DEsiGN AND DEVELOPMENT OF A COGNITIVE
ASSISTANT FOR THE ARCHITECTING OF EARTH
OBSERVING SATELLITES
by
Antoni Virds Martin

September 2017

Submitted to the faculty of the Barcelona School of Informatics (FIB)
of Universitat Politécnica de Catalunya (UPC) - BarcelonaTech
in Partial Fulfillment of the Requirements for the

Bachelor Degree in Informatics Engineering - Computing Specialization

Under the guidance of

Daniel Selva Valero, Cornell University

Department of Mechanical and Aerospace Engineering

Cornell University, Ithaca, New York



“Artists transform the average into the extraordinary, engineers should do the

opposite”



Abstract

The aim of this thesis is to develop a cognitive assistant for architecting earth
observation satellite systems. The motivation for such a system comes from
both the recent commercial success of different cognitive assistants as well as
the existing challenges in system architecture in general, including earth ob-
servation satellite systems. This system has been developed using a layered
architecture, where the first layer is a set of front-ends which are deployed
on different client machines, including computers, virtual reality headsets,
and physical embodiments. The next layer is a server which distributes the
requests the user makes from all the front-ends to the different back-ends,
which are the ones responsible for performing the basic functionalities of the
system. A system of skills, pieces of software which provide the functionali-
ties the end user uses, is built on top of this server. Finally, the back-ends and
the skills use different data sources to perform their functionalities. This re-
port describes the whole architecture of the system, with special emphasis on
the “Historical Database” and the “Historian Skill”, which I have developed
by myself, unlike other parts of the system where the development effort was
shared. The final result of this thesis is Daphne, the first open-source cog-
nitive assistant to support the high-level design of earth observation satellite

systems by helping reduce the cognitive load of the systems engineer.

ii



Resum

L'objectiu d’aquest treball de fi de grau és desenvolupar un assistent cognitiu
per a dissenyar sistemes de satel-lits d’observaci6 terrestre. La motivacié per
crear aquest sistema prové tant del recent exit comercial de diversos assistents
cognitius com dels reptes existents en el disseny de sistemes en general, en els
que s’inclou el de sistemes de satellits d’observacio terrestre. El sistema s’ha
dissenyat amb una arquitectura de capes, la primera de les quals és un conjunt
d’interficies implementades en diferents maquines client com ordinadors,
cascs de realitat virtual i encarnacions fisiques (robots). La segiient capa és
un servidor que distribueix les sollicituds de 1'usuari des de les interficies
cap als diferents backends (processadors dorsals), que sén els responsables
de dur a terme les funcionalitats basiques del sistema. Construit també
sobre aquest servidor hi ha un sistema d’habilitats, peces de programari que
proveeixen les funcionalitats que utilitza 'usuari. Finalment, els backends i
les habilitats utilitzen diverses fonts d’informacié per dur a terme les seves
funcions. Aquestinforme descriul’arquitectura completa del sistema, amb un
emfasi especial en la “Base de Dades Historica” i I'“Habilitat d'Historiador”,
que he desenvolupat personalment, a diferencia d’altres parts del sistema, que
s’han desenvolupat de manera compartida. El resultat final d’aquest projecte
és Daphne, el primer assistent cognitiu de codi obert que déna suport al
disseny d’alt nivell de sistemes de sateél-lits d’observacio6 terrestre tot ajudant

a la reduccio de la carrega cognitiva de I'enginyer de sistemes.

iii



Resumen

El objetivo de este trabajo de fin de grado es desarrollar un asistente cognitivo
para disefar sistemas de satélites de observacién terrestre. La motivacién
para crear este sistema proviene tanto del reciente éxito comercial de distin-
tos asistentes cognitivos como de los retos existentes en el disefio de sistemas
en general, que incluye el de satélites de observacion terrestre. El sistema
se ha disefiado con una arquitectura de capas, la primera formada por un
conjunto de interfaces que se ejecutan en diferentes maquinas cliente como
ordenadores, cascos de realidad virtual y encarnaciones fisicas (robots). La
siguiente capa es un servidor que distribuye las solicitudes del usuario desde
las interfaces hacia los diferentes backends, que son los responsables de llevar
a cabo las funciones basicas del sistema. Sobre el servidor se ha construido un
sistema de habilidades, piezas de software que proveen las funcionalidades
que utiliza el usuario. Finalmente, los backends y las habilidades utilizan
distintas fuentes de informacién para llevar a cabo sus funciones. Este in-
forme describe la arquitectura completa, con un énfasis especial en la “Base
de Datos Histérica” y la “Habilidad de Historiador”, que he desarrollado per-
sonalmente, a diferencia de otras partes del sistema que se han desarrollado
de forma compartida. El resultado de este proyecto es Daphne, el primer
asistente cognitivo de cédigo abierto que apoya al disefio de alto nivel de
sistemas de satélites de observacion terrestre ayudando a la reduccién de la

carga cognitiva del ingeniero de sistemas.

iv



Acknowledgements

In the first place, my thanks go to my advisor, Daniel Selva, for helping me
develop this project while at the same time helping me adapt to living in the

US and being a great advisor altogether.

In the second place, I would like to thank all of the Daphne team: Hyunseung
Bang, Arnau Prat, Amrit Kwatra, and Ria Singh for helping the project become

a reality so fast.

I also have to thank all the different sources of funding which have allowed
me to do this project in the USA: the TFG scholarship from CFIS and Fundacié
Cellex, the MOBINT scholarship from Generalitat de Catalunya, and Cornell

University.

Finally, this project has been funded in part by the following National Sci-
ence Foundation grant: NSF CMMI 1635253 “Improved human-computer

interaction for the design of complex systems”.



Contents

[Resuml|

[Resumen

[Acknowledgements|

Contents|

[List of Figures|

(1__Introductionl
1.1 ivati .

(1.2 Background|

1.3 Approach|. .

2 Failed approaches|

2.1 Reusing an already existing CA system architecture| . . . . . .
A1 Tucidal .. ..o

212 Mycroftf . ... ... ... . ... .
213 Nextsteps| . . ... ... ... ... ... ... .. ...

2.2 Reusing existing QA systems| . .. ... .............
221 YodaQA| . . .. .. ... ..

Agqu] . . ..

223 Nextsteps| . ... ... ... ... .............

vi

ii

iii

iv

vi

ix



2.3 Using unsupervised learning for creating database queries| . . 16

2.3.1 Neural programmers|. . . . .. ... ..... ... .. 16

3 Daphne: General architecture| 18
Bl Overviewl. . . .. ... ... .. ... .. o 18
B2 Datasources . . .................. . ... ..... 19
3.2.1 Design Solutions database . . . . . ... ... ... ... 20
3.2.2  Expert Knowledge database|. . . . ... ... ... ... 21

2.3 Historical databasel . . . . ... ... ... ... . ..., 22

B231 Overviewl . ... ................. 22

B.2.3.2 Datascraping|. . . . ... ............ 23

3.2.3.3 Dataprocessing| . ... ............. 27

B.23.4 Datamining| . .................. 28

3235 Ontology| . . ... ... ... ... ... .. ... 29

B3 Back-ends .......... .. .. 30
B.3.1 _Architecture Evaluation| . . . . ... ... ........ 31
.32 DataMining/. . ... ... ... ... ........... 32
B33 OQASystem|. ... ... ... ... . ... .. 34

34 DaphneBrain| . ... ... ... ..... ... .. ..., 36
................................. 38
BSI GFEEDSKIl .. ....................... 38

2 CriticSKilll . . . ... ... oo 40
B.6_Front-ends . ........... ... ... ... ... ... 42
B.6.1 Web & Voice Visual Interfacesl. . . . . ... ... .... 42
.6.1.1 iFEED Interfacel . ... ... .......... 42

B.6.12 CriticInterfacel . . .. ... ... ... ... .. 43

8.6.1.3 Historian Interfacel . . . . .. ... ....... 45

B.6.2 DaphneVRl ... ........ .. ... ... .. .... 46
B.6.3 Physical Embodiment] . . . ... ... .......... 49

vii



Historian Skil

41 Skilloverviewl . . ... ............ .. ... ......
4.2 Textprocessing| . ......... .. ... ... ... ..
4.3 Question classifier|. . . . . .. ... ... ... .00 L.
4.4 Definition of a Question Type| . . . . ... ... ... ... ...

F reextraction| . . . ... ... o oo 0oL
4.6 Dataaugmentation| . . . ... ... ... ... ... ...,
4.7 Database querying| . . ... ... ... ... ... . . ...

. Answer constructi

[7 Personal thoughts|

A" Source code of the project|

viii

64
64
65

67

68

70

71



List of Figures

3.1 Overview of Daphne architecture . . . . . . ... ... ... ..

.2 Historical hemal . ...... ... ... .......

3.3 Decision tree for the data mining algorithm| . . . . . . ... ..

3.4 Small portion of theontology| . . . . ... ... ... ......

reen-sh f the iFEED Interfacel . . . ... .. ... ... ..

3.9 Design of the VR interface in planar shapel. . . . . . . ... ..

13.10 Design of the Daphne physical embodiment|. . . . . . ... ..

13.11 Hardware of the Daphne physical embodiment{. . . . . . . ..

13.12 Software architecture of the Daphne physical embodiment] . .

4.1 Example of a question type JSONfile|. . . . ... ... ... ..

ix

50



To my parents and my sister



Chapter 1

Introduction

1.1 Motivation

Architecting Earth Observing Satellite Systems (EOSS) such as the NASA A-
Train or the NOAA Polar weather system is a challenging task, and it will
likely get harder as we demand missions that are more affordable, reliable,
robust and which can generate more and better data products using less

resources.

NASA’s technology roadmap for technology area “TA 11: Modeling, Sim-
ulation, Information Technology, and Processing”, recognizes this problem
as it describes a need for improved “Analysis Tools for Mission Design”.
Specifically, the document states that current tools are thought for monolithic
missions and only take into account small parts of the system at a time [1].
This limits their ability to consider new trends on mission design, which in-
clude distributed, fractionated, or heterogeneous systems [2], and creates lost
opportunities on designs which are not even considered due to the partial

analysis. [3]

This trend towards more distributed missions can be seen in the latest mis-
sions flown by major space agencies, such as ESA’s Earth Explorers (e.g.

SMOS, Cryosat) and NASA’s Earth Science System Pathfinders (e.g. Calipso,



Chapter 1. Introduction

CloudSat, and more recently CYGNSS and TROPICS). These missions have
two things in common: the mass and the number of instruments of each
satellite have been reduced compared to the larger monolithic missions of the
early 2000’s (e.g., Envisat, UARS, Terra) [4] and most of them involve some
sort of coordination among multiple assets to achieve the desired functional-
ity (e.g., constellations, clusters, trains) [2]. Two commonly cited advantages
of such distributed architectures are the increase in reliability and robustness
achieved by reducing the number of single points of failure in the system, and
the improved affordability as individual units become smaller and less costly
and leverage miniaturized commercial off-the-shelf components [5]. On the
other hand, the need for coordination among assets in distributed systems
may lead to increased complexity in terms of position and attitude control as

well as inter-satellite communications. [6]

Thus, improved tools are needed to architect these complex constellations,
clusters, and trains, as there is a need to account for the entire system as
opposed to a single satellite during the early design process. There has been
some research in this area [7}, 8, 9], including tools curretly being developed
by NASA like TAT-C [10]. One shortcoming of these tools is that they pro-
vide limited cognitive support to the users, who can suffer from information
overload when analyzing large, high-dimensional design spaces (a typical
formulation of an EOSS architecting problem defines billions of valid design

alternatives).

Indeed, system architecting remains mostly an art rather than a science, even
20 years after the publication of the foundational work in the field by Rechtin
and Maier [11]. This is due, mainly, to the fact that it is a task that requires
creativity and adaptability and dealing with deep uncertainty and ambiguity,
and these abilities are hard, if not impossible, to compartmentalize and stan-

dardize. This does not mean that parts of the process can not be automated; in



Chapter 1. Introduction

fact quantitative tools such as simulations and optimization have their space
in systems architecture to help select the preferred system configuration and

alleviate some of the well-known cognitive biases and limitations of humans.

To counter this increase in cognitive difficulty, intelligent agents called Cog-
nitive Assistants (CA) have been studied for the last 20 years. Their objective,
as well as that of most decision support tools developed, is “augmenting
human intellect”, as told by D.C. Engelbart [12] in one of the first works in
human-computer interaction (HCI) back in 1962. What makes CA different
from other intelligent agents in use is the types and modes of interaction with
the user, as well as the use of cognitive architectures. Most CA send and
receive information to/from the user by means of natural language, either
through a voice or text-based interface. Some of them also can take image
inputs, like Lucida [13} 14], or Google Photos Assistant [15]. Another big
difference with other intelligent agents is the fact that some CA can take the
initiative and act on what they think the user wants, by using different cog-
nitive architectures [16] like Belief-Desire-Intention (BDI) [17], Logic-based
agents [18], Reactive agents [9]] or Layered architectures combining different
models. The explicit use of some model of the user’s cognitive process is

arguably the most distinctive trait of modern CA.

The last few years have seen an exponential increase of usage of CA, as
commercial systems have been developed by many large software companies
to help do mundane tasks faster [19, 20, 21} 22, 23]. IBM has also reused parts
of IBM Watson [24]] to create the Watson Cloud [25]], a set of CA APIs. There
are also some research-focused CA [13, 14, 26| 27, 28, 29], some of which are

open-source.

Motivated by the challenges of system architecture in general and architecting
EOSS in particular, and inspired by the success of these commercial CA, an

opportunity was identified to explore a mixed-initiative approach to this task



Chapter 1. Introduction

and thus develop Daphne, the first CA to support the high-level design of
EOSS.

This report explains in detail how the Daphne system was built, including
some failed approaches which ended up leading to the final design. It then
goes on to explain the software architecture: all its different front-ends; the
Brain, a piece of software that distributes the tasks between the different
sub-systems; the different back-ends which do the “heavy work”; the data
sources from which the back-ends obtain the data to work with; and the skills
on top of the Brain which provide all the high-level functionalities that the
end user sees. The report then continues with a detailed description of the
Historian skill, as it was the one to which I devoted the most time. Finally, the

limitations, future work and conclusions of the whole project are presented.

1.2 Background

Intelligent tools have been used to support the design of complex systems
since the dawn of the computing era, like [30] or others as seen in [31} 32].
These tools can take different forms, which include intelligent Computer
Aided Design (CAD) systems [33], knowledge databases [34], design assis-
tants [8] and design critics [35]. Since Daphne is centered on the first stages
of design, sometimes referred as conceptual design (or system architecture
in the case of complex systems), we are going to focus this first part of the

background review on this kind of tools.

Most tools for the first stages of engineering design are catered towards help-
ing the human performing the design task instead of substituting him/her,
and enhancing their cognitive abilities. They usually take the shape of inter-
active visualization and decision support tools which allow for the analysis

of the different design alternatives, and which have the capacity to handle

4



Chapter 1. Introduction

the thousands to billions of options which can exist for a design problem.
Examples of such tools include [36, 37, 38, 39]. Some of the visualization
tools allow the users to alternate between and compare different views of
the data (e.g., decision space vs objective space, or 2D slices of the objective
space), highlight architectures sharing certain features, and reduce the ob-
jective space search to a much more manageable one [36, 37, 40, 41]. Other
tools utilize unsupervised machine learning algorithms such as manifold
learning, feature selection, and clustering to help users visualize solutions in
a high-dimensional space [39, 42]. To further reduce the cognitive load of
system engineers, one of the main objectives of the tool in this paper, other
tools combine visualization with data mining algorithms that extract useful
knowledge or insights, often in the form of simple logical rules with an if-
then structure, such as “IF any spacecraft in the architecture weighs more
than 3,000kg, THEN the architecture is likely to have low cost-efficiency” [43,
44, 8]. The use of logical rules as data structure for these insights has a long
tradition in artificial intelligence, and is motivated by evidence that not only
are logical rules easy to understand by humans, but they may also be the
way human experts actually solve complex problems [45]. But even with all
the work in reducing the information overload [46, 47]], often the amount of
data is still so large that it is hard to manage. This means there is a need to
further support the systems engineer to help him or her direct their attention
to specific portions of the dataset or other aspects of the problem, depending

on relevance and other factors, and this is where CA come into play.

CAs (also called intelligent personal assistants or IPA in some of the literature)
have a long story: starting with NLS from Engelbart back in 1962 [12], there
has been a continuous stream of them: DENDRAL [48], MYCIN [49]], DARPA
PAL [50], OAA [51], IRIS [52], RADAR [53] or CALO [17]. More recently, as

voice recognition software and natural language processing have advanced



Chapter 1. Introduction

to an almost usable level, commercial alternatives have appeared, such as
IBM Watson [24, 25], Wolfram Alpha [54], Siri [19], Google Assistant [20],
Microsoft Cortana [22], Amazon Alexa [21]], Facebook M [23] or Mycroft [55].
There has also been research on them, resulting in software such as Lucida
[13, 14, 56]], Cougaar [27] or OpenCog [29]. All these systems share the fact
that the interaction is done either by natural language or through pictures and
that all of them are generalist: they try to answer as many queries as possible
from the user using a plethora of data sources, and some of them help the user
with personal organization by reading emails, setting appointments and, in
general, making the use of the system where they are simpler. But generalist
CAs are of no use when the task at hand is very specialized. Thus, specialized

CAs in the fields of aerospace and design are described next.

