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Summary. The Geodesic Dynamic Relaxation method1 is an extension of the existing 
Dynamic Relaxation method that allows the user to incorporate equality constraint conditions 
to minimization problems of strain energy functions. The existing Dynamic Relaxation 
method has been widely adopted as a form-finding method for mechanically and pneumatic
pre-stressed tensile and bending active systems. While each structural component is usually 
modelled using an elastic material in the Dynamic Relaxation method, equality constraint 
conditions are introduced in the Geodesic Dynamic Relaxation Method as an alternative way 
to model some of the structural components in form-finding problems.

While the Geodesic Dynamic Relaxation method directly relates to the structural behavior of 
systems, the algorithm can also be used in a purely geometric context. More specifically, it 
allows the user to construct a geodesic line on an implicit surface.

This paper explains the Geodesic Dynamic Relaxation method briefly, and demonstrates both 
its structural and geometric applications. The structural applications relate to pre-stressed 
tensile structures, whereas the geometric application demonstrates the generation of fractal 
trees with geodesic branches on given implicit surfaces. The paper concludes and makes 
suggestions for future works. This paper will be of interest to structural and architectural 
engineers with an interest in computational design as well as computer scientists.

1 INTRODUCTION AND BACKGROUND
The Dynamic Relaxation (DR) method was first introduced by A. Day2 to the engineering 

community in 1965. It has been recognized as a powerful computational method particularly 
applicable to form-finding problems of prestressed tensile structures5,9. However, the method 
itself can be classified as a gradient-based direct minimization approach7, similar to the
steepest descent or conjugate gradient methods. Hence, it can be applied to various nonlinear 
problems such as geometrically nonlinear problems and tracking large deformations of 
structures3,6,8. In the recent trend involving the combination of Grasshopper® and 
Rhinoceros®, it is noteworthy that the DR method has been employed as a key technique in 
Kangaroo, a plug-in developed by D. Piker10. The Kangaroo plug-in is known as the 
component that opened the door for architectural designers to perform basic structural or 
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form-finding analyses.
As a gradient-based direct minimization approach, the hysteresis of minimization does not 

represent anything; however, it is possible to consider the DR method as a simple time 
integrator of the equation of motion. It has been observed that the total energy remains 
conserved in the DR process.  This is a very important characteristic that every time integrator 
should provide.

An extension of the existing DR method that can incorporate equality constraint conditions 
to minimization problems was presented by the authors1.  This extension was named the 
Geodesic Dynamic Relaxation Method. As a form-finding tool, this extension allows us to 
model some of the structural components of a structure as constraint conditions instead of 
modeling them as elastic materials. On the other hand, as a time integrator, this extension 
allows us to track the dynamic motion of a particle constrained on an implicit surface or a
higher dimensional implicit surface. One important feature of the Geodesic Dynamic
Relaxation Method is that it allows the user to draw geodesics on implicit surfaces. Although 
the geodesics are usually defined in a purely geometric context, this makes sense because the 
geodesics are also understood as the dynamic motion of a particle constrained to a surface to 
which no force is applied.

For these reasons, the Geodesic Dynamic Relaxation Method is considered to be a useful 
technique in both structural and geometric contexts. In this paper, both structural (i.e., form-
finding) and geometric (i.e., geodesics generation) applications of the Geodesic Dynamic 
Relaxation Method are presented.

2 GEODESIC DYNAMIC RELAXATION METHOD
This section summarizes the Geodesic Dynamic Relaxation Method.
In the existing DR process, a structural system is discretized in such a way that it is 

