easily biased in the presence of extremely large outliers. 

Even a single large error can sometimes dominate the results (Chen, Twycross and Garibaldi, 

2017). On the other hand, there are Percentage-based measures that are scale-independent, 

such as the Mean Absolute Percentage Error (MAPE). Also, scale-independent, the Relative-

based measures are frequently used, as the Mean Relative Absolute Error (MRAE), that 

compares the performance of a model to a reference model for similar conditions. The 

selection of what kind of measure use depends on a comprehensive analysis of the data and 

the specifics of the model being implemented. 
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When referring to Energy Demand forecasting the most common accuracy measures relates 

to statistical error metrics such as MAPE or Mean Biased Error to name some examples. 

Nevertheless, the metrics changes between authors and there is not official reference in the 

sector neither. There are competitions on predictive models around the globe with relative 

frequency and these usually serve as a reference for the metrics and evaluation 

methodologies. For example, in the energy sector one of the most famous one is the Global 

Energy Forecasting Competition held in 2012 and in 2014 and that used the Weighted Root 

Mean Square as their evaluation method. Some other important competitions on the 

forecasting field are the M-Competitions, using the Mean Squared Error, or the Indoor 

Positioning and Indoor Navigation Competition (IPIN 2015 in its last session), using the RMSE.  

All this variability in the used metrics stresses the need for a framework to evaluate he 

forecasts methods. This master thesis also aims to contribute, where possible, with the design 

of a methodology that gather all the important parameters to consider when evaluating the 

performance of an EDF model.  

3.4 Literature Review and previous work 

Forecasting the energy consumption has been studied since the mid-50s, when (Gillies, 

Bernholtz and Sandiford, 1956) presented his approach to predict peak load based on curve 

trends comparing the weather predictions to peak loads. In 1970 a STLF model for state 

estimation in a power system, based on regression algorithms, was presented by (Toyoda, 

Chen and Inoue, 1970). In the 80s several several authors introduced some non-liner models 

based on ANN. One of the main reference for this models can be found in (Hopfield, 1982), 

which gave its name to an specific model, the Hopfield Netowrk. Since then many authors 

have worked with these models, that ended up being very popular between the EDF 

researchers. (Raza and Khosravi, 2015) offers an extend analysis of different ANN models 

applied to electric load forecasting. Since those early studies on the EDF there has been a lot 

of authors using different models to predict energy demand with different time horizons and for 

different kind of loads. One of the best collection of load forecasting models can be found in 

(Hernandez et al., 2014). In their research the authors enlist over 70 previous real case-studies 

and applications of electric power demand forecasting, describing the model used, predictors, 

forecasts, horizons, application areas, error metrics and other information.  

Most of the literature deals with aggregated loads such as electricity demand at district level, 

region level or even country level. There are less studies on disaggregated loads, specially at 

single building level.  (Fan, Xiao and Wang, 2014) studied the next-day energy consumption 
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of the tallest building in Hong King by using 8 different ML. (Edwards, New and Parker, 2012) 

analysis the energy consumption in residential building to make next-hour energy predictions 

by seven different ML models.(Massana et al., 2015) research shows predictions of STLF to 

non-residential buildings in the University of Girona. (Boroojeni et al., 2017) makes STLF 

predictions on the region level (New York) for different time scales using time series. (Yildiz, 

Bilbao and Sproul, 2017) predicts the electricity load of a University building in Wales using 

Multivariate Linear Regression and other NN techniques.  

3.5 This master thesis contribution 

This master thesis will contribute to the EDF field in diverse ways. Most of the work done so 

far it is referred to grids or microgrids consumption, meaning that the energy analysis has been 

performed considering a certain number of aggregated loads (building clusters, microgrids, 

regions, etc.). This dissertation is focused in a single building. Although this single “load” could 

be broken down into smaller pieces (lighting systems, floors, etc.) it represents a 

disaggregated level that has not frequently studied in the literature. This master thesis is a 

unique real case-study with actual data on the consumption of a middle size building. It hopes 

to serve as an example for small size loads and as a reference for other buildings studies. 

The evaluation methodology proposed aims to provide some guidelines in the assessment of 

prediction models when they are applied to electric loads at building level. Furthermore, it 

pretends, by comparing certain ML models, to facilitate the decision of choosing an appropriate 

forecasting method. Most of the literature, when referring to the accuracy of predictions 

models, sticks to some statistical metrics but do not really deepen in comprehensive analysis 

into the physical meaning of the results. This study hopes to help understanding the dynamics 

of load curve of a tertiary building and its relationship with the predictions. It pretends to set the 

base knowledge for those non- experts in the energy field and help them assessing their 

models when applied to EDF. 

Furthermore, and up to a lesser extent, this master thesis aims to apply some of the ML 

methodologies less frequently found in the literature. A version of a k-NN model will be study 

for EDF in the case-study. Lastly, this dissertation can be used as an updated literature review 

on the topic. 

3.6 Tools used in the project 

The analysis performed in this dissertation have been carried out using the statistical 

programming language known as R through the friendly environment RStudio. R was created 
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by Ross Ihaka and Robert Gentleman in 1995 and since then, it has gained popularity between 

data scientist around the world.  It is an open source advanced statistical language and its 

ease to support extensions and the vast community using it has led to a great diversity of 

available packages. These packages are collections of R functions, data, and complied code 

that can be installed in R with one single line. Some the packages that have been frequently 

used in this master thesis are: 

Dplyr:  for data manipulation, written and maintained by Hadley Wickham. It provides 

some great, easy-to-use functions that are very handy when performing exploratory 

data analysis and manipulation (Kodali, 2017). 

Zoo: consists of the methods for totally ordered indexed observations. It aims at 

performing calculations containing irregular time series of numeric vectors, matrices & 

factors. (Sunku, 2017) 

Caret: maintained by Max Kuhn, is the go-to package in the R community for predictive 

modeling and supervised learning. This widely used package provides a consistent 

interface to all of R’s most powerful machine learning facilities. (Blog, 2017) 

Ggplot2:  Although is not one of its strengths R has good data visualization options 

though this package, which has been used for all the graphs presented in this report.  

Although there are other good programming languages that are also popular in the data 

analytics field, R has been chosen over all of them. The main reason is the vast community 

that supports it and that has published all these available package, automating different task, 

saving time and making it easy to perform more complex models. Given the time given and 

the nature of the project it is more suitable to reach an enough appropriate programming level 

than with other programming languages. Furthermore, the computing time for the dataset 

involved in this project it is not important. If the project dealt with bigger dataset another fastest 

languages should be considered as the time for computing the models would exponentially 

increase and R is a slow language. Part of the scripts and code (written in R) will be added as 

ANNEX to this report. 

3.7 Report structure 

After this first introduction to the topic and the intended contribution of this dissertation the rest 

of the document structures as follows:  In Section 4, the first part of the master thesis is 

described and the methodology proposed is at the same time applied over a real case-study. 

System description, data inputs and preprocess, data process, error metrics and evaluation of 

the results are discussed in this section. In Section 5, and second part of the document, three 
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models are used to predict the energy consumption in the same case-study conditions than 

the first part. Data inputs, feature selection and results evaluations are presented. Later, in 

section 6, the results obtained from section 4 and 5 are commented and compared and some 

final conclusions are given. To close the study some recommendations of future work and 

acknowledgment for the accomplishment of this study are presented in sections 7 and 8 

respectively.  

As the different ANNEXs accounts for a considerable share of the document a brief description 

of each one is given also at this point. ANNEX I shows the specifications of the devices from 

the AMI. ANNEX II collects the graphical representations of the dataset of each individual 

month for the whole evaluation period (see Figure 5) to facilitate the visualization of the data 

and data cleanness process to the reader. ANNEX III shows some results for the selected 

model in part II. Lastly, ANNEX IV and ANNEX V explains written code for this master thesis 

and gathers samples of all the different scripts used in the evaluation of the case-study.  
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4 PART I: Methodology for the assessment of EDF 

models through a case-study.  

This section refers to the objective I of the project, that is, to the design of a methodology to 

evaluate the performance of forecasting models applied to Energy Demand in disaggregated 

tertiary buildings. Through a case-study the methodology is applied and all the steps in the 

process are explained. First, a brief description of the system in which the methodology is 

tested is given, including the building and the hardware description. Second, the data gathering 

and the pre-process applied is shown. Third, an analysis is performed with a specific set of 

error metrics. Lastly, the results and discussion on the methodology and the results are 

discussed and summarized. 

4.1 Description of the case-study system 

The case-study in which the proposed evaluation methodology is applied as an example is 

based in the energy demand of an office building. In this building THESTARTUP has installed 

the product PREDICTIONS making it possible to forecast the energy consumption of the 

building 24h and 48h ahead. Through a cloud software the user (facility manager or building 

owner) can request the forecast up to 2 days ahead. Details on the building and the hardware 

and software involved in the process are given in this section. 

 Building characteristics 

This COMSA headquarters office building is placed near the center of Barcelona (Spain), in 

the street Avinguda de Roma no. 25-27. It has a total surface of 2626 square meters distributed 

along its seven floors. The façade is covered by PV panels and the building is exclusively fed 

by electricity. The building’s air conditioning system is composed by three outdoors variable 

refrigerant flow units and fourteen VRF interior units, all from Mitsubishi; the total cooling power 

is 574 kW and the heating power is 640 kW.  
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Figure 1.  Left: Emplacement of COMSA Headquarters in Barcelona and main entrance. Right: 3D Google view of 

the building. 

 Hardware and software infrastructure 

This study does not pretend to go deep in the details of the measuring structure as it is out of 

the scope of the project (its focuses rather in analyzing the data). Nevertheless, the key device 

from which the data that will be used is being gathered will be explained in this section. All the 

advanced metering infrastructure (AMI) relies on the gateway and datalogger, a model DL172 

from the company SenNet. This model is designed to monitor many electric loads in a compact 

format. It incorporates a radio frequency module (868 MHz) as well as RS232 and RS485 

ports. It includes 6 three-phase electricity meters, configurable also as 18 single-phase or as 

a combination. The internal electricity meters allow monitoring power, energy (active, reactive 

and apparent), power factor, current, voltage, and frequency. It GPRS/GSM/3G connectivity 

allows it to send the data through a router connected to the Ethernet. Specifications of the 

device can be found in the ANNEX I. 

This device has been installed in the building and it is measuring different energy parameters 

of each of the floors of the buildings. It has been running fully operative since 14th February 

2017. Nonetheless, as for the shake of this study more data is needed, this study will consider 

just the general consumption data of the building, that is, the WBE. Since 2014, the meter 

installed have been measuring the total electric consumption and the specific of the 4th floor, 

where the department of R&D in Energy is placed. There is available reliable data of energy 

consumption of WBE since 1st January 2015. Despite having such an amount of available 

consumption data, PREDICTIONS started being operative later and reliable data from the 

application is just available from May 2016. 
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The software over the AMI is a cloud Software as a Service (SaaS) that can be accessed from 

any common browser (e.g. Google Chrome). It Is named DexCell and its property of the 

Spanish energy monitoring company DEXMA Tech. This Energy manager software can 

integrate a wide range of metering hardware and acts as a platform in which other application 

regarding energy management in buildings can be installed. That is the case of PREDICTIONS 

that can be incorporated to the software through the platform market place (in an equivalent 

way as applications for smart phones are sold through Play Store or Apple Store in Android 

and Apple respectively). 

 PREDICTION Energy demand forecast model 

Once PREDICTION has been incorporated to the Energy manager DexCell it is possible to 

configure it and start using it, being therefore possible to predict the building’s hourly electricity 

consumption up to 48h ahead and then compare it with real-time consumption.  

PREDICTION application works through a proprietary machine-learning algorithm. This 

algorithm has been developed by a third party of the European Consortium that led to the 

creation of THESTARTUP. It must be clarified at this point that THESTARTUP and the author 

of this dissertation have not specific information on what kind of Machine Learning algorithm 

PREDICTION is based on, nor on the specific inputs that it is using. It is protected by 

Intellectual Property (IP) and the technology behind it will remain as a black box. Nevertheless, 

this lack of information will not affect the performance of the assessment methodology as it is 

a “evaluation” model and it does not consider how the results has been obtained but the results 

themselves.  

This application models the behavior of the building’s consumption based on historical data of 

energy use and its correlation with historical data of weather (outdoor temperature). Then, it 

estimates the evolution of the building’s consumption in the near future taking the weather 

forecast available from a third-party service as an input. Once it has been installed and 

initiated, it learns the behavior of the building for a minimum of 6 week, after which it starts 

producing hourly demand electricity forecast with a 24h span for the building.  A simplified 

schema of process is represented in Figure 2. 

The training data refers to the data that allows the algorithm to learn how the building behaves. 

It involves the historical data, which is the measurement data of previous periods that represent 

the behavior of the building for specific weather external conditions. It also considers the 

building data, that is, static data of the building that can influence its behavior, including the 
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location, the use (office building), data about the infrastructure, the working calendar, 

occupancy, etc. 

The Using data tells the algorithm what predictions the user is asking for and provides some 

valuable information. It comprises the magnitude to be forecasted (WBE in our case), the 

forecast time horizon and the weather forecast (imported from third parties, in this case a 

company called Wunderground). 

The outputs of PREDICTION are the energy demand forecast. The model will display the 

variable after the application has processed the inputs and the algorithm.  

TYPE INPUTS PROCESS OUTPUTS 

  

 

 

 

 

  

Figure 2. General process behind the PREDICTION application 

This application, still at early-to-mid stage development has a simple user-friendly interface 

helped by the intuitive interface of the DexCell. After a quick configuration of main parameters 

of the building in which it will work upon, the user can request a forecast as shown in Figure 3. 

 

Figure 3. PREDICTION interface 

The user can set the consumption device, in this case “Comptador general” or WBE, which 

will be studied. This consumption is what the energy retailer is providing to the building and 

the variable on which the app will launch the prediction. Then, the desired period must be 

selected, being just currently possible to select up to 2 days in advance from the actual date. 

It is also possible to check and retrieve the forecast of any period in the past, as shown in 
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Figure 4. In this figure, predictions made the 7th of May for the two upcoming days are shown 

together with now known real-consumpton (blue). 

 

Figure 4. PREDICTION output appearance, once the real-consumption has been obtained. 

4.2 Data selection, pre-process and cleanness 

One of the first steps when working on a data analysis project, prior to the analysis itself, is 

always related to the data pre-process. It the data analytics field, it is said that a thorough data-

preprocess must be carried to perform an accurate analysis (FAMILI et al., 1997). In this 

section, the data preprocess followed in this methodology is explained to detail, from the data 

selection to data cleanness and data visualization. 

 Data Inputs and Period selection 

Both the AMI and the PREDICITION app have been set up and running in the building just for 

the last two years. There have been some changes in the configuration since they were first 

installed, influencing the quality of the data generation and the forecasts as these are 

dependent from the input data. 
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At the moment of writing these words the available data in the building comprises the following 

parameters: 

• Total electric consumption of each floor of the building. 

• Total electric consumption of climate installations of each floor 

• The difference between the two-previous parameter, which is called “rest”. All the 

equipment that is consuming electricity in each floor but not included in the indoor 

climate operations is considered within this category. This could include lightning, 

computers, printers. etc. 

Nevertheless, all this measures dates from February 2017, having just available total energy 

consumption of the whole building and the specific for 4th floor for previous periods. Due to the 

brief period logged for this specific variable this dissertation will consider as the variable to 

predict be the total electric consumption of the building (WBE). In future work it will be 

interesting, once a large period data has been logged, to perform the analysis over the other 

variables. 

Regarding the period selected to evaluate the accuracy of the PREDICTION forecast model, 

it should be selected by taking into consideration the reliability of the data, both from 

consumption and from the forecast outputs (energy demand forecasts). As it was pointed in 

the previous section, from data consumption there is quality data since 2015 and from 

predictions from May 2016. Therefore, as same period for both is needed in order to make the 

comparison, the starting point is fixed in May 2016. The end of the period has been selected 

to be the latest possible in order to be able to have as much data as possible to perform the 

analysis. The end of the period is the 1st of June 2017. 

The granularity of the measures selected is hourly. It has been commented already that in 

February 2017 there was an important update of the AMI and, apart from adding different 

parameters to the metering infrastructure, the granularity of the measures was also updated. 

Since then each measure is recorded every 15 minutes. Nevertheless, as it was explained for 

the variable to predict, the period is too short to be considered and the granularity will be the 

one available for the extended period, that is, the measures for every hour. 

The period in which the assessment on the PREDICTION forecasts will be carried out is 

therefore from 1st May 2016 to 31th May 2017. The dataset contains 9504 instances, one per 

each hour of the 396 days this period comprises. A graphical representation of the timeline 

regarding the deployment of the AMI and PREDICTION and evaluation period can be shown 

in Figure 5. 
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Figure 5. Metering and Forecast timeline for COMSA Headquarters Building 

Once that period of analysis has been decided, the associated data is requested and 

downloaded from the DexCell software in the format Comma Separated Value or .CSV, a 

usual format to work with data. As it was explained in the section 3.6, using R programming 

language it is loaded and set up for its analysis.  

 

Figure 6. First 10 instances of the dataset of the evaluation period once data is loaded in RStudio environment. 

Units in kWh. 

In Figure 6 it is shown how the dataset has been arranged prior to any data-preprocess or 

cleanness. The first column contains the timestamp of the instance, the second one is the real 

consumption (WBE) for that time and the “Forecast” column represents the output of 

PREDICTION. For example, in the first instance of the evaluation period, the WBE was 15 

kWh while the PREDICTION output (which was obtained 24 to 48h before) was 15.875 kWh.  

 Data visualization 

 Data visualization is a crucial phase in data analytics as it allows to obtain the first insights 

about what the predictive model is doing. By plotting the real vs forecasted energy 

consumption, it is possible to draw a first gross idea on how well a model is behaving. The 
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dataset, containing 9503 instances, is split into months and plotted using ggplot2 package. 

The thirteen months of the evaluation period graphs are shown in ANNEX II. As an example, 

Figure 7 represents the real-consumption and the forecasted values for each hour of the first 

month of the evaluation period, that is, May 2016.  

 

Figure 7. May 2016 representation of the PREDICTION output (Forecast, in Blue) and the real WBE consumption 

(Actual, in Red). 

With the aid of the data visualization it is possible to detect some of the most common errors 

the model is incurring in. In the example of the Figure 7 there are two of them, one, detected 

on the 16th of May 2016 is related to working calendar and the other, on May 28th to May 30th 

where the model did not work at all. These errors, once identified their typology, will be 

detected in the whole dataset by implementing an algorithm in the R script. The different 

abnormalities be further explained in the following sections. 

 Data Dynamics 

It is convenient at this point to explain the shape of the graphs and its relation to the process 

they are representing. Using Figure 7 as example the key features behind the dynamics of the 

energy consumption in an office building will be explain in this section. 

There different patterns are depict in Figure 7: 

• Weekly pattern: There is a 7 days period cycle that repeats almost through the whole 

evaluation period. This cycle its composed by 5 days of high consumption, associated 

to the days of the week (Monday to Friday) followed by 2 days of super low 
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consumption, corresponding to weekends (Saturday and Sunday). In an office building 

most activity takes places during the weekdays corresponding to the official working 

days. This pattern can be altered by local or national holidays. In Figure 7 four whole 

weekly cycles can be observed, being the third one altered the 16th of May as it was 

local holiday and that Monday the building remained empty (it will be explained later 

why it was not forecasted by the algorithm). 

 

• Daily pattern: 

 

o Weekday: Along the 24h of any of those 5 high energy consumptions days in 

a row another consumption pattern is observed. Every working day, energy 

consumptions sky-rockets from 7 to 9 in the morning when employees arrive in 

the building and start their working related activities. Then, it remains flat and 

lowers down and then another peak at round 15 takes place to go down again 

to meet the building base load at around 19, when all the employees leave the 

building and working activity for the day ceases.  

 

o Weekend: In a standard weekend day the consumption remains practically flat 

as there are not activities in it. It is not 0 as any building has some systems that 

keeps working even when it Is not a working day. This minimum consumption 

sets what will be referred to as the Building Base Load (BBL), that is, the 

minimum level of energy consumption fo the building. 

Apart from the daily seasonality, with a period of 24h, and the weekly seasonality, with a period 

of 7 days, there’s a third seasonality in the energy consumption curve in office buildings. With 

a period of 12 months, the consumption follow a pattern in which it is higher in summer and 

winter due to location’s weather conditions and smoother in autumn and spring. All this 

seasonality will have an impact in the ML models and must be considered. 

Regarding the dynamics might be useful to highlight the values of the top consumption and 

bottom consumption of the building in the evaluation period. The bottom consumption, value 

we will assign to the BBL for this study, is 8 kWh. The maximum consumption in this period is, 

on the other hand, is 152 kWh and was recorded the 12th of September 2016. Given the range 

between the BBL and the maximum consumption, all the graphs in this report will be reduced 

to the range 0 to 150 kWh in the ordinates axis to facilitate the visualization. 
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 Anomalies & Data Cleanness 

In this section the most important anomalies observed in the dataset are enlisted and detailed.  

In this study, anomalies refer to deviations in predicted energy consumption that describes 

consumptions that do not seem reasonable  and do not correspond with the energy system 

dynamics of the building. In the methodology proposed in this master thesis there are six types 

of characteristic errors, some of them common to other processes and some specific to the 

energy consumption dynamics in a tertiary office building. 

Missing Values 

Missing Values (NAs) are the Achilles’ Heel of data analysis. Every data-logging process ends 

up with a higher or lower number of “unregistered” values or Missing Values. NAs can be the 

results of mistakes from various sources, which are many times untraceable. There is a whole 

science behind Missing Data Theory and how to fill in these values.  Imputation refers to 

replacing missing data with a ‘‘best guess’’, which can be obtained from modelling the 

relationship between the missing and the observed data (Perera, 2008). One form of 

imputation and the one this methodology will follow is “ignore” the values in the analysis. The 

result is a reduced dataset that has no missing data and can be analyzed by any conventional 

method. This strategy is commonly known in the social sciences as listwise 

deletion or casewise deletion, but also goes by the name of complete case analysis. (Allison, 

2009). In the dataset analyzed in this dissertation, there have been found NAs both in the real 

energy consumption and in the forecasted energy consumption.  

Energy Consumption missing values 

There have been found some NAs for certain hours in the dataset in the real-

consumption column. Nevertheless, they represent just 0.29% of the sample and 

instead of casewise deletion they have been filled in with average of energy 

consumption similar periods. Concretely, there are 4 missed values for 4 hours in a 

row during the hardware update on Feb 2017 and the 30th of June 2016, for which 

there is no value at all. This low percentage in NAs in the real-consumption dataset 

confirms a robust AMI. 

Forecast missing values 

In the forecasted values data there are more NAs than in the real-consumption data. 

During the one-year and one month evaluation period there have been found extended 

periods in which PREDICTION did not work at all, probably due to some technical or 

connection issue. This kind of error seems to be more technical related than algorithmic 

related. A total of 4.29% of the sample contains NAs. The cases found are: January 

2017, 1st to 12th; October 2016, 28th and 30th; and May 2016, 28th to 30th. An example 



Page. 36 Energy Demand Forecasting in Smart Buildings 

 

 

of this anomaly can be found in the Figure 7. As it has been explained, this NAs are 

imputed by ignoring them, but for the shake of the comparison analysis the 

corresponding values of the real-consumption data for the dates of the corresponding 

instances is set also to NA, so they do not affect in the error metrics and these 

instances are totally neglected. 