Most CAs in aerospace are thought out to be used by humans who are pi-
loting one of the many vehicles which use either air or space as a medium
of navigation: be it planes, helicopters, UAVs or space vehicles. Examples
of these assistants include CAMA, which is an intelligent assistant for ensur-
ing a pilot’s situational awareness during a flight [57]. The CA is capable of
understanding the flight situation and combine that with the intent of the
pilot to keep a human-like communication with him/her to ensure their situ-
ational awareness. In the case of traffic conflict, it signals warning signs and
generates proposals on how to resolve the conflict. A similar type of assistant
for multi-UAV guidance have also been developed [58]. This system also
helps the pilot of multiple UAV systems by telling the pilot when something
strange might be happening in one of the missions and trying to keep the
pilot engaged in all of the missions without getting him to a point of informa-
tion overload. COGAS is another intelligent assistant, and supports crew of
a combat information center in a Navy ship [59]. COGAS combines multiple

sources of information to perform tasks such as obtaining and displaying



Chapter 1. Introduction

various track data from various sensors and radars, and identifying an un-
known object around the Naval ship. One very recent project in this field is
[60], which is a CA thought for astronauts who are on missions where real
time communication with Earth is not feasible, meaning they need to have
cognitive assistance with them to solve most of the problems which might

arise without help from Earth.

On the other hand, CAs for design are closer to Daphne in the sense that all
of them are thought out to help the systems engineer come up with a good
design in the field where they are applied. TAC [61], for example, does a
trade-space exploration by following the commands of different stakehold-
ers. In [62], a rule-based system is used to provide recommendations on
manufacturing technology designs. There is also [63], where an expert sys-
tem is used to evaluate alternatives on highway building, having the user
interact by choosing from all the proposed alternatives. A much more recent
effort, PQE [64], tries to model the user curiosity and creativity so it can come
up with design alternatives the user might not have thought of, with the
goal of helping the user think out of the box. Another recent work is [65],
where human and computer synergies are studied so the final designs are
more innovative. There has also been work in making existing design tools
adapt their own functionalities depending on their use [66, 67]]: one result is
an email classifier which learns from how the user classifies its emails, while
the other result is a more intelligent version of the Optimization Toolbox of
MATLAB which can learn what kind of optimization algorithm is needed for

different design problem:s.

The last part of this section is centered on Question Answering Systems such
as the Historian Skill from Daphne. As long as there has been Al there have
been QA systems, and most CAs have one, including all the commercial ones

referenced before. Examples of current open-source research-focused QA



Chapter 1. Introduction

systems and frameworks include OAQA [28], YodaQA [26] and Aqqu [68].
All these QA systems are built to answer simple questions on broad domains,
which is something not needed for Daphne, which requires answering com-
plex questions in a specific domain. This is the reason why the Historian Skill
is implemented as a Natural Language Interface for a Database (NLIDB), a
special kind of Restricted Domain QA system in which all the questions are
translated into database queries. A few notable NLIDBs are PRECISE [69]] or
NALIX [70], but there are more recent efforts such as [71, 72, 73, |74} [75] as

well as others as seen in [76, 77].

Finally, neural network models have been used for the text classification inside
the skill. The model used is [78], with the parameter tuning recommended in
[79] but there are a few more models which are even more up to date [80, 81,
82] but require higher computational power due to the fact that the training

is much less prone to parallelization for a small performance benefit.

1.3 Approach

The objective of this project, as its title states, is to design and develop the
software architecture for a CA for architecting Earth Observation Satellite

Systems.

To achieve this objective, a team was formed, and the project has been de-
veloped as a collective effort. This means that, while most of the design of
the software architecture ended up being on my shoulders, some parts of
the development effort went into other people’s. Although the chapters are
organized following the project structure, who did what is accounted for in

each section inside them.



Chapter 1. Introduction

The rest of the report will try to be both a general explanation of the whole
project and at the same time a description of the work done by myself. It is
organized as follows: Chapter 2| explains all the different approaches which
were tried during the development of the project, why they were not chosen
and what was learned from them. Chapter {3|is an overview of the whole
system. Then the report gets to Chapter [} where the Historian Skill, the one I
devoted the most time to, is explained in detail. Next, Chapter[5|develops the
limitations of the system and the future work which can be done on it. Finally,
Chapter|6| wraps the whole project up, along with a few personal thoughts in
Chapter 7}



Chapter 2

Failed approaches

Personally, I feel that putting this section in the report is a reminder that
research is not always a straight path to success, and for every small step that
tries to push forward the state of the art there are a lot of attempts that simply
utterly fail. This is why I think letting other people know not only of what
works but what does not is important to save time for future researchers who
might think a certain approach has not been tested yet. I believe the fact that
most research papers only explain the way forward without explaining all

the found dead ends is a one-way street to lost time in research.

After this personal statement, here I detail the three failed approaches which
ended up leading to the final design of Daphne. They are ordered as I
tried them during development, so a trend of more general to more specific

approaches can be seen.

2.1 Reusing an already existing CA system archi-

tecture

When beginning a project, and specially a software project, the main task

during literature review is finding software which already fulfills the needs

10



Chapter 2. Failed approaches

of the project and has a license that allows reusing it while expanding or
limiting its capabilities to fit the exact needs of the users. Nobody wants to
reinvent the wheel, as that is a waste of time and resources which can end

with more buggy solutions than the already existing ones.

So I did what was expected: I started searching for cognitive and intelli-
gent assistants which could be reused for Daphne and I found two viable
alternatives, both open-source with permissive enough licenses. These two
solutions were Lucida [13| 14, 56] and Mycroft [55]. The reasons to choose
these two are that, apart from being open-source, they have a very similar
architecture which in turn inspired that of Daphne, and both of them have
been developed recently, which is usually a good thing when trying to run

them on a computer, although nothing is always as easy as it seems.

2.1.1 Lucida

Lucida [13} 14, 56] is an IPA developed by the Clarity Lab at the University
of Michigan. It is a complete CA solution, with Question Answering capa-
bilities for factoid questions using OpenEphyra [83, 84|, along with Speech
Recognition using Kaldi [85], and even Image Recognition with OpenCV [86].
It also has the ability to add other services which leverage these three basic

functionalities.

The main problem with this system is one which I consider very important:
the ease of installation. The whole system can only be installed and run fully
under an Ubuntu 14.04 system, and this means in less than 2 years it will not
run in any non-obsolete system. It also makes permanent modifications to the
system by creating certain symbolic links and installing some software in an
unconventional way. Although some installation scripts have been improved

and there have been some efforts to port it to Ubuntu 16.04, the system cannot

11



Chapter 2. Failed approaches

(as of yet) run properly in that system, and one must switch the default GCC
compiler version for an older one to be able to use the full system. This ended
up meaning I could not even run the system in my computer after a few days

of work, by which point I decided I would not use it.

This does not mean it has nothing of value to add to the final design: the idea
to build the Daphne Brain came from Lucida’s Command Center, and I also
discovered the Thrift library for Inter Process Communication (IPC) while
looking at the source code for Lucida. Thrift is now used as the communica-

tion layer between some sub-systems of Daphne.

2.1.2 Mycroft

Mycroft [55] is an IPA too, but in this case it is developed by Mycroft Al Inc.,
a for-profit company. It is also a pretty complete system, with support for
Speech Recognition using either its own implementation or one of the im-
plementations from the big data companies, namely IBM, Microsoft, Google
and Amazon. It works in a similar fashion to most other commercial IPA
systems: it provides a bare framework with a few working examples and lets
the developers make their own “skills”, which can add functionality to the

system.

Using Mycroft was a big part of the project until the team realized that it was
much more than what we needed in some areas, like the whole skills system,
and it lacked in other ways, like in interacting with some web applications
developed at the lab which needed to work together with Daphne or having
no support to run as a library as needed for the physical embodiment and the
VR interface. Also, the system is still in heavy development, which meant
that some Application Programming Interfaces (APIs) changed a lot, creating

a lot of headaches to the whole group when trying to keep up to date.

12



Chapter 2. Failed approaches

It got to a point where keeping up to date with the system was taking more
time than actually developing the features needed for Daphne, so the team
took the decision to abandon Mycroft and instead use our own web-based
interface and server, which could be developed at a pace acceptable for the

team.

Ideas taken from Mycroft include using a catch-word to start voice recog-
nition, the way the skill system is implemented, the use of WebSockets for
handling real-time communication between client and server and the idea
to use voice recognition and voice speaking systems developed by the afore-
mentioned big data companies, as other open-source, free solutions have un-
derwhelming performance, as we found out when trying to use the systems

inside Mycroft.

2.1.3 Next steps

As it became clearer that no complete solution in the ecosystem could be
reused as the base for Daphne due to its special needs, a custom solution was
developed, as seen in Chapter 3| This does not mean the search for already
existing solutions stopped, but it was moved to only parts of the system
instead of the whole of it. This is explained in the next section, where the

search for a working QA system is described.

2.2 Reusing existing QA systems

One essential part of the system is the QA system, which has the job of
recognizing the different questions asked by the users and answering them
correctly if it can. Once again, before trying to build the whole subsystem

from scratch I searched for already implemented solutions. Two QA systems

13



Chapter 2. Failed approaches

were chosen as the best options due to their licenses and accuracy results:
YodaQA [26] and Aqqu [68]. QA is an always evolving field, so every year
there are more and more accurate systems, and this is why once again having

recent implementations is usually a good sign for the system.

2.2.1 YodaQA

YodaQA [26] is an “open source Factoid Question Answering system that
can produce answer both from databases and text corpora using on-the-fly
information extraction”. It is written in Java, which helps in integrating with

the rest of the system, which is written in a mix of Java and Python.

The problems started very soon: the databases YodaQA can use are ontolo-
gies written in RDF format, and although one part of this project includes
developing an ontology of the earth observation missions database in this
format, adapting it for use in this system was deemed too time consuming for
the scope of the project, as the system is thought out to answer questions on
DBpedia [87] and Freebase [88], two generalist open RDF databases. Another
big problem is the fact the system is slow and has a low accuracy of around
45% on the most common tests like the TREC benchmark [89] measured as
the Mean Reciprocal Rank (MRR), which is a measure of the probability of
getting the correct answer on a question, as defined in [90]. Finally, the system
has not been maintained for the last year, meaning there is no improvement

in sight for all those problems which have been identified.

All these problems prompted the decision to not use YodaQA and search for
other alternatives, like Aqqu. Trying to use YodaQA made me realize users
want fast and accurate systems, and that I need to use very well-maintained
software solutions if I intend to not lose a lot of time on configuration and

bug-fixing.

14



Chapter 2. Failed approaches
222 Aqqu

Aqqu [68] is an “end-to-end system that automatically translates a given
natural-language question to the matching SPARQL query on a given knowl-
edge base”. It is written in Python, making it even easier to integrate than

YodaQA.

The problems are very similar to those of YodaQA: the system is written to
work on Freebase, with very few documentation on the code except for the
paper, so this makes it hard to adapt to other databases. It is, though, much
faster and more accurate than YodaQA, as it advanced the state of the art back

in 2015.

When trying to integrate this system with Daphne, I realized three things:
first of all, using general QA systems was a waste of resources, as they are
catered towards answering easy questions on giant datasets of unstructured
data, while what Daphne users need is complex answers to complex questions
on a small dataset of very structured data. Also, ontologies need to be very
well crafted to obtain good answers on them, which requires a knowledge
and time I do not have. Finally, using software catered for a paper can easily
turn into a very tedious task, as adjusting the program to produce results

which are useful outside of paper publishing can be very hard.

2.2.3 Next steps

After these two attempts, it was clear that no complete QA system would help,
as most of them are too generic to be useful for the task at hand without much
adaptation work. It was clear the required system needed to be specific for the

historical database. This brings us to the last failure in trying to use existing

15



Chapter 2. Failed approaches

systems: using unsupervised deep learning to automatically translate natural

language questions to database queries.

2.3 Using unsupervised learning for creating

database queries

In the last two years there has been a resurgence [74, |73} 91] of an application
of deep learning known as Neural Programmers: neural networks whose
output is a set of instructions to be executed on the computer. There was
some research on the topic more than 20 years ago [92], but it never took of,

together with the rest of deep learning.

2.3.1 Neural programmers

One possible application of neural programmers is in QA over a database: a
database query is nothing more than a set of instructions applied over a set of
tables which give as a result either a text, a number or a list. This means that
using such a system can be really helpful in saving development time when
adding new questions to the QA system: instead of having to manually write
a query for each question type, as seen in section 4.7} the system could train
itself by providing access to the database, a lot of example inputs, and a lot of

example outputs.

All this seems too good to be true, and for now it is. As seen in most of
these publications, and especially [91]], the accuracy for the task at hand is too
low to be useful for a consumer-facing interface. What'’s more, the examples
shown in the papers could be considered toy examples, which means bigger
and harder questions like the ones found in Daphne would bring the system

to its knees both in accuracy and computing power required to train the

16



Chapter 2. Failed approaches

system. All these problems made me take the decision to not use such a
solution until the state of the art in this field is furthered, instead relying on
more classic techniques like text classification, feature extraction and manual

query creation, as seen in Chapter @

17



Chapter 3

Daphne: General architecture

This chapter of the report consists of 5 different sections, and it is the main

chapter of this report, as the bulk of the work done is explained here.

3.1 Overview

WebVR Interface | | iFEED Interface | | Historian Interface | | Physical embodiment

Critic Interface |
I
I

I
I
! AN
I I
. } p—
I I
|

| Web & Voice Visual Interfaces | FRONTENDS

J J

l Daphne Brain

<
N

7 !
// ! N
L A\ 2\
| iFEED | | Critic | | Historian | SK“_LS
Architecture Evaluation ‘ ‘ Data Mining ‘ ‘ QA System
Design Solutions Database ‘ ‘ Expert Knowledge Base ‘ ‘ Historical Database ‘

Ficure 3.1: Overview of Daphne architecture

Daphne is structured as a 4-layer system: it has three kinds of front-ends

which can interact with the user in different ways (section [3.6), a front-end

18



Chapter 3. Daphne: General architecture

server (the Daphne Brain in section to direct all user requests to the
appropriate back-end which also hosts the different skills (described in ,
three back-end services to resolve queries from the users (in section and
three data sources from which to obtain the data to answer some of the queries

or save the progress of the user in using the application (explained in section
B.2).

It is easy to notice in figure[3.T|that all the skills also have an interface, and this
is due to them being developed by different people, which meant everyone
built their own interface to test the functionalities of their own skills. One
important task left to do in the future is build a unified interface, as there was

no time during the development of this first version to do so.

Finally, this Chapter is organized from the bottom up: it explains the Daphne
sub-systems starting from the bottom of figure 3.1/ and it ends with the ones
at the top, as this helps in understanding the whole system better because

each layer needs to refer to ideas and details from the layer below.

3.2 Data sources

There are three different data sources from which Daphne can get its infor-
mation: a design solutions database, which contains information from a great
variety of possible architectural solutions for the problem at hand; an expert
knowledge database, with expert rules and recommendations on designs;
and a historical database, with data from all past and present public and

civilian earth observation missions.

The three of them help in obtaining a better final design on their own, but the

real powers of the system are obtained when the three of them are combined

19



Chapter 3. Daphne: General architecture

to obtain a comprehensive set of recommendations for the system engineer

developing the EOSS.

An overview of the three data sources is provided, but only the historical

database will be extensively developed, as it is the one I have worked on.

3.2.1 Design Solutions database

The three main objectives of the design solutions database are to have an initial
data-set of possible designs for the system being designed so the architect has
something to compare its own designs to, to save the designs the engineer
or the computer come up with so they are not lost after the work session is
tinished, and last but not least, to have a data-set over which the Data Mining

back-end (subsection |3.3.2) can work and extract features.

The initial designs can be generated using various sampling methods such
as random sampling and Latin Hypercube sampling, which can sample the
teature space in an unbiased way, or optimization algorithms, which are more
likely to generate high-quality solutions, thereby introducing a certain bias in

terms of sampling of features.

The data saved for each system design contains which instruments are as-
signed to which satellites, the total cost and the science benefit as computed
by the Architecture Evaluation back-end (subsection[3.3.1)), and the set of rules
triggered in JESS [93] to obtain both the cost and the science benefit using this
back-end. All this data helps in the graphical representation of the designs,
as the two axes which appear in the plot are always cost and science benefit,
in other parts of the interface which need the exact design, and in the internal
workings of the iFEED and Critic skills, as both of them need to reenact the
execution of the Architecture Evaluation back-end to generate their expected

responses.