represented by a finite number of independent variables. Those variables are typically x, y,
and z coordinates of the nodes of linear members or triangular elements that approximate a 
membrane surface. If we denote the total number of such independent variables as 𝑛𝑛𝑛𝑛, we can 
encapsulate all independent variables into 𝒙𝒙𝒙𝒙 ∈ 𝑹𝑹𝑹𝑹𝑛𝑛𝑛𝑛 and consider this vector as representing the 
position of a particle moving in 𝑹𝑹𝑹𝑹𝑛𝑛𝑛𝑛. Internal (i.e., stress) and external forces that act on the 
structures are redistributed to the unknown variables (i.e., as a lumped nodal force) and 
represented by a vector with the same dimension as 𝒙𝒙𝒙𝒙. We denote this force as 𝝎𝝎𝝎𝝎 ∈ 𝑹𝑹𝑹𝑹𝑛𝑛𝑛𝑛. As a
result, we have an n-dimensional vector force acting on a particle moving within an n-
dimensional Euclidean space. In many cases, this force might be represented as 𝝎𝝎𝝎𝝎 = ∇𝑓𝑓𝑓𝑓 ,
where 𝑓𝑓𝑓𝑓 is a function of 𝒙𝒙𝒙𝒙 and usually represents the total energy of the system and ∇ is a 
gradient operator with respect to 𝒙𝒙𝒙𝒙.

In DR, we consider not only force and position, but also the velocity of the particle. Let us 
denote this velocity as 𝒒𝒒𝒒𝒒 ∈ 𝑹𝑹𝑹𝑹𝑛𝑛𝑛𝑛 . The DR method iteratively updates position and velocity
based on Newton’s second law of motion such that the system oscillates stably. We admit that
a rigorous mathematical proof is difficult to submit; however, the law of conservation of 
energy seems to be established via the DR process because this oscillation neither diverges
nor converges. When a damping effect is applied to the system, the system quickly stops
oscillating and converges. The resulting configuration then represents a structural system that 
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is in a state of equilibrium. This is the essential idea upon which DR is based.
When a certain number of equality constraint conditions are added to the problem, the 

feasible space (i.e., the points on which all conditions are satisfied) becomes a subspace of 𝑹𝑹𝑹𝑹𝑛𝑛𝑛𝑛.
We denote this subspace as 𝑆𝑆𝑆𝑆̅ . Although 𝑹𝑹𝑹𝑹𝑛𝑛𝑛𝑛 is usually considered a Euclidean space, 𝑆𝑆𝑆𝑆̅
becomes, in general, a curved subspace. Ideally, particle 𝒙𝒙𝒙𝒙 should be constrained on 𝑆𝑆𝑆𝑆̅ and 
both velocity 𝒒𝒒𝒒𝒒 and force 𝝎𝝎𝝎𝝎 should be tangent vectors of 𝑆𝑆𝑆𝑆̅.

Because it is rather difficult to strictly satisfy the above hard constraints, we decided to 
relax the conditions as follows. The constraint conditions are usually given in the form

𝒈𝒈𝒈𝒈(𝒙𝒙𝒙𝒙) = �
𝑔𝑔𝑔𝑔1(𝒙𝒙𝒙𝒙)
⋮

𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟(𝒙𝒙𝒙𝒙)
� = 𝟎𝟎𝟎𝟎. (1)

Thus, 𝑆𝑆𝑆𝑆̅ can be defined as the complete set of points that satisfies 𝒈𝒈𝒈𝒈(𝒙𝒙𝒙𝒙) = 𝟎𝟎𝟎𝟎. For an 𝒙𝒙𝒙𝒙 that is 
not supposed to satisfy 𝒈𝒈𝒈𝒈(𝒙𝒙𝒙𝒙) = 𝟎𝟎𝟎𝟎, it is still possible to define a complete set of points that 
yield the same value of 𝒈𝒈𝒈𝒈(𝒙𝒙𝒙𝒙) as 𝒙𝒙𝒙𝒙. We denote this isomanifold (or isosurface in a special 
case) as 𝑆𝑆𝑆𝑆(𝒙𝒙𝒙𝒙). When 𝑆𝑆𝑆𝑆(𝒙𝒙𝒙𝒙) overlays 𝑆𝑆𝑆𝑆̅, the constraint conditions are satisfied.