Outliers predictions 

Like Missing Values Theory, there is a whole science behind the Outlier detection and 

treatment. The definition given by (Hawkins, 2014) of an outlier yields: “An outlier is an 

observation which deviates so much from the other observations as to arouse suspicions that 

it was generated by a different mechanism.” Outliers are also referred to as abnormalities, 

discordant, deviants, or anomalies in the data mining and statistics literature.(Aggarwal, n.d.). 

According to the previous definitions what this dissertation refers to as anomaly is also known 

in a general way as outlier in the literature. Therefore, all the deviations explained in this section 

could fall within this outlier definition. Nevertheless, in our analysis the concept Outlier will refer 

solely to those deviations that, given its deviation from the average energy consumption of the 

building, falls beyond a pre-stablished range.  

In these proposed data cleanness process, the range has been set wide. All those predicted 

values that exceeds by 100% the maximum energy consumption in the evaluation period, that 

is, 148 kWh, will be labeled as an Outlier. The process to deal with these anomalies will be to 

convert the corresponding forecast and real-consumption values to NAs and thus, leave them 

out of the accuracy analysis. A 0.21% of the sample have been categorized as Outliers. An 

example is shown in Figure 8, where normal patterns cannot be differentiated due to the scale 

of the axis.  
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Figure 8. Example of outliers in the PREDICTION output in December 2016. 

Zero consumption predictions (ZVs) 

It has been observed in the data visualization process that some output values of 

PREDICTION model yield 0 kWh energy consumption predictions. While NAs do not have to 

contradict the dynamics of the energy consumption, ZVs has no physical sense when 

representing a building’s energy consumption. Every tertiary building has a minimum energy 

consumption, what has been already defined as the Building Base Load. There are systems 

that are always working and consuming energy (e.g. Emergency light systems). Furthermore, 

as it has been pointed out in section 4.2.3 the minimum consumption recorder in the evaluation 

period has been 8 kWh and, therefore, it does not seem reasonable that PREDICTION 

forecasts values lower than that. 

The methodology to assess the accuracy of the PREDICTION model will convert this data 

points into NAs so they are imputed in the same way (by ignoration). Any of the metrics that 

will be explained in the following sections would be heavily affected if the values that have 

been predicted as 0 kWh are kept the same. Therefore, they must be removed from the 

statistical metrics explained in 4.3.1. A total of 1.68% of the sample contains ZVs and will be 

set to NAs.  
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Figure 9. Example for Zero consumption prediction on August 25th, 2016. 

Below Building’s base load predictions 

Another anomaly detected in a first place by data visualization and then added to the code for 

automatic detecto is predicted values below the BBL. As it was defined before BBL represents 

the energy consumption of the building when it is empty or almost empty. There is no physical 

justification to predict values below BBL and, therefore, they are treated as deviation from 

normal behavior.  

 

Figure 10. Example of anomaly in the data. Energy forecasted values below the BBL from 1st to 7th April 2016. 
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The treatment for this kind of deviation from standard results will be similar to the one 

explained for the ZVs and outlier deviations. First, the forecasted values below the 

BBL will be converted to NAs. Then, as the rest of the NAs they will be ignored and 

not considered for the metrics analysis so they do not affect to the accuracy of the 

model. A total of 4.01% of the sample falls within this category, 

Deviations from working calendar 

Working calendars define yearly working/holidays dates set by the regional government and 

company. They include all the weekends and national and regional official holidays. 

Furthermore, each company defines its own distribution of holidays and schedules. For 

example, some companies cease their activity the last week of December and some do shorter 

working days in the summer. All this information should be included for a good energy 

forecasting as the energy consumption is extremely different one working day than one holiday 

or weekend as it was explained in 4.2.3. 

Due to the location of the building the working calendar of the company that make uses of the 

building should include all the official holidays for Spanish territory and specifically for the state 

of Catalunya and the city of Barcelona. Furthermore, it should include special holidays marked 

by the company and the own policy regarding working days and schedule distribution.  

 

Figure 11. Working Calendar of the company for 2016. 

In the dataset studied there haven some errors observed regarding the working day/holidays 

distribution. In Figure 7 it was already mentioned that the 16th of May the model predicted a 

normal working day as it was Monday but, as it can be pointed out in the official working 

calendar in Figure 11, it as holiday and the building had no activity that could led to energy 

consumption. There are cases in which the opposite occurs and no activity is predicted as if 

the model considered a specific day holiday but it was a normal working day and, therefore, 
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there was energy consumption over the BBL. An example of this deviation has been detected 

the 17th of October 2016 and it is shown in Figure 12. 

 

Figure 12. PREDICTION forecast 17th of October 2016 as holiday or weekend  

Strange dynamics behavior 

Another detected anomaly showing strange behavior have been identified in the outputs of the 

PREDICTION model. For example, sudden changes in the energy consumption were 

predicted in November 2016 (See  Figure 13). This behavior violates the dynamics of energy 

consumption in buildings as these usually follow smooth variations and do not have such 

sudden changes.  

Another example of strange dynamics behavior that can be observed also in the November 

graph is identified by the presence of negative predictions. Although the building is equipped 

with solar PV panels that could generate energy and this fact could be represented as negative 

Energy consumption (given the PV generated more than the energy consumption and the 

excess would be sold to the grid), it is not the case and the predictions is probably a mistake 

in the algorithm. As the renewable energy is not being considered and we are considering the 

WBE, it is physically impossible to have negative energy consumptions. This non-justifiable 

behave of the model output that should be corrected (i.e. imposing a condition such as 

Output > 0). 

The total amount of this strange deviations accounts for 0.60% of the sample and will be set 
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to NAs and deleted from the analysis dataset.  

 

Figure 13. Strange Energy Consumption behavior predicted in November 2016 

Other considerations  

In the literature, as it has been already mentioned, anomalies or outliers in data analysis refers 

to observations that differs from other observations so much that arouse suspicious about its 

nature. In many cases, it is responsibility of the analyst to set the boundaries on what would 

be a suspicious instance suitable to be categorized as an anomaly. The analyst should, based 

on his understanding about the processes that the data is representing and his experience, 

determine if one instance should or should not be included in the anomaly group. In this master 

thesis, the anomalies detection has not been as thorough as to detect smooth anomalies in 

the energy consumption data. Therefore, in the final dataset that will be used for the analysis, 

there might remain some small anomalies in the energy consumption of the building that could 

slightly affect the accuracy. Bacause of the frequency and magnitude of this anomalies, they 

have been assumed to have weak influence in the results and it has been decided to not deal 

with them.  

As an example of this kind of anomalies Figure 14 shows the energy consumption of the 4th 

floor of the COMSA Headquarters two weeks of July 2017. During this period, it can be shown 

how on the Saturday 8th and on the Sunday 16th there is energy consumption. This 

consumption is due to the student that decided to go to his desk on weekend to progress on 

the work on this dissertation. This example illustrates a stochastic event that would be 

impossible to predict and will affect the metrics. Nevertheless, its impact will be neglectable in 

this case. This kind of errors should never be attributed to the model itself but to the raw input 

data. 
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For a more thorough analysis on the anomalies there are existing algorithms in the literature. 

For example, (Fan, Xiao and Wang, 2014) apply Generalized extreme studentized deviate 

(GESD) to their dataset to identify abnormalities in the building energy consumption.  

 

Figure 14. Stochastics events in the energy consumption. Source: DexCell 

Anomalies Summary 

All the above-mentioned deviations are gathered in Table 1 and its main characteristics are 

given.  Adding all of the instances that have being categorized as an anomaly they represent 

12% of all the instances contained in the data set. These corrupted instances are converted to 

NAs and therefore, they will be ignored in the final dataset. From 9503 instances, 1141 are 

discarded and 8362 will configure the dataset that will be used in the statistical analysis.  

The value of missing data in the original datasets accounts for a total of a 12%. It means that, 

for one year and disregarding its accuracy, 1051 hours (put of 8760) the model is not given 

any output (or a totally corrupted one). This implies that the grade of reliability is considerably 

low and that corrective measures should be implemented to increase it. According to the 

company interest in the forecast, any value of NAs or corrupted data should remain below 5% 

to be acceptable. 

As there is no information on how PREDICTION models work, it is difficult to assess and find 

reason why these anomalies are happening. Some of them will be easily corrigible while others 

might show more difficulties. For example, direct found NAs instances are probably due to 

technical fails with the hardware involved in the systems, errors in the communications or in 

the data servers can lead to fill an instance with an NA. A reviewed and updated hardware and 

software infrastructure will probably reduce the % of this type of anomaly. Another deviation 

that could be effortless corrected is the one related to the working calendar. An updated and 
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adequate calendar will automatically troubleshoot this deviations for the better. As it has been 

mentioned it should include all national, regional and local holidays as well as the specific 

companies’ policies regarding schedule and holidays. It has been observed in the dataset that 

in 2017 there is no deviation like this, probably due to an update in the calendar which the 

forecast model is working with.  

 

Table 1. Anomalies detection summary 

Type of Anomaly Explanation 
% of 

sample 
Corrective measure 

Missed Values in Energy 

Consumption 

Metering infrastructure fails to measure and 

record building energy consumption 
0.29 

Instances filled in with 

averaged similar data. 

Missed Values in Energy 

forecasts 

Forecast application fails and no output is 

given by the prediction model 
4.29 

Instances Ignored and 

deleted from dataset. 

Zero Value building 

predictions (ZVs) 
Forecast predicts that WBE will be 0 kWh. 1.68 

Instances are converted to 

Missed Values and then 

Ignored and deleted from 

data set. 

Below BBL predictions 
Forecast predicts that building energy 

consumption will be lower than the BBL. 
4.01 

Instances are converted to 

Missed Values and then 

Ignored and deleted from 

data set. 

Outliers 
Forecast predicts too high or too low WBE 

consumption. 
0.21 

Instances are converted to 

Missed Values and then 

Ignored and deleted from 

data set. 

Working Calendar 
Forecast missed to predict correctly a 

holiday. 
1.26 

Instances are converted to 

Missed Values and then 

Ignored and deleted from 

data set. 

Strange Behavior 
Forecasts predicts WBE Consumptions that 

have no physical logic. 
0.60 

Instances are converted to 

Missed Values and then 

Ignored and deleted from 

data set. 

TOTAL 
Percentage of the sample that 

contains anomalies. 
12.06 

Instances ignored in 

the error metrics. 
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4.3 Data Analysis and Error assessment  

After completing the data cleanness process explained in the previous section the dataset is 

ready to continue with the model statistical accuracy analysis. First, the statistical metrics that 

will be used are explained. Second, they will be applied to the dataset and the results obtained 

will be interpreted and discussed. 

 Statistical Error metrics 

In this section the statistical metrics on which the accuracy will be assessed are explained and 

their equations are shown. They have been chosen by carefully studying the literature in the 

subject and selecting the most common and suitable parameters. This way, it will be possible 

to better understand how well PREDICTION model is working and  compare it with other similar 

dissertations in the literature.  

It is convenient to highlight again the importance of constantly keep track of the dynamics of 

the processes associated to the data that is being analyzed. In our case, there are some 

advantages that will make the analysis easier.  The dynamics of energy consumption in a 

tertiary building are constrained within an interval. This interval is set by the minimum, what we 

have defined as the BBL, and a maximum, which would be the maximum power consumption 

of a building given all the devices were turned on at the same. In our building, these values 

have historically oscillated between 5-8 kWh to 150-200 kW. Thanks to the data cleanness 

process, we have ensured that all the predictions remain within this range. 

Regarding evaluation methodologies for forecasting models, it is also common to use a “naïve” 

method, which provides a benchmark. A set of relative error metrics could be calculated to 

compare a determined model to an accepted reference in the subject. This study does not 

consider any reference error and will sticks to absolute errors calculations.  

Mean Absolute Percentage Error (MAPE) 

The error metric that is most widely used in the literature is Mean Absolute Percentage Error 

(MAPE) due to its advantages of scale-independency and interpretability (Kim and Kim, 2016). 

It is defined by the equation Ec. 1. 

𝑀𝐴𝑃𝐸 =  
1

𝑁
∗ ∑

|𝑝𝑟𝑒𝑑(𝑖) − 𝑟𝑒𝑎𝑙(𝑖)|

|𝑟𝑒𝑎𝑙(𝑖)|

𝑁

𝑖=1

  ∗ 100                   [𝐸𝑐 1] 
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Where: 

• N refers to the number of data points 

• pred(i): Value of the Energy Demand Forecast for the instance i 

• real(i): Value of the real energy consumption for the instance i 

The main disadvantage of this metric is that it could yield infinite or undefined values when the 

actual values are zero or close to zero (Kim and Kim, 2016). As for the dynamics of the process 

this will never be the case (due to the BBL) it has been chosen as the main estimator of the 

accuracy for energy demand forecast in tertiary buildings.  

Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) and Mean Square Error (MSE) are also widely used 

due to their theoretical relevance in statistical modeling (Hyndman and Koehler, 2006). This 

study will focus just in the RMSE. Contrary to MAPE, this metric is scale-dependent and it 

results in values with the same units of the measurements (Fan, Xiao and Wang, 2014).  It is 

sensitive to outliers but as we have put the data through a thorough data cleanness process 

there will not be any outlier that can bias this metric. 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∗ ∑(𝑝𝑟𝑒𝑑(𝑖) − 𝑟𝑒𝑎𝑙(𝑖))2

𝑁

𝑖=1

                   [𝐸𝑐 2] 

Where: 

• N refers to the number of data points 

• pred(i): Value of the Energy Demand Forecast for the instance i 

• real(i): Value of the real energy consumption for the instance i 

RMSE is commonly used for describing uncertainty. It is function of the Mean Absolute Error 

and the distribution of error magnitudes. It penalizes the larger error terms. There is 

controversy in which error metrics is better between MAPE and RMSE (Yildiz, Bilbao and 

Sproul, 2017) In this dissertation both of them will be calculated. 

Mean Biased Percentage Error (MBPE) 

This study aims also to detect any systematic data in the model and Mean Biased Error is a 

common and suitable method for this purpose. Like MAPE, MBPE it is not dimensional. It is a 

measure of the overall bias error. This metric establishes how likely a model is to over-estimate 

or under-estimate the actual energy consumption (Edwards, New and Parker, 2012). 

Consequently, the closer this value is to 0 the less “biased” the model is, meaning that the 

model does not favor any trend in its prediction.  
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𝑀𝐵𝐸 =
1

𝑁
∗ ∑

(𝑟𝑒𝑎𝑙(𝑖) − 𝑝𝑟𝑒𝑑(𝑖))

𝑟𝑒𝑎𝑙(𝑖)
∗ 100                    [𝐸𝑐 3]

𝑁

𝑖=1

 

Where: 

• N refers to the number of data points 

• pred(i): Value of the Energy Demand Forecast for the instance i 

• real(i): Value of the real energy consumption for the instance i 

Coefficient of Determination (R2) 

The statistic that is used as a measure of goodness of fit is the adjusted coefficient of 

determination, denoted by R2 adj (Hyde and Hodnett, 1997). 

𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)(

𝑛 − 1

𝑛 − 𝑘
)                   [𝐸𝑐 4] 

Where:  

• n refers to the number of data points 

• k is the number of predictors 

• R2 is the coefficient of determination 

In data analysis where the number of predictors is high with respect to the number of data 

points it makes sense to refer to the adjusted coefficient of determination. However, in our case 

the number of predictors will always remain low (never more than 20) compared to the number 

of data points (thousands). Consequently, in this study it will be calculate just the coefficient of 

determination, with no adjustment made. 

𝑅2 = 1 − 
𝑆𝑆𝐸

𝑆𝑆𝑇
                                                   [𝐸𝑐 5] 

Where: 

• SSE: Sum of Squared errors. 

𝑆𝑆𝐸 = ∑(𝑝𝑟𝑒𝑑(𝑖)̂ − 𝑟𝑒𝑎𝑙(𝑖))2                    [𝐸𝑐 6]

𝑁

𝑖=1

 

Where: 
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𝑝𝑟𝑒𝑑(𝑖)̂   output vale of instance 𝑖 
𝑟𝑒𝑎𝑙(𝑖) real consumption 

 

• SST: Regression Identity.  

𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝑅                                         [𝐸𝑐 7] 

• SSR: Sum of squared regression. Variation in the predicted values. 

𝑆𝑆𝑅 = ∑(𝑝𝑟𝑒𝑑(𝑖)̂ − 𝑝𝑟𝑒𝑑)̅̅ ̅̅ ̅̅ ̅̅ )2                    [𝐸𝑐 8]

𝑁

𝑖=1

 

Where: 

𝑝𝑟𝑒𝑑(𝑖)̂   output vale of instance 𝑖 
𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅  output mean 

 

The coefficient of determination will measure the wellness of the fit by the trained model.  

 Dataset evaluation 

A random 20 instances sample of the dataset over which the metrics are going to be calculated 

is shown in Figure 15. In order to accomplish the data-cleanness process some new features 

have been created with respect to the data frame shown in Figure 6. Furthermore, other 

attributes have been added for other purposes out of the scope of this first statistical analysis. 

Features as DayType or DayCategory were used to find the deviations in the instances that 

were wrong categorized. Month attribute was used to break down and name the graphs shown 

throughout the document. MyTemp attribute has been added for a future analysis on the 

influence of the weather over the performance of the model, this will be further explained in the 

section 5. 

Dif feature is simply the difference between the predicted value and the real consumption for 

a given timestamp. RelativeError (or BPE)  is the percentage the prediction has deviated from 

the actual consumption. If the algorithm has predictd a lower consumption than the actual 

consumption this number will be positive. Therefore, if a BPE is negative it means that for that 

instances, the algorithm has overpredicted the consumption, giving a higher value than the 

real one. It will be used to assess if the model is overal biased through the MBPE. SST, SSE 

and SSR represents the parameters that are needed for calculating the coefficient of 

determination, as explained in 4.3.1. 
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Figure 15. Random Sample of 20 instances from the dataset after the data cleanness. 
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 Results and discussions Part I 

In this section the accuracy of the forecast model will be assessed. The dataset has been 

prepared for its statistical analysis and four different error metrics have been defined. Using 

the statistical R programming language, as explained in 3.6, the metrics are applied to the 

dataset (See Figure 15) to assess how well the predictive model is forecasting the energy 

consumption in the study-case building. To understand the importance of the data preprocess 

the results will display all the metrics after applying each of the deleting each of the 

abnormalities categories explained in 4.2.4.  

Table 2. Error metrics after each step of the data cleanness process 

Table 2 shows what have been mentioned throughout the whole document: the importance of 

keeping track of the dynamics of the systems being analyzed. If the accuracy analysis were 

 
MAE 

(kWh) 
MAPE  

(%) 
MBPE  

(%) 
RMSE 
(kWh) 

R2 
NAs 
(%) 

       

Error metrics calculated 
directly from the original 

dataset. 
>1e+20 >1e+20 >1e+20 >1e+20 >1e+20 4,29 

       
After cleaning the biggest 
outliers (those which are 
higher than 200% of the 

maximum energy 
consumption in the 
evaluation period). 

8,45 24,95 -1,68 15,86 0,78 4,5 

       

Once removed the energy 
consumptions predicted 

as 0 kWh (ZVs). 
8,09 23,6 -3,51 15,17 0,8 6,19 

       
Afterwards instances 

containing Energy 
predictions BBL are 

removed. 

7,13 21,03 -7,28 13,17 0,84 10,19 

       

Subsequently instances 
with errors in the working 

calendar are removed. 
6,76 18,36 -4,48 12,14 0,86 11,45 

       

Last step in the data 
cleanness process is to 

remove strange 
behaviors that do not 

respect the energy 
dynamics. 

6,58 18,02 -4,67 11,67 0,87 12,05 
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carried out directly to the dataset, the results would be the ones in the first row, that is, with a 

4,29% of missed values and values over 1020 in all the other metrics. This is due to some 

irrational predictions that forecasted building energy consumptions thousands of times higher 

than the total world energy consumption (predictions over 1024 GWh).  As it was explained in 

the MAPE defiition, this outliers have a huge impact in this metrics. Once these astronomic 

values are removed, a more logical dataset remains and the metrics can be reasonably 

analyzed as they yield within acceptable and interpretable ranges. Nevertheless, the dataset 

still includes all the others anomalies that represents fails in the model and should be 

considered before giving insights on how accurate it is predicting the energy consumption. 

As the data cleansing process progresses it can be seen in the metrics how the number of 

misseing values, or NAs, is increasing while the model improves its accuracy. Every step 

leaves out a certain number of instances that will account as timestamps in which the model 

is considered to not work at all. This parameter can be interpreted as the reliability or stability 

of the model, that is, how many time during the year it works. Given these assumptions, the 

results show that during the evaluation period the model did not work 12.05% of the time or, 

what is the same, 1145 out of 9503 hours. 

Extracting the values from the last row in Table 2, that is, those metrics obtained once the data 

pre-process have been completed, the conclusive results for the model accuracy are 

summarized in Table 3. 

Table 3. Conclusive results for the model accuracy 

 

 

All the errors improve towards their final values, once the dataset is ready for the statistical 

analysis. At this point, the accuracy can be measured more legitimately. The main metric in 

this study, the Mean Absolute Percentage Error, defined in 4.3.1, results in a value of 18.02%. 

It means that, on average, the model deviates around 18% from the real consumption. The 

results are not satisfactory as the COMPANY has set a goal of having a MAPE below 10%. 

Comparing to some results in the literature this value is still high, although some researcher 

MAE (kWh) 6,58 

MAPE (%) 18,02 
MBPE (%) -4,67 
RMSE (kWh) 11,67 
R2 0,87 
NAs (%) 12,05 
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has obtained similar values using their models. (Yildiz, Bilbao and Sproul, 2017) obtained 

values of 15.43% for a single building using single regression models, although it improved 

this results by using multiple regression models up to around 7%. (Edwards, New and Parker, 

2012) show results for independent house buildings of MAPEs ranging from 16% to 21.33%. 

On the other hand, (Fan, Xiao and Wang, 2014) show results in cases which different models 

resulted in MAPEs below 5%. 

MAPE values for disaggregated loads, as the one it is considered in this document, are usually 

higher than for aggregated loads as grids, microgrids or building clusters. The time frame and 

time horizon studied also have strong influence on forecast accuracies. The longer the time 

frame for which the predictions are being made, the more likely is to achieve lower MAPE 

values. For example, (Hernandez et al., 2014) shows in their survey on Electric Power Demand 

Forecasting, cases in which values of MAPEs below 2% when the aim is to predict monthly 

energy consumption over a big region. More examples and MAPE results for different models, 

application areas and time horizons can be found in his survey. 

Regarding the Mean Biased Percentage Error (MBPE), its negative value means that the 

model is biased and, on average, predicts more energy consumption than what the real-

consumption finally is. The closes this value is to 0, the better. A value of 0 would mean that 

the model, despite sometimes predicting higher consumptions and others lower consumptions,  

on the long term it does not have a built-in deviation. This metric is less common in the literature 

and, therefore, harder to compare. Nevertheless, (Yildiz, Bilbao and Sproul, 2017) shows 

similar absolute values for this metrics in the study of an University building in Wales. In their 

study, divided into seasons, the MBE for ranges from -4.54% in Autumn to 5.17% in Summer. 