20



Chapter 3. Daphne: General architecture

This data is saved in JSON files, which are stored either as bare text files or
inside a MongoDB database depending on the needs of each subsystem. The
exact format is a bit-mask for the assignments of instruments to satellites, a
double for the cost, a double for the science benefit, and a text array for the
rules fired. The authors of the generation of information for this database are

Hyunseung Bang and Daniel Selva.

3.2.2 Expert Knowledge database

The Expert Knowledge database is a little different to the other two in that it
is not made of data but of logical rules: it is a set of if-then rules, to be more
specific. The rules are made to encode domain-specific knowledge about how

to architect EOSS.

One example is a rule that states that UV/VNIR chemistry spectrometers
should be flown in afternoon sun-synchronous orbits rather than morning
or dawn-dusk orbits. This is because the dawn-dusk orbit has suboptimal
illumination conditions for this kind of instrument, and pollution levels typi-
cally peak in the afternoon as opposed to the morning [94]. Another example
is that an active and a passive instrument that use the same frequency band
should not be used in the same spacecraft, as they may interference with each

other.

All of these rules can be either simple or complex, but all of them exist for
the same purpose: having access to them without having to look at reference
books or having to remember them during the design process may reduce
the cognitive load of the system engineer, who has to consider many other

design factors, and thus lead to improved performance and better designs.

The rules are written using of combination of raw JESS rules and a Java

program which generates rules based on Excel files with a set structure. JESS

21



Chapter 3. Daphne: General architecture

is a superset of CLIPS, so as it happens with this language, rules are actually
stored as raw text either in files or directly into RAM memory, and its format
can be checked in both CLIPS and JESS documentation. The authors of the

rules are Arnau Prat and Daniel Selva.

3.2.3 Historical database

The historical database has been sourced from a reliable source of information
on Earth Observation Satellites: the Committee on Earth Observation Satel-
lites (CEOS) Database [95], a joint effort by CEOS and the European Space
Agency (ESA) to create a comprehensive database of all the Earth Observation
Satellites which have been launched since the beginning of the Space Age,
with detailed information on the orbits, launch and EOL dates, the agencies,
the purpose, the instruments, the measurements and the data provided by
each one of these missions. The exact number of missions in the database
is 567, with 839 instruments also described. The whole development work
on this database for this project has been done by me, but the authors of the
information are CEOS and ESA.

3.2.3.1 Overview

The procedure to obtain a usable version of this database has been hard, as
the only publicly available of it is the CEOS Database website, which contains
tables and detailed pages on all missions, instruments and measurements.
While this is good for reading about single missions and counting, it is com-
pletely insufficient for the advanced uses needed in Daphne, which require
data analysis and data mining to get some answers out of it, as well as ad-

vanced SQL queries which are impossible to perform on the web interface.

22



Chapter 3. Daphne: General architecture

This is why the first task which was performed was to scrape all the data
in the website and save it in a classical SQL database, as explained in sub-
subsection[3.2.3.2l Having the same textual data in a classical database, while
it enables a lot more queries than the ones available from the web, still misses
on a lot of numeric data insights which would be available just by classifying
the data in categories and putting those fields which are numeric as actually
numeric. This is described in detail in sub-subsection While this
helps in answering most queries, sometimes there is information which is
not really there in the database, and some data mining algorithms need to
be run over it, as discussed in sub-subsection Finally, as the database
was originally thought to be used with already existing QA systems which
expected ontologies, an ontology has also been built, as seen in sub-subsection

53.2.3.0

The end result is the database in figure with the schema of all the tables.

3.2.3.2 Data scraping

The data scraping has been performed using the Scrapy framework for
Python, which is described as "A Fast and Powerful Scraping and Web Crawl-
ing Framework" [96]. Using this piece of software has helped save a lot of
time by not having to research how to actually download and navigate a web

page programatically, which could have been really tedious.

Then, the task of data scraping becomes two-fold: on one side, the structure
of the data needs to be discovered and written down so the schema of the
database as seen in figure 3.2 can be built. On the other hand, the “spider”
program (the program which actually navigates the website) needs to be
written. Both tasks complement each other, as the order of the web pages

scraped is really important to maintain consistency in the database, and the

23



: General architecture

Chapter 3. Daphne

i
«yd»  Jurensuod Asyd seuobaled JusWBINSESW PECI] T

sap0B31e7 ] I peoiq : 3 124
Buifiea sa3edey> uondussap o
Buifien sa3oeieys Baweu | i N - N
«yd » Jebojul P! =) T @y o» jutessuod  Aaxyy prAsobajes juswainsesw peolq ssuobales Juswainseat T «y Jutesysuod Aoy prAiobares Juswansesw SjusWaInsesiu %
sauobejes jusweinsesw peoiq rJH_rv «yd»  JUlBIISUOD Aayd sapobajes juswainseatu O «yd»  JulesIsuod Aayd sjuswainseaw §
Ul « 3y » aebayur pi Aiobajed juswainsesws peolq ¢ x L i3 ul oy asbajui pi Aiobajed JuslaInseslu ¢
Bujfiea 1ayoeieys uonduasap o - Bupfiea sa3deieys uondudsap o
Buifiea sa3oeiRY> sweu | . Builiea sayoeieys aweu o
«yd » asbajur PI ey HI}— q«yd » Jabiajul Pi =)
= )
«yd»  Juresysuod Aayd suoissiu & [
Julelsuo> ¥28y2 55812 3(3A2 1R0da) SUOISSIWL ©
JuleIISUC> 22943 S58(2I5[ QIO SUOISSILU T

— .
«yd » juteqysuod Asyd sadfy Answosb O

Buifiea 1a3oeleyd> BWeu O] I
«yd » Jsbajur PIe)=T

sadAy Answosh _i

I
| suossjw siojesado (2

i
wyd»  Juesysuod Asyd sadAy Juswnnsui o

v
R e T e T w3 »  Juienysuod Asyl prAnswosb Juswnisul Juswnnsul jo Answosb o
- «3 »  JUIRsISUOD Asx priuswnygsu uswnisul jo Anawoab © _ _ _
|’| T ) asbajur pi Anpwosh Juswnnsuy ¢ SUSWNASUL SpUBGSARM JuSWnsUL |2)

€y asbayur P IUBWNISUS g —U FN
juawnisul jo Aijawoab / 4

SUBwASU oSS U SuBwNLSUT 131

Buifiea Ja3oeiey> aweu o

«id » _ J13633u; P! 9y ~’J’|"l’).l©//l’|] w3y »  JUIBIISUOD Aaxyy”piruswnnsuf Juawinnsuy jo adA © |
sadAy juswnisul _\ M PrTY dabaju v.ﬂm&bmucm:._: 150 o.,::.am:__l Juawnsul 4ol Anawoal |31

-

= — — =
sedAyJuaNASLI JusWINASYT 40 3AAT (21 | «y»  juressuod Aoy piedAy juswnisur juawinisui jo adh ©

w3y » J1abajul P IUBWNASUL g U

Juawnnsul jo adAy

Julesysuc> {2aYyD S5E|3 apnije JIqiosuolssiu T [ . v _ —
JUIEIISUOD D8y S50 UOREU[IUN JIqUC SUCISSILU T T 7 x4 pr N0 sJUBWIBINSEIW T
Buikien Ja3oEiey> ssep Ao jeadal €y > JUIELISUOT Ay~ pirjuswinigsur JUSWILGSW 40 SIUSWAINsesw O |
uorsiaad sjqnop E::lﬂ.U.GHﬁNnE o € > Jebajul n_lucmEmu:mmmE @ HU- g .
Burfiea Japoeiey> 3]2A73eada) o LS TEY Jabayul PIUBWNAISU! ¢ —u 57
Buthiea ..wuumwwn.__“ Ssep 15| uqio o JUBWINI3SUI JO”SJUBWIAINSEDW “xd» nEM.“._H“”“n“M%HW %-HM“H O
& 5 o
Bupfiea Jepoeaey> bBuifien seppeieys BWeU o
Buifiea Jayoerey> P Sl U Y Jsbayur Pi<)
1abajuy « J A9 Pl pueqarem spueqanem Juswinisul o
Buifuea Jay>eiey> w3y »  Julelisued Asxyy pi JUSWNASUI SPUBGSAEM JUSWNASUI T
Builiea se3oeieys PETE] asbajul  pi pUEGRAEM ¢ U
uoist>aud sjqnop w3y asbegur pi JuBWNASU & U v E— )
MF—NM\. Japeseys T T «yd»  Juresysuod A3xyd s3quo uowiwod Jsow adA3yzar ©
urhien Jajoedeys - Buifiea sa)oeieys g0 O
Buifien sapoeley> Buifrea saperey> adiyal o
Buihien se3oeleys «yd » } 1abajul pre)
Buifiea Ja3oerey> — — — - =
duresouiy 31ep (03 S}|QI0 Uowwod 3sow adAydey
dweysawiy 31ep youne| o Y — — ]
Burhien epoeleys smes O «y»  Juied3suos Aexy prjuswnasui uoissiwul sjuswngsul O - \
Buihiea Je3oesey> aweu|ny o - — - «f»  Juensuod A3y piUoISSIW UojSsIWTUIsJuBLINgsU! & «xyd >  Juresgsues Aeyd SHGI0 LUOWWOD SO JUSLIBINSESLL T
Bupfuen sapoeieys sweu O [SHOISSILL HOISSILY Gf SIUSUINSe 21 > Jabayur uawnasul Y Buikien 1o 0
1 5 =t ; T peleys g0 O
wyd» Jabajuy p! Bn-la uf« ) » Jabayul Pi UOISSIL &= Burfiea Jopseleys JuswLINSEIW O
UOoISSIW Ul SjUdWNISUl «yd» Jabajur Pl <)

531040 UOWWO) 50 JUILAINSE3W

d

«yd » Jue}suo>
jurensuo>
jurensuos
jurelsucs

Aayd suswnnsul ©

¥28Y §5803E EIEP SUSWNISU! T
338y2 buydwes syuswngsu O
¥20y3~Abojouyray spusWnnSUl T

Buifiena Jazereys
Buifiea sayzeseys
Buifiea asydereys
Buifiea Ja3>eieys
Buifiena Jap>eieyd
Buifiea sazereys
Buifiena sazeseys
Buifiea asydereys

«) »  Juledysuod Asxyy pI uolssiw siojeiado O . = o= ss s Bulfiea asjoereys
“y > uensuoy Aoy priousbe sioendo@| “qd» «:.Eﬁ:wu Kasyd sainusbe & = s E. 7SI Buptien sepeseys
«qf » 48ba3ul P UCISSILL ¢ U — — — - g = == = Buifiea sa>ereys
LS Syt e Bues e o BRIl e ey N\ W [ v 2
T e ) ~ Bunkien soppeseys  oweu o| [smiete st e [y soBoqun-pi i ¢ 1o wenasr Sy e | QUECA 15EE

(T}« xd » Jebaquy PI<IHT lAV||: @ on Jabajur pi Azusbe ¢ / Builuea aepoeseys

sapuasbe

«yd» ssbajur

AlBWIWNS pUEGSAEBM )
Arewwns Aeinooe o
YIEMS XEW O
AdewawinsTyiems o
uonnjosal 158q O
Auewiwns uonnjosal o
suonjeddde”pue sjuswainsesw o
1EWO) BIEp O

559228 B1Ep ()
Gundwes ¢
ABojouyzay o

Aqungew o

smels o

Aweu|ny o

aweu o

L)

Historical database schema

Ficure 3.2

24



Chapter 3. Daphne: General architecture

structure is easier to discover and write if done at the same time the spider is

being built.

The order in which everything has been scraped is the following: first, all the
measurement types are downloaded, parsed and classified between broad
categories, categories and actual types of measurements. This is done first
as they have no dependencies on other data from the database while all
instruments need to have all this information to be complete. Then the space
agencies are downloaded and saved into the database, as they need to be
referenced in all the missions and instruments. With all this auxiliary data in
place inside the database all the missions are downloaded, parsed and saved,
with all the relations to the agencies included as well. Finally, the instruments
are added with all their relations to agencies, missions and measurements,

completing the database.

The database is built as an SQL database, and the interface used between
Python and the actual database (which is PostgreSQL but can be changed) is
SQLAIchemy [97], which helps in both making the database easier to model
by implementing an Object Oriented interface on top of the SQL schema and
easier to communicate with thanks to its declarative syntax which is much

easier to compartmentalize compared to pure SQL.

One design point to take into account is how to define the relationships
between the different objects in the database. There are two different options
when talking about relationships: one-to-many (and many-to-one) and many-
to-many. One-to-many is usually used in hierarchical relations where it makes
sense for a lot of elements to be linked to a single element. One example of
this kind of relationship is that a lot of measurement types will be of a single
category, but not two. This is implemented using foreign keys in one of the
two related tables in SQL. Many-to-many relationships link any number of

elements of one type with any other number form another type. For example,

25



Chapter 3. Daphne: General architecture

instruments can be used in different missions, and a mission can have more
than one instrument. This is implemented in SQL through an auxiliary table
that contains pairs of foreign keys, with each pair having a key of each of
the related tables. A conservative approach has been taken when modelling
these relationships: first, all relationships are considered one-to-many. If
during the process of data extraction a case of a many-to-many relationship is
discovered for that field then the structure is changed to allow for this more
complex situation. This ensures extra space and complexity is only used
when absolutely needed. In the end, most relationships in the database are
many-to-many, but for the few which are not, this approach has been useful

in saving space and complexity.

It is important to note as well that the database is reset every time the scraper
is run, as in this way the information in the database is much easier to keep

up to date and with no inconsistencies.

As technical notes, a few of the most difficult and bizarre problems encoun-
tered include the POST request crafting for ASPNET forms as the ones used
by the CEOS database website, which include a lot of hidden fields which
need the exact values so the page returned is actually the requested one. This
brought a lot of headaches. There is also the CSS vs XPath selectors decision.
Initially, everything was coded using CSS selectors as they are easier to learn
and seemed to work fine, but it got to a point where the non-ambiguity of
XPath won over the easy use of CSS. This also helped in discovering that
the web page has a completely different HTML structure depending on the
browser used: the XPath selectors are different if using Chrome, Firefox or
Scrapy, which has lead to really confusing bugs when extracting the informa-

tion.

26



Chapter 3. Daphne: General architecture
3.2.3.3 Data processing

While textual data already enables a lot of queries in a SQL database, when
data is actually numerical it can be good to have it be that way in the database.
This also enables the database to deal with certain queries which depend on

numeric or date ordering or aggregation.

Examples of fields being processed into their real types of data are the ids
of all the agencies, measurements, missions and instruments, as well as the
launch and end of life dates for all missions, together with all the orbital
parameters of each mission like the period, the repeat cycle, the inclination,
the altitude, the longitude or the local sun time, for those missions which

have them.

Another important data processing task in the database is knowing which
fields are actually lists, which are required and which can be empty. The
methodology to obtain this information has been to always consider all ele-
ments a single required field and then, when errors happen during the data
extraction from the web page, change that into either a list or a non required

tield, ensuring the most stringent requirements are met in the database.

For those fields with set lists of possible values, constraint checks have been
added to the database so there isno way a forbidden value ends up being used.
If a field is both a list and has a constrained set of values it is implemented as

a many-to-many relationship, which already ensures the values constraint.

Finally, some numerical fields are also post-processed into categories. For
example, orbit altitudes are given classes such as Very Low, Low, Medium,
High or Very High Altitude. This is useful for both sub-subsection
and for certain queries which are better expressed in these qualitative terms

rather than crude numbers.

27



Chapter 3. Daphne: General architecture
3.2.3.4 Data mining

At a certain point during development, a question was proposed for the His-
torian Skill: “Which is the most common orbit for taking <measurement>?".
It seems like a rather normal question a systems engineer might want to ask,
but when trying to craft a single SQL query which obtained this informa-
tion from the database I realized the information was simply not there and
therefore had to be added. This is due to the fact this knowledge needs to
be computed using data already in the database. This is what this section

describes.

The only data mining being done in the database is to obtain the most common
orbit where measurements are carried out and where instrument types and

technologies are usually flied. The data mining algorithm works as follows:

1. For each measurement, instrument type and instrument technology, the

set of missions with it is obtained. Let this setbe TTS.

2. Then, the algorithm looks for the innermost node of a decision tree
where a set of conditions related to both TTS and a new set defined on
the node, called DTS, are fulfilled. Each level in the decision tree adds
restrictions to the DTS obtained in the last level, making the conditions
harder to fulfill. DTS is the set of missions whose common denomina-
tor is that all of them have the properties defined in the node and all its
ancestors. The decision tree can be seen in Figure The conditions
which need to be fulfilled are: [DTS N TTS| > 10 and 222011 > 0.5,
If a node fulfills both conditions it is saved as the last valid node. This
step is performed level by level on the decision tree following the de-
scendants of the last valid node until no nodes fulfill the two conditions.