In the Geodesic Dynamic Relaxation Method, we proposed to project force 𝝎𝝎𝝎𝝎 and velocity 
𝒒𝒒𝒒𝒒 on the tangent space (or the tangent plane in a special case) of 𝑆𝑆𝑆𝑆(𝒙𝒙𝒙𝒙) at each step. In our
original publication (and as shown in Figure 1), these projection operators are called the 
projected gradient and the discrete parallel transportation operators, respectively. Note that 
different projection operators are chosen for each entity. Furthermore, it is not strictly 
assumed that 𝑆𝑆𝑆𝑆(𝒙𝒙𝒙𝒙) = 𝑆𝑆𝑆𝑆̅ at this moment (i.e., the problem is relaxed).

Next, an attempt to project 𝒙𝒙𝒙𝒙 onto 𝑆𝑆𝑆𝑆̅ is made at the end of each step of the DR process. This 
trial is an iterative procedure that is terminated after few steps before 𝒙𝒙𝒙𝒙 rigorously reaches 𝑆𝑆𝑆𝑆̅.
Even if we do so, 𝒙𝒙𝒙𝒙 gradually approaches 𝑆𝑆𝑆𝑆̅ through the DR process. As shown in Figure 1 (a),
this iterative projection operator is called pull-back in our original publication1.

When the system converges, 𝑆𝑆𝑆𝑆(𝒙𝒙𝒙𝒙) is overlaid with 𝑆𝑆𝑆𝑆̅ and 𝝎𝝎𝝎𝝎 has only a component 
orthogonal to the tangent space of 𝑆𝑆𝑆𝑆̅. The former indicates that all constraint conditions are 
satisfied, while the latter means that the residual force can be canceled out by reaction forces
produced by the constraint conditions. Hence, when the Geodesic Dynamic Relaxation 
Method converges, we obtain a structural system in equilibrium.

(a) the projected gradient operator 
constrained to prescribed values.

(b) the discrete parallel 
transportation operator

(c) the pull-back operator

Figure 1: projection operators, which first appeared in our previous publication1.

An interesting byproduct, i.e., geodesics generation, can be obtained as follows. When the 

3



29

Masaaki Miki

number of independent variable is three and the number of equality constraint conditions is 
one, the feasible space becomes a two-dimensional subspace of 𝑹𝑹𝑹𝑹3, i.e., a surface. When both 
damping effect and forces are ignored, but a non-zero initial velocity is given at the initial step
of the DR process, the Geodesic Dynamic Relaxation Method generates a point series in a 
straightforward manner such that it approximates a geodesic line on the surface.

3 STRUCTURAL APPLICATIONS
As our first example of applications of the Geodesic Dynamic Relaxation Method, we 

present a form-finding problem of tension structures that comprises tensile cables and 
compression bars. In particular, the system we consider here is a structural system that 
comprises a series of five equispaced copper compression bars (Length = 30 [cm], Diameter =
6 [mm], Thickness = 0.5 [mm], EA = 1172 [N]), at one end pinned to the foundation and at 
the other end attached to a nylon continuous cable. As shown in Figure 2, the continuous 
cable (Diameter = 0.66 [mm], EA = 1368 [N]) runs from one pinned connection at the 
foundation over the ends of the five compression bars back to a pinned connection at the 
foundation. The continuous cable is prestressed to a value of 20 [N].

For form-finding, we chose the summation of squared lengths of tension cables as strain 
energy and regard the compression bars as constraint conditions of lengths between points. 
This problem can therefore be expressed as follows:

∑ 𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗2(𝒙𝒙𝒙𝒙)𝑗𝑗𝑗𝑗 → min,   (𝑗𝑗𝑗𝑗 ∈ tension cables) (2)

s. t. 𝐿𝐿𝐿𝐿𝑘𝑘𝑘𝑘(𝒙𝒙𝒙𝒙) − 𝐿𝐿𝐿𝐿�𝑘𝑘𝑘𝑘 = 0, (∀𝑘𝑘𝑘𝑘 ∈ compression bars). (3)
The sum of squared lengths of tension cables typically becomes quadratic in the x, y, and z

coordinates of both ends of the cables; thus, we can solve this by a single computation using 
an inverse matrix. Hence, rather than using DR, some might prefer this inverse matrix 
approach. This technique has been called the Force Density Method4. Although the original 
publication of the Force Density Method describes a well-considered procedure to consider
some typical constraint conditions, such as those represented by Eq. (3), it requires us to 
perform computationally complex calculations, including differentiation of constraint 
conditions by force densities. Hence, we think that the Geodesic Dynamic Relaxation Method 
is a computationally less expensive alternative when one performs a form-finding analysis 
that considers equality constraint conditions.