The other two metrics, that is RMSE and R2, are harder to understand and interpret, specially 

when just small pieces of information of what the model is doing is avaialble. Both have been 

calculated in this study to facilitate and to enable the comparison for future works in the subject. 

Their values fall within reasonable ranges that fits with what have been found in the references. 

More about this metrics will be commented when how the model builds the predicionts, in the 

models analzyed in the Part II of the dissertation,  

Influence of particular variables in the model accuracy 

The values given in Table 3. 

Table 3 refers to all the instances in the pre-processed dataset afther the pre-process. It does 

not consider any particularity or category.  There are many parameters of interest that can 

shed light on when the model’s accuracy is higher or lower and what can have stronger 

influence on it. In this section, representations will be shown to specifically study how well the 

model works regarding the day of the week, the day category (Offday, workday or special 
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schedule day), the season and the hour of the day.  

All of visualizations are based on the box-and-whisker plot (BOXPLOT) representation, 

introduced by statistician John W. Tukey 1977 (Tukey, 1977). This kind of representation 

comprises many statistical information in one single graph. A diagram explaining all the 

parameters represented is shown in Figure 16.  

 

Figure 16. Box-and-whisker diagram Plot Explanation (Yau, 2017). 

In Figure 17 the Absolute Percentage Error and Mean Absolute Percentage Error have been 

represented for each day of the week. From Monday to Wednesday it is almost constant. In 

Thursdays the MAPE is slightly higher where as in Friday is notably higher. Normally the three 

first day of the week are constant regarding work activity while Thursday and Fridays have 

more variability. Specially Fridays, when the schedule is modified and many employees takes 

this day as holidays to enjoy a long weekend out of the office. On weekends the MAPE is 

considerably lower than the rest of the days of the week and lower than the overall value. As 

the weekends the office usually remains off the variability in the energy consumption is lower 

(around the BBL) and the model tends to have better energy consumption predictions. 
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Figure 17. APE and MAPE (red diamond) by day of the week. 

 

The previous analysis is confirmed when looking to Figure 18. Monday to Wednesday the 

model behaves similarly. It is biased towards predicting more energy consumption that the 

actual one, as it was already derived from the overall MBPE shown in Table 3. 

Table 3. The same happens but in a higher quantity on Thursday and Fridays. As there are 

probably less workers these days and the working activity decreases comparing it to the early 

days of the week, the algorithm overpredicts the energy consumptions. Surprisingly, the model 
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is more biased on weekends than at the beginning of the week. The most typical deviation for 

a normal weekend from the normal energy consumption is the one explained in Figure 14. If 

an employee goes to the office on a weekend usually the energy consumption will be higher 

than expected and thus, the BPE of the instances where he is in the office, lower. If a auto 

eggresive parameter (e.g.the load 1 or 2 days before at the same time) is used as an inputo 

for the model and has high influence in the model it could affect the predictions on 

weekends.This variables consider the activity and values recorded during the week and might 

overpredict the energy consumption in Saturdays and Sundays, when the activity drastically 

decreases. 

 

Figure 18. BPE and MBPE (red diamond) by day of the week. 

Regarding the day category, in this study there three different classes: WORKINGDAY for 
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days with normal schedule (09h to 19h approx.), SEMIWORKINGDAY for those days with 

special schedule (08h to 15h approx.) and HOLIDAYS (or OFFDAYs) for weekends and official 

holidays. On the first one, the metrics are similar to the overall results. Nevertheless, on 

SEMIWORKING days, that is, Fridays, days before official holidays and a whole month in 

summer, the model miss predictions by much large values.  This difference is explained with 

the variability associated to these days, where employees have more freedom regarding the 

schedule and the activity is lower than normal working days. HOLIDAYS behaviors reflect 

similar numbers than the ones from Saturdays and Sundays as it was expected. It is likely that 

PREDICTION model is not using the same labelling category thant we have used or at least 

not with the same calendar. If a day that is “labelled” by Semiworking day it is a normal working 

day, the MAPE will be high as the working activity in the office differs from one day no another. 

Information on how the model has labeled the days tegarding this issue should be known to 

better understand what this metrics are represnting. 

 

Figure 19. APE and MAPE (red diamond) by day category. 

Figure 20 shows once again that the model is biased. Especially those SEMIWORKING days 



Page. 56 Energy Demand Forecasting in Smart Buildings 

 

 

in which the activity usually decreases. On OFFDAYs the model is less biased than the rest of 

classes. Comparing its -2.58 % MBPE to the one given in Figure 18 for Saturdays and 

weekends, at around -3.5 % it means than during holidays days in the middle of the week the 

algorithm is doing better than on weekends (which are including under the OFFDAY category). 

The effect of this isolated holidays is positive to the overall category metric. 

 

Figure 20. BPE and MBPE (red diamond) by day category. 

Another parameter that can lead to important insights about the behavior of the model is its 

accuracy according to the annual season. Figure 21 shows the APE and MAPE in each of the 

four seasons. While Spring, Autumn and Winter behaves similarly, in summer the MAPE 

drastically increases. This result aligns with what it has already been discussed for the day of 
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the week and the day category. In August the company sets the special schedule and all of 

the week days are categorized as SEMIWORKINGDAYS. In this days, activity in the building 

tends to be lower and more stochastic, as employees organizes themselves differently from 

the rest of the year. It is likely that the model does not take this modifications into consideration 

and predicts more consumption than it should, given also greater biased results as shown in 

Figure 21. The addition of the variable desribing the building occupancy, that could  include 

the specific employees calendar would help improving the accuracy in this season. 

 

Figure 21. APE and MAPE (red diamond) by season. 

It is difficult by looking to this graph ig the temperature has an important impact in the accuracy 

of the model. Although the temperature varies from one season to another, the variation on 

the metrics are probably due to the activity in the building and the working schedule and 

labeling. For future jobs, this schedule influence will be removed to isolate the effect of the 
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temperature on the building. 

 

Figure 22. BPE and MBPE (red diamond) by season. 

 

The last parameter of influence that will be study in this analysis is the hour of the day in which 

the prediction takes place. The APE and MAPE for each hour of the day during the whole 

evaluation period is shown in Figure 23. It is convenient to recall Figure 4, in which the daily 

energy consumption pattern of the building is shown for two consecutive days. By comparing 

both shapes a direct relationship can be instantly derived regarding energy consumption and 

the time of the day. The bigger the variation of energy consumption is, the bigger the model 

deviates. Early in the morning, when the working activity starts for the day, the derivative of the 
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energy consumption, that is, how fast it is change, it’s at its maximum. Before 8 A.M. all the 

energy systems in the buildings are fired up and fast energy consumption increases takes 

place. In this period the algorithm reaches its top MAPE from 07:00 to 08:00 given energy 

consumption deviated an average of 27.6% to the actual one. This is repeated later in the day 

when, again, the derivative of the energy consumption in the buildings increases (this time 

negatively) when the employees start to leave the building. Again, values up to 26.1% of MAPE 

are reached in this period, specifically at 20:00h in the evening.  These values differ notably 

from the overall MAPE of 18.01% and special attention should be given to improve these 

predictions as they have a key role in the final error metrics. The parameter of occupancy and 

specific employees schedule habits would probably decrease this critical times and help the 

model make better predicions. 

 

Figure 23. APE and MAPE (red diamond) by hour of the day. 
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The BPE also reflects the pattern explained for APE and MAPE regarding the hour of the day. 

The most biased results are obtained at 07:00 and 19:00, concurring with the times where the 

energy consumption variation is maximum. It is also convenient to highlight how in the flat 

periods of the energy consumption curve of a day, the model, although still having a 

considerable MAPE above 10%, it has a much lower MBPE. This reflects that in flat periods 

the model is not that biased and that the overall MBPE of almost – 5% comes probably from 

the periods of maximum variation in the energy consumption, where the model is clearly given 

over predictions. 

 

Figure 24. BPE and MBPE (red diamond) by hour of the day. 
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Leaving the BOXPLOT representations another two graphs are shown to complete the results 

evaluation. The first one, Figure 25, shows the APE for each instance chronologically 

arranged. There are two wide blank spaces in February 2017 and April 2017 due to anomalies 

in the predictions output, as seen in Figure 59, Figure 63 and Figure 65. Apart from that, the 

cloud of points in the first part of the sample seems to represent a higher APE values than the 

second part of the sample, where the points are more concentrated. This fact could evidence 

improvements in the accuracy and performance of the algorithm along the evaluation period 

as more data for training the model was available and incorporated to the model. The 

importance of re-training the model will be explain in Part II but in this case, once again, there 

is no confirmed information on what retraining strategy the model is applying and no 

conclusions can be drawn. Related to improvements in the model, it has been known during 

the development of this dissertation that the working calendar for 2017 was updated at some 

point because in 2017 (second half of the sample) there are not big anomalies due to working 

calendar issues. No Holidays were forecasted as normal working days and viceversea.  

 

 

Figure 25. Each instance APE for all the evaluation period 

 

The second graph, shown in Figure 26, represents a histogram of the BPE. In a perfect model 

it should look like a perfect Gaussian distribution, centered in the 0. Nevertheless, it shows an 

asymmetric behavior that aligns along with the MBPE indicating a biased model. It is of 

importance to point out from this figure that there are almost none instances where the real 
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consumption was 100% higher than the prediction whereas there are several occasions in 

which the model predicted energy consumption 100%, 200% and almost even 300% higher 

than the real consumption.  Ignoring this difference in the important deviations, for the smallest 

ones the shape of the histogram is similar to the Gaussian distribution. Despite being somehow 

biased, the distribution of upper and lower deviation seems to be even, and therefore model 

looks to be working within acceptable ranges. In order to improve the model the points where 

the model is deviating more should be study. A methodology to study error metrics must 

understand what the model is doing and have access to the specific inputs of the model for 

those instances in which it perms worse. As there is no access to this data this error metric 

analysis will be further developled in Part II, when propietary models will be carried out and all 

the information is known. Basically, the process would imply to cut the tails of the BPE 

distribution and look into the instances that are filtered out byt the cut. In Figure 26 a good 

range would be to cut instances over 100% of APE and study their typology.  

 

Figure 26. BPE Histogram 

 

 

 

 



 Energy Demand Forecasting in Smart Buildings Page. 63 
 

 

4.4 Evaluation methodology summary 

The evaluation methodology followed is summarized in this section through a process 

schematic shown in Figure 27. 

 

Figure 27. Schematic of the methodology and application to the case-study 
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4.5 Conclusions Part I 

In this dissertation an evaluation methodology to assess the performance of EDF models in 

disaggregated loads (at building level) has been proposed through the analysis of a case-

study. The ML model currently forecasting the energy demand (up to 48h ahead) in the 

COMSA Headquarter office building has been analyzed as an application example. 

The evaluation period was set from 1st May 2016 to 31st May 2017. A total of 9503 instances 

with measured hourly WBE consumption and forecasted demand comprises the dataset to be 

analyzed. A rigorous data preprocess was performed to eliminate abnormalities in the data. 

NAs, Zero and below the BBL predictions, outliers, deviations in the working calendar and 

strange behavior have been removed. The final stability of the model is 87.96%. Four different 

statistical metrics have been used for the analysis. Their overall results yield a MAPE of 

18.01%, a MBPE of – 4.67 %, a RMSE of 11.65 kWh and a R2 of 0.87.  

The results show an unsatisfactory accuracy and stability for the model. Nevertheless, this 

model is relatively new and with proper calibration, refine and re-train, it is possible that it will 

perform better. Different parameters have been found to have an important influence over the 

accuracy of the model and re-considering the inputs better metrics could be achieved. In 

general, performance is worse those days where the working schedule is not strict, that is, 

Fridays, days prior to holidays or special summer schedule. Regarding the seasonal effect in 

the accuracy, no conclusions can be drawn out of this first evaluation. The model performs 

different depending on the hour of the day, obtaining the worse during the start and the end of 

the working session, when the working activity has more variability. Most of this differences 

regarding the above-mentioned parameters are related to the working activity in the building. 

Those days when the activity tends to have less variations, that is, working days from Monday 

to Wednesday, the model performs better. The flatter the energy consumption variations are 

in the building, the better the model performs. It is likely that an occupancy parameter will 

improve the performance of the model in this high variability periods. This parameter, apart 

from being immediately related to the energy consumption in the building, it helps tracking the 

working activity of the company, which will add valuable information to the model. Habits on 

the arrival and departure time, as well as holdays personal calendar, of the company personnel 

would increase the model performance. 

The methodology has been defined and applied to a real case, giving valuable insights about 

its performance and the parameters that most affect the model performance. Nevertheless, it 

is an early stage and further development must be performed. In Section 7 guidelines to further 

develope the methodology will be provided. 
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5 PART II: Evaluation of other Machine Learning 

alternatives 

In the second part of this dissertation other models, also based in ML algorithms, will be applied 

to the available dataset of the energy consumption of the COMSA Headquarters office 

building. The objective is to obtain the best energy predictions 24h and 48h and compare them 

to the results of current model being used by PREDICTION. 

5.1 Methodology 

As it has been explained in 3.2, there is a wide variety of ML models being currently studied 

and implemented to make energy demand predictions. From all that spectrum of algorithms 

this thesis focuses on three different options. First, Artificial Neural Network as they are the 

most widely methodology used in load forecasting. Second on the Random Forest because it 

is known that PREDICTION works under this algorithms they are tremendousl powerfull. As 

third option, it has been decied to work with k-Nearest Neighbors algorithm, a simple and 

potent model that is hardly found on the literature. All these models will work in the same 

conditions to be able to compare them. Therefore, the data inputs and preparations will be the 

same in all cases aswell as the training and testing time periods. 

 Data Preparation 

Data-process is the process that takes the raw data from the building consumption (reference 

known outputs) and the influence parameters that will be consider in the study and assign the 

proper format to optimize the model performance. 

Data inputs 

The influence parameters are those variables that have an effect on the variable to predict and 

thus, are the candidates to be inputs of the forecast model. There is not a universal agreement 

for input selection, demonstrable influence and experience and expertise on the field must 

select the final group of predictors to be used (Raza and Khosravi, 2015). 

In the energy-field, there are several factors that have an effect on the final energy 

consumption of a particular building. A large list of parameters that have, to a greater or lesser 

extent, an impact on Energy Demand Forecasting models’ outputs can be made. It could be 

made including parameters relatives to the equipment (technical characteristics, time of usage, 
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efficiency, etc.), to the users (e.g.: how likely are they to make a smart usage of the systems) 

to the weather, to the time of the year, to the location, to the building characteristics, etc. 

In this master thesis there have been considered seven different influence parameters. In the 

first part of the thesis it was demonstrated that there are some variables that strongly affects 

the results of the model. Apart from these, other variables are set as influence parameters by 

experience in the field and by other literature studies that have proved them to be good energy 

demand predictors. These variables are related to weather conditions and to previous loads in 

the building (autoregressive character). The final selection of parameters to be included in the 

models is set as follows: 

- Scheduling parameters: Conclusions of part I aligns with literature bearing out that 

the effect of scheduling is strong in the energy consumption of a tertiary building. Within 

this group we differentiate: 

 

o DayType: Weekday/weekend. Separated by Monday, Tuesday, Wednesday, 

Thursday, Friday, Saturday and Sunday.  

o DayCategory: WorkingDay/Semiworking Day/Holiday 

o Hour: of the day 

o Month: Month of the year 

In the literature there are different options to deal with scheduling. One of them is by 

using different models (e.g. build a specific model por each day of the week or for each 

hour of the day) or by using an indicator variable (dummy variable). As 

(Papalexopoulos and Hesterberg, 1990) did in their analysis, this study will consider 

the categorical variables by creating dummy variables, that is, splitting every parameter 

in all the categories that it contains, and assigning the value 1 or 0 when corresponds.  

- Weather Parameters: Ambient temperature is proved to be have a strong relationship 

with the energy consumption of a building (Kissock, Reddy and Claridge, 1998). 

Regarding weather variables this will be only one that will take part in the regression 

analysis.  Although it is also proven that humidity and other parameters also have 

influence over the electric consumption in buildings, they effect is almost neglectable 

with respect to the ambient temperature. (Neto and Fiorelli, 2008) showed how the 

addition of relative humidity and solar irradiation parameters slightly improved the 

accuracy of their model. As these parameters are at the moment not available for the 

building location it has been decided to not include them as data inputs for the models.  
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- Historical consumption predictors: Energy consumption follows time series data 

structures, meaning that it represents data points taken over time in which the next 

value has some kind of relationship with the previous one.  There are trends, 

correlations and seasonal factors that should be accounted for. In the energy 

consumption there are three different kind of seasonality’s: daily pattern, weekly 

pattern and annual pattern. The Auto-regressive (AR) parameters to be considered in 

this study are the following ones: 

 

▪ Load at the same time the previous day (L(D-1)) 

▪ Same day and same hour but one week before (L(W-1)) 

All the influence parameters considered in this case-study and their characteristics are 

summarized in Table 4. 

Table 4. Influence Parameters to be considered as Inputs to the models 

Variable Type Value Description 

    

Day Type Categorical 

Monday, Tuesday, 
Wednesday, Thursday, 

Friday, Saturday, 
Sunday 

Week of the Day 

    

Day Category Categorical 
WorkingDay, 

SemiWorkingDay, 
Holiday 

Category regarding 
working calendar. 
Semiworking day: 
Reduced schedule 

(Summer and days before 
HOLIDAY). 

    

Hour Categorical [1-24] Hour of the day 

Month Categorical [1-12] Month of the year 

Temperature Numeric [-1,32] 
Exterior Temperature. In 

ºC 

Load(D-1) Numeric [8, 152] In kWh 

Load(W-1) Numeric [8,152] In kWh 

Data pre-process 

Once the feature selection has been fixed, the process to set the proper format to the raw data 

from the building consumption (known outputs) and the influenceable parameters is 

performed. The way in which the data is passed to the model has a strong effect in its outcome 

and, therefore, it must be converted to optimize the model performance. The steps followed to 

prepare the data are explained in this section. 
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Feature scale 

The input variables have different forms and scales. As Table 4 shows, there are categorical 

variables and numerical variables. Between the categorical variables there are variables with 

different number of categories, and between numerical parameters, the rangers and scales 

can notably differ.  

The algorithms need these parameters to be reduced to the same scale so it computes the 

outcome in less time and better precision. Two processes are used in this study to properly 

scale the data inputs. For categorical values, they are converted using dummy variables, that 

is, creating one sub-variable per category and assigning the value 1 or 0 accordingly to the 

original value. An example of the process of converting categorical variables to dummy 

variables is shown in Table 5. In this table, the DayType variable for three random instances 

is converted to seven different dummy variables (one per day of the week) and a 1 is assigned 

to the one that corresponds to the weekday, assigning 0 to the rest. Obviously, there can not 

appear more than one 1 in the same instance in the group of dummy variables representing 

the same influence parameter. The same process is applied to DayCategory (three dummy 

variables), Hour (24 dummy variables) and Month (12 dummy variables). After the process, 

the 4 categorical variables have been converted to 46 binomials 1/0 variables.  

Table 5. Example of converting categorical variable into a Dummy Variable 

 

Regarding the numeric variable, they must be also rescaled to the same scale, that is, to have 

values between 0 and 1. The range of numerical values must be in the same scale. 



 Energy Demand Forecasting in Smart Buildings Page. 69 
 

 

 

Table 6. Normalization of the numeric variables 

 

Once all the feature scaling has been accomplished the data inputs can be passed to the 

model, as shown in Figure 29. 

Training and Testing period. 

In supervised learning, as it is the case in this Machine Learning problem, there are, at least, 

two datasets. The first one, called training set, contains instances with input data together with 

known output of the variable to predict. In our case, the training set is comprised by rows with 

the values of the influence parameters explained in the previous section and the corresponding 

energy building consumption associated to those conditions (what would be the output of the 

forecast model). This dataset has been prepared so the model can learn or train and map the 

relationship between that output and the inputs. 

In order to estimate how well a model performs it is needed another dataset to present to the 

model, but with the output hidden. Once the model reads the inputs data and apply the 

corresponding algorithm it yields a prediction. As the correct output for the corresponding input 

is still known, you can study how well the model has mapped the output to the inputs by an 

accuracy study. Through the testing set you understand if your model is good enough to 

perform predictions over data which output is unknown and trust the result. 

 In order for the model to be well trained and in order its performances to be reliable the 

selection of the size (number of samples) of these dataset is important. As rule of thumb, it is 

common to select, from all the available data, 70% for the training set and 30% for the test set. 

 It was described in 4.1 that the energy consumption in the building of the case-study has been 

measured with enough guaranties since 1st January 2015. Nonetheless, the PREDICTION 

model just started working from 1st May 2106 and that is why the evaluation period in Part I 

started on this date. In this part, the training set will gather all the available data prior to the 

start of this evaluation period and the testing set will be the same of the evaluation period itself. 

That is: 
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• Training set: 1st January 2015 to 1st May 2016. It comprises 11661 instances 

of hours representing a period of 486 day or 1 year and 4 months. 

• Test set: 1st May 2016 to 1st June 2017 It comprises 9503 hours instances or 

hours representing a period of 396 days or 1 year and 1 month. 

 

 

Figure 28. Training and Testing period for the ML model comparison 

In this case, the rule of thumb 70/30 is not applied because of the nature of the data and the 

problem tackled. The purpose of the study is to compare different models that has available 

some data (training set) to train with and must predict over a certain period from which the 

output is unknown (testing set). The study simulates that models take all the data available 

before the testing period and will make periods over it without being re-trained.  

As it has been mentioned throughout the PART I there is little information on how 

PREDICTION forecasting model works. There is no data on how the training and test are 

made. It is only mentioned that the minimum training period for the model to work is one month 

and the recommend is 6 months. This study assumes that the mode has trained with a certain 

amount of data prior to the time it started working properly (1st May 2016) and it has not been 

trained with new data. In order to be able to compare the accuracy, the three different models 

explained in the following sections will take the same dataset for training and test.  

 

Figure 29. Data Inputs to the model (no dummy variables representation) 
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 Model 1: Artificial Neural Networks 

As it was described in 3.2 ANN are known as black-model algorithms. it is really complex to 

understand what is actually happening with the inputs and how are these are treated within 

the models. Neural Networks extracts the nonlinear relationship between input variables using 

training process of the network. The network can learn the future output behavior of load 

demand by using pattern reorganization functions (Raza and Khosravi, 2015). 

The ANN applied to the case-study is based in a feed-forward neural network (FFNN) with a 

single hidden layer. It was first developed by Brian Ripley and Willian Venables for the 

language S. (Venables and Ripley, 2002) and then adapted to R and added to the CRAN 

repository in February 2016 (Ripley, 2017). 

Feed-forward networks are the simplest ANN as there is not feedback loop. Information flows 

just in one direction, from the inputs to the outputs. Through supervised learning this network 

tries to minimize the Mean Square Error between the targeted and network output vales. The 

MSE is used to update the weights and bias values of network iteratively until an acceptable 

value of the error is reached.  

 
 

Figure 30. Left: General structure of a FFNN. Right: Neuron Structure 

𝑦 =  𝜃 + 𝑤1 · 𝑥1 + 𝑦2 · 𝑥2 + ⋯ + 𝑤𝑛 · 𝑥𝑛       [𝐸𝑐. 9] 

Basic NN network, with 3 layers and 4 neurons in the hidden layers,  and the process occurring 

in a single neuron is represented in Figure 30 and ecuation [Ec.9] . Neural Networks can map 

really complex relationship between the inputs and the outputs and it is a high powerful 

algorithm. Main drawbacks of ANN are that they are hard to interpret and they usually imply a 

high computational cost.  