The last node which does is considered to be the most common orbit for

that specific measurement or instrument technology /type.

28



Chapter 3. Daphne: General architecture

3. The most common orbit is then saved in a table in the database.

ROOT Orbit Orbit Local Sun Orbit Repeat
type Inclination Time Altitude Cycle

Ficure 3.3: Decision tree for the data mining algorithm

This is the only data mining process in the database for now, but if more
were needed they could be added as well, using a similar structure to the one

already described.

3.2.3.5 Ontology

An ontology, in this context, is nothing more than another kind of database,
one where the basic data unit is a triple of Subject-Relation-Object. There
is a whole field of philosophy dedicated to it, which tries to classify all the
entities of the world into different categories and then relate them to others,
be it through hierarchies or simple relations. Back to Computer Science, they
can be encoded in many different formats, but one of the most common is the
Resource Description Format, or RDF, and this is the one used in this project,

along with RDFlib [98] for Python to handle it more easily.

In the beginning of the project, I thought I would use one of the multiple
available open-source QA systems which work on RDF ontologies by query-
ing them with SPARQL (SPARQL Protocol and RDF Query Language). This
is the reason why a whole ontology which tries to replicate as much as possi-

ble the SQL database is being extracted together with the main database. At

29



Chapter 3. Daphne: General architecture

a certain point I realized that these systems are not yet powerful enough for
the task at hand, so the ontology effort was halted, and this is the reason why
not all the processed fields are in it, although all the textual ones along with
all the relationships are present. An overall view of the ontology as is can be

seen in Figure (3.4

The data is obtained in the same way as in sub-subsection [3.2.3.2, with the
only difference being that a whole other schema has been created with the

classes of each object in the database and its relations.

# 'Trace gases & Land -
o o0 ]
en

‘Gravity,
Magnetic and Ge . | 7 S
ry—— ‘
winds' / \ | .
- \ / [ o g # ‘Gravity and
+ Dtedansuffate [ " Magnetic Fields.
winds' / | 7 -
“Lightnin: ;
¢ R \ MeasurementBroa
\ dCategory
# ‘Cloud particle
m— \
¥ ol e . — @ mimen_|
topography" A - \ \ / > # ‘Ocean wave
. . \ / g height and spec.
# 'Surfoce o —
temperature (Ja s P 4 ‘Albedo and
— — reflectance’
# Aerosols o — S & —— —
~+——— | @ MeasurementCate | ——— - # Vegetation
# 'Sea ice cover, 7 N - — T -
edge and thickn - — ———{ # 'Atmospheric
e ( ~ - >~ — Temperature Fie.
"Multi-purpose s - . —

| # 'Lendscape
topography’

age ean, 4 /
4 ‘Liauid water and /
precipitation r.

“Surface
temperature (oc

- ' > A cloyd type.
budget" ‘Atmospheric n # 'Multi-purpose unt and clou.
Humidity Fields. . imagery (land)'

Ficure 3.4: Small portion of the ontology

3.3 Back-ends

The back-ends in Daphne provide different functionalities which different
skills may use to provide useful kinds of support to the systems engineer.
There are three back-ends: the Architecture Evaluation back-end, which can

be given designs and returns the value of their objective functions; the Data

30



Chapter 3. Daphne: General architecture

Mining back-end, which can run machine learning algorithms on the data-
set of designs for insight generation; and the QA System back-end, which
processes questions, sends them to other back-ends or skills and gives the

answer back in a human readable format, be it text, audio or images.

3.3.1 Architecture Evaluation

Architecture evaluation is one of those tasks in systems engineering which
is very hard to systematize: it is always specific to the task each system
must accomplish, and it is usually comprised of both objective and subjective
measurements. This back-end uses the VASSAR methodology [7} 99], which
is a systematic framework that allows automating the architecture evaluation

process by combining both objective and subjective information.

There is no theoretical limit on how many numerical results can be obtained
for the evaluation, but one has to keep in mind that humans are limited by
us only being able to see 3 dimensions, and the whole point of the system is
to reduce the cognitive load, so creating hard to understand plots is clearly
something to avoid. 3D plots and 4D plots which are done by the use of colors
can be understood by humans, as well as others such as parallel coordinates
plots, scatter plot matrices, and radar charts. Daphne can handle any number
of results with all these different plots, but in the design problem being
handled right now only two results are needed: the science benefit and the

cost, which makes the use of a simple 2D scatter plot enough.

Daphne is a CA made to help design EOSS, so it makes sense that there is
a way to evaluate how good a satellite system design is. This evaluation
system is described in [94], and it uses the VASSAR methodology to compute
both the science benefit and the cost of each system design being studied. It

works this way: starting with a given assignment of instruments to orbits, a

31



Chapter 3. Daphne: General architecture

set of expert rules is executed on a rule engine (JESS). These rules are used to
first compute the measurement capabilities of a given architecture of satellite
systems. Then the capabilities are compared with the measurement objectives
set by the stakeholders. Estimates of the science benefit for each design are
produced by computing how many objectives are being satisfied either fully
or partially (at different levels of performance degradation). Estimates of
lifecycle cost including payload, bus, launch, operations, and overhead cost
are obtained by using cost estimating relationships and a simple spacecraft
design algorithm providing rough mass, volume and power budgets for each

spacecraft.

Thus, this back-end works by receiving a system design and returning a pair
of floating point numbers which represent the science benefit and the cost
for that design. VASSAR was developed by Daniel Selva, my advisor, and
the communication layer between VASSAR and Daphne has been coded by

Hyunseung Bang.

VASSAR is coded in Java and JESS, so a communication layer is needed to
connect to the Daphne Brain. This layer is Thrift [100], a software developed
at Facebook and then at the Apache Software Foundation to provide inter-

language and process communication.

3.3.2 Data Mining

The main task of Daphne is to help the systems engineer perform better
at creating good designs, and one really insightful way to do so is to give
him/her a set of features which are present on most of the best designs found

by algorithms so he/she can use all these to construct their own designs.

The way Daphne does it is using the Data Mining back-end, which runs

machine learning algorithms on the Design Solutions database to obtain a

32



Chapter 3. Daphne: General architecture

set of logical rules which describe “good” features, meaning the ones which
appear frequently in the Pareto front of the dataset. One example can be that
perhaps most solutions currently on the Pareto front have two instruments
together on the same orbit, or the other way around, never together in the

same orbit.

The data mining method used is called association rule mining [101]], and
the algorithm used to extract the rules is called the Apriori algorithm [102].
Association rule mining extracts knowledge by creating logical rules which
describe parts of a dataset. The major advantage of creating categories based
on logical rules is that they are very similar to how humans structure knowl-
edge and are therefore easy to understand [45]. These logical rules can also
be called driving features, and in Daphne they are defined as combinations
of design variables through logical operators such as AND, OR or NOT that
appear to drive designs to a desired (target) region of the tradespace [8]. The
whole idea is that if a design has some of these driving features, the prob-
ability of it being in the desired region of objective values (cost and science

benefit) is also higher.

The back-end works by receiving a target region of the dataset, where that
region can take any shape. Then the data mining algorithm is run on that re-
gion, returning a list of the most significant driving features in that subspace.
The significance of a feature is measured by two confidences. Confidence is
a measure of the statistical relation between a feature and the target region.
One of the two confidences is computed as the ratio between the designs with
a certain feature inside the target region and the whole target region, while
the other is computed as the ratio between the designs with a certain feature
inside the target region and the whole set of designs with the feature. The
tirst confidence measures is the feature is general enough in the target region,

while the seconds measures if it is specific enough to that region. Only if

33



Chapter 3. Daphne: General architecture

both confidences are high enough a feature is considered important enough
to be significant for that region. This whole back-end has been developed by
Hyunseung Bang in Java. A port of the back-end to Python is being developed

by Amrit Kwatra.

3.3.3 QA System

The QA System is one of the key differences of Daphne compared to other
decision support tools available to system engineers. Its goal is to answer
diverse questions from the user. It helps in creating a more intuitive interface
for Daphne, by giving the users a natural language interface, which is cited
as being a better interface with a computer compared to creating code to
develop charts, making database queries, or just using a mouse, which are
the most common ways to interact with a decision support tool [103, |104].

This back-end has been developed by me.

There is usually a trade-off between accuracy and the number of questions
answered in a QA system: some systems choose to answer only a small
set of questions with great accuracy while others decide to answer as much
questions as possible, with the result of lowered accuracy. This can be seen
both in open-domain solutions like Aqqu [68] and YodaQA [26], which have
already been discussed in chapter 2| The first has a lower recall (number
of questions answered) and a high accuracy (number of correctly answered
questions) and the second exhibits the opposite behavior over general datasets
such as WebQuestions [105]. Domain-specific systems like PRECISE [106],
which is basically a translator from natural language to SQL queries, work
over a much smaller set of questions. As a result, it shows a much higher
accuracy for those questions it can answer, but get a low recall from ignoring

the rest of them. Because Daphne has a well-defined application domain, it

34



Chapter 3. Daphne: General architecture

can be assumed that the types of questions that the user will ask are limited
as well. Therefore, the objective is achieving high accuracy rather than high
recall by implementing the QA System in a similar fashion to PRECISE for

generating database queries from natural language questions.

This back-end receives natural language sentences as input. For now, the
language of these sentences is English. The output can be varied, as it can
range from another sentence to some action happening in the screen or the

physical embodiment, as well as images, plots and videos.

The sentences are classified according to their intent, which represents the
objective the user wants the system to accomplish by speaking that sentence.
To classify the intent of the natural language queries, a deep learning model
based on a Convolutional Neural Network (CNN) [78] has been chosen over
simpler methods such as regular expressions because of its greater tolerance
to input variability and the lower difficulty of adding new intents to the set.
This model, trained with different parameters each time, is used to classify the
input utterance (another word for a natural language sentence, and the most
common in the literature) into different categories at two different points
in the pipeline: first to decide the intent of the sentence and later, if the
sentence is a question, to classify the type of the question. There is also
a spelling corrector, which uses Sellers’ algorithm [107] to search for close
words, correcting wrongly spelled commands and questions so they make
sense to the different back-ends and skills which need to act based on the
input. A longer discussion on the choices of algorithms and the pipeline can
be seen throughout chapter @, which explains everything in detail coupled

with an actual example of a skill using the system.
The functional flow of the QA System is as follows:

1. The input question or command is obtained as either a typed or spoken

35



Chapter 3. Daphne: General architecture

sentence. The system assumes that the recognized sentence by the voice

Speech To Text (STT) system is correct and will try to find errors later.

2. The CNN model is used to classify questions and commands into dif-

ferent categories based on what module is responsible for the response.

(a) If the input sentence is a command for any of the back-ends, it is
executed on that back-end and the results are sent back to the user.
These results can be from any of the back-ends already explained,
and they can take different forms: be it JSON files, text messages,

audio clips, plots, etc.

(b) If it is a question, the QA System tries to find a skill which can
give an answer to it, and in case there is a match it is sent there.
The question goes through a full QA pipeline as that in Chapter
@ which results in an answer which can, again, take a variety of

forms: text, audio or multimedia content.

3.4 Daphne Brain

The Daphne Brain is the key piece of the whole architecture that ties ev-
erything together: its job is to forward the user requests in all the different
front-ends to the required back-end, be it voice commands, a click on a button
or just some textual instructions. Its job also includes returning the response
from the back-end to all active front-ends. This job is performed through the

skills system, as will be detailed below. It has been developed by me.

User requests are translated in the front-ends to either pure, classical client-
server HTTP requests like GET, POST, PUT or DELETE; or as a real-time
connection implemented over WebSockets. This is usually a job for a web

server, and this is exactly what the Daphne Brain is. It has been implemented

36



Chapter 3. Daphne: General architecture

using Django [108], a popular Python framework for creating web and REST
servers, using different extensions to it like Django REST Framework [109] for
easy API creation and Channels to leverage advanced features used in some
front-ends like WebSockets and HTTP /2. REST APIs are the standard way
to program APIs for web applications, and they consist on a set of what are
called end-points, which are URLs which receive an input and produce and
output. It is, in a way, similar to how a normal library API works, but the big
difference is each end-point can be on different machines, making the system

much more easily scalable.

As a critical piece of software, it is very important for it not to fail, for it can
be considered a crucial point of failure: the system becomes unresponsive
under a Brain error. This is why it is implemented as 4 different processes
which are clones and will share the incoming requests between themselves,

effectively eliminating the threat of a single critical process failing.

The Brain has a basic API implemented: the Daphne Commands API,
which consists of two end-points: GET /api/daphne/commands, which re-
turns all the voice and textual commands accepted by Daphne; and POST
/api/daphne/command, which receives a command and either defers it to one
of the skills or executes it directly if it is a general Daphne command. This
API acts as a central receiver for all the voice and natural language communi-
cations, and it uses an instance of the QA System (subsection to classify

the commands between those of a skill and those which are general.

The rest of the requests received by Daphne are handled by the skills. Each
skill is nothing more than a set of REST and WebSockets end-points which live
inside the Daphne Brain and has access to all the back-ends and data sources.
This gives a lot of flexibility when implementing them, as anything can be
done inside the end-point handler: back-ends can be called, data sources can

be accessed, and computations can be performed. At the same time, having

37



Chapter 3. Daphne: General architecture

this flexibility means it is even more important to have the Brain be resilient
to failures, as they are bound to happen. Some skills are described in the next

section.

3.5 Skills

Skills, as called by most CA, are no more than computer programs which
leverage all the functionalities available to the programmer to perform the

actual useful tasks to the end user, which in this case is the systems engineer.

In the case of Daphne, as already explained, they are implemented as in-
dependent sets of APIs inside the Daphne Brain so they can access all the
back-ends and data sources and communicate back to the front-ends. They
also have a unique Graphical Interface, although this is something which will
not be happening in future versions of Daphne, where all the skills will be

integrated into a Unified UI.

The next few subsections describe the two skills already present in the sys-
tem which have not been developed by me: iFEED, which provides all the
functionalities of [8] and the Critic, which given a design can give back sug-
gestions on how to improve it. Chapter @ describes the Historian skill, which
has been developed by me. All the skills receive and send data in the JSON

format.

3.5.1 iFEED Skill

iFEED is an interactive tool to support a systems engineer in the task of mining
the dataset of design solutions for features describing those designs which
are in regions of interest, for example the Pareto front. The job of this skill is to

provide access to all those functionalities inside Daphne which are required

38



Chapter 3. Daphne: General architecture

to perform this mining task. Everything in this skill has been developed by

Hyunseung Bang.

This Skill has a lot of end-points, separated on different groups depending on
which back-end they are accessing. There are end-points for the Architecture
Evaluation back-end, the Data Mining back-end and some for generic iFEED
functionalities, as iFEED needs to access all of them to be able to perform its

functionalities.
There are four end-points to access the Architecture Evaluation back-end:

® POST /api/vassar/get-orbit-list: This endpoint returns alist of the

different orbits in the design space.

® POST /api/vassar/get-instrument-1list: This endpointreturns a list
of the different instruments which can be assigned to the different orbits

of the architecture.

* POST /api/vassar/evaluate-architecture: This endpoint returns a
pair of doubles with the values of both the cost and the science benefit

of an architecture it receives through the POST body.

e POST /api/vassar/initialize-jess: This API needs to run once in
the beginning before all the others so the system is prepared to evaluate

all the different architectures.

A single API endpoint is available for the Data Mining back-end, POST
/api/data-mining/get-driving-features, which receives a set of bounds
to the dataset being studied which are sent to the Data Mining back-end
so the driving features of that subset can be extracted using the algorithms

described in [8].

Finally, there are five different generic iFEED end-points, but three of them

are already deprecated. The two useful end-points are:

39



Chapter 3. Daphne: General architecture

® POST /api/ifeed/venn-diagram-distance: This endpoint receives
three areas: two of circles and one of the intersection between them.
It returns the distance between the centers of the circles so that the in-
tersection area is the one requested. It is used in the iFEED front-end

for data analysis.

® POST /api/ifeed/apply-feature-expression: This endpoint applies
the feature it receives as input (as described in subsection [3.3.2) to the
iFEED GUIL

3.5.2 Critic Skill

Criticizing a design is a very specialized task in systems engineering: for a
criticism to be useful it has to provide constructive ideas on how to improve
the design, and these once again depend on the definition of a good design,
which is unique to every system. This means a lot of work is needed to create
a good critic, and Daphne is no exception. The bulk of the work in this skill

has been carried by Arnau Prat, so this section will be a summary of his work.

The Critic skill receives a system design as an input, and its output is feedback
to the user about the strengths and weaknesses of that design, along with
specific suggestions to the user about how to improve a given architecture. It
only has one single end-point, called criticize, and it runs as a WebSockets
endpoint, which receives an architecture and returns the list of criticisms for
it.

The Critic includes four different agents which create different kinds of feed-
back and suggestions: the Expert, the Historian, the Analyst and the Explorer.