Another advantage of the Geodesic Dynamic Relaxation Method, as compared with the 
Force Density Method, is that one can replace the exponent that appears in Eq. (2) with 
numbers greater than two. In practice, the above minimization problem results in an undesired 
solution in most cases. For example, Figure 2 (a) seems to represent a desired prestressed 
structure; however, it quickly starts to lay down during the DR process and form the 
configuration shown in Figure 2 (b). In contrast, when we replace the exponent in Eq. (2) with 
four, the DR process converges to the shape shown in Figure 2 (c) in only a few steps. This 
solution is stable and does not fall into another global minimum of the total energy.

When four is used as an exponent, the proportions of prestress of the cables can be 
calculated as follows:

𝑛𝑛𝑛𝑛𝑗𝑗𝑗𝑗 = 4𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗3, (𝑗𝑗𝑗𝑗 ∈ tension cables). (4)

4
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On the other hand, the proportions of the compression forces in the bars are stored as
Lagrange multipliers (please refer to the original publication1 for further details regarding
Lagrange multipliers).

Figure 3 shows a physical model that was created on the basis of the computational results
discussed in this section. The model shown is made of nylon strings and copper bars. It was 
possible to stabilize the structure by prestressing it using turnbuckles.

(a) a result of minimization of the 
summation of the squared lengths 
of cables under which lengths of 
the compression bars are 
constrained to prescribed values.

(b) the figure on the left is not a 
rigorous solution and quickly 
moves toward the global minimum 
of the problem shown here.

(c) when four is used as the 
exponent of the energy function, a 
stable and desired solution is 
successfully obtained.

Figure 2: Form-finding results using our Geodesic Dynamic Relaxation Method.

Figure 3: A photograph of the prestressed tension structure.

4 PURELY GEOMETRIC APPLICATIONS

4.1 Geodesics
In this section, we present two simple implicit surfaces. The first is a torus; an implicit

representation of a torus is given as follows:
𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = �𝒙𝒙𝒙𝒙 − 𝑹𝑹𝑹𝑹 𝒙𝒙𝒙𝒙

�𝒙𝒙𝒙𝒙𝟐𝟐𝟐𝟐+𝒛𝒛𝒛𝒛𝟐𝟐𝟐𝟐
�
𝟐𝟐𝟐𝟐
− �𝒛𝒛𝒛𝒛 − 𝑹𝑹𝑹𝑹 𝒛𝒛𝒛𝒛

�𝒙𝒙𝒙𝒙𝟐𝟐𝟐𝟐+𝒛𝒛𝒛𝒛𝟐𝟐𝟐𝟐
�
𝟐𝟐𝟐𝟐

+ 𝒚𝒚𝒚𝒚𝟐𝟐𝟐𝟐 − 𝒓𝒓𝒓𝒓𝟐𝟐𝟐𝟐 = 0. (5)

Here, 𝑅𝑅𝑅𝑅 and 𝑟𝑟𝑟𝑟 represent the major and minor radii of the torus, respectively.
Second, a heart-shaped surface is defined as follows:

5
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𝑔𝑔𝑔𝑔(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧) = �𝑥𝑥𝑥𝑥2 + 9
4
𝑦𝑦𝑦𝑦2 + 𝑧𝑧𝑧𝑧𝟐𝟐𝟐𝟐 − 1�

3
− 𝑥𝑥𝑥𝑥2𝑧𝑧𝑧𝑧3 − 9

80
𝑦𝑦𝑦𝑦2𝑧𝑧𝑧𝑧3 = 0. (6)

Geodesics of these surfaces can be generated using the Geodesic Dynamic Relaxation 
Method, with results shown in Figure 4.