The FFNN configured in this study is based in the Ripley and Venables model, and uses just 
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one single layer of neurons.  The parameters of the model configured has been: 

- 6 Nodes in the Hidden layer. 

- 0.1 Decay. This parameter represents weight regularization in the NN. 

- 1000 Max. Iteration. The process will stop if it has not converged if this number of 

iterations is reached. 

In Figure 31.It has been plot one ANN model used in the analysis. The first column represents 

the inputs that passes the information to each of the 6 nodes of the hidden layers through the 

corresponding weights. The results of the model are gathered together with the rest of the 

models in Table 7. GLOBAL Error metrics for the models for given training/testing 

conditionsTable 7. 

 

Figure 31. Representation of the Neural Network model with their three nodes levels (input, hidden layer and 

output) 

The ANN network used in this study is a simple network, there are dozens of possible 

configurations and parametrization of the models. It is out of the scope of this dissertation to 

deepeen in the ANN field. To mention some of the current models, there are researchers 

working on Recurrent Neural Networks, Markov Chain, Hopfield Chain, Deep Belief Networks, 

Deep Convolutional Networks, etc. In Future work it will be proposed to use and optimize the 
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models created in this study to improve the predictions accuracy. For further understanding of 

the ANN and its application to Load forecasting (Raza and Khosravi, 2015) published an 

extended study. 

 Model 2: k- Nearest Neighbors 

k-Nearest Neighbor is a simple non-parametric algorithm frequently used for classification 

problems. It bases the predictions on a similarity measure. It can be used also for regression, 

to predict the output the algorithm looks for the nearest neighbors’ points which pair (input, 

output) is known and, depending on the number of neighbors considered, assign it an output 

value. If the algorithm is configured to use just one neighbor, then it would assign to the input 

the value of the output of the closest neighbor (measured by certain distance criteria). When 

using higher number of neighbors, the value assigned would be the average.  

A simple example is shown in Figure 32 to understand the technique. The known data points 

are those for inputs 1, 1.8, 3.2, 5 and 5.9 (the blue dots). The output (Y-axis value) for input 4 

is unknown. Using k-NN with 1 neighbor it would assign to input 4 the output of the closest 

known data point, that is, x = 3.2. It would then be assigned the value 6. When k = 2 it would 

also consider the next closest neighbor, that is, input 5. The result algorithm would average 

the output value of these two inputs. The value assigned to input 4 would be average between 

6 (output for input 3.2) and 3 (output for input 5). Analogously, with k = 3 the output assigned 

to 4 would be 3.7. 

 

Figure 32. kNN regression. (Lavrenko, 2017) 

The k-NN regression model used in this dissertation was created by Shengqiao Li and it’s part 

of CRAN package FNN, updated to the repository in July 2013 (Li, 2017). It uses the Euclidean 

distances and the parameters selected in this model is k = 2 for 2 neighbors (Adding neighbors 

yield worse accuracy results) and the algorithm to use for distance computations is based on 

brute-force method. The results obtained for this methodology in this study are shown in Table 

7, together with the rest of models applied. 
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 Model 1: Random Forest (RF) 

Random forest is an extension of traditional decision tree method. It is considered as an 

ensembled method as it combines multiple decision trees to produce powerful models. Each 

of the trees is trained independently, using a random sample of the data (Bradley and Amde, 

2015). The ultimate results are obtained by weighting each tree’s output as shown in Figure 

33. 

 

Figure 33. Ensemble Method. Example for regression(Bradley and Amde, 2015) 

The Random Forest based method used in this case-study was first written in Fortran by Leo 

Breiman and Adele Cutler (Stat.berkeley.edu, 2017). The version used in this study is the 

adaptation to R language programming, written by Andy Liaw and Matthew Wiener (Cran.r-

project.org, 2017). The model has been initiated with 1000 trees but the errors stabilize with a 

lower amount as seen in Figure 34 and the tree number was lowered to 500. The final results 

are gathered in Table 7. 

 

Figure 34. Error vs Number of Trees in RF model 
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5.2 Results and Discussion of Part II 

Once the data is set to be passed to the models and these have been trained in the training 

dataset (See Figure 28) the models’ performances are analyzed in the testing dataset. Results 

are summarized and findings are discussed in this section.  

 Model Comparison and Model Selection 

The error metrics explained in Part I are applied to the models explained in the previous 

sections, which have been described in the porevious section. Selected training and testing 

periods (See Figure 28)  are the same for all of them. Results are summarized in Table 7.  

Random Forest is clearly the model with best performance, overcoming the rest of the models 

in all the metrics. It has lower MAPE, it less Biased than the k-NN and the ANN model and its 

RMS and coefficient of determination are better.  

Table 7. GLOBAL Error metrics for the models for given training/testing conditions 

 
MAPE  

% 

MBPE 
(%) 

RMSE 
(kWh) 

R2 
 

     

k-NN 19.55 -13.08 8.19 0.93 

     

ANN 16.21 - 10.21 5.42 0.97 

     

Random Forest 13.87 - 8.35 5.49 0.97 

Although it was mentioned in the scope of the project that the computation time would be not 

considered in this analysis, it must be mentioned that while having the best metrics and 

performance, the Random Forest is a much slower method compared to the other ones. The 

computional time consumed order of the methods increases with it complexity and for 

determined applications could definitely be a determined factor when selection a specific 

method.  

Table 8. Computing time scale for each model measured in a personal computer (i7, Windows, 8GB RAM) 

Model Computing Time (s) 
  

k-NN  3 - 8 

ANN  300 - 600 

Random Forest  800 - 1400 

As the computing time is not taking into consideration in this study the best model selection is 

easy. Random Forest outperforms his competitors and will be selected to carry out the rest of 
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the analysis. All the studies shown in the following sections have been confirmed by its 

implementation with the other methods (ANN and kNN), obtaining analogue results. 

Nonetheless, with the purpose of keeping the report cleaner and more readable, their results 

have been omitted and just the ones corresponding to RF models will be presented. 

 Influence of Working Calendar  

During the elaboration of the current dissertation, different issues regarding the working 

calendar have arisen. In order to prove the importance of including a detailed working calendar 

in the data inputs to the model, Table 9 shows the different metrics for models with no working 

calendar at all, model with detailed working calendar, and PREDICION model, which working 

calendar remains unknowns. 

Table 9. Influence of the building Working Calendar 

 
Working 
Calendar 

Test 
Period 

MAPE  
% 

MBPE 
(%) 

RMSE 
(kWh) 

R2 
 

       

RF Option 1 

No working calendar is 
considered. Just 

Fridays as 
Semiworking Days 

and Sat/Sun as 
Offdays. 

2016-06-01 to 
2017-06-01 

19.78 -12.13 9,51 0.90 

       

RF Option 2 

Corrected Working 
Calendar to Company 

Specifications. 
Summer calendar 
included plus more 
Semiworking Days 

before holidays. 

2016-06-01 to 
2017-06-01 

13.87 - 8.35 5.49 0.97 

       

PREDICTION 

Unkown. Seems to be 
wrong in 2016 and 
corrected for 2017. 

Not consider holidays 
to the local level but to 

regional level. 

2016-06-01 to 
2017-06-01 

18.01 -4.67 11. 67 0.86 

It has been observed the importance of properly labelling the instances according to its 

DayCategory. Thanks to the error analysis it has been possible to identify and properly 

corrected many of these labels. In many instances where the APE was too high the reason 

behind that deviations was a wrong category on the DayCategory variable. As an example of 

this, the k-NN model was evaluated and the instances with APE bigger than 100% were 

carefully analyzed. These points have been represented in Figure 35, which represents the 

output predictions of a k-NN model filtered by APE bigger than 100% for a testing period 
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between 1st January and 1st June 2017.  

 

Figure 35. Data Points filtered with APE > 100% for a k-NN model 

The days corresponding to the instances appearing on this filtered representation of the output 

were cross-checked in the dataset and many of them were wrongly labeled. For example, the 

5th of January 2017 appears as WorkingDay but its consumptions correspond more with a 

SemiWorkingDay. In a normal WorkingDay, at 17:00 the consumptions usually exceed 70 kWh 

but in this case, it is just 35 kWh (See Figure 36) 

 

Figure 36. 1st January 2017 was marked as WorkingDay but it should be SemiWorkingDay. 

After similar analysis more than 12 days were found to be marked as categories they do not 

belong to. These days had a remarked influence over the final results as it can be derived from 

Table 9. Decision on which days are SemiWorkingDay or which days are holidays might 

depends solely on the specific company, and it Is crucial for accurate predictions to have an 

updated and detailed knowledge of all of them. 

 Influence the re-training strategy 

In ML the models are trained using existing data. Usually, in order for the model to make 

accurate predictions the training data must be updated and the model must be re-trained with 

the new available data. First, because the models will make predictions within a similar 

distribution of the original training data. Data distributions might drift over time and re-training 

the model with adequate frequency will keep track of this variations and add them to the 
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predictions distribution. Second, model’s performance can degrade and to keep the accuracy 

level or increase it (if there is margin to do so). 

 There are different strategies of re-training a ML model. Online learning updates the model 

automatically with every new instance or set of instances. It is not a total update as it is mainly 

based on updating some parameters of the model, as the weights, whereas other important 

parameters will remain the same until a thorough train is performed. In offline learning, the 

model starts with a sample or a certain amount of available data until the performance it is 

satisfactory to start making predictions. The model will keep working as it has been configured 

in this first train and will remain the same until a new training process takes place, no specific 

times or set of instances are given for this to happen. Lastly and in between these two 

methodologies, there is a batch learning. In this kind of training strategy, a batch structure is 

configured (can be by number of instances, by time or by specific dates). The batch its passed 

to the algorithm and it updates its parameters after consuming all the comprised instances. 

The selection of one of these strategies depends on the data, on a comprehensive analysis of 

what it is representing and on the software and hardware system capabilities. 

In the case of the single office building energy demand forecast there two batches will be 

configured to show impact of re-training in the model performance. The original model, which 

training set and evaluation period was defined in Figure 28, will be compared to the 

performance of the same model after being re-trained with new data. The first update will be 

simulated to be the 1st of September 2016, corresponding to the first quarter of the evaluation 

period, and the second one the 1st of January of 2017, corresponding to the half of the 

evaluation period.  

The results shown in Table 10 illustrate an improvement of the performances as the model is 

training with more instances. If there training model is not retrained in the whole 2016, the 

predictions that will come out of the model will be worse than if we re-training it by adding 

batches of new samples to the training dataset.  
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Table 10. Influence of the re-training strategy 

 
Re-training 

Date 

Test 
Period 

MAPE  
% 

MBPE 
(%) 

RMSE 
(kWh) 

R2 
 

       

RF Option 1 No Update 
2017-01-01 to 
2017-06-01 

12.46 -7.76 4.53 0.97 

       

RF Option 2  
(1 batch) 

2016-09-01 
2017-01-01 to 
2017-06-01 

11.20 -6.19 4.46 0.97 

       

RF Option 3 
 (2 batches) 

2016-09-01 &  
2017-01-01 

2017-01-01 to 
2017-06-01 

10.65 -5.44 4.44 0.97 

       

PREDICTION Unknown 
2017-01-01 to 
2017-06-01 

14.80 -5.54 8.70 0.90 

 

The three models have the same base training period but different re-training strategies. A 

timeline is shown in Figure 37 to clarify how the different options have been trained. The best 

results are obtained for the option 3, that is, the one that has gone through the process of being 

re-trained after two batches periods. All the metrics have improved except for the coefficient of 

determination. This improvement must be carefully interpreted as it can lead to some mistakes. 

The base training data-set contains one year and a half of hourly energy consumption. For the 

purpose of energy forecasting it is not a large dataset, it just contains 9503 samples. There 

are not even two samples of each season included in the sample. This implies, that as long as 

we add new instances, the better the trainer will be per definition. Given that the training sample 

would have included five years of energy-consumption it is more than probable that the metrics 

would not have improved in the same amount that the ones shown in Figure 37. But in that 

case, it still would be recommended to re-train the model for output distribution optimization. 

In this case-study due to the short training available data, re-training strategy should aim to 

update the model with relative frequency. Better metrics will be obtained and the distribution 

of the predictions will be updated.  
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Figure 37. Timeline for different training strategies for the ML model. 

 Influence of the Temperature forecast accuracy 

For testing the models shown in this dissertation the temperature has been treated as a 

“known” input. When these models are applied in real cases, the temperature that they will 

have available will be a “forecasted” temperature. It is important to understand the influence of 

this difference as it will have an impact on the accuracy of the EDF models.  

PREDICTION model uses as inputs the temperature imported from a third party. This is a 

forecasted temperature and, by definition, it will have an error to a greater or lesser extent. In 

this study this fact has been considering by comparing the same model (RandomForest with 

same training and resting period) when it uses different temperature inputs. One model uses 

the actual temperature and the other two will use another simulation of temperatures 
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forecasting. Table 11 illustrate the results for these different temperature inputs.  

Table 11. Influence of the Temperature Input Accuracy 

 
T 

input 
Train 

Period 
Test 

Period 
MAPE  

% 

MBPE 
(%) 

RMSE 
(kWh) 

R2 
 

        

RF Option 1 Actual 
2015-01-01 to 
2017-01-01 

2017-01-01 to 
2017-06-01 

10.65 - 5.44 4.53 0.97 

        

RF Option 2  
 

Simulation of 
accurate 
Forecast 

 

2015-01-01 to 
2017-01-01 

2017-01-01 to 
2017-06-01 

10.95 - 5.84 4.62 0.97 

RF Option 3 
Simulation of 

bad 
forecast 

2015-01-01 to 
2017-01-01 

2017-01-01 to 
2017-06-01 

12.16 -7.40 5.09 0.97 

Option 1 model uses the actual Temperature to make the predictions. Option 2 and Option 3 

used a simulated forecasted temperature. From the original actual temperatures another 

vector has been created to introduce some error in the temperatures used as inputs in the 

model. In the second option, each instance’s temperature was modified by multiplying the 

actual corresponding temperature by a random coefficient ranging between [0.8 to 1.2]. For 

option 3 the range was amplified to [0.5 to 1.5] to introduce more error in the simulated 

forecasted temperature. The MAE in both new samples was 1.3 and 3.35 ºC respectively. 

Ideally, a more accurate simulation of a forecasted temperatures would better represent the 

influence of this parameter in the energy demand prediction. Nevertheless, to understand as 

a proof of concept, model 2 and model 3 should illustrate the mentioned influence. 

The more accurate the temperature input that the model uses to give a prediction, the more 

accurate this will be. This implies that the model must rely on the temperature predictions of a 

third party. Table 12 represents the state of the art in temperature forecast according to 

ForecastWatch (ForecastWatch, 2017). The best prediction 1-3 Days out has an RMS of 3.3 

ºF, which translated to ºC could mean that deviation from 1 to 2ºC can be commonly 

encountered when predicting the temperature one to three days ahead. When considering 

hiring a third party to use their forecast as inputs to the model, a reliable performance from 

their predictions should be aimed as will have strong influence over the model performance 

itself. 

Table 12. RMS in Degrees Fahrenheit for U.S. Locations (ForecastWatch, 2017) 

 1-3 Day Out 4-6 Day Out 1-9 Day out 

Global Weather Online 3.347 5.071 7.046 
    

AccuWeather 4.094 6.035 6.213 

    

World Weather Online 5.099 7.115 7.159 
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All the results of the three modes are considered with perfect temperature forecast, which in 

reality is nearly impossible. Nevertheless, the purpose of these forecast is 24h to 48h, and 

therefore, there error in the forecast is minimized assuming that the temperature forecast is 

updated and given to the model. PREDICTION forecast model on the other hand has used 

forecasted temperatures in their prediction but no vector has been provided to make more legit 

comparisons.  

 Final Machine Learning Model Metrics 

In this section the Random Forest model have been re-trained with the whole available data 

to date, that is, from 1st of January 2015 to 1st June 2017. An accurate working calendar has 

also been provided to the model. 

Table 13. Error metrics for the proposed RF model. Training Set 70%. Test 30%. Period: 01/01/2015 – 01/06/2017 

 

 

 

 

The final performance with all the data available shows how the model is learning and for the 

first time the main metric studied, MAPE, goes below 10%. The model is also more 0 centered 

as the MBPE shows the lowest possible deviation seen in the dissertation. The improvement 

in the metrics as the training data was added to the model leads to the conclusion that in order 

to predict the Energy Demand in disaggregated loads (building level) the minimum period of 

available data for the model should not be lower than 2 years.  

 

 

MAE (kWh) 2.88 

MAPE (%) 9.33 
MBPE (%) -1.57 

RMSE (kWh) 4.71 
R2 0,98 
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Figure 38. BPE Distribution for Final RF model 

By filtering out the errors it is derived that there is room to improve the model. Some off the 

main error explanations come from the fact that when the algorithm checks the WeekBefore 

load (load same day of the previous week at the same time) it does not compute the category 

of that day from the previous week. For example, in Figure 39, at 14:00 of Friday 2015-09-25 

the algorithm get confused because one day before was holiday and input variable Load 1 day 

before passes and abnormal value it would have been WorkingDay.  

There are instances that have been wrong predicted and no reason has been found to cause 

the deviation. For example, in the first instance in Figure 39 there was an Energy demand 

prediction of 38 kWh at 23:00h in the night. There is nothing that might lead to such high value. 

Looking to the corresponding historic parameters they seem normal as represent low energy 

consumption in the night.  

Many of these big deviations are also due to outliers in the consumption of the building. For 

example, in 2016-08-04, the week before there were two data points with abnormal energy 

consumption. At 20:00 of a Thursday this value should be lower and therefore, mistakes in the 

prediction would cannot be attributed to the algorithm.  
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Figure 39. Biggest deviations (APE > 100) for the final ML model 

 Comparison with PREDICTION Model 

With the RF model re-trained as shown in previous section a comparison with the current 

PREDICTION model being implemented is carried out for the month of June 2017. The metrics 

results are shown in Table 14 and a representation of the two models predictions compared 

to the actual consumption is presented in Figure 40. 

Table 14. JUNE 2017 comparison. RF vs PREDICTION 

 
MAPE  

% 

MBPE 
(%) 

RMSE 
(kWh) 

R2 
 

     
     

Random Forest 11.77 - 3.10 6.40 0.97 

     

PREDICTION 14.44 5.51 12.74 0.88 

As in the rest of the analysis the RF outperforms the PREDICTION model in all the metrics. 

Furthermore, PREDICTION model fails on the 5th day of the month as it yields 0 value 

predictions. As it was explained in Part I of this thesis, these values were removed from the 

dataset before proceeding with the evaluation and the metrics do not consider them. The 

stability in this case is 97%. 

When comparing the two models it must be considered that PREDICTION Models is an Actual 

implementation whereas RF is a simulation. PREDICTION is a software hardware integrated 

solution in which there can be several causes that makes the models fails. RF is a software 

model working solely over a dataset.  
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Figure 40. RF model vs PREDICTION. June 2017 
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5.3 ML methodology Summary 

Analogously to Part I, a schematic of the process applied in the Part II is shown in Figure 41. 

A general description of an Energy Demand Forecast process is given. Steps are broken own 

and associated to corresponding application to the case-study of COMSA Headquarters. 

 

 

Figure 41. Schematic of the Forecast Process Followed 
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5.4 Conclusions Part II 

In the second part of this report three different Machine Learning algorithms have been applied 

to predict the Energy demand of the COMSA Headquarters office building. K-Nearest 

Neighbors, Artificial Neural Network and Random Forest based models in their regression 

versions have been trained and tested over the Energy consumption dataset from the building. 

With a granularity of hourly predictions and forecast time horizons from 24h to 48h the models 

were trained with 1 year and a half data points and tested in the following 1 year and 1 month. 

The results yield that the most suitable model is the model based in Random Forest algorithm 

(MAPE of 13.87%), then the ANN (MAPE of 16.21%) and lastly the K-NN (MAPE of 19.55%).  

The error analysis helped detecting wrong labelled instances regarding the influence 

parameter DayCategory, which indicates if the corresponding day is normal working day, 

holiday or it has special reduced schedule. By correcting these instances and properly labeling 

them according to the specific building working a notable improvement in the performance of 

the model was achieved. The RF model was tested with no holidays at all but weekends and 

then, all the holidays and special days were included.  The model showed an improvement  

with the accurate working calendar, from 19.78% to the above-mentioned 13.87%. 

Once the calendar was corrected, two batches of new instances representing periods of 

approximately 3 months each, were used to retrain the RF model. The updated models 

showed improvements in all the metrics, reducing the MAPE by 1.26% and 1.81% respectively. 

The re-training strategy is an important parameter of any ML forecast system as it can improve 

the accuracy of the model and keeping a more precise output distribution. 

All the prediction models incorporate the temperature as an important parameter of influence. 

In the previous test, the temperature used to predict the Energy consumption was not a 

forecasted one but the actual on. To simulate the real input that these models would use, the 

temperature input vector was modified to introduce some randomness. The accuracy of the 

models dropped when their temperature inputs are not perfect. The studies show that 

temperature forecast will affect the prediction model performance by 1 to 3%. Therefore, if the 

model imports the weather forecast from a third party, a good track of its performance should 

be considered, as they have direct influence over the results.  

Finally, through the error analysis, the biggest errors (APE > 100%) were studied. No 

reasonable explanation has been found but to assign the cause of the error to strange behavior 

in the forecast or to abnormalities in the energy consumption data. 
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6 Final Conclusions 

This master thesis has worked on two main lines regarding the EDF in disaggregated loads. 

In the first part, a methodology to evaluate the performance of EDF models was presented. 

The evaluation process was demonstrated over a forecast model currently making energy 

predictions in a office building placed in Barcelona. In the second part, three different ML 

models were studied as EDF alternatives for the same building. With the historical data and 

other influence variables these models were trained and tested over the same time periods. 

The assessment of an EDF model is proposed as a data analytics process which requires a 

comprehensive understanding of dynamics associated to energy consumption of an office 

building. By data and expertise the field different abdormalities typologies were found: Zero 

and below the BBL predictions, extreme outliers (even with negative values), working calendar 

contradictions, etc. These abnormalities are assumed to represent instability in the model and 

are not computed in the accuracy analysis. With a 12.04% of invalid instances, final metrics of 

the model are MAPE of 18.01%, a MBPE of – 4.67 %, a RMSE of 11.65 kWh and a R2 of 0.87. 

By studying the abnormalities, it is possible to improve the model. First way would be to include 

an accurate working calendar of the company using the building. The biggest deviations were 

detected in the periods where the variability of the working activity in high, that is, in entrance 

and departure times and in special schedule days. To help reduce this variability, the addition 

of an occupancy input would play a crucial role. Furthermore, a thorough analysis of outliers 

in the consumption data could improve the metrics as these intrinsic abnormalities can lead to 

deviations that should not be attributed to the model but to the input data.  