All of these are explained in the following paragraphs.

The Expert agent uses known design rules written by experts in earth ob-

serving satellites system design. The rules can be considered as basic design

40



Chapter 3. Daphne: General architecture

principles or heuristics that domain experts use for designing good systems.
One example in Daphne use case is two instruments using the same frequency
for radio transmission should not be used in the same spacecraft if at least
one of them is active. All these rules are stored in the Expert Knowledge

database, described in subsection[3.2.2]

The Historian agent (not to be confused with the Historian Skill) uses the
historical database (subsection to come out with a similarity score of
the current design compared to past, successful, missions. The similarity
is computed by checking how close the instrument configurations and the
orbits are. The agent will then return the closest missions or say that none
match. The motivation for this approach is similar to that of the case-based
reasoning [110], which is one of the popular reasoning methods used in
artificial intelligence. If a mission proposed by the user is very similar to
many missions in the database, chances are that this a good or at least safe
(well-known) option. On the other hand, if there are no similar missions in the
database, there is a higher risk, as the mission appears to be a one-of-a-kind

mission with little heritage.

The Analyst agent uses the last dataset available, the Design Solutions
database (subsection [3.2.1)), to notify the user if a given design shares some
of the driving features usually found among good designs so far. A driving
feature can be any combination of design variables, such as having an instru-
ment in an orbit or having two instruments together. Having good features
is no assurance of success, but it can be helpful. Daphne can also use this
information to suggest changes to the systems engineer, based on known to

be good features.

Finally, the Explorer agent runs a few optimization passes on the user de-
sign and tells the engineer if it has found some better design in the close

neighborhood of the trade-space.

41



Chapter 3. Daphne: General architecture

All these agents are coded in a combination of Java and Python, and the
communication between themselves and with the Daphne Brain is either
done directly for the Python modules or through JPype [111] for the Java
ones. Thrift cannot be used here as everything is run in the same process,

while Thrift demands everything to be run under different processes.

3.6 Front-ends

Daphne has 3 different kinds of front-ends: the Web & Voice Visual Interfaces,
which serve as the main interfaces of the system as they provide access to
all the different skills; Daphne VR, a VR interface which is used as both a
demonstration of what could be done and as a part of an experiment; and
the Physical Embodiment, which is a robot with a screen and camera which

provides a different kind of interaction with the system.

3.6.1 Web & Voice Visual Interfaces

There are 3 different web & voice visual interfaces, one for each skill that has
been developed: the iFEED Interface, the Critic Interface and the Historian

interface.

3.6.1.1 iFEED Interface
The iFEED interface is thoroughly described in [8], as it is part of the research
being done by Hyunseung Bang for his PhD thesis.

It allows the user to work on a data-set of design solutions by finding features
which describe regions of interest of the data-set, as these features can be hints

of good designs if the region of interest contains interesting designs for the

42



Chapter 3. Daphne: General architecture

system engineer. Thus, it provides tools to select arbitrary regions of interest,
along with a design inspector which gives information on a certain design
using the functionalities from the back-end in subsection[3.3.1} a feature (filter)
creator, and a data mining interface which allows for features to be built by
the computer by using the back-end described in All the designs for

the scatter plot are obtained from the Design Solutions Database (subsection

3.2.1).

A screen-shot of this interface can be seen in figure[.5, with the whole data-set

being shown along with a region of interest and the mined features below.

Number of designs: 2204 Number of target designs: | 89

1z i i Test current feature
1oo00]E R Currently Applied Feature Expression

Zoom/Pan;
Drag-select:

9,0004 inOrbit[1000;G;] inOrbit[5000;K,H,B;] FeatureToBeAdded
RSl A . . Deselect:
5,000 AN . .

7,000

e Range Selection

AND ¥
@ {inOrbit(5000;K,H,B;]}
AND ¥

@ Placeholder for new feature

Total number of designs: 2204

Intersection: 46

Selected:89 Fealures:101

Ficure 3.5: Screen-shot of the iFEED Interface

3.6.1.2 Critic Interface

The Critic Interface is designed to allow the user to create, evaluate and get

teedback about any design (i.e. satellite constellation). It has been developed

by Arnau Prat.

43



Chapter 3. Daphne: General architecture

Expert Cumulative spacecraft data rate in oribt 2 is t0o high (0.14). Try removing an instrument
Score: 2.70

Expert Instrument D should not be in orbit 3

Expert Instrument ] should not be in orbit 4

Historian ilar missions to [A'] i orbit 1 in the database. Consider changing it

xbit 2 s JERS1 (score: 6.43/10) @

ions to ['D'] in orbit 3 in the database. Consider changing it

in orbit 4 in the database. Consider changing it
Sentinel-3 C (score: 7.14/10) @

o yst Your design doesn't have much in common with other good designs
0% o Analyst Your design doesn't h h th other good design

° o Explorer I tried a few changes and couldn't find an easy way to improve your design

FiGure 3.6: Screen-shot of the Critic Interface

Asitcanbeseenin figure the interface consists of 4 different spaces, which
take the whole screen space: the top left corner is taken by a scatter plot rep-
resentation of the design trade-space (meaning a graphical representation of
different designs along with their cost and perceived value or science benefit).
The top right corner has information produced by the Critic skill. The bottom
left one is the design building area, with a blocks in rows representation of
the design being studied at the moment. Finally, the bottom right corner
contains all the different building blocks to create a design: a creator of each
type of instrument and a button to delete any of them. This area also contains

buttons to call the Critic skill and the Architecture Evaluation back-end.

The user interaction flow for this interface is as follows: the user first creates
a design by dragging blocks to the 5 different rows and/or removing them
if needed. When the user is happy with the design, s/he can evaluate it to
see where it lays in the trade-space. Finally, s/he can ask the Critic Skill to
suggest improvements or point out weaknesses of the current design, which

are printed in the space reserved for them.

The interface also includes a tutorial that fires up the first time it is used to

44



Chapter 3. Daphne: General architecture

explain all this work-flow to potential users. It also supports the running of
experiments with human subjects by showing and hiding different parts of
the interface so different treatment groups have access to different versions

of the interface.

This interface is written in HTML, CSS and Javascript, using Tether [112]
to position the elements in the web, Shepherd [113] to create the interactive
tutorial for the application, D3.js [114] to draw the scatter plot and jQuery

[115] for miscellaneous tasks like Ajax.

3.6.1.3 Historian Interface

The Historian interface has been developed by me as a placeholder until the

unified Daphne interface is ready:.

It has a simple text field to type the historical questions the user can ask, along

with a block of white space where the response can be read.

Below all of that there are different cards with information on the questions
which can be asked from the system and different lists of values for stuff such

as missions, measurements or instrument technologies and types.

This interface also supports voice input which is mirrored in the text field
automatically, and it has voice output as well. Both features are implemented

by the annyang! [116] and the ResponsiveVoice.JS [117] libraries, respectively.

The rest of the interface is built with HTML, CSS and Javascript, with the help
of Foundation 6 [118]] and jQuery:.

A screen-shot of it is shown in figure

45



Chapter 3. Daphne: General architecture

flashing for the socialists

General commands

Let's talk about <history/ifeed/vr>

Let's <evaluate/criticize>

List of measurements

Crustal Motion

Crustal plates positioning
Geoid

‘Snow cover

Snow detection (mask)
Snow grain size

Gravity field

Gravity gradients
Magnetic field (scalar)

Snows maltin statis fwetldn

iet Af minninne

No active mode

‘The result of your action will appear here!

Cheatsheet
History mode commands
‘which missions can measure <measurement> [between

<yearl> and <year2>]?

which missions do we currently use to measure
<measurement>?

which instruments can measure <measurement> [between
<yearl> and <year2>]?

which instruments do we currently use to measure
<measurement>?

which missions have flown <technology> [between
<yearl> and <year2>]?

which missions are currently flying <technology>?

Technologies

Atmospheric chemistry
Atmospheric temperature and humidity sounders

Cloud profile and rain radars

Ficure 3.7: Historian temporal interface

3.6.2 Daphne VR

The Daphne VR interface aims to be an alternative to the Web & Voice Vi-
sual Interface and its objective is to explore the benefits of working in a VR
environment compared to the traditional desktop experience. It has been

developed by Arnau Prat.

W
i

ORBIT 1 FILTER

Ficure 3.8: Views of the VR interface

As can be seen in figure[3.8} the interface resembles a screen, which is used to

46



Chapter 3. Daphne: General architecture

show the same graphic that appears in the Critic interface, with a few shelves
below, which are the physical representation of orbits in this case. The blocks
inside each shelf represent instruments which are assigned to the spacecraft
which goes in that orbit. The other component of the interface that can be

seen is a collection of all the block representation of instruments.

‘ SCATTER PLOT ‘

o] v] |

1]

[afe]n]:]

FILTER SECTION

[<[e][e][e][e][F]
[l ][I
Hn

[]

‘ CRITIC RESULT ‘

Ficure 3.9: Design of the VR interface in planar shape

The interface has two more interactive elements, as seen in figure the
filter selection area, which is used to emulate some of the filters which can be
used on the dataset in the web interface, and the Critic result space, in which
the results from a call to the Critic Skill are shown so the user can improve

their design.

The user interacts with this interface by looking around, centering the view on
an interactive portion and clicking on it, either by using a mouse, a keyboard
or action buttons on VR headsets. A few examples of these interactions are

detailed in the following paragraphs.

To add an instrument to an orbit, 2 steps need to happen. First, the orbit in
which the user wants to place the instrument needs to be selected by looking

at the chosen shelf and then selecting it. Finally, the user needs to look at

47



Chapter 3. Daphne: General architecture

the instrument he/she wants to add in the section of the interface with all
of them and select it. This will effectively add the instrument to the wanted

orbit.

To delete an instrument, the user has to select the bin block close to all the

instruments and then keep selecting the instruments s/he wants to remove.

To update the plot shown in the screen after changing the instrument assigna-
tion, the user must select the “Update” prompt which appears when changing

anything in the shelves.

To get the information from the Critic Skill, the user must select the “Criticize”

prompt on the back of its head inside the interface.

The filter system can be turned on and off by a block in the filtering system
of the interface. The different filters available in this interface include the
“Instrument in any orbit”, “Instrument in orbit N”, “Instruments together”,
and “Instruments separated”. All of them work in a similar fashion to the
“Add instrument to orbit” filter: the user first selects the filter s/he wants to

use and then keeps selecting the instruments to put in that filter.

This interface is written in Three.js [119], a 3D library for Javascript which is
used as a high level abstraction over all 3D web technologies like WebGL [120]
and WebVR [121]. The system can only work in Google Chrome in VR mode,
as it is the only web browser which supports this feature as of September
2017. That being said, the 3D scene can be seen in any modern web browser.
It is important to note that the end user needs to have access to a Google
Cardboard, Samsung GearVR or a similar headset in order to enjoy the full
Virtual Reality experience. Apart from a mobile VR headset the user does

not require any external controllers or equipment.

48



Chapter 3. Daphne: General architecture
3.6.3 Physical Embodiment

The design of Daphne’s physical embodiment is presented in figure
This robot is built using 3D printing technology and its design is open-source

(a link to the source files is provided in the appendix chapter [A), meaning

anyone is able to build their own version of it. The design has also been done

by Arnau Prat.

Ficure 3.10: Design of the Daphne physical embodiment

The hardware architecture of the robot is presented in figure Its main
components are a Raspberry Pi, an Arduino, a 7” LCD screen, a camera, a

microphone, a speaker, two servo motors and a normal rotation motor.

SERVER RASPBERRY PI
I > LCD
ARDUINO
SERVO (LEG 1) |= MOTOR SHIELD ) CAMERA
SERVO (LEG 2) |= T MICROPHONE
POWER SUPPLY
MOTOR (BASE) |+ > SPEAKER

Ficure 3.11: Hardware of the Daphne physical embodiment

49



Chapter 3. Daphne: General architecture

The LCD screen is used to either show facial expressions or display any type
of data, as for example images or graphs. The robot also has smooth, variable
speed, pan and tilt moves. These features, together with the camera, are
used to track the user, but also to increase its expressiveness, by giving it
human gestures like nodding. The microphone and the speaker are used as
the physical input and output for Daphne voice interaction. These kind of
teatures might help improve the interaction and/or human performance in
the task at hand. Finally, the Raspberry and the Arduino act as the brain and

nerves of the robot, by driving the remaining functions.

To perform all the tasks a software architecture is needed, and it is described

in figure[3.12]

main.py
A
v  J L
screen.py conversation.py movement.py

tracking.py

A

L
daphne.ino

Ficure 3.12: Software architecture of the Daphne physical em-
bodiment

There is one module for moving the robot, which interacts with the Arduino,
one for controlling the screen and one for the audio input and output. All
these processes are controlled by the main process, which is also in charge
of sending and receiving the results and responses from the Daphne Brain

over the network. It is important to note that all these processes are running

50



Chapter 3. Daphne: General architecture

concurrently and are as non-blocking as possible, as this helps in believing

the robot is more human-like by not having awkward pauses in the middle

of interactions.

51



Chapter 4

Historian Skill

The Historian Skill has been developed by me, and because of this reason I
can detail much more of its design philosophy, and this is also why it has a

special chapter dedicated to it.

4.1 Skill overview

In the first days of Daphne, when the system was being designed, the team
agreed on building a few demonstration skills to check if the system was
being designed correctly by checking if the design included all the needed

parts for each skill to work properly.

One of these skills was the Historian Skill, whose job was one which seemed
really simple at the time: it had to answer questions about the historical
database, which had to be scraped from the internet. Some example questions
are: “which missions can measure <measurement>", “when was mission
<mission> launched” or “which missions are currently flying <technology>".
Both the scraping and the QA system were deemed as easy tasks, as there

seemed to be readily available systems for both tasks which could do the job

by simply adapting them.

52



Chapter 4. Historian Skill

I was wrong. No open-source software could do the whole job with simple
adaptations, so in the end the development of the skill took almost all of my
development time for the whole duration of the project, as can be seen in
chapter 2| with most of the failed approaches related to the systems needed

for this skill and this whole chapter dedicated to the development of the skill.

The final design of the historian skill is the following: it works as a Restricted
Domain Question Answering (RDQA) system, meaning it can only answer
a limited set of questions about a limited set of knowledge, which is fine
for the use case of answering questions about Earth Observing Missions, as
the set of questions which can be asked is pretty limited and the priority is
getting correct answers over a lot of answers. It is implemented as a Natural
Language Interface for a Database (NLIDB), as it basically parses the questions
into database queries, but using state of the art techniques instead of more
classical approaches such as regular expressions, syntax based systems or

semantic grammar systems, for which examples can be seen at [76, 75} 77].

The skill receives a raw text as input and returns another raw text as output,
to keep the interface of it as simple as possible. The processing includes
preprocessing the raw text to obtain relevant information from it, then clas-
sifying the question into one of the answerable classes by using a CNN, and
continuing with the extraction of the relevant data from the question using a
custom algorithm based on approximate string matching. After all this, the
database is queried and a response is constructed based on a template. This

response is then sent back to the user.

With the story behind the skill out of the way, this chapter of the report
explains in detail the final architecture of the Historian Skill: it begins by ex-
plaining how the natural language questions are processed so all the different
subsystems inside the skill can use the text in a more useful way (section4.2).

It continues, in section discussing how the question classifier has been

53



Chapter 4. Historian Skill

programmed. Right after that, section 4.4 describes the configuration files
format for a question type. Section {4.5|explains how the relevant features are
extracted from each question. Next, section [4.6| explains a process done to
increase the range of questions that can be asked by adding more information
from the user context. Then, section [4.7] describes the process to create the
database query based on the question type. Finally, section4.§ discusses how
a natural language response is created from all the gathered data and the

database query results.

4.2 Text processing

Text processing of the raw input, which is the voice input as processed by
the Speech To Text system or text from the input field of the interface, is
done by leveraging the models in the spaCy Python library, whose mission
is “to make cutting-edge NLP (Natural Language Processing) practical and

commonly available” [122].

The decision to use spaCy instead of more complex and complete solutions
like NLTK or OpenNLP [123, 124] or even creating a custom solution in-
house was taken after doing a comparison run between the three where
it was seen that the needed functionality existed in all three solutions and
spaCy was the only system that provided a fast enough computation to make
the system work in almost real-time. It must be noted that one of spaCy
goals is to provide fast algorithms, so it makes sense that it is actually faster
than the other two solutions, whose main objectives are completeness and

reconfigurability rather than raw speed.

The very simple interface of spaCy had the potential of turning into a pain

point as Daphne might have needed more than it could deliver in terms of

54



Chapter 4. Historian Skill

customization, but these fears have been dissipated with the complete system,

for which spaCy provides more than enough functionality.

This means the raw string is processed by a single call to a function provided
by the spaCy API, and this turns the raw text into a spaCy document, with
all the words tokenized, with part-of-speech tagging, sentence segmentation,

dependency parsing, entity recognition and integrated word vectors.