(a) torus (b) heart-shaped function

Figure 4: Geodesics of implicit surfaces.

4.2 Fractal tree
Figure 5 shows a typical fractal tree. This geometry would typically be constructed by 

recursive calls of a subroutine that takes two endpoints as input and draws a line between 
them; however, we implemented the program in a different way such that it generates a point 
series that represents a straight line based on the following iterative formula:

𝒗𝒗𝒗𝒗𝑡𝑡𝑡𝑡 = 𝒗𝒗𝒗𝒗𝑡𝑡𝑡𝑡−1, (7)
𝒙𝒙𝒙𝒙𝑡𝑡𝑡𝑡 = 𝒙𝒙𝒙𝒙𝑡𝑡𝑡𝑡−1 + 𝛼𝛼𝛼𝛼𝒗𝒗𝒗𝒗𝑡𝑡𝑡𝑡. (8)

Note that 𝒗𝒗𝒗𝒗𝑡𝑡𝑡𝑡 remains constant such that the generated point series becomes a straight line. 
When 𝒙𝒙𝒙𝒙𝑡𝑡𝑡𝑡 reaches one third of the specified total length, two branches are created by the 
program. For those two branches, new velocities and a new total length are assigned. The new 
velocities are rotated 30° to the left and 30° to the right; and the new total length is two thirds
of the previous total length.

Although complex coding is needed and the geometry shown in Figure 5 can be 
constructed using a way simpler technique, this treatment enables us to draw a fractal tree on 
an implicit surface, of which all the branches are geodesics.

Figure 5: A fractal tree generated using our technique.

6
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4.3 Geodesic fractal
Because the basic structure of Equations (7) and (8) is very similar to the DR process, it is 

possible to replace straight line generations in the fractal tree generation implementation with 
geodesics generation. Figure 6 shows such geodesic fractals drawn on the same implicit 
surfaces discussed in Section 4.1 above.

Figure 7 shows a three-dimensional (3-D) printed model of the computational results
shown in Figure 6 (b), processed by Shapeways®. The thinnest curves in the 3-D printed 
model have 1mm diameters. Although 3-D printing is not necessarily in the scope of this 
work, we note that it is quite remarkable that such thin curves can keep their shapes as 
designed due to their elastic strength.

(a) torus (b) heart-shaped function

Figure 6: Geodesic fractals drawn using our approach.

Figure 7: A photograph of a 3-D printed geodesic fractal. 

6 CONCLUSIONS
In this paper, we first presented a short summary of the Geodesic Dynamic Relaxation 

Method. The method allows us to incorporate equality constraint conditions to the existing 
DR method. Simultaneously, the method itself can be used to generate geodesics on implicit 
surfaces. The extension preserves the basic structure of the DR and comprises projection 
operators that project vectors in DR to appropriate subspaces.

We also presented a form-finding problem of a tensile structure as an application of our

7
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method. The structure comprised tensile cables and compression bars. Tensile cables were 
modeled using a form-finding specific elastic material, while compression bars were treated 
as constraint conditions of lengths between points.

Next, we provided an example of structural design using geodesics of implicit surfaces by 
employing a fractal tree as a global design in which each branch of the tree was composed of 
geodesics drawn using our Geodesic Dynamic Relaxation Method.

For our future work, apart from form-finding analyses, the Geodesic Dynamic Relaxation 
Method might be useful for analyzing large deformations of a structure that contains stretchy 
materials as opposed to stiff materials. In such cases, we would aim to model such stiff 
materials using constraint conditions to achieve numerical stability.

Furthermore, geodesics of surfaces are natural extension of straight lines in Euclidean 
spaces to surfaces; therefore, such “straight” curves can be excellent candidates as the most 
basic curves when one designs a structure of which global shape is determined by a surface. 
The major disadvantage of our proposed geodesics generation algorithm is that the surface 
must be represented using an implicit representation. The use of implicit surfaces in 
architectural design has rarely been considered. This might not be because of the limited 
design freedom, but rather the lack of a design interface. Hence, we expect the development 
of an architectural design-specific user-interface to be beneficial.
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