To study alternative ML models to work over the same EDF problem three different methods, 

k-NN, ANN and RF, have been tested. RF was selected as the most suitable alternative. Its 

analysis, in similar conditions to the model studied in the PART I, resulted in MAPE of 13.87%, 

a MBPE of – 8.35 %, a RMSE of 5.49 kWh and a R2 of 0.97. It has been demonstrated that 

these metrics can be improved in two separate ways: correcting the company working calendar 

and re-training the model with new data. Other optimization measures are related to training 

period (a minimum of 2 years period is recommended), feature selection and model 

parametrization. For weather variables used as inputs it is important that their values are 

accurate because they directly affect the performance of the model. With all the 

implementations the model reached MAPE of 9.33%, a MBPE of – 1.57 %, a RMSE of 4.71 

kWh and a R2 of 0.98. Nevertheless, there have been found instances which errors cannot be 

explained, they are mainly based on strange behavior of the forecast model or in abnormalities 

in the input data that should be further investigated. 
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7 Future work 

This master thesis proposes a methodology for Energy Demand Forecasting model 

evaluation. The first results achieve its objective of measuring the model accuracy and finding 

when they tend to deviate more. Nevertheless, the methodology is in an early stage state and 

there is room for improvement. 

As for the methodology a more careful analysis on smooth outliers embedded in the input that 

should be included in the analysis. Furthermire, the metthodology must incorporate an 

implementation to study the influence of the weather variable over the accuracy of the forecast 

model. The interest point would be on how the algorithm reacts to sudden change in the 

weather conditions, such as cold or hot spells. In the near future the objective is to improve, 

debug and clean the code to make it a fully scalable to allow the comparison of any forecast 

of any building in an analogous way. This will allow comparison between performances of the 

same model in different buildings, or comparisons of different models over the same building. 

Medium-Term wise the idea is to integrate the solution in a software platform and, through a 

friendly User Interface, enable fast comparisons of the available portfolio of building and 

models. 

Regarding the application of particular configured ML algorithms there is even more space to 

improvement. In this master thesis default models have been applied and tested but there is 

room for optimization. From the feature selection point of view, adding the occupancy 

parameters is the first priority but other parameters will probably lead to better metrics, as 

increasing the number of weather variables like humidity or solar irradiation. Another 

Autoregressive parameter could also be added and tried in the model, such us the average 

load of the previous day, previous week or previous month. Regarding model optimization it 

can be done by configuring model parameters, as the number of hidden layers in the ANN 

model or testing other Neural Network based models. Designing an automated training batch 

strategy is also important as the retraining has been proved to improve the accuracy and 

adequate the output model distribution. In addition, split the models into categories, as for 

example creating one model for weekdays and another for weekends could increase the 

accuracy. Furthermore, combining the different ML technologies models into what is known in 

the fiend as Ensemble models (e.g. RF) must be investigated as weighing the models can lead 

to improvement in the dataset.   

Finally, it will be interesting to scale up the predictions and study the effect of aggregated Loads 

by combining different buildings into clusters and study and predict their energy demand as a 

whole. 
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ANNEX I: Hardware and Software specs. 

 

 

Figure 42. DL172 Datalogger specifications 
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ANNEX II: Evaluation Period Monthly raw data 

visualization 

 

 

Figure 43. May 2016 Consumption before data cleanness process 

 

Figure 44. May 2016 Consumption after data cleanness process. 
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Figure 45. June 2016 Consumption before data cleanness process 

 

Figure 46. June 2016 Consumption after data cleanness process. 
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Figure 47. July 2016 Consumption before data cleanness process 

 

Figure 48. July 2016 Consumption after data cleanness process. 
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Figure 49. August 2016 Consumption before data cleanness process 

 

Figure 50. August 2016 Consumption after data cleanness process. 
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Figure 51. September 2016 Consumption before data cleanness process 

 

Figure 52. September 2016 Consumption after data cleanness process. 
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Figure 53. October 2016 Consumption before data cleanness process 

 

Figure 54. October 2016 Consumption after data cleanness process. 
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Figure 55. November 2016 Consumption before data cleanness process 

 

Figure 56. November 2016 Consumption after data cleanness process. 
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Figure 57. December 2016 Consumption before data cleanness process 

 

Figure 58. December 2016 Consumption after data cleanness process. 
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Figure 59. January 2017 Consumption before data cleanness process 

 

Figure 60. January 2017 Consumption after data cleanness process. 
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Figure 61. February 2017 Consumption before data cleanness process 

 

Figure 62. February 2017 Consumption after data cleanness process. 
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Figure 63. March 2017 Consumption before data cleanness process 

 

Figure 64. March 2017 Consumption after data cleanness process. 
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Figure 65. April 2017 Consumption before data cleanness process 

 

Figure 66. April 2017 Consumption after data cleanness process. 
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Figure 67. May 2017 Consumption before data cleanness process 

 

Figure 68. May 2017 Consumption after data cleanness process. 
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ANNEX III: Random Forest Model Graphics 

 

 

Figure 69. APE by Day Category of final  RF model 
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Figure 70. APE by Month of final Part Il RF model 
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Figure 71. APE by Hour of final RF model 
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ANNEX IV: PART I R Code Explanation 
 
The code written for the data analysis performed in the PART I of this dissertation is explained 
in this annex in detail. As it has been described in section 3.6, the programming language used 
has been R through the integrated development environment (IDE) RStudio.  
 
The program developed to accomplish the analysis uses as inputs the data from the building 
energy consumption, obtained from the advanced metering infrastructure, and from the Energy 
Demand forecast, obtained as an output of the forecast model. Through DexCell Energy 
Manager software these datasets can be downloaded in one single one in .CSV format.  
 
After running the code, the programs return two outputs. First, it returns monthly graphs of the 
energy consumption and energy demand forecast before and after the data cleanness process 
(See ANNEX II). Second, it returns the statistical metrics explained in 4.3.1, gathered in a table 
Furthermore, it draws and stores in the local disk all the visualizations shown in 4.3.3. 

The program is structured in different scripts. The principal is mainv1.R and carries the overall 

process explained through the dissertation . This script sources other scripts that carries 

individual task such as: tesisfunctions.R, workingcalindar.R, weathertotal.R. Specific 

objective of each script is explained in the following table. 

All the codes are available at the GitHUB student profile. For access or help please contact 

through apicatoste@gmail.com. 

 

Table 15. R Scripts descriptions 

Script  Task Lines 

Main.R It is the main and acts as the scheleton of the 

program. From it all the other scripts are sourced.  

502 

Tesisfunctions.R Includes all the functions written for the projects. 

These are meant for pre-process CSV files, 

plotting graphs, obtaining metric errors, etc.  

330 

Workingcalendar.R Sets the official working calendar for years 2015 

to 2017. 

32 

WeatherBCN.R Deals with all the weather variables involved in the 

project. Not used for Part I.  

114 

results.R Gather the metrics results and  167 
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Main script code 

#Opening all the libraries that will be needed 

library(gridExtra) 

library(lattice) 

library(grid) 

library(readr) 

library(readxl) 

library(lubridate) 

library(dplyr) 

library(tidyr) 

library(chron) 

library(ggplot2) 

library(forecast) 

library(plyr) 

library(scales) 

library(reshape2) 

library(tseries) 

library(zoo) 

library(WriteXLS) 

#Here is where all the CSVs by month should be moved before running the code 

getwd() 

setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/") 

source("tesisfunctions.R") 
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#Declare the list and vectors that will be used in the code 

mydataframes <- list() 

myforecasts <- list() 

myForeGraphs <- list() 

myCorrectedForeGraphs <- list() 

myTempGraphs <- list() 

###### SET UP THE CONSUMPTION DATASETS#### 

   setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/Datos/Consumo/CSV/") #Here 

is where all the CSVs by month should be moved before running the code 

   files <- list.files(pattern = "*.csv") 

  #This is a bucle for to read and pre-preprocess with the function 

setupdataset all the datasets in the same folder (and in CSV format). Together  

  #with the pre-process I create a vector called mymonth to store all the 

names of the datasets for later purposes. Also a list is created to have 

  #???all the dataset in order.  

    for ( i in 1:length(files) ) { 

        this <- 

substr(paste(gsub('.csv','',paste(files[i]))),3,nchar(paste(files[i]))-7) 

        mydataframe <-  setupdataset(files[i]) 

        mydataframes[[this]] = mydataframe #Ordeno mis dataframes en una 

lista y les doy sus correspondientes nombres. 

        rm(mydataframe,i, this) 

      } 

  #In order to save all the graphs to my working directoy this for structure 

is used 

    for ( i in 1:length(mydataframes) ) { 

        setwd("C:/Users/Alvaro/Dropbox/TESIS/R 

tesis/graficas/ConsumoOriginal/") 
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        mymonth <- mydataframes[[i]] 

        mesname <- names(mydataframes)[i] 

        png(paste(mesname, ".png", sep=""), width = 1000, height = 500) 

        mygraph <- graphmydataframe(i,mydataframes) 

        print(mygraph) 

        dev.off() 

        rm(mesname,i, mymonth, mygraph) 

      } 

###### SET UP THE FORECAST DATASET #### 

      setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/Datos/forecast/CSV/") 

   filesfore <- list.files(pattern = "*.csv") 

#This is a bucle for to read and pre-preprocess with the function 

setupmyforecast all the datasets in the same folder (and in CSV format). 

Together  

#with the pre-process I create a vector called mymonthFORE to store all the 

names of the datasets for later purposes. Also a list is created to have 

#???all the dataset in order. 

    for ( i in 1:length(filesfore) ) { 

            this <- 

substr(paste(gsub('.csv','',paste(filesfore[i]))),3,nchar(paste(filesfore[i

]))) 

            myforecast <- setupmyforecast(filesfore[i]) 

            myforecasts[[this]] = myforecast #Ordeno mis dataframes en una 

lista y les doy sus correspondientes nombres. 

            rm(myforecast,i, this) 

          } 
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#In order to save all the graphs to my working directoy this for structure 

is used 

    for ( i in 1:length(myforecasts) ) { 

        setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/Forecasts/") 

        mymonth <- myforecasts[[i]] 

        mesname <- names(myforecasts)[i] 

        png(paste(mesname, ".png", sep=""), width = 1000, height = 500) 

        mygraph <- graphmyforecast(i, myforecasts) 

        print(mygraph) 

        dev.off() 

        rm(mesname,i, mymonth, mygraph) 

    } # This bucle stores all the graphs in PNG in the folder FORECASTS in 

the environment  

    for ( i in 1:length(myforecasts) ) { 

       this <- names(myforecasts)[i] 

       mygraph <-  graphmyforecast(i, myforecasts) 

       myForeGraphs[[this]] = mygraph 

       rm(mygraph, this) 

    } # This bucle creates a list storing all the graphs in variables. 

###### CLEANING THE MISSING VALUES IN CONSUMPTION ###### 

  ### FROM CONSUMPTION DATASFRAMES 

       #I attach through rbind command all the dataset to have all the anual 

consumption in one single dataframe. In order for the final dataset I order 

it by date. 

            AnualConsumption <- NULL 

            for (i in 1:length(mydataframes)){ 
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                AnualConsumption <- rbind(AnualConsumption, 

mydataframes[[i]]) 

                rm(i) 

              } 

            AnualConsumption <- 

AnualConsumption[order(AnualConsumption[,1]),] 

            NAsCons.0 <- 

length(which(is.na(AnualConsumption$Consumption)))/length(AnualConsumption$

Consumption)*100 

      #Once I have detected the missing Values I think of the best way to 

fill-in this data: 

        #There are 4 hours in FEBRUARY 2017 in which there are no consumptin 

data due to hardware update. In order to fill in this NAs the average energy 

consumption from the previous day and the  

        #day after are going to be forced. 

            detach("package:plyr") 

            fixfebruary <- mydataframes[[2]] %>%  

                filter(Date >= "2017-02-13 11:00" & Date < "2017-02-13 15:00" 

| Date >= "2017-02-15 11:00" & Date < "2017-02-15 15:00") %>%  

                group_by(Hour) %>%  

                summarise(avg = mean(Consumption)) 

            indextofixFEB <- which(is.na(mydataframes[[2]]$Consumption))     

            mydataframes[[2]]$Consumption[indextofixFEB] <- 

round(fixfebruary$avg, digits = 1) 

            library(plyr)  

        #The 30th of June from 00:00 to 23:00 is just missing 

values.Substitute NAs in the corresponding dataframe that belongs to the 

list of dataframes we created (If we modified) 
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            detach("package:plyr") 

            fixjune <-  mydataframes[[6]] %>%  

                filter((Date >= "2016-06-27 00:00" & Date <="2016-06-29 

23:00")) %>%  

                group_by(Hour) %>%  

                summarise(avg = mean(Consumption)) 

              indextofixJUN <- which(is.na(mydataframes[[6]]$Consumption))   

              mydataframes[[6]]$Consumption[indextofixJUN] <- 

round(fixjune$avg, digits = 1) 

            library(plyr)  

        #Check the Values have been corrected and there are no more NAs in 

the Anual Consumption 

            AnualConsumption <- NULL 

            for (i in 1:length(mydataframes)){ 

                AnualConsumption <- rbind(AnualConsumption, 

mydataframes[[i]]) 

                rm(i) 

              } 

            AnualConsumption <- 

AnualConsumption[order(AnualConsumption[,1]),] 

            NAsCons.1 <- 

length(which(is.na(AnualConsumption$Consumption)))/length(AnualConsumption$

Consumption)*100 

  ### CLEANING THE MISSING VALUES IN CONSUMPTION FORECASTING  

        #Same process that the previous one is folllowed, the part of 

consumption from the Forecast Dataset is the same than COMPTADOR from 

Consumption dataset 

          AnualForecast <- NULL 

          for (i in 1:length(myforecasts)){ 
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            AnualForecast <- rbind(AnualForecast, myforecasts[[i]]) 

           } 

          AnualForecast <- AnualForecast[order(AnualForecast[,1]),] 

          NAsForCONS0 <- 

length(which(is.na(AnualForecast$Consumption)))/length(AnualForecast$Consum

ption)*100 

          myforecasts[[2]]$Consumption[indextofixJUN] <- round(fixjune$avg, 

digits = 1) 

          indextofixFEBfore <- which(is.na(myforecasts[[10]]$Consumption))     

          myforecasts[[10]]$Consumption[indextofixFEBfore] <- 

round(fixfebruary$avg, digits = 1) 

          AnualForecast <- NULL 

          for (i in 1:length(myforecasts)){ 

            AnualForecast <- rbind(AnualForecast, myforecasts[[i]]) 

          } 

          AnualForecast <- AnualForecast[order(AnualForecast[,1]),] 

          NAsForCONS1 <- 

length(which(is.na(AnualForecast$Consumption)))/length(AnualForecast$Consum

ption)*100 

          # Borro las variables temporales para el proceso de remplazar los 

NAs 

          rm(fixfebruary, fixjune, indextofixFEB, indextofixJUN, 

indextofixFEBfore, i) 

###### PRE-PROCESS MISSING VALUES, 0 VALUES, OUTLAYERS, STRANGE DEVIATION IN 

FORECASTING ###### 

# In order to avoid modifying original dataset another dataset from the 

original one is created (Dataset name = Comparison).  

 # we prepare the dataset for Analytics Purposes. 
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          Comparison <- AnualForecast 

        #  Comparison$Forecast <- round(Comparison$Forecast, digits = 0) 

          Comparison <- Comparison[order(Comparison[,1]),] 

          row.names(Comparison) <- c(1:nrow(Comparison)) 

          Comparison$Day <- as.POSIXct(paste(day(Comparison$Date), 

month(Comparison$Date), year(Comparison$Date), sep = "-"), format = 

"%d-%m-%Y") 

          Comparison$DayType <- weekdays(Comparison$Date) 

          Comparison$DayType <- mapvalues(Comparison$DayType,  

                                          from = c("lunes", "martes", 

"miércoles", "jueves", "viernes", "sábado", "domingo"),  

                                          to = c("Monday", "Tuesday", 

"Wednesday", "Thursday", "Friday", "Saturday" , "Sunday")) 

          Comparison$Month <- month(Comparison$Date) 

          Comparison$Month<- mapvalues(Comparison$Month,  

                                       from = c("1", "2", "3", "4", "5", 

"6", "7", "8", "9", "10", "11", "12"),  

                                       to = c("1January", "2February", 

"3Marzo", "4Abril", "5May", "6June" , "7July", "8August", "9September", 

"10October", "11November", "12December")) 

          Comparison$Month <- paste(Comparison$Month, 

year(Comparison$Date), sep = "") 

          Comparison$Dif <- Comparison$Consumption - Comparison$Forecast 

          Comparison$RelativeError <- 

round(Comparison$Dif/Comparison$Consumption*100, digits = 2) 

          Comparison$SSE <- round((Comparison$Consumption - 

Comparison$Forecast)^2, digits = 2) 

          Comparison$SST <- round((Comparison$Consumption - 

mean(Comparison$Consumption, na.rm = TRUE))^2, digits = 2) 

          Comparison$SSR <- round((Comparison$Forecast - 
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mean(Comparison$Consumption, na.rm = TRUE))^2, digits = 2) 

          Comparison$Hour <- hour(Comparison$Date) 

          Comparison <- Comparison[c(1,4,12,5,6,2,3,7,8,9,10,11)] 

         # View(Comparison[sample(nrow(Comparison), 20), ]) Generar muestra 

randomo del dataset. Just for presentation purposes. 

     #We add the Temperature to each Hour. So the code in Script 

"weatherBCNclean" must be excuted before. 

           setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/") 

          source("weathertotal.R") 

          for (i in 1:nrow(Comparison)) { 

              if(Comparison$Date[i] %in% temperatures$Superdate) { 

               Comparison$MyTemp[i] <-  

temperatures$Temp[which(temperatures$Superdate == Comparison$Date[i])] 

            } else { 

              Comparison$MyTemp[i] <- NA 

            } 

          } 

             View(Comparison) 

         #Categorical Day Set 

            library(plyr) 

                Comparison$DayCategory <- Comparison$DayType 

                Comparison$DayCategory <- mapvalues(Comparison$DayCategory,  

                          from = c("Monday", "Tuesday", "Wednesday", 

"Thursday", "Friday", "Saturday" , "Sunday"), 

                          to = c("WORKINGDAY", "WORKINGDAY", "WORKINGDAY", 
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"WORKINGDAY", "SEMIWORKINGDAY", "OFFDAY" , "OFFDAY")) 

                Comparison <- 

Comparison[c(1,2,3,4,14,5,6,7,13,8,9,10,11,12)] 

          #Setting more specifically the holidays. Set the WORKING CALENDAR 

for the company and check what is happening these days 

                 setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/") 

                source("workingcalendar.R") 

                 for (i in 1:nrow(Comparison)) { 

                  if (Comparison$Day[i] %in% holidaysTOTAL) { 

                    Comparison$DayCategory[i] <- "OFFDAY" 

                  } 

                } 

              #Before Applying all the modifications to the dataset (cleaning 

it) we create a copy.. This copy will be the argument of a function that 

will table out all the errors in 

              #different points of the cleaning process. 

               ComparisonforErrors <- Comparison 

            # 

ComparisonforErrors$Consumption[which(is.na(ComparisonforErrors$Forecast))] 

<- NA   

             ComparisonRAW <- Comparison 

             length(which(is.na(ComparisonRAW$Consumption))) 

             length(which(is.na(ComparisonRAW$Forecast))) 

  ### 1-. Looking for Missing Values in Forecast 

        NAsForORIG <- 

length(which(is.na(Comparison$Forecast)))/length(Comparison$Forecast)*100 

  ### 2 -. Looking for HUGE Outlayers in the prediction. From the graphs we 

know that biggest ones are in Nov and Dec.  
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        # The criteria used to erase the biggest outliers that affect the 

accuracy is to assume all those forecast values in which $Dif is over 90% of 

Maxium  

        # consumption over the whole period analized. 

        differlimit    <- 0.90*max(Comparison$Consumption) 

        toEraseOutlier <- which(abs(Comparison$Dif) > differlimit) 

        NAsForOutliers <- 

length(toEraseOutlier)/length(Comparison$Consumption)*100 

        Comparison[toEraseOutlier,] 

        rm(differlimit) 

        #Convert Outliers to NAs 

        Comparison$Forecast[toEraseOutlier] <- NA  

 ### 3-. Looking for zero value forecasts.    

        toEraseZero <- which(Comparison$Forecast == 0) 

        NAsForEqual0 <- length(toEraseZero)/length(Comparison$Forecast)*100 

        Comparison[toEraseZero,] 

        #Convert Zero Value Forecasts to NAs 

        Comparison$Forecast[toEraseZero]    <- NA   

         ### 4-. Looking for Values below  building's energy base load to 

convert them into NAs to be ignored in the accuracy analysis. 

        #First we calculate the buildings base load energy consumption by 

analyzing what is happenning on saturdays and sundays. 

     weekends <- Comparison %>% filter(DayType == "Saturday" | DayType == 

"DOMINGO") 

        myrange <- 0.6 

        toEraseUnderBL <- which(Comparison$Forecast > 0 & 
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Comparison$Forecast < (myrange*min(weekends$Consumption))) 

        NAsForUnderBS <- 

length(toEraseUnderBL)/length(Comparison$Forecast)*100 

        Comparison[toEraseUnderBL,] 

        rm(myrange) 

        #Convert Below BBS Forecasts to NAs 

        Comparison$Forecast[toEraseUnderBL] <- NA  

   ### 5-. Obtaning WHICH HOLIDAYS the algorithm has predicted consumption 

          # Find which days, during the working hours, the forecastings has 

been, on average, greater than forecastlimit. This way we can obtain the 

days that were  

        # holidays but a normal prediction was made. 

                detach("package:plyr") 

               detectHOLIDAY <- Comparison %>%   

                  filter(hours(Comparison$Date) >= 07 & 

hours(Comparison$Date) < 19) #Filter by workingHours 

               detectHOLIDAY <- detectHOLIDAY %>%   

                  group_by(Day) %>%  

                  summarise(avgcon = mean(Consumption, na.rm = TRUE), 

                            avgfor = mean(Forecast, na.rm =TRUE)) 

               detectHOLIDAY$avgDIF <- detectHOLIDAY$avgfor - 

detectHOLIDAY$avgcon 

               forecastlimit <- 40 

               overforecastlimit <- which(detectHOLIDAY$avgDIF > 

forecastlimit)             #Posicion del vector que nos dirá los días con la 

AVG > forecastlimit 

               myfailHolidaysdates <- detectHOLIDAY[overforecastlimit,]$Day                 

#Días detectados como Holidays en los que se ha predecido consumo 
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               toEraseHoliday <- which(Comparison$Day %in% 

myfailHolidaysdates)             #Filas del Dataset que ocupan todos estos 

días. 

               NAsForHOLIDAY <- 

length(toEraseHoliday)/length(Comparison$Forecast)*100 

               library(plyr) 

               rm(detectHOLIDAY, myfailHolidaysdates, forecastlimit) 

         # Convert HOLIDAYS to NAs 

               Comparison$Forecast[toEraseHoliday] <- NA 

    ### 6-.  Obtaning Days with Strange behaviour by VISUAL exploration 

        #16 DECEMBER 2016 , #27 ENERO 2017 ???, #4 NOVEMBER 2016, #17 OCTOBER 

2016 

                

               strangeforecast <- as.POSIXct(c("2016-12-16","2016-11-

04","2016-11-25", "2016-10-17")) 

               toEraseSTRANGE  <- which((Comparison$Day %in% strangeforecast 

& !is.na(Comparison$Forecast ))) #!is.na is needed in order to obtain the 

proper 

#length of the elements to be erased 

               NAsForSTRANGE   <- 

length(toEraseSTRANGE)/length(Comparison$Forecast)*100 

       # Convert STRANGE to NAs       

               Comparison$Forecast[toEraseSTRANGE] <- NA   

  # We have converted all the incongruence into NAs. (NAs per se, Big 

Outlayers, 0 forecasts & below baseload forecast). We delete the consumption 

data 

  #from the same times that there is no forecast prediction as these data do 

not provide any value to the analysis. Also the total NAs in the end is 
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  #calculated before to have a reference of how ofthen the predictions fails. 