For every token (word/number/space/punctuation) a lot of information is
provided, such as its lemma (the word you would find in a dictionary), a
lower-case version of the word, all its prefixes and suffixes, if it is a number
or a real word, if it looks like common computer related strings (emails and
urls), its part-of-speech tag, its syntactic dependencies and even the perceived

sentiment, among other features.

Not all this information is needed for the Historian skill, but some of it, like
the lemmas, the classifications and the lower-case versions come in handy for

most of the pipeline.

4.3 Question classifier

With all the information about the question already obtained, the next step
in the skill pipeline is classifying the question into a type of those which can

be answered by the skill.

Classifying a text into a set of different classes is one of the classic Natural
Language Processing problems, due to its various uses, including news classi-
tiers, sentiment analysis, spam detectors, language identification and others,
such as the use case of our Historian skill, where every question is assigned a
type which defines the query to the database and which data will need to be

extracted from the question in order to successfully perform the query.

55



Chapter 4. Historian Skill

Text (sometimes called document) classification has been studied since the
dawn of writing: every library in the world has a class (or topic) ordering of
all its books, and the main problem for most of history has been to decide
which is the “correct” set of classes. It has been, until the last 50 years, a
mostly human task, performed by people who specialize in classifying texts.
In the last 50 years, the types of texts being classified have changed a lot, and
the content being produced has grown exponentially, prompting researchers
and companies to invest money and time researching algorithms and Al
techniques which classify sets of texts into sets of categories or classes, as it is

no longer feasible to have humans do most of these tasks.

As this is a recurrent problem when dealing with text, a lot of algorithms and
techniques have been developed since the dawn of computing [125]: rule-
based systems, naive bayes, k-nearest neighbors, support vector machines,
decision trees, logistic regressions and, for the last 3-4 years, neural networks,
of the convolutional and recurrent varieties. It is easy to see that almost all Al
techniques have been applied to the problem, all with the goal of improving
the accuracy of the last method used while striving to maintain or reduce the

amount of work needed to train the algorithm.

Focusing on neural networks, the state of the art evolved from using the rel-
atively simple CNNs [126], to augmenting them [78] with word embeddings
such as word2vec [127] or GloVe [128] to using Recurrent Neural Networks

(RNNs) with LSTM [129] and attention mechanisms [81].

When deciding what algorithm to use, I tried to strive for a balance between
accuracy, training performance and evaluation performance, as well as imple-
mentation ease, while being as close to the state of the art as possible. As seen
in [81], the accuracy of the neural networks is usually higher than all other
algorithms before them. But training RNNSs takes much longer than training

CNNs, due to the more sequential nature of RNNs over CNNs, which makes

56



Chapter 4. Historian Skill

RNN much harder to parallelize. This difference in training time combined
with a less acute loss of accuracy ended up tipping the balance in favor of
the CNN with word embeddings model in [78]. Its implementation has been
relatively fast to train and for the task at hand its accuracy has been beyond
my expectations, as it is very hard to find sentences which are misclassified.
The accuracy for the question classifier for 10 question types is around 95%
using cross-validation, which is pretty high compared to other systems in the
literature. This might be due to overfitting or the problem being easier than

most, but there is not enough evidence to confirm any of the two hypothesis.

The implementation of the algorithm is based on [130], with all the due
changes to adapt the system to a multi-class classifier as needed by the his-
torian skill, for example by changing the input loader and adding support
for a multi-class output. The whole subsystem is implemented in Tensorflow
[131], a Python library developed by Google to simplify the development
of different machine learning workflows. The training component lives in
the historical_db repository and the actual classifier is running inside the
Historian Skill API on the Daphne Brain. It is also important to note the
hyper-parameter tuning done to the model, with the size of the word filters
set to 3, 4 and 5 words and the number of filters per word size set to 100.
According to [79], these values give consistently good results on different

datasets.

Returning to the input, it is known that machine learning algorithms, and
specially neural networks, need big datasets to be able to perform with great
accuracy. The problem is in the span of this project there was no time to collect
a big enough dataset of questions which could be asked, so a compromise so-
lution was found: use a question generator which can add random variations
of questions of the same type, with even random words put in the middle

which make no sense so the algorithm can be trained on a quasi-human input.

57



Chapter 4. Historian Skill

For the actual training, a set of 2190 examples is generated, with different
numbers for each question depending on how many variations of the question
there can be. Then, before they are fed into the neural network, they are
cleaned by lemmatizing each word and then removing the so-called stop
words: words which do not help in NLP tasks, and which are selected from a
list already included in spaCy with some exceptions such as the wh- question
words, which are really important in this classification task. Finally, the
questions are fed into the neural network as a vector of word vectors computed

with word2vec.

This approach has given good results, as the system testers have a hard
time finding questions that can fool the neural network into misclassifying
a question, while at the same time keeping the time to add a new function
relatively low, as the only two steps needed are generating a new set of
examples with the random generator and retraining the network, which is
already programmed to get the number of output classes from the number
of files with examples which is provided to it. Training the network takes

around 30 minutes on a Nvidia GTX 1050.

4.4 Definition of a Question Type

When programming the analyst back-end and the Historian skill, I realized
that the system needed to be easy to expand, in the sense that adding new
questions to the pool of answerable questions should be a process as easy as
possible so anyone with some database knowledge could do it. This meant
creating a system based on files which could be created and edited without
any intervention from me. This software architecture is sometimes referred as

data-driven design, as software systems are programmed to read information

58



Chapter 4. Historian Skill

from data files, meaning they only need to be programmed once and can have

totally different behaviors depending on the files read.

In Daphne, and the Historian skill in particular, these files are the definitions
of the different question types, meaning each file describes a question type

completely.
The information contained in each of these files is:

* Parameters: The first field of the file is an array containing all of the
parameters that can be found in a question type, including a name for
each parameter to refer to it later, the type of the parameter to know how
to extract it later on, some extra data to be passed to the extract function,
and whether the parameter is mandatory for the question type or not,

as some question types allow for optional parameters.

* Query: The second field of the file contains the different building blocks
(or templates) of the database query. It includes the “always” section,
which is executed all the time, followed by an array of optional filters and
sub-queries which depend on some of the optional parameters being
present. Then there is the “end” portion, which is always appended at
the end of the query. The last two sections are the “result_type” and
the “result_field”, which define if the result is a number, a text or a
list, for example, and tell the system which field of all those returned
by the database is the needed result. All the sections are written using
the SQLAIchemy declarative syntax, which makes it much easier to add

new parts to the query compared to the regular SQL syntax.

* Response: The last field of the file contains a Python template [132] on
how to build the response which is going to be sent back to the user.
This template allows to put any HTML on it, but as images or audio

cannot be generated as a response for now, only text is usually written

59



Chapter 4. Historian Skill

here. All parameters along with the query result can be used in building

the response.

These files are written in JSON format so they are lightweight and easy to

understand, and an example is provided in figure

"params”

{ "name": " urement”, "type": "measurement", "options": "", "mandatory"
{ "name" "type" "options" in", "mandatory"

g
{ "name" "type": "year", "options": "end", "mandatory"” }
|
“query”
{

"always": "session.query(models.Mission).join(models.Instrument, models.Mission.instruments).filter(models.Instrumen
"gpt”
[
{ "cond": " ", "query part": ".filter(models.Mission.eol date > data "
{ "cond": "y "query part": ".filter(models.Mission.launch date < d 2']
]
"end": ".orde (models.Mission.launch_date)"
"result_ty "
"result field name"

}
)"}

"response": "The missions that measure ${measurement} are ${response}"

FiGure 4.1: Example of a question type JSON file

4.5 Feature extraction

Once the skill and the back-end know which parameters need to be present
in the question being processed, the next step is to actually extract them. The

algorithm works as follows:

1. For each parameter, an extract function is called depending on the type
of the parameter. These functions can be of three types: it can use the
named entity recognition of spaCy to obtain the required features from
the question if spaCy already implements the algorithm for that type
of feature; it can be a sub-string matcher based on the lists of possible
values for each parameter type being extracted from the database; or
it can be just a sub-string search to see if there are sub-strings in the
question which comply with certain conditions. For example, the years
are extracted by checking if there is any sub-string that looks like a year

according to spaCy and then saving all of them in order in case more

60



Chapter 4.

Historian Skill

than one is needed. For missions, measurements and technologies the

process is more complex, and is described in the following steps:

(a)

(b)

(©)

(d)

First, a list with all the possible values is obtained from the

database.

Then, all the elements in the list are compared to the whole ques-
tion using Sellers” algorithm [107], and the result is the same list,
but with the elements ordered by the maximum similarity of each
of them to the question. The maximum similarity is computed
by checking the edit distance for each element against all the sub-
strings with the same size in the question string and then com-

puting a ratio with the following formula: max_similarity =

length_element—edit_distance(element,substring)) The

max (Vsubstrmgs TengHh_clenent

list is then cropped to only the elements with a high enough max

similarity (0.75 for now).

The list is cropped to only the number of required elements of the

same type if it is longer than that.

The list is then reordered by the appearing position of each element
in the question and then saved in that order for the rest of the

pipeline.

2. Once the extraction is done, the list of features is passed through a

process function which applies certain modifications to each feature de-

pending on its type. For example, years are converted into specific dates

depending on an optional parameter which is written in the JSON. Most

other features remain roughly the same, with some minor adjustments

like the elimination of spaces at the beginning and at the end of the

string or some changes in the capitalization.

61



Chapter 4. Historian Skill

3. All the extracted and processed features are sent back to the main

pipeline so they can continue their journey to the answer.

4.6 Data augmentation

Even with all the data collected from the question, sometimes people consider
some information to be common knowledge and so it does not appear in the
question. One clear example is the meaning of “now”. While people know
which is the date of today, the Historian skill will not unless someone tells
him so. This is the reason why this step exists in the pipeline. Its job is to
simply add some of this implicit contextual information humans have and

expect the computer to have when interacting with it.

For now the system only adds the current date as contextual information,
as this is the only extra information needed to answer all the programmed

questions.

4.7 Database querying

The next step in the pipeline is querying the database to obtain the required
information from it. The data needed in this step is all the augmented data
from the question along with all the query templates already mentioned
in section There are a few sub-steps to it, which are described in the

following list:

1. First, the “always” template is run through the Python template engine

to obtain the first part of the query which is going to be run.

2. Then, for each “optional” template, the condition of activation is

checked against all the available data, and if it evaluates to true then

62



Chapter 4. Historian Skill

the template is run through the engine and appended to the end of the
query.
3. Finally, the “end” portion of the query is run through the engine and it

is appended to the end of the query.

With the query fully constructed, it is run in the database and its results are

obtained.

With the results in hand, the portion of the answer which depends on them
is built. Responses can be of completely different types, and each type has a

completely different process to build itself.

For example, if the response is a list, all the query results are appended in a
string with separating commas. In case it is a date, the date is written in a
human readable form, as the database stores it as a UNIX timestamp. The
last implemented case is for orbits, as the orbit related questions have their
answers stored in a format which can encode all the information from the
decision tree in section and this means a parser needed to be built in

order to decode that information into a human readable format.

4.8 Answer construction

Finally, the last step in the pipeline is actually building the answer the user
will see in his/her screen. The answer is built running the answer template
corresponding with the question type on the template engine with all the
augmented data from the question together with the response from the last

step.

The result can sometimes sound awkward to a human, and future improve-

ments are discussed in Chapter

63



Chapter 5

Limitations and Future work

While developing the whole system, a lot of ideas were postponed as they
were considered not basic for the project to actually be in a working state.
Some difficult to solve problems were also identified, which are listed as

limitations of the project.

5.1 Limitations

The three main limitations of the system as of now are the following:

* Not testing the system: There has been no formal test with humans
to see if the system really accomplishes its intended benefits. There
is anecdotal evidence that it does, but it cannot be considered hard
evidence. This limitation is going to be solved soon after this report
is finished, as some tests are planned as part of a journal paper to be

published in the next months.

* Scaling: Adding a new question type or a command to the system
implies retraining the whole statistical model for classification of the
input, which takes time. Also, the process of actually adding and pro-
gramming the question is hard, as it requires knowledge on the internal

structure of the database, SQL and SQLAlchemy declarative syntax,

64



Chapter 5. Limitations and Future work

which is out of reach for most non-programmers. An improved work-
flow would help much in this, but it is difficult to develop and thus is

really far away in the list of tasks to do.

* Generalization: The system is not thought out to be reused in other
domains, even inside system design. A lot of the work done here has
been specific to the task at hand, and it is not clear how much of the
project can be generalized without almost starting form scratch. One
idea is to make the whole QA pipeline a standalone project, with a
command line interface which allows the end-user to only run a single
command to obtain a completely functional QA server, but this requires

time and more thought, which I do not have right now.

5.2 Future work

On a brighter note, these are features which can actually be developed in a

short time frame and for which I have time and a plan:

¢ Unified web interface: Right now Daphne is running on three different
web interfaces: iFEED, Critic and Historian. A new, unified interface
with the functionality of all the other interfaces coupled together has
already been planned and designed on paper, which means only the

actual coding of it is left to do.

¢ Better command classification: The Daphne Voice and Text Command
Classification is now implemented as a system of ifs and elses which
changes a state machine so the commands are actually routed to the
correct skill. The original idea was to reuse parts of the Historian skill
so the commands are routed automatically using a statistical model

instead of the solution implemented now, which is just a placeholder.

65



Chapter 5. Limitations and Future work

¢ Dialog system: The system should be able to maintain a conversation
with the user, keeping the context of what has already been said and
being able to answer follow-up questions from the user on questions
asked before. One of the main steps forward for Daphne is to add some
kind of cognitive architecture like those presented in section [I.1|behind

it, so this project is already starting.

* Visual answers: The system only answers questions with textual re-
sponses, but there are no limitations on the kinds of output the system
can emit. And some questions are better answered with plots, images
or videos. Actually adding these kinds of responses is then something

which can be worked out in the future.

* More human answers: No one wants to hear “Mission X was launched
in 2030” when it is still 2017, as it might make you feel old. Building a
more robust answer system which can actually output the correct verb
tense when talking about dates among other common human details is

a project which might be worth pursuing.

66



Chapter 6

Conclusion

The aim of this final degree thesis was to develop a fully functional CA for
helping system engineers design EOSSs. This main objective has been fully
completed with the development of the whole Daphne architecture, including
all the front-ends, the Daphne Brain, the back-ends, the data sources, and,
most importantly, the three demo skills: the Historian Skill, the iFEED Skill
and the Critic Skill.

Until now, most CA have been developed for commercial general usage. But
there has been a recent trend of specializing these tools, as the problem of
cognitive overload of humans is becoming common in a lot of fields, with de-
sign and aerospace being two of them. While there have been CA developed
for both aerospace and design, as seen in section[1.2} Daphne is the first CA to
support the task of designing EOSS. It also tries to set a precedent by making
the system completely open, which is something sorely missed in aerospace,

where most technologies are completely locked down.

The work done on the QA pipeline for the Historian Skill is also interesting
as it has combined the latest trends on NLP using Deep Learning to create
a NLIDB which is more flexible and easier to configure than most existing

systems, but can still be made easier if there is some more time investment.

67



Chapter 7

Personal thoughts

Through the development of the whole Daphne architecture along with the
Historian skill I have had the chance of explaining in detail how the research
and software building processes work with the failed approaches chapter and
the two development chapters. Iam specially happy with Chapter[2} as it tells
a story which is usually hidden from the majority of people, who can only
judge a project by its success or failure. I feel this has been said a lot of times,
but every success is built on a mountain of failures, and this project is no

exception.

I did not expect to have to work with a team in this project, but having had to
do so has been a good experience at tackling what people sometimes call soft
skills such as time management, scheduling, and communication with other
people in a team: these are important for any career but are almost never
taught, which is strange considering most career advancements depend on

them.

As a final note, finishing this project and thesis brings a sense of closure for
me, as, after more than five years of hard work doing two bachelor degrees
at the same time, this is the end result of the whole effort. I could not be

prouder of it, as I have been able to use a lot of knowledge I learned along

68



Chapter 7. Personal thoughts

the way in both my degrees and I feel this is like putting the icing on the very

sweet cake that has been my experience for the years.

69



Appendix A

Source code of the project

The source code for the whole project can be found under different reposito-

ries in Github, under the seakers group: https://www.github.com/seakers.

Daphne Brain: https:/ /github.com/seakers/daphne_brain

iFEED: https:/ /github.com/seakers /iFEED

VASSAR: https:/ /github.com/seakers/VASSAR

Data Mining: https://github.com/seakers/data-mining

VR Interface: https:/ /github.com/seakers/daphne-VR

Physical Embodiment: https://github.com/seakers/daphne-robot
Historical DB: https:/ /github.com/seakers/historical_db

Daphne Current Interface: https://github.com/seakers/daphne-

visual

Daphne Unified Interface: https://github.com/seakers/daphne-

interface

70


https://www.github.com/seakers
https://github.com/seakers/daphne_brain
https://github.com/seakers/iFEED
https://github.com/seakers/VASSAR
https://github.com/seakers/data-mining
https://github.com/seakers/daphne-VR
https://github.com/seakers/daphne-robot
https://github.com/seakers/historical_db
https://github.com/seakers/daphne-visual
https://github.com/seakers/daphne-visual
https://github.com/seakers/daphne-interface
https://github.com/seakers/daphne-interface

References

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

National Aeronautics and Space Administration. NASA Technology
Roadmaps: Introduction, Crosscutting Technologies, and Index. Tech. rep.
July. 2015.

Daniel Selva et al. “Distributed and Federated Satellite Systems: What
is Needed to Move Forward?” In: Journal of Aerospace Information Sys-
tems 14.August (2017), pp. 412—-438. por: 10.2514/1.1010497.
National Aeronautics and Space Administration. NASA Technology
Roadmaps TA 11: Modeling, Simulation, Information Technology, and Pro-
cessing. Tech. rep. May. 2015.

Daniel Selva and Edward F. Crawley. “Integrated assessment of pack-
aging architectures in earth observing programs”. In: IEEE Aerospace
Conference Proceedings. 2010. por: 10.1109/AER0.2010.5446885.

T. Spear and NASA. NASA faster, better, cheaper task final report. Tech.
rep. Washington: NASA Headquarters, 2000, pp. 1-18.

R. W. Kingsbury, D. O. Caplan, and K. L. Cahoy. “Implementation
and validation of a CubeSat laser transmitter”. In: Proceedings of SPIE.
Vol. 9739. 2016, pp. 1-9. por: 10.1117/12.2217990.

Daniel Selva and Edward F. Crawley. “VASSAR: Value assessment of
system architectures using rules”. In: Aerospace Conference, 2013 IEEE.
IEEE, 2013, pp. 1-21. por: [10. 1169,/AERO. 2013 . 6496936!

Hyunseung Bang and Daniel Selva. “iFEED: Interactive Feature Ex-

traction for Engineering Design”. In: ASME 2016 International Design

71


https://doi.org/10.2514/1.I010497
https://doi.org/10.1109/AERO.2010.5446885
https://doi.org/10.1117/12.2217990
https://doi.org/10.1109/AERO.2013.6496936

REFERENCES

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Engineering Technical Conferences and Computers and Information in En-
gineering Conference. 2016, pp. 1-11.

Robert E Thompson et al. “Disaggregated Space System Concept Op-
timization: Model-Based Conceptual Design Methods”. In: Systems
Engineering 18.6 (2015), pp. 549-567. por: 10.1002/sys.21310.

Sreeja Nag, Steven P Hughes, and Jacqueline Le Moigne. “Streamlining
the Design Tradespace for Earth Imaging Constellations”. In: AIAA
Space 2016. 2016, pp. 1-17. por:|10.2514/6.2016-5561.

Mark W Maier and Eberhardt Rechtin. The Art of Systems Architecting.
3rd ed. Boca Raton, FL, USA: CRC Press, 2009.

Douglas C. Engelbart. Augmenting human intellect: a conceptual frame-
work. Tech. rep. Washington D.C.: Stanford Research Institute, 1962,
p- 144.

Johann Hauswald et al. “Sirius: An Open End-to-End Voice and Vision
Personal Assistant and Its Implications for Future Warehouse Scale
Computers”. In: Twentieth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems - ASPLOS ’15.
2015, pp. 223-238. por: [10. 1145/2694344 . 2694347,

Johann Hauswald et al. “DjiNN and Tonic”. In: ACM SIGARCH Com-
puter Architecture News 43.3 (2015), pp. 27—40. por: 10.1145/2872887.
2749472.

Google. Photos | Google Blog. 2017. urL: https://www.blog.google/
products/photos/ (visited on 09/10/2017).

Gerhard Weiss. Multiagent Systems. 2nd ed. Cambridge, Mas-
sachusetts, USA: The MIT Press, 2013, p. 920.

Karen Myers et al. “An intelligent personal assistant for task and time
management”. In: AI Magazine 28.2 (2007), pp. 47-62. por: 10.1609/

aimag.v2812.2039.

72


https://doi.org/10.1002/sys.21310
https://doi.org/10.2514/6.2016-5561
https://doi.org/10.1145/2694344.2694347
https://doi.org/10.1145/2872887.2749472
https://doi.org/10.1145/2872887.2749472
https://www.blog.google/products/photos/
https://www.blog.google/products/photos/
https://doi.org/10.1609/aimag.v28i2.2039
https://doi.org/10.1609/aimag.v28i2.2039

REFERENCES

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

John Grant, Sarit Kraus, and Donald Perlis. “A logic-based model
of intention formation and action for multi-agent subcontracting”. In:
Artificial Intelligence 163.2 (2005), pp. 163-201. por: 10.1016/j .artint.

2004.11.003.

Apple. iOS - Siri - Apple. 2017. UrL: https://www.apple.com/ios/
siri/|(visited on 09/10/2017).

Google. Google Assistant - Your own personal Google. 2017. urL: https:

//assistant.google.com/ (visited on 09/10/2017).

Amazon. Alexa. 2017. urL: https://developer.amazon.com/alexa
(visited on 09/10/2017).

Microsoft. Cortana | Your Intelligent Virtual & Personal Assistant |

Microsoft. 2017. urL: https://www.microsoft.com/en-us/windows/
cortana (visited on 09/10/2017).

MIT Technology Review. Facebook’s Perfect, Impossible Chatbot -
MIT Technology Review. 2017. urL: https://www.technologyreview.

com/s/604117/facebooks-perfect-impossible-chatbot/ (visited
on 09/10/2017).

D. A. Ferrucci. “Introduction to “This is Watson””. In: IBM Journal of
Research and Development 56.3.4 (2012), pp. 1-15. por: |10.1147/JRD.

2012.2184356.

IBM. Watson Products and Services - IBM Watson. 2017. urL: https://
www . ibm.com/watson/products-services/|(visited on 09/10/2017).
Petr Baudis. “YodaQA : A Modular Question Answering System
Pipeline”. In: POSTER 2015-19th International Student Conference on
Electrical Engineering. 2015, pp. 1156-1165.

Aaron Helsinger, Michael Thome, and Todd Wright. “Cougaar: a scal-
able, distributed multi-agent architecture”. In: 2004 IEEE International
Conference on Systems, Man and Cybernetics. Vol. 2. 2004, pp. 1910-1917.

por: 10.1109/ICSMC. 2004.1399959.

73


https://doi.org/10.1016/j.artint.2004.11.003
https://doi.org/10.1016/j.artint.2004.11.003
https://www.apple.com/ios/siri/
https://www.apple.com/ios/siri/
https://assistant.google.com/
https://assistant.google.com/
https://developer.amazon.com/alexa
https://www.microsoft.com/en-us/windows/cortana
https://www.microsoft.com/en-us/windows/cortana
https://www.technologyreview.com/s/604117/facebooks-perfect-impossible-chatbot/
https://www.technologyreview.com/s/604117/facebooks-perfect-impossible-chatbot/
https://doi.org/10.1147/JRD.2012.2184356
https://doi.org/10.1147/JRD.2012.2184356
https://www.ibm.com/watson/products-services/
https://www.ibm.com/watson/products-services/
https://doi.org/10.1109/ICSMC.2004.1399959

REFERENCES

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Di Wang and Eric Nyberg. “CMU OAQA at TREC 2016 LiveQA : An
Attentional Neural Encoder-Decoder Approach for Answer Ranking”.
In: Text REtrieval Conference (TREC) 2016. 2016, pp. 1-6.

Ben Goertzel and Gino Yu. “A cognitive APl and its application to AGI
intelligence assessment”. In: International Conference on Artificial General
Intelligence. 2014, pp. 242-245. por: 10.1007/978-3-319-09274-4_25.
John McDermott. “R1: A rule-based configurer of computer systems”.
In: Artificial intelligence 19.1 (1982), pp. 39-88.

Caroline C. Hayes et al. “Intelligent Support for Product Design: Look-
ing Backward, Looking Forward”. In: Journal of Computing and Informa-
tion Science in Engineering 11 (2011), pp. 1-9. por: 10.1115/1.3593410.
Ashok K. Goel et al. “Cognitive, collaborative, conceptual and creative
- Four characteristics of the next generation of knowledge-based CAD
systems: A study in biologically inspired design”. In: CAD Computer
Aided Design 44.10 (2012), pp. 879-900. por: 10.1016/j.cad.2011.03.
010.

William C Regli, Simon Szykman, and Ram D Sriam. “The role of
knowledge in next-generation product development systems”. In: Jour-
nal of computing and information Science in Engineering 1 (2001), pp. 3—
11.

Yoshinobu Kitamura et al. “Deployment of an ontological framework
of functional design knowledge”. In: Advanced Engineering Informatics
18.2 (2004), pp. 115-127.

Stephanie A Guerlain et al. “Interactive critiquing as a form of deci-
sion support: An empirical evaluation”. In: Human Factors 41.1 (1999),
pp- 72-89.

John Eddy and Kemper E Lewis. “Visualization of Multidimensional
Design and Optimization using Cloud Visualization”. In: Proceedings

of DETC’02 (2002), pp. 899-908. por: [18. 1115/DETC2002/DAC-34130.

74


https://doi.org/10.1007/978-3-319-09274-4_25
https://doi.org/10.1115/1.3593410
https://doi.org/10.1016/j.cad.2011.03.010
https://doi.org/10.1016/j.cad.2011.03.010
https://doi.org/10.1115/DETC2002/DAC-34130

REFERENCES

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Gary M Stump et al. “Design Space Visualization and Its Application
to a Design by Shopping Paradigm”. In: Proceedings of DETC’03. 2003,
pp- 795-804.

Po Wen Chiu and Christina L. Bloebaum. “Hyper-Radial Visualization
(HRV) method with range-based preferences for multi-objective deci-
sion making”. In: Structural and Multidisciplinary Optimization 40.1-6
(2010), pp. 97-115. por: 10.1007/s00158-009-0361-9.

Nathan Knerr and Daniel Selva. “Cityplot: Visualization of High-
Dimensional Design Spaces with Multiple Criteria”. In: Journal of Me-
chanical Design 138.9 (2016), pp. 1-53. por:|10.1115/1.4033987.

PW Chiu and CL Bloebaum. “Visual Steering for Design Generation
in Multi-objective Optimization Problems”. In: 47th AIAA Aerospace
Sciences Meeting. January. 2009, pp. 1-14. por: 10.2514/6.2009-1167.
Gary Stump et al. “Visual Steering Commands for Trade Space Ex-
ploration: User-Guided Sampling With Example”. In: Journal of Com-
puting and Information Science in Engineering 9.4 (2009), pp. 1-10. por:
10.1115/1.3243633.

Xin Yan et al. “Work-Centered Visual Analytics to Support Multidis-
ciplinary Design Analysis and Optimization”. In: 12th AIAA Avia-
tion Technology, Integration, and Operations (ATIO) Conference and 14th
AIAA/ISSM. 2012. por:110.2514/6.2012-5662.

S Watanabe, Y Chiba, and M Kanazaki. “A proposal on analysis sup-
port system based on association rule analysis for non-dominated
solutions”. In: 2014 IEEE Congress on Evolutionary Computation (CEC).
2014, pp. 880-887. por:|10.1109/CEC. 2014.6900650.

Guido Cervone, Pasquale Franzese, and Allen P.K. Keesee. “Algorithm
quasi-optimal (AQ) learning”. In: Wiley Interdisciplinary Reviews: Com-

putational Statistics 2.2 (2010), pp. 218-236. por: 10. 1002 /wics.78.

75


https://doi.org/10.1007/s00158-009-0361-9
https://doi.org/10.1115/1.4033987
https://doi.org/10.2514/6.2009-1167
https://doi.org/10.1115/1.3243633
https://doi.org/10.2514/6.2012-5662
https://doi.org/10.1109/CEC.2014.6900650
https://doi.org/10.1002/wics.78

REFERENCES

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

Allen Newell. Human Problem Solving. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1972.

Daniel Keim et al. Mastering The Information Age — Solving Problems with
Visual Analytics. Jan. 2010.

N W Hirschi and D D Frey. “Cognition and complexity: An experiment
on the effect of coupling in parameter design”. In: Research in Engineer-
ing Design 13 (2002), pp. 123-131. por: 10.1007/s00163-002-0011-3.
Edward A Feigenbaum, Bruce G Buchanan, and Joshua Lederberg. On
generality and problem solving: A case study using the DENDRAL program.
Tech. rep. Stanford University CS Department, 1970.

Edward H Shortliffe and Bruce G Buchanan. “A model of inexact rea-
soning in medicine”. In: Mathematical Biosciences 23.3 (1975), pp. 351-
379. por: https://doi.org/10.1016/0025-5564(75)90047-4.
DARPA. PAL - The PAL Framework. 2011. urL: https://pal.sri.com/
(visited on 09/10/2017).

Adam Cheyer and David Martin. “The Open Agent Architecture”. In:
Autonomous Agents and Multi-Agent Systems 4.1-2 (2001), pp. 143-148.
por: 10.1023/A:1010091302035.

Adam Cheyer, Jack Park, and Richard Giuli. “IRIS: Integrate. Relate.
Infer. Share”. In: Proceedings of the 2005 International Conference on Se-
mantic Desktop Workshop. Aachen, Germany, Germany, 2005, pp. 59—
73.

Michael Freed et al. “RADAR : A Personal Assistant that Learns to
Reduce Email Overload”. In: Twenty-Third AAAI Conference on Ar-
tificial Intelligence. 2008, pp. 1287-1293. por: |10.1093/acprof:oso/
9780199606375.003.0001.

Wolphram Alpha LLC. Wolfram|Alpha: Computational Knowledge
Engine. 2017. urL: http://www.wolframalpha.com/ (visited on

09/10/2017).

76


https://doi.org/10.1007/s00163-002-0011-3
https://doi.org/https://doi.org/10.1016/0025-5564(75)90047-4
https://pal.sri.com/
https://doi.org/10.1023/A:1010091302035
https://doi.org/10.1093/acprof:oso/9780199606375.003.0001
https://doi.org/10.1093/acprof:oso/9780199606375.003.0001
http://www.wolframalpha.com/

REFERENCES

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Mycroft Al Inc. Mycroft Al - Open Source Artificial Intelligence Voice
Assistant. 2017. urL: https://mycroft.ai/ (visited on 08/31/2017).
Clarity Lab. Lucida. 2017. urL: http://lucida.ai/ (visited on
08/31/2017).

Reiner Onken and Anton Walsdorf. “Assistant systems for aircraft
guidance: Cognitive man-machine cooperation”. In: Aerospace Science
and Technology 5.8 (2001), pp. 511-520. por: 10.1016/S1270-9638(01)
01137-3.

Diana Donath, Andreas Rauschert, and Axel Schulte. “Cognitive as-
sistant system concept for multi-UAV guidance using human operator
behaviour models”. In: Humous’10. 2010.

E. Ozyurt and B. Déring. “A Cognitive Assistant for Supporting Air
Target Identification on Navy Ships”. In: IFAC Proceedings Volumes.
Vol. 45. 2. TFAC, 2012, pp. 469—474. por: 10.3182/20120215-3-AT-
3016.00082.

G. Tokadli. Cognitive Assistant | ACSL. 2017. urL: http://www.imse.
iastate.edu/acsl/cognitive-assistant/ (visited on 09/10/2017).
Kimberle Koile. “An Intelligent Assistant for Conceptual Design”.
In: Design Computing and Cognition '04. Ed. by John S Gero. Dor-
drecht: Springer Netherlands, 2004, pp. 3-22. por: 10.1007/978-1-
4020-2393-4_1.

P. Floss and J. Talavage. “A knowledge-based design assistant for in-
telligent manufacturing systems”. In: Journal of Manufacturing Systems
9.2 (1990), pp. 87-102. por: 10.1016,/0278-6125(90)90024-C.
Lawrence Mandow and Jose Luis Perez-De-La-Cruz. “Sindi: An intelli-
gent assistant for highway design”. In: Expert Systems with Applications
27.4 (2004), pp. 635-644. por: 10.1016/j.eswa.2004.06.005.

77


https://mycroft.ai/
http://lucida.ai/
https://doi.org/10.1016/S1270-9638(01)01137-3
https://doi.org/10.1016/S1270-9638(01)01137-3
https://doi.org/10.3182/20120215-3-AT-3016.00082
https://doi.org/10.3182/20120215-3-AT-3016.00082
http://www.imse.iastate.edu/acsl/cognitive-assistant/
http://www.imse.iastate.edu/acsl/cognitive-assistant/
https://doi.org/10.1007/978-1-4020-2393-4_1
https://doi.org/10.1007/978-1-4020-2393-4_1
https://doi.org/10.1016/0278-6125(90)90024-C
https://doi.org/10.1016/j.eswa.2004.06.005

REFERENCES

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Kazjon Grace et al. “Personalised Specific Curiosity for Computational
Design Systems”. In: Design Computing and Cognition '16.2017, pp. 593—
610. por: 10.1007/978-94-017-9112-0. arXiv: 1011.1669v3.