               NAsForTOT <- 

length(which(is.na(Comparison$Forecast)))/length(Comparison$Forecast)*100 

               NAsForTOTsum <- NAsForORIG + NAsForOutliers + NAsForEqual0 +  

NAsForUnderBS + NAsForHOLIDAY + NAsForSTRANGE 

               #Convert all the Consumption associated to a NA in Forecast 

into NA and UPDATE the DIF and RelativeError, SSE,SST,SSR Columns         

             Comparison$Consumption[which(is.na(Comparison$Forecast))] <- 

NA   

               Comparison$Dif <- Comparison$Forecast - 

Comparison$Consumption 

               Comparison$RelativeError <- 

round(Comparison$Dif/Comparison$Consumption*100, digits = 2) 

               Comparison$SSE <- round((Comparison$Consumption - 

Comparison$Forecast)^2, digits = 2) 

               Comparison$SST <- round((Comparison$Consumption - 

mean(Comparison$Consumption, na.rm = TRUE))^2, digits = 2) 

               Comparison$SSR <- round((Comparison$Forecast - 

mean(Comparison$Consumption, na.rm = TRUE))^2, digits = 2) 

rm(toEraseHoliday,toEraseOutlier,toEraseSTRANGE,toEraseUnderBL,toEraseZero, 

holidays2016fd, holidays2017fd, weekends, overforecastlimit, NAsCons.0, 

NAsCons.1, NAsForCONS0, NAsForCONS1) 

##### FIRST ACCURACY ANALYSIS ##### 

#Once the Dataset has been cleaned and big outlayers and 0 measures have 

turned into NAs a study of the accuracy is performed below. For that purpose 

 #another PREPROCESS is followed to facilitate the analysis. 

  # In order to be able to plot Monthly consumptions to compare month 

performance. The Anual Dataframe its split into months.  

         

        monthlyForecast <- split.data.frame(Comparison, Comparison$Month) 

        length(monthlyForecast) 
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        monthlyForecast[[14]] <- as.data.frame(Comparison) 

             #In order to save all the graphs to my working directoy this 

for structure is used 

        for ( i in 1:length(monthlyForecast) ) { 

          setwd("C:/Users/Alvaro/Dropbox/TESIS/R 

tesis/graficas/Corregidas/") 

          mymonth <- monthlyForecast[[i]] 

          mesname <- names(monthlyForecast)[i] 

          png(paste(mesname, ".png", sep=""), width = 1000, height = 500) 

          mygraph <- graphmyforecast(i,monthlyForecast) 

          print(mygraph) 

          dev.off() 

          rm(mesname,i, mymonth, mygraph) 

        } 

        for ( i in 1:length(monthlyForecast) ) { 

          this <- names(monthlyForecast)[i] 

          mygraph <-  graphmyforecast(i, monthlyForecast) 

          myCorrectedForeGraphs[[this]] = mygraph 

          rm(mygraph, this) 

           } # This bucle creates a list storing all the graphs in variables. 

#We calculate the key performance indicators : MAE, RelativeError, R2 and 

RMSE. For that purpose the function "myerrorcalculations" is written with 

the dataframe with the data as an argument. Also 

#function cleanMYdataset carries the process over a copy of the Comparison 

Dataframe to which it applies the cleaning process step by step and stores 

the error metrics in a table. 



 Energy Demand Forecasting in Smart Buildings Page. 129 
 

 

      setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/") 

      source("tesisfunctions.R") 

      ErrorsTable <- as.data.frame(cleanMYdataset(ComparisonforErrors)) 

      ErrorsTable <- format(ErrorsTable, scientific=FALSE) 

      ErrorsTable[1, 1:5] <- ">1e+20" 

      ErrorsTable 

      ComparisonforErrorsWork <- ComparisonforErrors %>% 

filter(DayCategory != "OFFDAY") 

      ErrorsTableWorkDay <- 

as.data.frame(cleanMYdataset(ComparisonforErrorsWork)) 

      ErrorsTableWorkDay <- format(ErrorsTableWorkDay, scientific=FALSE) 

      ErrorsTableWorkDay[1, 1:5] <- ">1e+20" 

      ErrorsTableWorkDay 

      ComparisonforErrorsWeekend <- ComparisonforErrors %>% filter(DayType 

== "Sunday" | DayType == "Saturday")  

      ErrorsTableWeekEnd <- 

as.data.frame(cleanMYdataset(ComparisonforErrorsWeekend)) 

      ErrorsTableWeekEnd <- format(ErrorsTableWeekEnd, scientific=FALSE) 

      ErrorsTableWeekEnd[1, 1:5] <- ">1e+20" 

      ErrorsTableWeekEnd 

       ##### PLOTTING THE ERROR ###### 

     # ANother script for this purposes has been created 

##### DEALING WITH TEMERATURES ###### 

          for ( i in 1:length(monthlyForecast) ) { 

            setwd("C:/Users/Alvaro/Dropbox/TESIS/R 

tesis/graficas/Temperature/") 

            mymonth <- monthlyForecast[[i]] 
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            mesname <- names(monthlyForecast)[i] 

            png(paste(mesname, ".png", sep=""), width = 1000, height = 500) 

            mygraph <- graphmytemp(i,monthlyForecast) 

            print(mygraph) 

            dev.off() 

            rm(mesname,i, mymonth, mygraph) 

          } 

          for ( i in 1:length(monthlyForecast) ) { 

            this <- names(monthlyForecast)[i] 

            mygraph <-  graphmytemp(i, monthlyForecast) 

            myTempGraphs[[this]] = mygraph 

            rm(mygraph, this) 

          } # This bucle creates a list storing all the graphs in variables. 

          #Plotting temperature togheter with the consumption and 

forecasteing of each month 

          for ( i in 1:length(monthlyForecast) ) { 

            setwd("C:/Users/Alvaro/Dropbox/TESIS/R 

tesis/graficas/TempConsumJuntos/") 

            mesname <- names(monthlyForecast)[i] 

            png(paste(mesname, ".png", sep=""), width = 1000, height = 1000) 

            mygraph <- 

grid.arrange(myTempGraphs[[i]],myCorrectedForeGraphs[[i]], ncol=1) 

            print(mygraph) 

            dev.off() 
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            rm(mesname,i, mygraph) 

          } 

Functions script code 

 

#This is function to pre-process my dataset and leave them in the same format 

directly from the CSV given by DeXCell. 

      setupdataset <- function(n,...){ 

      myworkingd <- getwd() 

      setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/Datos/Consumo/CSV/") 

      thisfile <- paste(n) 

      dataframe <- read.csv(file = thisfile, sep = ";", header = FALSE)[-

c(1:15),c(1,2,12,18)] 

      names(dataframe) = c("Day", "Hour", "Consumption", "Planta4") 

      dataframe$Day<- as.POSIXct(as.character(dataframe$Day), format = 

"%d/%m/%Y") 

      dataframe$Hour <- as.character.POSIXt(dataframe$Hour) #Por defecto, la 

columna Hour tiene 34 levels de factors. Lo reduzco a 24. 

      dataframe$Hour <- as.factor(dataframe$Hour) 

      dataframe$Consumption <- as.numeric(gsub(",", 

"." ,dataframe$Consumption)) 

      dataframe$Planta4 <-as.numeric(gsub(",", "." ,dataframe$Planta4)) 

      row.names(dataframe) <- c(1:nrow(dataframe)) 

      dataframe$Date <- paste(dataframe$Day, dataframe$Hour) 

      dataframe <- dataframe[,c(1,2,5,3,4)] 

      dataframe$Date <- as.POSIXct(as.character(dataframe$Date), format = 

"%Y-%m-%d %H:%M") 

      setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/") 
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      return(dataframe) 

    } 

#This is function to pre-process my dataset and leave them in the same 

format. 

setupmyforecast <- function(n,...){ 

      myfile <- paste(n) 

      dataframe <- read.csv(file = myfile, sep = ",", header = FALSE)[-

c(1),c(1,2,3)] 

      names(dataframe) = c("Date", "Consumption", "Forecast") 

      dataframe$Date <- as.POSIXct(as.character(dataframe$Date), format = 

"%Y-%m-%d %H:%M") 

      dataframe$Consumption <- 

as.numeric(as.character(dataframe$Consumption)) 

      dataframe$Forecast <- as.numeric(as.character(dataframe$Forecast)) 

      return(dataframe) 

    } 

#Graphics original plots 

  #In order to plot the data of interest, in this case the energy consumptio 

versus the date, I create a function to set-up the design of the plot: 

  #same with dataframes list. The funcion argument is a number that it is 

related with the list mydataframes. To check properly the dataframe you 

  #want to plot you have to first know which position of the list are u 

interested in. 

   

      graphmydataframe <- function(x, onelist, ...){ 

               dates <- c(date(onelist[[x]]$Date[1]), 

date(onelist[[x]]$Date[nrow(onelist[[x]])]))     
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        selection <- onelist[[x]]$Date[which(hour(onelist[[x]]$Date) == 00)] 

        ggplot(data = onelist[[x]], aes(x = Date)) + 

          geom_line(aes(y = Consumption, colour = "General"), size = 0.8) + 

          geom_line(aes(y = Planta4, colour = "Planta 4"), size = 0.8) + 

          geom_vline(xintercept = as.numeric(selection), linetype=1, 

colour="gray", na.rm = TRUE, size = 0.1) + 

          ggtitle(names(onelist)[x]) + 

          labs(x="", y= "Energy in kWh") + 

          scale_colour_manual(name = "Consumption", values=c("red", 

"darkolivegreen4")) + 

          scale_x_datetime(labels = date_format("%b-%d"), 

breaks=pretty_breaks(n = 32)(as_datetime(dates)))  + 

          coord_cartesian(ylim=c(0, 150))+ 

          theme(panel.grid.minor = element_blank(),  

                panel.grid.major = element_line(colour = "gray", size = 

0.1),  

                panel.grid.major.x = element_blank(),  

                panel.background = element_blank(), 

                axis.text.y = element_text(colour="black", size = 10), 

                axis.text.x = element_text(size = 9, angle = 270, vjust = -

1.2), 

                axis.ticks.x=element_blank(), 

                plot.title = element_text(hjust = 0.5, size = 20, vjust = 

1), 

                panel.border = element_rect(colour = "gray", fill= NA, 

size=0.1), 

                legend.background = element_rect(fill = "white", colour = 

NA), 
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                legend.text = element_text(size = rel(0.8), color="black" ),  

                legend.text.align = NULL,  

                legend.title = element_text(size = rel(0.8), face = "bold", 

hjust = 0, color="black"),  

                legend.title.align = NULL) 

      } 

       graphmyforecast <- function(x, onelist, ...){ 

        dates <- c(date(onelist[[x]]$Date[1]), 

date(onelist[[x]]$Date[nrow(onelist[[x]])]))     

        selection <- onelist[[x]]$Date[which(hour(onelist[[x]]$Date) == 00)] 

        ggplot(data = onelist[[x]], aes(x = Date)) + 

          geom_line(aes(y = Consumption, colour = "Actual"), size = 0.8) + 

          geom_line(aes(y = Forecast, colour = "Forecast"), size = 0.8) + 

          geom_vline(xintercept = as.numeric(selection), linetype=1, 

colour="gray", na.rm = TRUE, size = 0.1) + 

          ggtitle(names(onelist)[x]) + 

          labs(x="", y= "Energy in kWh") + 

          scale_colour_manual(name = "Consumption", values=c("red", 

"dodgerblue4"))+ 

          scale_x_datetime(labels = date_format("%b-%d"), 

breaks=pretty_breaks(n = 32)(as_datetime(dates)))  + 

          #coord_cartesian(ylim=c(0, 150))+ 

          theme(panel.grid.minor = element_blank(),  

                panel.grid.major = element_line(colour = "gray", size = 

0.1),  

                panel.grid.major.x = element_blank(),  



 Energy Demand Forecasting in Smart Buildings Page. 135 
 

 

                panel.background = element_blank(), 

                axis.text.y = element_text(colour="black", size = 20), 

                axis.text.x = element_text(size = 15, angle = 270, vjust = 

-1.2), 

                axis.title = element_text(size=14,face="bold"), 

                axis.ticks.x=element_blank(), 

                plot.title = element_text(hjust = 0.5, size = 20, vjust = 

1), 

                panel.border = element_rect(colour = "gray", fill= NA, 

size=0.1), 

                legend.background = element_rect(fill = "white", colour = 

NA), 

                legend.text = element_text(size = 14, color="black" ),  

                legend.text.align = NULL,  

                legend.title = element_text(size = 18, face = "bold", hjust 

= 0, color="black"),  

                legend.title.align = NULL) 

      } 

       

      graphmytemp <- function(x, onelist, ...){ 

        dates <- c(date(onelist[[x]]$Date[1]), 

date(onelist[[x]]$Date[nrow(onelist[[x]])]))     

        selection <- onelist[[x]]$Date[which(hour(onelist[[x]]$Date) == 00)] 

        ggplot(data = onelist[[x]], aes(x = Date)) + 

          geom_line(aes(y = MyTemp, colour = "Temperat"), size = 0.8) + 

          geom_vline(xintercept = as.numeric(selection), linetype=1, 

colour="gray", na.rm = TRUE, size = 0.1) + 

          ggtitle(names(onelist)[x]) + 
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          labs(x="", y= "Temperature in (ºC)") + 

          scale_colour_manual(name = "Tª", values=c("darkgreen"))+ 

          scale_x_datetime(labels = date_format("%b-%d"), 

breaks=pretty_breaks(n = 32)(as_datetime(dates)))  + 

          coord_cartesian(ylim=c(0, 40))+ 

          theme(panel.grid.minor = element_blank(),  

                panel.grid.major = element_line(colour = "gray", size = 

0.1),  

                panel.grid.major.x = element_blank(),  

                panel.background = element_blank(), 

                axis.text.y = element_text(colour="black", size = 10), 

                axis.text.x = element_text(size = 9, angle = 270, vjust = -

1.2), 

                axis.ticks.x=element_blank(), 

                plot.title = element_text(hjust = 0.5, size = 20, vjust = 

1), 

                panel.border = element_rect(colour = "gray", fill= NA, 

size=0.1)) 

         

      } 

      graphmyconsumption <- function(x, onelist, ...){ 

                dates <- c(date(onelist[[x]]$Date[1]), 

date(onelist[[x]]$Date[nrow(onelist[[x]])]))     

        selection <- onelist[[x]]$Date[which(hour(onelist[[x]]$Date) == 00)] 

        ggplot(data = onelist[[x]], aes(x = Date)) + 

          geom_line(aes(y = Consumption, colour = "General"), size = 0.8) + 
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          geom_vline(xintercept = as.numeric(selection), linetype=1, 

colour="gray", na.rm = TRUE, size = 0.1) + 

          ggtitle(names(onelist)[x]) + 

          labs(x="", y= "Energy in kWh") + 

          scale_colour_manual(name = "Consumption", values=c("red")) + 

          scale_x_datetime(labels = date_format("%b-%d"), 

breaks=pretty_breaks(n = 32)(as_datetime(dates)))  + 

          coord_cartesian(ylim=c(0, 150))+ 

          theme(panel.grid.minor = element_blank(),  

                panel.grid.major = element_line(colour = "gray", size = 

0.1),  

                panel.grid.major.x = element_blank(),  

                panel.background = element_blank(), 

                axis.text.y = element_text(colour="black", size = 10), 

                axis.text.x = element_text(size = 9, angle = 270, vjust = -

1.2), 

                axis.ticks.x=element_blank(), 

                plot.title = element_text(hjust = 0.5, size = 20, vjust = 

1), 

                panel.border = element_rect(colour = "gray", fill= NA, 

size=0.1), 

                legend.background = element_rect(fill = "white", colour = 

NA), 

                legend.text = element_text(size = rel(0.8), color="black" ),  

                legend.text.align = NULL,  

                legend.title = element_text(size = rel(0.8), face = "bold", 

hjust = 0, color="black"),  

                legend.title.align = NULL) 
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      } 

      graphmysinglelonggraph <- function(x, onelist, ...){ 

        dates <- c(date(onelist[[x]]$Date[1]), 

date(onelist[[x]]$Date[nrow(onelist[[x]])]))     

        ggplot(data = onelist[[x]], aes(x = Date)) + 

          geom_line(aes(y = Consumption, colour = "General"), size = 0.8) + 

          ggtitle(names(onelist)[x]) + 

          labs(x="", y= "Energy in kWh") + 

          scale_x_datetime(labels = date_format("%b-%d"), 

breaks=pretty_breaks(n = 32)(as_datetime(dates)))  + 

          coord_cartesian(ylim=c(0, 150))+ 

          theme(panel.grid.minor = element_blank(),  

                panel.grid.major = element_line(colour = "gray", size = 

0.1),  

                panel.grid.major.x = element_blank(),  

                panel.background = element_blank(), 

                axis.text.y = element_text(colour="black", size = 10), 

                axis.text.x = element_text(size = 9, angle = 270, vjust = -

1.2), 

                axis.ticks.x=element_blank(), 

                plot.title = element_text(hjust = 0.5, size = 20, vjust = 

1), 

                panel.border = element_rect(colour = "gray", fill= NA, 

size=0.1)) 

      } 

      graphmygraph <- function(dataframe, ...){ 
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        dates <- c(date(dataframe$Date[1]), 

date(dataframe$Date[nrow(dataframe)]))     

        selection <- dataframe$Date[which(hour(dataframe$Date) == 00)] 

        ggplot(data = dataframe, aes(x = Date)) + 

          geom_line(aes(y = Consumption, colour = "Actual"), size = 0.8) + 

          geom_line(aes(y = Forecast, colour = "Forecast"), size = 0.8) + 

          geom_vline(xintercept = as.numeric(selection), linetype=1, 

colour="gray", na.rm = TRUE, size = 0.1) + 

          ggtitle("Data") + 

          labs(x="", y= "Energy in kWh") + 

          scale_colour_manual(name = "Consumption", values=c("red", 

"dodgerblue4"))+ 

          scale_x_datetime(labels = date_format("%b-%d"), 

breaks=pretty_breaks(n = 32)(as_datetime(dates)))  + 

          coord_cartesian(ylim=c(0, 150))+ 

          theme(panel.grid.minor = element_blank(),  

                panel.grid.major = element_line(colour = "gray", size = 

0.1),  

                panel.grid.major.x = element_blank(),  

                panel.background = element_blank(), 

                axis.text.y = element_text(colour="black", size = 10), 

                axis.text.x = element_text(size = 9, angle = 270, vjust = -

1.2), 

                axis.ticks.x=element_blank(), 

                plot.title = element_text(hjust = 0.5, size = 20, vjust = 

1), 

                panel.border = element_rect(colour = "gray", fill= NA, 

size=0.1), 
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                legend.background = element_rect(fill = "white", colour = 

NA), 

                legend.text = element_text(size = rel(0.8), color="black" ),  

                legend.text.align = NULL,  

                legend.title = element_text(size = rel(0.8), face = "bold", 

hjust = 0, color="black"),  

                legend.title.align = NULL) 

      } 

#Functions to obtain error metrics 

      #We calculate the key performance indicators : MAE, RelativeError, R2 

and RMSE. For that purpose the function "myerrorcalculations" is written 

with the dataframe with the data as an argument. Also 

      #function cleanMYdataset carries the process over a copy of the 

Comparison Dataframe to which it applies the cleaning process step by step 

and stores the error metrics in a table. 

      myerrorcalculationsBIS <- function(dataframe,...){ 

        #Update the dataframe to obtain the error metrics 

        dataframe$Consumption[which(is.na(dataframe$Forecast))] <- NA     

#Both Vectors need to have the same NAs in order for the R squared to be 

calculated 

        dataframe$Dif <- dataframe$Consumption - dataframe$Forecast 

        dataframe$BPE <- round(dataframe$Dif/dataframe$Consumption*100, 

digits = 2) 

        dataframe$APE <- 

round(abs(dataframe$Dif)/abs(dataframe$Consumption), digits = 2) 

        dataframe$SSE <- round(( dataframe$Consumption -  

dataframe$Forecast)^2, digits = 2) 

        dataframe$SSR <- round(( dataframe$Forecast - 

mean( dataframe$Forecast, na.rm = TRUE))^2, digits = 2) 
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        dataframe$SST <- dataframe$SSE + dataframe$SSR 

 

        #Mean absolute error (MAPE). Is the same as Mean() o Aritmetic 

average. 

     errorMAE <- round( sum(abs(dataframe$Dif), na.rm = 

TRUE)/(length(which(!is.na(dataframe$Dif)))) , digits = 2) 

        #Mean absolute error (MAPE). Is the same as Mean() o Aritmetic 

average. 

        errorMAPE <- 

round( sum(abs(dataframe$Dif)/dataframe$Consumption*100, na.rm = 

TRUE)/(length(which(!is.na(dataframe$Dif)))) , digits = 2) 

        #Mean Biased Error 

        errorMBPE <- round ( mean(dataframe$BPE, na.rm = TRUE) , digits = 2) 

        #Root Mean Square (RMSE) 

        RMSe <- round( sqrt(sum((dataframe$Dif)^2, na.rm = 

TRUE)/length(which(!is.na(dataframe$Dif)))) , digits = 2) 

        #R2 

        rsquaredGEN <- round( (1 - sum(dataframe$SSE, na.rm = 

TRUE)/sum(dataframe$SST, na.rm = TRUE)) , digits = 2) 

        # Gathering together all the errors into a single error vector 

         

        NAsForTOT <- 

length(which(is.na(dataframe$Forecast)))/length(dataframe$Forecast)*100 

        errorsvectorBIS <- round( c(errorMAE,errorMAPE, errorMBPE, RMSe,  

rsquaredGEN, NAsForTOT) , digits = 2) 

        names(errorsvectorBIS) <- c("MAE (kWh)", "MAPE (%)", "MBPE (%)", 

"RMSE (kWh)", "R2", "NAs(%)" ) 

        return(errorsvectorBIS) 

      } 
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      cleanMYdatasetBIS <- function(dataframe,...) { 

        #------------- RAW 

        metricasRAW <- myerrorcalculationsBIS(dataframe) # Obtain errors in 

RAW dataset   

        #------------- OUTLIERS 

        differlimit    <- 0.9*max(dataframe$Consumption) 

        toEraseOutlier <- which(abs(dataframe$Dif) > differlimit) 

        print(toEraseOutlier) 

        dataframe$Forecast[toEraseOutlier] <- NA  

        metricasOUTLIER <- myerrorcalculationsBIS(dataframe) # Obtain errors 

after first modification (1-. Set Outliers to NAs) 

        metricasOUTLIER  

        #------------- ZERO VALUES 

        toEraseZero <- which(dataframe$Forecast == 0) 

        dataframe$Forecast[toEraseZero]    <- NA    

        metricasZERO <- myerrorcalculationsBIS(dataframe) #  Obtain errors 

after second modification (2-. Set Zero Values to NAs) 

        #------------- BELOW BASE LOAD 

        weekends <- dataframe %>% filter(DayType == "Saturday" | DayType == 

"DOMINGO") 

        myrange <- 0.6 

        toEraseUnderBL <- which(dataframe$Forecast > 0 & dataframe$Forecast 

< (myrange*min(dataframe$Consumption))) 

        dataframe$Forecast[toEraseUnderBL] <- NA  

        metricasBASELOAD <- myerrorcalculationsBIS(dataframe) # Obtain 

errors after third modification (3-. Set UnderBase Values to NAs) 
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        #------------- HOLIDAYS 

        detach("package:plyr") 

        detectHOLIDAY <- dataframe %>%   

          filter(hours(dataframe$Date) >= 07 & hours(dataframe$Date) < 19) 

#Filter by workingHours 

        detectHOLIDAY <- detectHOLIDAY %>%   

          group_by(Day) %>%  

          summarise(avgcon = mean(Consumption, na.rm = TRUE), 

                    avgfor = mean(Forecast, na.rm =TRUE)) 

        detectHOLIDAY$avgDIF <- detectHOLIDAY$avgfor - detectHOLIDAY$avgcon 

        forecastlimit <- 40 

        overforecastlimit <- which(detectHOLIDAY$avgDIF > forecastlimit)             

#Posicion del vector que nos dirá los días con la AVG > forecastlimit 

        myfailHolidaysdates <- detectHOLIDAY[overforecastlimit,]$Day                 

#Días detectados como Holidays en los que se ha predecido consumo 

        toEraseHoliday <- which(dataframe$Day %in% myfailHolidaysdates)             

#Filas del Dataset que ocupan todos estos días. 

        library(plyr) 

        dataframe$Forecast[toEraseHoliday] <- NA 

        metricasHOLIDAYS <- myerrorcalculationsBIS(dataframe) # Obtain 

errors after third modification (4-. Set HOLIDAYS to NAs) 

        #------------- STRANGE 

        strangeforecast <- as.POSIXct(c("2016-12-16","2016-11-04","2016-11-

25", "2016-10-17")) 

        toEraseSTRANGE  <- which((dataframe$Day %in% strangeforecast 

& !is.na(dataframe$Forecast ))) #!is.na is needed in order to obtain the 

proper 

        #length of the elements to be erased 
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        dataframe$Forecast[toEraseSTRANGE] <- NA   

        metricasSTRANGE <- myerrorcalculationsBIS(dataframe) # Obtain errors 

after third modification (5-. Set STRANGE to NAs) 

        #------------- ALLTOGTHER 

        metricasRAW <- as.data.frame(metricasRAW) 

        metricasOUTLIER <- as.data.frame(metricasOUTLIER) 

        metricasZERO <- as.data.frame(metricasZERO) 

        metricasBASELOAD <- as.data.frame(metricasBASELOAD) 

        metricasHOLIDAYS <- as.data.frame(metricasHOLIDAYS) 

        metricasSTRANGE <- as.data.frame(metricasSTRANGE) 

        metricasFINAL <- metricasSTRANGE 

        metricasERRORbis <- cbind(metricasRAW, 

metricasOUTLIER,metricasZERO, metricasBASELOAD, metricasHOLIDAYS, 

metricasFINAL) 

        names(metricasERRORbis) <- c("Raw Data", "wo/Outliers", "wo/ZVs", 

"wo/BelowBBL", "wo/HOLIDAYS", "wo/StrangeB") 

        metricasERRORbis <- round(t(metricasERRORbis), digits = 2) 

        return(metricasERRORbis)  

              } 

      workingcalendar code 

      holidays2015fd <- c("2015-01-01", "2015-01-06", 

                          "2015-04-03", "2015-04-06", 

                          "2015-05-01", 

                          "2015-06-01", "2015-06-24", 

                          "2015-08-15",  

                          "2015-09-11", "2015-09-24", 

                          "2015-10-12",  
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                          "2015-12-07","2015-12-08","2015-12-25", "2015-12-28", 

"2015-12-29", "2015-12-30", "2015-12-31") 

      holidays2015fd <- as.POSIXct(holidays2015fd) 

       

      priorholidays2015fd <- c("2015-01-05", 

                                    "2015-04-02", 

                                    "2015-12-24") 

      priorholidays2015fd <- as.POSIXct(priorholidays2015fd) 

       

      #7th of december they did PUENTE as the last week of DECEMBER 

      #30th of April not included because once checked the consumption looks like 

normal working day 

      #31 may 2015 sunday 

      #23rd june 2015, wednesday but they worked full time 

      #14th august was already friday, semiworkindday 

      #10th, 23rd september they worked full time 

      #11th, october sunday 

       

      holidays2016fd <- c("2016-01-01", 

                          "2016-01-06", 

                          "2016-02-12", 

                          "2016-03-25", 

                          "2016-03-28", 

                          "2016-05-16", 

                          "2016-06-24", 

                          "2016-08-15", 

                          "2016-10-12", "2016-10-31", #15 Octobe is Saturday 

                          "2016-11-01", 

                          "2016-12-06", "2016-12-08", "2016-12-09","2016-12-

26","2016-12-27", "2016-12-28", "2016-12-29", "2016-12-30") 

      holidays2016fd <- as.POSIXct(holidays2016fd) 

       

      priorholidays2016fd <- c("2016-01-05") 

      priorholidays2016fd <- as.POSIXct(priorholidays2016fd) 

       

       

      #1st January , 6th January, -> From semiwroking day to OFFDAY 

      #12th February -> From semiwroking day to OFFDAY 

      #25th,March -> From semiwroking day to OFFDAY 

      #28th March -> From workingday to OFFDAY 

       

      holidays2017fd <- c("2017-01-06", 

                          "2017-04-14", "2017-04-17", 
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                          "2017-05-01", 

                          "2017-06-05", 

                          "2017-08-15", 

                          "2017-09-11", "2017-09-25",  

                          "2017-10-12", 

                          "2017-11-01", 

                          "2017-12-06", "2017-12-07", "2017-12-08", "2017-12-

25","2017-12-26", "2017-12-27", "2017-12-28", "2017-12-29") 

      holidays2017fd <- as.POSIXct(holidays2017fd) 

       

      priorholidays2017fd <- c("2017-01-05", 

                               "2017-04-13") 

      priorholidays2017fd <- as.POSIXct(priorholidays2017fd) 

       

       

      #1st January , 6th January, -> From semiwroking day to OFFDAY 

      #12th February -> From semiwroking day to OFFDAY 

      #25th,March -> From semiwroking day to OFFDAY 

      #28th March -> From workingday to OFFDAY 

       

      holidaysTOTAL <- c(holidays2015fd,holidays2016fd, holidays2017fd) 

      priorholidaysTOTAL <- c(priorholidays2015fd,priorholidays2016fd, 

priorholidays2017fd) 

      View(totalconsumption) 

       semiholidays2015fd <- c("2015-07-20",  

                              "2015-07-21", 

                              "2015-07-22", 

                              "2015-07-23", 

                              "2015-07-27", 

                              "2015-07-28", 

                              "2015-07-29", 

                              "2015-07-30", 

                              "2015-08-03", 

                              "2015-08-04", 

                              "2015-08-05", 

                              "2015-08-06", 

                              "2015-08-10", 

                              "2015-08-11", 

                              "2015-08-12", 

                              "2015-08-13", 

                              "2015-08-17", 
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                              "2015-08-18", 

                              "2015-08-19", 

                              "2015-08-20", 

                              "2015-08-25", 

                              "2015-08-26", 

                              "2015-08-27", 

                              "2015-08-31") 

      semiholidays2015fd <- as.POSIXct(semiholidays2015fd) 

       

      semiholidays2016fd <- c("2016-07-18",  

                              "2016-07-19", 

                              "2016-07-20", 

                              "2016-07-21", 

                              "2016-07-25", 

                              "2016-07-26", 

                              "2016-07-27", 

                              "2016-07-28", 

                              "2016-08-01", 

                              "2016-08-02", 

                              "2016-08-03", 

                              "2016-08-04", 

                              "2016-08-08", 

                              "2016-08-09", 

                              "2016-08-10", 

                              "2016-08-11", 

                              "2016-08-16", 

                              "2016-08-17", 

                              "2016-08-18", 

                              "2016-08-22", 

                              "2016-08-23", 

                              "2016-08-24", 

                              "2016-08-25", 

                              "2016-08-29", 

                              "2016-08-30", 

                              "2016-08-31") 

      semiholidays2016fd <- as.POSIXct(semiholidays2016fd) 

      semiholidaysTOTAL <- c(semiholidays2015fd,semiholidays2016fd) 

#PERIODO ESTIVAL (THE WORKING HOURS AND THE DURATION ARE DIFFERENT) 

       

      #We ignore this days and treat them as fully working days. Maybe we should 

study that the hourly schedule will be dfferent, expecting the 

      #consumption to increase earlier these days. 
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      Results script code 

    setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/") 

    source("tesisfunctions.R") 

    ErrorsTableBIS <- as.data.frame(cleanMYdatasetBIS(ComparisonforErrors)) 

    ErrorsTableBIS <- format(ErrorsTableBIS, scientific=FALSE) 

    ErrorsTableBIS[1, 1:5] <- ">1e+20" 

    ErrorsTableBIS 

    setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/Report/") 

    write.csv(ErrorsTableBIS, file = "TableResults.csv") 

    ComparisonGraph <- Comparison 

    str(ComparisonGraph) 

    ComparisonGraph$DayCategory <- as.factor(ComparisonGraph$DayCategory) 

    print(levels(ComparisonGraph$DayCategory)) 

    ComparisonGraph$DayCategory <- 

factor(ComparisonGraph$DayCategory,levels(ComparisonGraph$DayCategory)[c(3,

2,1)]) 

    ComparisonGraph$DayType <- as.factor(ComparisonGraph$DayType) 

    print(levels(ComparisonGraph$DayType)) 

    ComparisonGraph$DayType <- 

factor(ComparisonGraph$DayType,levels(ComparisonGraph$DayType)[c(2,6,7,5,1,

3,4)]) 

    str(ComparisonGraph$DayCategory) 

    ComparisonGraph$MonthNum <- month(Comparison$Date) 

    ComparisonGraph$MonthNum <- as.factor(ComparisonGraph$MonthNum) 

    print(levels(ComparisonGraph$MonthNum)) 
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    ComparisonGraph$MonthNum <- factor(ComparisonGraph$MonthNum, 

                               labels = c("Jan", "Feb", "Mar", "Apr", "May", 

"Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")) 

    ComparisonGraph$Seasson <- 0 

    for(i in 1:nrow(ComparisonGraph)){ 

      if( ComparisonGraph$Date[i] <= "2016-06-20 23:00"){ 

        ComparisonGraph$Seasson[i] <- 1 

      } else if( ComparisonGraph$Date[i] > "2016-06-20 23:00" &  

ComparisonGraph$Date[i] <= "2016-09-22 00:00"){ 

        ComparisonGraph$Seasson[i] <- 2 

      } else if( ComparisonGraph$Date[i] > "2016-09-22 00:00" &  

ComparisonGraph$Date[i] <= "2016-12-21 00:00"){ 

        ComparisonGraph$Seasson[i] <- 3 

      } else if( ComparisonGraph$Date[i] > "2016-12-21 00:00" &  

ComparisonGraph$Date[i] <= "2017-03-20 15:00"){ 

        ComparisonGraph$Seasson[i] <- 4 

      } else if( ComparisonGraph$Date[i] > "2017-03-20 15:00" &  

ComparisonGraph$Date[i] <= "2017-06-21 15:00"){ 

          ComparisonGraph$Seasson[i] <- 1 

    } 

    } 

    ComparisonGraph$Seasson <- as.factor(ComparisonGraph$Seasson) 

    print(levels(ComparisonGraph$Seasson)) 

    ComparisonGraph$Seasson <- factor(ComparisonGraph$Seasson, 

                                       labels = c("Spring", "Summer", 

"Autumn", "Winter")) 

    ComparisonGraph$Hour <- as.factor(ComparisonGraph$Hour) 
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    print(levels(ComparisonGraph$Hour)) 

    names(ComparisonGraph) 

    ComparisonGraph <- ComparisonGraph[,c(1,3,4,5,15,16,7,8)] 

    ComparisonGraph$Dif <- ComparisonGraph$Consumption - 

ComparisonGraph$Forecast 

    ComparisonGraph$BPE <- 

round(ComparisonGraph$Dif/ComparisonGraph$Consumption*100, digits = 2) 

    ComparisonGraph$APE <- 

round(abs(ComparisonGraph$Dif)/abs(ComparisonGraph$Consumption)*100, digits 

= 2) 

    str(ComparisonGraph) 

    View(ComparisonGraph) 

    errorMAPEtry <- 

round( sum(abs(ComparisonGraph$Dif)/ComparisonGraph$Consumption*100, na.rm 

= TRUE)/(length(which(!is.na(ComparisonGraph$Dif)))) , digits = 2) 

    errorMAPEtry 

    errorMAPEtry2 <- round( mean(ComparisonGraph$APE, na.rm=TRUE) , digits 

= 2) 

    errorMAPEtry2 

    # complete.cases(Comparison) 

    # buildgraphs <- ComparisonGraph[-which(is.na(Compariso))] 

#BUILDING GRPAHICS 

    fill <- "#4271AE" 

    line <- "#1F3552" 

    # meanAPEhour     <- aggregate(APE ~  hour, ComparisonGraph, mean) 

    meanAPEweekday   <- aggregate(APE ~  DayType, ComparisonGraph, mean) 



 Energy Demand Forecasting in Smart Buildings Page. 151 
 

 

    meanAPEcategory  <- aggregate(APE ~  DayCategory, ComparisonGraph, mean) 

    meanAPEseasson   <- aggregate(APE ~  Seasson, ComparisonGraph, mean) 

    meanAPEhour      <- aggregate(APE ~  Hour, ComparisonGraph, mean) 

       # meanBPEhour     <- aggregate(BPE ~  DayType, ComparisonGraph, mean) 

    meanBPEweekday   <- aggregate(BPE ~  DayType, ComparisonGraph, mean) 

    meanBPEcategory  <- aggregate(BPE ~  DayCategory, ComparisonGraph, mean) 

    meanBPEseasson   <- aggregate(BPE ~  Seasson, ComparisonGraph, mean) 

    meanBPEhour      <- aggregate(BPE ~  Hour, ComparisonGraph, mean) 

  # BY WEEKDAYS 

        APEweekday <- ggplot(ComparisonGraph, aes(x = DayType, y = APE)) + 

        geom_boxplot(fill = fill, colour = line, alpha = 0.7, 

                     outlier.colour = "#1F3552", outlier.shape = 20) + 

        scale_y_continuous(name = "Percentage", 

                           breaks = seq(0, 175, 25), 

                           limits=c(0, 175)) + 

        #scale_x_discrete(name = "Day of the Week") + 

        ggtitle("APE by day of the week") + 

        stat_summary(fun.y=mean, colour="darkred", geom="point",  

                     shape=18, size=3,show_guide = FALSE) + 

        scale_colour_manual(name = "Consumption") + 

        geom_text(data = meanAPEweekday, aes(label = round( APE, digits = 

2)), color = "darkred", vjust = -0.5)+ 

        theme(axis.text.y = element_text(colour="black", size = 12), 

              axis.text.x = element_text(size = 12, face = "bold"), 

              axis.title.y = element_text(size=14,face="bold"), 
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              axis.title.x=element_blank(), 

              plot.title = element_text(hjust = 0.5, size = 18, face="bold")) 

     APEweekday 

     setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/BOXPLOT/") 

     png("APEweekday.png", width = 709, height = 800) 

     APEweekday 

     print(APEweekday) 

     dev.off() 

     BPEweekday <- ggplot(ComparisonGraph, aes(x = DayType, y = BPE)) + 

        geom_boxplot(fill = fill, colour = line, alpha = 0.7, 

                     outlier.colour = "#1F3552", outlier.shape = 20) + 

        scale_y_continuous(name = "Percentage", 

                           breaks = seq(-200, 150, 25), 

                           limits=c(-200, 150)) + 

        #scale_x_discrete(name = "Day of the Week") + 

        ggtitle("BPE by day of the week") + 

        stat_summary(fun.y=mean, colour="darkred", geom="point",  

                     shape=18, size=3,show_guide = FALSE) + 

        geom_text(data = meanBPEweekday, aes(label = round( BPE, digits = 

2)), color = "darkred", vjust = 1.2)+ 

        theme(axis.text.y = element_text(colour="black", size = 12), 

              axis.text.x = element_text(size = 12, face = "bold"), 

              axis.title.y = element_text(size=14,face="bold"), 

              axis.title.x=element_blank(), 
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              plot.title = element_text(hjust = 0.5, size = 18, face="bold")) 

     BPEweekday 

     setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/BOXPLOT/") 

     png("BPEweekday.png", width = 709, height = 800) 

     BPEweekday 

     print(BPEweekday) 

     dev.off() 

  # BY DAY CATEGORY 

          APEcategory <- ggplot(ComparisonGraph, aes(x = DayCategory, y = 

APE)) + 

       geom_boxplot(fill = fill, colour = line, alpha = 0.7, 

                    outlier.colour = "#1F3552", outlier.shape = 20) + 

       scale_y_continuous(name = "Percentage", 

                          breaks = seq(0, 175, 25), 

                          limits=c(0, 175)) + 

       #scale_x_discrete(name = "Day of the Week") + 

       ggtitle("APE by Day Category") + 

       stat_summary(fun.y=mean, colour="darkred", geom="point",  

                    shape=18, size=3,show_guide = FALSE) + 

       scale_colour_manual(name = "Consumption") + 

       geom_text(data = meanAPEcategory, aes(label = round( APE, digits = 

2)), color = "darkred", vjust = -0.5)+ 

       theme(axis.text.y = element_text(colour="black", size = 12), 

             axis.text.x = element_text(size = 12, face = "bold"), 

             axis.title.y = element_text(size=14,face="bold"), 

             axis.title.x=element_blank(), 
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             plot.title = element_text(hjust = 0.5, size = 18, face="bold")) 

     APEcategory 

     setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/BOXPLOT/") 

     png("APEcategory.png", width = 709, height = 800) 

     APEcategory 

     print(APEcategory) 

     dev.off() 

     BPEcategory <- ggplot(ComparisonGraph, aes(x = DayCategory, y = BPE)) 

+ 

       geom_boxplot(fill = fill, colour = line, alpha = 0.7, 

                    outlier.colour = "#1F3552", outlier.shape = 20) + 

       scale_y_continuous(name = "Percentage", 

                          breaks = seq(-200, 150, 25), 

                          limits=c(-200, 150)) + 

       #scale_x_discrete(name = "Day of the Week") + 

       ggtitle("BPE by Day Category") + 

       stat_summary(fun.y=mean, colour="darkred", geom="point",  

                    shape=18, size=3,show_guide = FALSE) + 

       geom_text(data = meanBPEcategory, aes(label = round( BPE, digits = 

2)), color = "darkred", vjust = 1.2)+ 

       theme(axis.text.y = element_text(colour="black", size = 12), 

             axis.text.x = element_text(size = 12, face = "bold"), 

             axis.title.y = element_text(size=14,face="bold"), 

             axis.title.x=element_blank(), 
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             plot.title = element_text(hjust = 0.5, size = 18, face="bold")) 

     BPEcategory 

  setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/BOXPLOT/") 

     png("BPEcategory.png", width = 709, height = 800) 

     BPEcategory 

     print(BPEcategory) 

     dev.off() 

# BY SEASSON 

     APEseasson <- ggplot(ComparisonGraph, aes(x = Seasson, y = APE)) + 

       geom_boxplot(fill = fill, colour = line, alpha = 0.7, 

                    outlier.colour = "#1F3552", outlier.shape = 20) + 

       scale_y_continuous(name = "Percentage", 

                          breaks = seq(0, 175, 25), 

                          limits=c(0, 175)) + 

       #scale_x_discrete(name = "Day of the Week") + 

       ggtitle("APE by Season") + 

       stat_summary(fun.y=mean, colour="darkred", geom="point",  

                    shape=18, size=3,show_guide = FALSE) + 

       scale_colour_manual(name = "Consumption") + 

       geom_text(data = meanAPEseasson, aes(label = round( APE, digits = 

2)), color = "darkred", vjust = -0.5)+ 

       theme(axis.text.y = element_text(colour="black", size = 12), 

             axis.text.x = element_text(size = 12, face = "bold"), 

             axis.title.y = element_text(size=14,face="bold"), 

             axis.title.x=element_blank(), 
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             plot.title = element_text(hjust = 0.5, size = 18, face="bold")) 

     APEseasson 

     setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/BOXPLOT/") 

     png("APEseasson.png", width = 709, height = 800) 

     APEseasson 

     print(APEseasson) 

     dev.off() 

     BPEseasson <- ggplot(ComparisonGraph, aes(x = Seasson, y = BPE)) + 

       geom_boxplot(fill = fill, colour = line, alpha = 0.7, 

                    outlier.colour = "#1F3552", outlier.shape = 20) + 

       scale_y_continuous(name = "Percentage", 

                          breaks = seq(-200, 150, 25), 

                          limits=c(-200, 150)) + 

       #scale_x_discrete(name = "Day of the Week") + 

       ggtitle("BPE by Season") + 

       stat_summary(fun.y=mean, colour="darkred", geom="point",  

                    shape=18, size=3,show_guide = FALSE) + 

       geom_text(data = meanBPEseasson, aes(label = round( BPE, digits = 

2)), color = "darkred", vjust = 1.2)+ 

       theme(axis.text.y = element_text(colour="black", size = 12), 

             axis.text.x = element_text(size = 12, face = "bold"), 

             axis.title.y = element_text(size=14,face="bold"), 

             axis.title.x=element_blank(), 

             plot.title = element_text(hjust = 0.5, size = 18, face="bold")) 



 Energy Demand Forecasting in Smart Buildings Page. 157 
 

 

     BPEseasson 

     setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/BOXPLOT/") 

     png("BPEseasson.png", width = 709, height = 800) 

     BPEseasson 

     print(BPEseasson) 

     dev.off() 

# BY HOUR 

     APEhour <- ggplot(ComparisonGraph, aes(x = Hour, y = APE)) + 

       geom_boxplot(fill = fill, colour = line, alpha = 0.7, 

                    outlier.colour = "#1F3552", outlier.shape = 20) + 

       scale_y_continuous(name = "Percentage", 

                          breaks = seq(0, 175, 25), 

                          limits=c(0, 175)) + 

       #scale_x_discrete(name = "Day of the Week") + 

       ggtitle("APE by hour") + 

       stat_summary(fun.y=mean, colour="darkred", geom="point",  

                    shape=18, size=3,show_guide = FALSE) + 

       scale_colour_manual(name = "Consumption") + 

       geom_text(data = meanAPEhour, aes(label = round( APE, digits = 1)), 

color = "darkred", vjust = -0.5)+ 

       theme(axis.text.y = element_text(colour="black", size = 12), 

             axis.text.x = element_text(size = 12, face = "bold"), 

             axis.title.y = element_text(size=14,face="bold"), 

             axis.title.x=element_blank(), 

             plot.title = element_text(hjust = 0.5, size = 18, face="bold")) 
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     APEhour 

     setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/BOXPLOT/") 

     png("APEhour.png", width = 709, height = 800) 

     APEhour 

     print(APEhour) 

     dev.off() 

    BPEhour <- ggplot(ComparisonGraph, aes(x = Hour, y = BPE)) + 

       geom_boxplot(fill = fill, colour = line, alpha = 0.7, 

                    outlier.colour = "#1F3552", outlier.shape = 20) + 

       scale_y_continuous(name = "Percentage", 

                          breaks = seq(-200, 150, 25), 

                          limits=c(-200, 150)) + 

       #scale_x_discrete(name = "Day of the Week") + 

       ggtitle("BPE by hour") + 

       stat_summary(fun.y=mean, colour="darkred", geom="point",  

                    shape=18, size=3,show_guide = FALSE) + 

       geom_text(data = meanBPEhour, aes(label = round( BPE, digits = 1)), 

color = "darkred", vjust = 1.2)+ 

       theme(axis.text.y = element_text(colour="black", size = 12), 

             axis.text.x = element_text(size = 12, face = "bold"), 

             axis.title.y = element_text(size=14,face="bold"), 

             axis.title.x=element_blank(), 

             plot.title = element_text(hjust = 0.5, size = 18, face="bold")) 

     BPEhour 
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    setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/BOXPLOT/") 

     png("BPEhour.png", width = 709, height = 800) 

     BPEhour 

     print(BPEhour) 

     dev.off() 

    distributionBPE <- ggplot(ComparisonGraph, aes(BPE)) + 

      geom_histogram(binwidth = 1, color = line, fill = fill)+ 

      ggtitle("BPE Distribution") + 

      scale_x_continuous(name = "Percentage") + 

      scale_y_continuous(name = "Number of instances")+ 

      theme(axis.text.y = element_text(colour="black", size = 12), 

            axis.text.x = element_text(size = 12, face = "bold"), 

            axis.title.y = element_text(size=14,face="bold"), 

            axis.title.x= element_text(size=14), 

            plot.title = element_text(hjust = 0.5, size = 18, face="bold")) 

    distributionBPE 

    setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/BOXPLOT/") 

    png("BPEdistribution.png", width = 709, height = 432) 

    distributionBPE 

    print(distributionBPE) 

    dev.off() 

      distriberror 

      distributionMAPE <- ggplot(ComparisonGraph, aes(x = Date)) + 

      geom_point(aes(y = APE), color = line, fill = fill) + 

      scale_y_continuous(name = "Percentage", 
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                         breaks = seq(0, 300, 25), 

                         limits=c(0, 300)) + 

      #scale_x_discrete(name = "Day of the Week") + 

      ggtitle("APE Evolution") + 

      theme(axis.text.y = element_text(colour="black", size = 12), 

            axis.text.x = element_text(size = 12, face = "bold"), 

            axis.title.y = element_text(size=14,face="bold"), 

            axis.title.x=element_blank(), 

            plot.title = element_text(hjust = 0.5, size = 18, face="bold")) 

    distributionMAPE 

        setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/BOXPLOT/") 

    png("MAPEevol.png", width = 709, height = 432) 

    distributionMAPE 

    print(distributionMAPE) 

    dev.off() 
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ANNEX V: PART II R Code Explanation 

Script  Task Lines 

Main.R It is the main and acts as the scheleton of the program. From it 

all the other scripts are sourced. Same as Part I.  