Tony McCaffrey and Lee Spector. “An approach to human-machine
collaboration in innovation”. In: Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 2012 (2017), pp. 1-15. por:|10. 1017/
S0890060416000524.

J.S. Gero and W. Peng. “A situated agent-based design assistant”. In:
Computer-Aided Architectural Design Research in Asia Conference. 2004,
pp- 145-157.

W Peng and JS Gero. “Computer-aided design tools that adapt”. In:
Computer-Aided Architectural Design Futures. 2007, pp. 417—-430.
Hannah Bast and Elmar Haussmann. “More Accurate Question An-
swering on Freebase”. In: Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management. 2015, pp. 1431-
1440. por: 10.1145/2806416.2806472.

Ana-Maria Popescu et al. “Modern natural language interfaces to
databases: Composing Statistical Parsing with Semantic Tractability
Ana-Maria”. In: Proceedings of the 20th international conference on Compu-
tational Linguistics - COLING "04. 2004, pp. 1-7. por: 10.3115/1220355.
1220376,

Yunyao Li, Huahai Yang, and H. V. Jagadish. “NaLIX: an interactive
natural language interface for querying XML”. In: Proceedings of the
2005 ACM SIGMOD international conference on Management of data -
SIGMOD ’05. 2005, p. 900. por: 10.1145/1066157.1066281.

Yongjun Zhu, Erjia Yan, and Il Yeol Song. “A natural language interface
to a graph-based bibliographic information retrieval system”. In: Data
and Knowledge Engineering July 2016 (2017), pp. 1-17. por: 10.1016/7 .

datak.2017.06.006.

78


https://doi.org/10.1007/978-94-017-9112-0
http://arxiv.org/abs/1011.1669v3
https://doi.org/10.1017/S0890060416000524
https://doi.org/10.1017/S0890060416000524
https://doi.org/10.1145/2806416.2806472
https://doi.org/10.3115/1220355.1220376
https://doi.org/10.3115/1220355.1220376
https://doi.org/10.1145/1066157.1066281
https://doi.org/10.1016/j.datak.2017.06.006
https://doi.org/10.1016/j.datak.2017.06.006

REFERENCES

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

B Sujatha and S Vishwanadha Raju. “Natural Language Query Process-
ing for Relational Database using EFFCN Algorithm”. In: International
Journal of Computer Sciences and Engineering 4.02 (2016), pp. 49-53.
Scott Reed and Nando de Freitas. “Neural Programmer-Interpreters”.
In: International Conference on Learning Representations. 2016, pp. 1-13.
arXiv:(1511.06279.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. “Neural Pro-
grammer: Inducing Latent Programs with Gradient Descent”. In: In-
ternational Conference on Learning Representations 2015. 2015, pp. 1-18.
por1:10.1016/j.physa.2015.05.013. arXiv: 1511.04834.

Manju Mony et al. “An Overview of NLIDB Approaches and Imple-
mentation for Airline Reservation System”. In: International Journal of
Computer Applications 107.5 (2014), pp. 36—41. por: http://dx.doi.
org/10.5120/18750-0006.

Neelu Nihalani, Sanjay Silakari, and Mahesh Motwani. “Natural lan-
guage Interface for Database: A Brief review”. In: International Journal
of Scientific and Computational Intelligence 8.2 (2011), pp. 600-608.
Yunyao Li and Davood Rafiei. “Natural Language Data Management
and Interfaces”. In: Proceedings of the 2017 ACM International Conference
on Management of Data - SIGMOD ’17. 2017, pp. 1765-1770. por: 10.
1145/3035918.3054783.

Yoon Kim. “Convolutional Neural Networks for Sentence Classifica-
tion”. In: Conference on Empirical Methods in Natural Language Processing.
Aug. 2014. arXiv: 1408.5882.

Ye Zhang and Byron Wallace. “A Sensitivity Analysis of (and Practi-
tioners” Guide to) Convolutional Neural Networks for Sentence Clas-

sification”. In: arXiv (2015). arXiv: 1510.03820.

79


http://arxiv.org/abs/1511.06279
https://doi.org/10.1016/j.physa.2015.05.013
http://arxiv.org/abs/1511.04834
https://doi.org/http://dx.doi.org/10.5120/18750-0006
https://doi.org/http://dx.doi.org/10.5120/18750-0006
https://doi.org/10.1145/3035918.3054783
https://doi.org/10.1145/3035918.3054783
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1510.03820

REFERENCES

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. “A Hierarchical Neu-
ral Autoencoder for Paragraphs and Documents”. In: arXiv (2015). por:
10.3115/v1/P15-1107. arXiv:|1506.01057.

Zichao Yang et al. “Hierarchical Attention Networks for Document
Classification”. In: Proceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies. 2016, pp. 1480-1489. por: |10.18653/v1/N16-1174.
arXiv:1606.02393.

Franck Dernoncourt, Ji Young Lee, and Peter Szolovits. “Neural Net-
works for Joint Sentence Classification in Medical Paper Abstracts”.
In: Proceedings of the 15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Volume 2, Short Papers. 2016. por:
10.18653/v1/E17-2110. arXiv:1612.05251.

Nico Schlaefer et al. “Semantic Extensions of the Ephyra QA System
for TREC 2007”. In: Sixteenth Text REtrieval Conference (TREC). 2007.
Nico Schlaefer. OpenEphyra Code Repository. 2014. urL: https://
github.com/TScott]/OpenEphyra (visited on 08/31/2017).

D. Povey et al. “The Kaldi speech recognition toolkit”. In: IEEE Work-
shop on Automatic Speech Recognition and Understanding. IEEE Signal
Processing Society, 2011.

OpenCV Team. OpenCV library. 2017. urL: http://opencv.org/| (vis-
ited on 08/31/2017).

Jens Lehmann et al. “DBpedia - A large-scale, multilingual knowledge
base extracted from Wikipedia”. In: Semantic Web 6.2 (2015), pp. 167-
195. por:10.3233/SW-140134.

Kurt Bollacker et al. “Freebase: a collaboratively created graph
database for structuring human knowledge”. In: SIGMOD 08 Proceed-
ings of the 2008 ACM SIGMOD international conference on Management
of data. 2008, pp. 1247-1250. por: |10.1145/1376616.1376746.

80


https://doi.org/10.3115/v1/P15-1107
http://arxiv.org/abs/1506.01057
https://doi.org/10.18653/v1/N16-1174
http://arxiv.org/abs/1606.02393
https://doi.org/10.18653/v1/E17-2110
http://arxiv.org/abs/1612.05251
https://github.com/TScottJ/OpenEphyra
https://github.com/TScottJ/OpenEphyra
http://opencv.org/
https://doi.org/10.3233/SW-140134
https://doi.org/10.1145/1376616.1376746

REFERENCES

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Text REtrieval Conference (TREC). Question Answering Collec-
tions. 2002. urL: http://trec.nist.gov/data/qa.html| (visited on
09/05/2017).

Ellen M Voorhees. “The TREC-8 Question Answering Track Report”.
In: Natural Language Engineering 7.04 (1999), pp. 77-82. por: 10.1017/
S1351324901002789.

Arvind Neelakantan et al. “Learning a natural language interface with
neural programmer”. In: arXiv (2016). arXiv: 1611.08945.

Astro Teller and Manuela Veloso. “Neural programming and an inter-
nal reinforcement policy”. In: Late breaking papers at the genetic program-
ming 1996 conference. Stanford University Bookstore. 1996, pp. 186—
192.

Sandia National Laboratories. Jess, the Rule Engine for the Java
Platform. 2013. urL: https://herzberg.ca.sandia.gov/ (visited on
09/15/2017).

Daniel Selva. “Knowledge-intensive global optimization of Earth ob-
serving system architectures: a climate-centric case study”. In: SPIE Re-
mote Sensing. Vol. 9241. 2014, pp. 1-22. por: doi:10.1117/12.2067558.
CEOS. THE CEOS DATABASE: MISSION, INSTRUMENTS AND MEA-
SUREMENTS. 2017. urL: http://database.eohandbook.com/ (vis-
ited on 09/16/2017).

Scrapinghub. Scrapy | A Fast and Powerful Scraping and Web Crawling
Framework. 2017. urr: https://scrapy.org/ (visited on 09/16/2017).
SQLAlchemy. SQLAlchemy. 2017. urL: https://www.sqlalchemy.
org/ (visited on 09/16/2017).

RDFLib Team. RDFLib is a Python library for working with RDF. 2013.
URL: https://github.com/RDFLib/rdflib (visited on 09/16/2017).
Daniel Selva, Bruce Cameron, and Edward F. Crawley. “A rule-based

method for scalable and traceable evaluation of system architectures”.

81


http://trec.nist.gov/data/qa.html
https://doi.org/10.1017/S1351324901002789
https://doi.org/10.1017/S1351324901002789
http://arxiv.org/abs/1611.08945
https://herzberg.ca.sandia.gov/
https://doi.org/doi:10.1117/12.2067558
http://database.eohandbook.com/
https://scrapy.org/
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://github.com/RDFLib/rdflib

REFERENCES

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

In: Research in Engineering Design 25.4 (2014), pp. 325-349. por: |10.
1007/s00163-014-0180-x.

Apache Software Foundation. Apache Thrift - Home. 2017. urL: https:
//thrift.apache.org/ (visited on 09/15/2017).

Rakesh Agrawal, Tomasz Imielifiski, and Arun Swami. “Mining associ-
ation rules between sets of items in large databases”. In: ACM SIGMOD
Record 22.2 (1993), pp. 207-216. por: |10.1145/170036.170072.
Rakesh Agrawal and Ramakrishnan Srikant. “Fast algorithms for min-
ing association rules”. In: Proceedings of the 20th International Conference
on Very Large Data Bases. Vol. 1215. 1994, pp. 487-499.

Gary G Hendrix et al. “Developing a natural language interface to
complex data”. In: ACM Transactions on Database Systems (TODS) 3.2
(1978), pp. 105-147.

Gary G Hendrix. “Natural-language interface”. In: Computational Lin-
guistics 8.2 (1982), pp. 56-61.

Jonathan Berant et al. “Semantic Parsing on Freebase from Question-
Answer Pairs”. In: Proceedings of EMNLP. October. 2013, pp. 1533—
1544.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. “Towards a the-
ory of natural language interfaces to databases”. In: Proceedings of the
8th international conference on Intelligent user interfaces - IUI "03. 2003,
p-327. por: 10.1145/604045.604120.

Peter H Sellers. “The theory and computation of evolutionary dis-
tances: Pattern recognition”. In: Journal of Algorithms 1.4 (1980),
pp- 359-373. por: 10.1016/0196-6774(80)90016-4.

Django Software Foundation. The Web framework for perfectionists with
deadlines | Django.2017. urL: https://www.djangoproject.com/ (vis-

ited on 09/15/2017).

82


https://doi.org/10.1007/s00163-014-0180-x
https://doi.org/10.1007/s00163-014-0180-x
https://thrift.apache.org/
https://thrift.apache.org/
https://doi.org/10.1145/170036.170072
https://doi.org/10.1145/604045.604120
https://doi.org/10.1016/0196-6774(80)90016-4
https://www.djangoproject.com/

REFERENCES

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Tom Christie. Home - Django REST framework. 2017. urL: http://www.
django-rest-framework.org/ (visited on 09/15/2017).

L D Xu. “Case based reasoning”. In: IEEE Potentials 13.5 (1994), pp. 10—
13. por:110.1109/45.464654.

Steve Menard and Luis Nell. [Pype documentation - [Pype 0.6.2 documen-
tation.2014. urL: http: //jpype.readthedocs.io/en/latest/ (visited
on 09/15/2017).

HubSpot. Tether. 2017. urL: http://tether.io/ (visited on
09/15/2017).

HubSpot. shepherd.2017. urL: http: //github.hubspot. com/shepherd/
(visited on 09/15/2017).

Mike Bostock. D3.js - Data-Driven Documents. 2017. urL: https://
d3js.org/ (visited on 09/15/2017).

The jQuery Foundation. jQuery. 2017. urL: http://jquery.com/ (vis-
ited on 09/15/2017).

Tal Ater. annyang! Easily add speech recognition to your site. 2017. URL:
https://www.talater.com/annyang/ (visited on 09/16/2017).
LearnBrite. ResponsiveVoice.]S. 2017. urL: https://responsivevoice.
org/ (visited on 09/16/2017).

ZURB. The most advanced responsive front-end framework in the world.
| Foundation. 2017. urL: http://foundation.zurb.com/ (visited on
09/16/2017).

Ricardo Cabello. three.js - Javascript 3D library. 2017. urL: https://
threejs.org/ (visited on 09/15/2017).

Khronos Group. WebGL Overview - The Khronos Group Inc. 2017. URL:
https://www.khronos.org/webgl/ (visited on 09/15/2017).

W3C. WebVR Spec Version List. 2017. urL: https://w3c.github.io/
webvr/ (visited on 09/15/2017).

83


http://www.django-rest-framework.org/
http://www.django-rest-framework.org/
https://doi.org/10.1109/45.464654
http://jpype.readthedocs.io/en/latest/
http://tether.io/
http://github.hubspot.com/shepherd/
https://d3js.org/
https://d3js.org/
http://jquery.com/
https://www.talater.com/annyang/
https://responsivevoice.org/
https://responsivevoice.org/
http://foundation.zurb.com/
https://threejs.org/
https://threejs.org/
https://www.khronos.org/webgl/
https://w3c.github.io/webvr/
https://w3c.github.io/webvr/

REFERENCES

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

Explosion Al spaCy - Indusrtial-strength Natural Language Processing in
Python. 2017. urL: https://spacy.io/ (visited on 09/16/2017).
NLTK Project. Natural Language Toolkit. 2017. urL: http://www.nltk.
org/ (visited on 09/16/2017).

Apache Software Foundation. Apache OpenNLP. 2017. urL: https://
opennlp.apache.org/ (visited on 09/16/2017).

Aurangzeb Khan et al. “A review of machine learning algorithms
for text-documents classification”. In: Journal of advances in information
technology 1.1 (2010), pp. 4-20.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A con-
volutional neural network for modelling sentences”. In: arXiv (2014).
arXiv:|1404.2188.

Tomas Mikolov et al. “Efficient estimation of word representations in
vector space”. In: arXiv (2013). arXiv: 1301.3781.

Jeffrey Pennington, Richard Socher, and Christopher Manning.
“Glove: Global vectors for word representation”. In: Proceedings of
the 2014 conference on empirical methods in natural language processing
(EMNLP). 2014, pp. 1532-1543.

Kai Sheng Tai, Richard Socher, and Christopher D Manning. “Im-
proved semantic representations from tree-structured long short-term
memory networks”. In: arXiv (2015). arXiv:|1503.00075.

Denny Britz. Implementing a CNN for Text Classification in Ten-
sorFlow - WildML. 2015. urL: http://www.wildml.com/2015/12/

implementing-a-cnn-for-text-classification-in-tensorflow (vis-

ited on 09/16/2017).
Martin Abadi et al. “Tensorflow: Large-scale machine learning on het-

erogeneous distributed systems”. In: arXiv (2016). arXiv: 1603 .04467.

84


https://spacy.io/
http://www.nltk.org/
http://www.nltk.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1503.00075
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow
http://arxiv.org/abs/1603.04467

REFERENCES

[132] Python Software Foundation. 6.1. string - Common string operations -
Python 3.6.2 documentation. 2017. urL: https://docs.python.org/3/

library/string.html#template-strings (visited on 09/16/2017).

85


https://docs.python.org/3/library/string.html#template-strings
https://docs.python.org/3/library/string.html#template-strings

	Abstract
	Resum
	Resumen
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Motivation
	Background
	Approach

	Failed approaches
	Reusing an already existing CA system architecture
	Lucida
	Mycroft
	Next steps

	Reusing existing QA systems
	YodaQA
	Aqqu
	Next steps

	Using unsupervised learning for creating database queries
	Neural programmers


	Daphne: General architecture
	Overview
	Data sources
	Design Solutions database
	Expert Knowledge database
	Historical database
	Overview
	Data scraping
	Data processing
	Data mining
	Ontology


	Back-ends
	Architecture Evaluation
	Data Mining
	QA System

	Daphne Brain
	Skills
	iFEED Skill
	Critic Skill

	Front-ends
	Web & Voice Visual Interfaces
	iFEED Interface
	Critic Interface
	Historian Interface

	Daphne VR
	Physical Embodiment


	Historian Skill
	Skill overview
	Text processing
	Question classifier
	Definition of a Question Type
	Feature extraction
	Data augmentation
	Database querying
	Answer construction

	Limitations and Future work
	Limitations
	Future work

	Conclusion
	Personal thoughts
	Source code of the project
	References