502 

totalconsumption.R Set the consumption data ready to be passed to the ML 

models. Variables in original format (Process done in each 

particular ML script). The final features are: Date / Day / Month 

/ MonthGen /  DayType / DayCategory /                 Temperature 

/ Consumption / DatePriorWeek/WeekBefore / DatePriorDate / 

DayBefore  

190 

Workingcalendar.R Sets the official working calendar for years 2015 to 2017 for the 

COMPANY operating in the building. Same as Part I. 

32 

WeatherBCN.R Deals with all the weather variables involved in the project. Not 

used for Part I. Same as Part I. 

114 

ann.R Artificial Neural Network Model and Test  155 

Knn.R K Nearest Neighbor Model and Test  128 

Rf.R Random Forest model and test. 323 

 

All the codes are available at the GitHUB student profile. For access or help please contact 

through apicatoste@gmail.com. 

 

Date Pre-Process (totalconsumption.R) 

# The only output of this script is a dataframe called "totalconsumption" that will be 

used in other parts of the programms as  

# the base data to apply different precooked algorithms. 

  setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/")  

  source("main.R") 

  myCorrectedConsumption <- list() 
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  #For some strangre reasson the day 30th June 2016 is skept in the CSV original file so 

we add it manually as we had already 

#calculated the consumption on this days in the script "main". We sourced the script at 

the beggining of this script so we 

#are good to go.   

###### Preprocessing the whole period data set ###### 

  setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/Datos/Consumo/CSV/Total/")  

  totalconsumption <- read.csv("wholeperiod.csv", sep =";", header = FALSE)[-c(1:15), 

1:3] 

  names(totalconsumption) = c("Day", "Hour", "Consumption") 

  totalconsumption$Day  <- as.POSIXct(as.character(totalconsumption$Day), format = 

"%d/%m/%Y") 

  totalconsumption$Date <- paste(totalconsumption$Day, totalconsumption$Hour) 

  totalconsumption$Date <- as.POSIXct(as.character(totalconsumption$Date), format = 

"%Y-%m-%d %H:%M") 

  totalconsumption <- totalconsumption[,c(1,2,4,3)] 

  totalconsumption$Hour <- factor(totalconsumption$Hour, levels = 

levels(totalconsumption$Hour)[2:25]) 

  totalconsumption$Consumption <- as.numeric(gsub(",", 

"." ,totalconsumption$Consumption)) 

# We need to check that we have all the values for the period considered in the data 

frame. 

# That is: 

  # 912 days 

  # 21888 hours (same number of rows that the df should have) 

        length(unique(totalconsumption$Day)) 
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        nrow(unique(totalconsumption)) 

        #The 30th of June from 00:00 to 23:00 is just missing values.Substitute NAs in 

the corresponding dataframe that belongs to the list of dataframes we created (If we 

modified) 

           detach("package:plyr") 

           fixjune <-  totalconsumption %>%  

             filter((Date >= "2016-06-27 00:00" & Date <="2016-06-29 23:00")) %>%  

             group_by(Hour) %>%  

             summarise(Consumption = round(mean(Consumption), digits = 0)) 

           fixjune <- as.data.frame(fixjune) 

           fixjune$Day <- as.POSIXct(rep("2016-06-30",24), format = "%Y-%m-%d") 

           fixjune$Date <- as.POSIXct(paste(fixjune$Day, fixjune$Hour, sep = " "), 

format = "%Y-%m-%d %H:%M") 

           fixjune <- fixjune[,c(3,1,4,2)] 

           fixfebruary <- totalconsumption %>%  

             filter(Date >= "2017-02-13 11:00" & Date < "2017-02-13 15:00" | Date >= 

"2017-02-15 11:00" & Date < "2017-02-15 15:00") %>%  

             group_by(Hour) %>%  

             summarise(Consumption = round(mean(Consumption), digits = 0)) 

                 

           fixfebruary <- as.data.frame(fixfebruary)        

           fixfebruary$Day <- as.POSIXct(rep("2017-02-14",4), format = "%Y-%m-%d") 

           fixfebruary$Date <- as.POSIXct(paste(fixfebruary$Day, fixfebruary$Hour, sep = 

" "), format = "%Y-%m-%d %H:%M") 

           fixfebruary <- fixfebruary[,c(3,1,4,2)] 

           totalconsumption <- rbind(totalconsumption, fixjune, fixfebruary) 
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           totalconsumption <- arrange(totalconsumption, totalconsumption$Date) 

      #After fixing the known missed values we check againt if there is still missed 

hours in the df. 

  # A SECOND PREPROCESS TO SET THE DATAFRAME IN TO THE CORRECT FORMAT 

      library(plyr) 

      totalconsumption$DayType <- weekdays(totalconsumption$Day) 

      totalconsumption$DayType <- mapvalues(totalconsumption$DayType,  

                                            from = c("lunes", "martes", "miércoles", 

"jueves", "viernes", "sábado", "domingo"),  

                                            to = c("Monday", "Tuesday", "Wednesday", 

"Thursday", "Friday", "Saturday" , "Sunday")) 

      totalconsumption$DayType <- as.factor(totalconsumption$DayType) 

      totalconsumption$DayType <- factor(totalconsumption$DayType, levels = c("Monday", 

"Tuesday", "Wednesday", "Thursday", "Friday", "Saturday" , "Sunday")) 

      totalconsumption$MonthGen <- month(totalconsumption$Date) 

      totalconsumption$MonthGen <- mapvalues(totalconsumption$MonthGen,  

                                                                       from = c("1", 

"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"),  

                                                                       to = c("January", 

"February", "March", "April", "May", "June" , "July", "August", "September", "October", 

"November", "December")) 

      totalconsumption$MonthGen <- as.factor(totalconsumption$MonthGen) 

      totalconsumption$MonthGen <- factor(totalconsumption$MonthGen, levels = 

c("January", "February", "March", "April", "May", "June" , "July", "August", 

"September", "October", "November", "December")) 

      totalconsumption$Month <- paste(totalconsumption$MonthGen, 

year(totalconsumption$Date), sep = "") 
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      totalconsumption$DayCategory <-   totalconsumption$DayType 

      totalconsumption$DayCategory <- mapvalues(totalconsumption$DayCategory,  

                                          from = c("Monday", "Tuesday", "Wednesday", 

"Thursday", "Friday", "Saturday" , "Sunday"), 

                                          to = c("WORKINGDAY", "WORKINGDAY", 

"WORKINGDAY", "WORKINGDAY", "SEMIWORKINGDAY", "OFFDAY" , "OFFDAY")) 

      totalconsumption <- totalconsumption[, c(3,1,2,7,6,5,8,4)] 

    #Setting more specifically the holidays. Set the WORKING CALENDAR for the company 

and check what is happening these days 

        setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/")  

        source("workingcalendar.R") 

        for (i in 1:nrow(totalconsumption)) { 

          if (totalconsumption$Day[i] %in% holidaysTOTAL) { 

            totalconsumption$DayCategory[i] <- "OFFDAY" 

          } 

        } 

        for (i in 1:nrow(totalconsumption)) { 

          if (totalconsumption$Day[i] %in% semiholidaysTOTAL) { 

            totalconsumption$DayCategory[i] <- "SEMIWORKINGDAY" 

          } 

        } 

        for (i in 1:nrow(totalconsumption)) { 

          if (totalconsumption$Day[i] %in% priorholidaysTOTAL) { 

            totalconsumption$DayCategory[i] <- "SEMIWORKINGDAY" 

          } 
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        } 

    # We add another important predictor to work with. The outdoor temperature at each 

point measure. 

        setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/")  

        source("weathertotal.R") 

        for (i in 1:nrow(totalconsumption)) { 

            if(totalconsumption$Date[i] %in% temperatures$Superdate) { 

              totalconsumption$Temperature[i] <-  

temperatures$Temp[which(temperatures$Superdate == totalconsumption$Date[i])] 

            } else { 

              totalconsumption$Temperature[i] <- NA 

            } 

          } 

        totalconsumption <- totalconsumption[,c(1,2,3,4,5,6,7,9,8)] 

            #Fill In NAs by interpolation 

            totalconsumption$Temperature <- 

round(zoo::na.fill(totalconsumption$Temperature, c("extend")), digits = 0) 

         

   # Create variable to check load in previous period 

          totalconsumption$DatePriorDay <- totalconsumption$Date - 60*60*24 

          totalconsumption$DayBefore <- rep(0) 

          vectordaybefore <- c() 

            for (i in 1:nrow(totalconsumption)){ 

              if(i < 24+1) { vectordaybefore[i] <- NA} else { 
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                vectordaybefore[i] <- totalconsumption$Consumption[i-(24)] 

              } 

            } 

          totalconsumption$DayBefore <- vectordaybefore 

          totalconsumption$DatePriorWeek <- totalconsumption$Date - 60*60*24*7 

          totalconsumption$WeekBefore <- rep(0) 

          vectorweekbefore <- c() 

           for (i in 1:nrow(totalconsumption)){ 

           if(i < 24*7+1) { vectorweekbefore[i] <- NA} else { 

               vectorweekbefore[i] <- totalconsumption$Consumption[i-(24*7)] 

            } 

          } 

         totalconsumption$WeekBefore <- vectorweekbefore 

  #Once the data set has been filled it is split so the monthly separated consunption 

can be graphed 

        monthlyConsumption <- split.data.frame(totalconsumption, totalconsumption$Month) 

        monthlyConsumption[[31]] <- as.data.frame(totalconsumption) 

        names(monthlyConsumption)[[31]] <- "totalconsumption" 

         #In order to save all the graphs to my working directoy this for structure is 

used . This bucle creates a list storing all the graphs in variables 

            setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/") 

            source("tesisfunctions.R") 

            for ( i in 1:length(monthlyConsumption) ) { 

              setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/ConsumoMensual/") 

              mesname <- names(monthlyConsumption)[i] 
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              png(paste(mesname, ".png", sep=""), width = 1000, height = 500) 

              mygraph <- graphmyconsumption(i, monthlyConsumption) 

              print(mygraph) 

              dev.off() 

              rm(mesname,i, mymonth, mygraph) 

            } 

        #In order to plot the whole period more visible we set the conditions for the 

whole dataframe: 

          setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/graficas/ConsumoMensual/") 

          mesname <- names(monthlyConsumption)[31] 

          png(paste(mesname, ".png", sep=""), width = 3000, height = 500) 

          mygraph <- graphmysinglelonggraph(31, monthlyConsumption) 

          print(mygraph) 

          dev.off() 

          rm(mesname,mygraph 

ANN Code Sample 

library(nnet) 

library(devtools) 

library(caret) 

setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/") 

source("totalconsumption.R") 

# Data Set Preparation 

      anndataframe <- totalconsumption[,c(1:4,6:9,11,13)]  

      anndataframe <- anndataframe[-which(is.na(anndataframe$WeekBefore)),] 

      anndataframe$Month <- as.factor(month(anndataframe$Date)) 

      anndataframe <- anndataframe[,c(1:7,9,10,8)]  

      dumsHour.ann <- dummy(anndataframe$Hour, sep = "_") 
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      dumsMonth.ann <- dummy(anndataframe$Month, sep = "_") 

      dumsDayTipe.ann <- dummy(anndataframe$DayType, sep = "_") 

      dumsDayCategory.ann <- dummy(anndataframe$DayCategory, sep = "_") 

      anndataframe.dum <- anndataframe 

      anndataframe.dum <- cbind(anndataframe.dum, dumsHour.ann, dumsMonth.ann, 

dumsDayTipe.ann, dumsDayCategory.ann) 

      anndataframe.dum <- anndataframe.dum[,c(1:9,11:56,10)]  

# ANN MODEL 1 

      set.seed(123) 

      training.ann.1.idx <- createDataPartition(anndataframe.dum$Consumption, p = 0.7, 

list = FALSE) 

      rm(.Random.seed, envir=globalenv()) 

      training.ann.1 <- anndataframe.dum[training.ann.1.idx,] 

      testing.ann.1  <- anndataframe.dum[-training.ann.1.idx,] 

      model.ann.1 <- nnet(Consumption/152 ~ ., data = training.ann.1[, c(7:55,56)], 

size = 6, decay = 0.1, maxit = 1000, linout = TRUE) 

      predictions.ann.1 <- predict(model.ann.1,testing.ann.1) 

      predictions.ann.1 <- predictions.ann.1*152 

      checking.ann.1 <- checking.ann.1[,c(1:9,56,57)] 

      names(checking.ann.1)[11] <- "Forecast" 

      checking.ann.1 <- resultsevaluationANN(checking.ann.1) 

      ErrorsTable.ann.1 <-  myerrorcalculationsBIS(checking.ann.1,"ann.1") 

      ErrorsTable.ann.1 

      Graphs.ann.1 <- graphmyresults(checking.ann.1, "ANN.1") 

 

 

 
 
 
 
 
 

kNN Code sample 

 

##We will build a knn model to predict CONSUMPTION #based on all other predictors 

except Date. 

library(caret) 

library(scales) 

library(FNN) 

setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/") 

source("totalconsumption.R") 

knndataframe <- totalconsumption[,c(1:4,6:9,11,13)]  
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knndataframe <- knndataframe[-which(is.na(knndataframe$WeekBefore)),] 

knndataframe$Month <- as.factor(month(knndataframe$Date)) 

knndataframe <- knndataframe[,c(1:7,9,10,8)]  

dumsHour.knn <- dummy(knndataframe$Hour, sep = "_") 

dumsMonth.knn <- dummy(knndataframe$Month, sep = "_") 

dumsDayTipe.knn <- dummy(knndataframe$DayType, sep = "_") 

dumsDayCategory.knn <- dummy(knndataframe$DayCategory, sep = "_") 

knndataframe.dum <- knndataframe 

knndataframe.dum <- cbind(knndataframe.dum, dumsHour.knn, dumsMonth.knn, 

dumsDayTipe.knn, dumsDayCategory.knn) 

knndataframe.dum <- knndataframe.dum[,c(1:9,11:56,10)]  

knndataframe.dum$Temperature <- rescale(knndataframe.dum$Temperature) 

knndataframe.dum$DayBefore <- rescale(knndataframe.dum$DayBefore) 

knndataframe.dum$WeekBefore <- rescale(knndataframe.dum$WeekBefore) 

#Up to here we have prepared the dataset to Apply k NN model. We have deleted all the 

NAs so it work. It is pending that we can add all the temperatures creating 

#a model with the temperatures of the local stations and local data. So far we just 

erase NAs contiaing rows. 

 

#Model 1. Following instructions of cookbook. This is training with a RANDOM SAMPLE. 

Not arranged by TIME. IMplication? 

        rm(.Random.seed, envir=globalenv()) 

        set.seed(123) 

        t.knn.1.idx <- createDataPartition(knndataframe.dum$Consumption, p = 0.7, 

list = FALSE) 

        trg.kNN.1     <- knndataframe.dum[t.knn.1.idx,] 

        rest.kNN.1    <- knndataframe.dum[-t.knn.1.idx,] 

        

        rm(.Random.seed, envir=globalenv()) 

        set.seed(123) 

        v.knn.1.idx <- createDataPartition(rest.kNN.1$Consumption, p = 0.5, list = 

FALSE) 

        val.kNN.1 <- rest.kNN.1[v.knn.1.idx,] 

        test.kNN.1 <- rest.kNN.1[-v.knn.1.idx,] 

         

        model.kNN.1   <- knn.reg(trg.kNN.1[, c(7:55)], rest.kNN.1[, c(7:55)], 

trg.kNN.1[,56], 2, algorithm = "brute") 

         

        checking.kNN.1 <- resultsevaluation(rest.kNN.1, model.kNN.1) 

        checking.kNN.1 <- checking.kNN.1[,c(1:9,56:60)] 
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        ErrorsTable.kNN.1 <-  myerrorcalculationsBIS(checking.kNN.1,"kNN.1") 

        ErrorsTable.kNN.1 

         

        Graphs.kNN.1 <- graphmyresults(checking.kNN.1, "kNN.1") 

# DATES 

         

        Date1 <- "2015-01-01 00:00" 

        Date2 <- "2016-05-01 00:00" 

        Date3 <- "2017-06-01 00:00" 

        Date1comparison <- "2017-01-01 00:00" 

        Date2comparison <- "2017-06-01 00:00" 

        Datevalidation <- "2017-07-01 00:00" 

         

# kNN MODEL 2 

        

       trg.kNN.2     <- knndataframe.dum %>% filter(Date >= Date1 &  Date <  Date2) 

       rest.kNN.2    <- knndataframe.dum %>% filter(Date >= Date2 &  Date < 

Date2comparison) 

        

       model.kNN.2   <- knn.reg(trg.kNN.2[, c(7:55)], rest.kNN.2[, c(7:55)], 

trg.kNN.2[,56], 2, algorithm = "brute") 

       

       checking.kNN.2 <- resultsevaluation(rest.kNN.2, model.kNN.2) 

       checking.kNN.2 <- checking.kNN.2[,c(1:9,56:60)] 

        

       ErrorsTable.kNN.2 <-  myerrorcalculationsBIS(checking.kNN.2, "kNN.2") 

       ErrorsTable.kNN.2 

        

       Graphs.kNN.2 <- graphmyresults(checking.kNN.2, "kNN.2") 

        

 

 

Random Forest Code Sample 

      library(randomForest) 

      library(caret) 

       

 setwd("C:/Users/Alvaro/Dropbox/TESIS/R tesis/") 

 source("totalconsumption.R") 

       

      rfdataframe <- totalconsumption[,c(1:4,6:9,11,13)]  
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      rfdataframe <- rfdataframe[-which(is.na(rfdataframe$WeekBefore)),] 

      rfdataframe$Month <- as.factor(month(rfdataframe$Date)) 

       

      rfdataframe <- rfdataframe[,c(1:7,9,10,8)]  

       

      rfdataframe <- totalconsumption[,c(1:4,6:9,11,13)]  

       

      rfdataframe <- rfdataframe[-which(is.na(rfdataframe$WeekBefore)),] 

      rfdataframe$Month <- as.factor(month(rfdataframe$Date)) 

       

      rfdataframe <- rfdataframe[,c(1:7,9,10,8)]  

       

      dumsHour.rf <- dummy(rfdataframe$Hour, sep = "_") 

      dumsMonth.rf <- dummy(rfdataframe$Month, sep = "_") 

      dumsDayTipe.rf <- dummy(rfdataframe$DayType, sep = "_") 

      dumsDayCategory.rf <- dummy(rfdataframe$DayCategory, sep = "_") 

       

      rfdataframe.dum <- rfdataframe 

      rfdataframe.dum <- cbind(rfdataframe.dum, dumsHour.rf, dumsMonth.rf, 

dumsDayTipe.rf, dumsDayCategory.rf) 

       

      rfdataframe.dum <- rfdataframe.dum[,c(1:9,11:56,10)]  

 

 

# MODEL RF 1 

       

      rm(.Random.seed, envir=globalenv()) 

      set.seed(123) 

      t.rf.1.idx <- createDataPartition(rfdataframe.dum$Consumption, p = 0.7, list = 

FALSE) 

    

      trg.rf.1     <- rfdataframe.dum[t.rf.1.idx,] 

      rest.rf.1    <- rfdataframe.dum[-t.rf.1.idx,] 

tic() 

      model.rf.1 <- randomForest(x = trg.rf.1[,7:55], 

                                 y = trg.rf.1[,56], 

                                 ntree=500, 

                                 xtest = rest.rf.1[,7:55],  

                                 ytest = rest.rf.1[,56],  

                                 importance=TRUE,  
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                                 keep.forest=TRUE) 

toc() 

      checking.rf.1 <- cbind(rest.rf.1, model.rf.1$test[1]) 

      checking.rf.1 <- checking.rf.1[,c(1:9,56,57)] 

      names(checking.rf.1)[11] <- "Forecast" 

      checking.rf.1 <- resultsevaluationANN(checking.rf.1) 

 

 

      ErrorsTable.rf.1 <-  myerrorcalculationsBIS(checking.rf.1,"mRF.1") 

      ErrorsTable.rf.1 

       

      Graphs.rf.1 <- graphmyresults(checking.rf.1, "mRF.1") 

       

     plot(model.rf.1, log = "y") 

     plot(model.rf.1 , pch=24, cex.lab=1.5, cex.axis = 1.5)        

 


