
Design and Development of a Cognitive
Assistant for the Architecting of Earth

Observing Satellites
by

Antoni Virós Martin

September 2017

Submitted to the faculty of the Barcelona School of Informatics (FIB)

of Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

in Partial Fulfillment of the Requirements for the

Bachelor Degree in Informatics Engineering - Computing Specialization

Under the guidance of

Daniel Selva Valero, Cornell University

Department of Mechanical and Aerospace Engineering

Cornell University, Ithaca, New York

“Artists transform the average into the extraordinary, engineers should do the

opposite”

i

Abstract
The aim of this thesis is to develop a cognitive assistant for architecting earth

observation satellite systems. The motivation for such a system comes from

both the recent commercial success of different cognitive assistants as well as

the existing challenges in system architecture in general, including earth ob-

servation satellite systems. This system has been developed using a layered

architecture, where the first layer is a set of front-ends which are deployed

on different client machines, including computers, virtual reality headsets,

and physical embodiments. The next layer is a server which distributes the

requests the user makes from all the front-ends to the different back-ends,

which are the ones responsible for performing the basic functionalities of the

system. A system of skills, pieces of software which provide the functionali-

ties the end user uses, is built on top of this server. Finally, the back-ends and

the skills use different data sources to perform their functionalities. This re-

port describes the whole architecture of the system, with special emphasis on

the “Historical Database” and the “Historian Skill”, which I have developed

by myself, unlike other parts of the systemwhere the development effort was

shared. The final result of this thesis is Daphne, the first open-source cog-

nitive assistant to support the high-level design of earth observation satellite

systems by helping reduce the cognitive load of the systems engineer.

ii

Resum
L’objectiu d’aquest treball de fi de grau és desenvolupar un assistent cognitiu

per a dissenyar sistemes de satèl·lits d’observació terrestre. La motivació per

crear aquest sistema prové tant del recent èxit comercial de diversos assistents

cognitius com dels reptes existents en el disseny de sistemes en general, en els

que s’inclou el de sistemes de satèl·lits d’observació terrestre. El sistema s’ha

dissenyat ambuna arquitectura de capes, la primera de les quals és un conjunt

d’interfícies implementades en diferents màquines client com ordinadors,

cascs de realitat virtual i encarnacions físiques (robots). La següent capa és

un servidor que distribueix les sol·licituds de l’usuari des de les interfícies

cap als diferents backends (processadors dorsals), que són els responsables

de dur a terme les funcionalitats bàsiques del sistema. Construït també

sobre aquest servidor hi ha un sistema d’habilitats, peces de programari que

proveeixen les funcionalitats que utilitza l’usuari. Finalment, els backends i

les habilitats utilitzen diverses fonts d’informació per dur a terme les seves

funcions. Aquest informedescriu l’arquitectura completa del sistema, ambun

èmfasi especial en la “Base de Dades Històrica” i l’“Habilitat d’Historiador”,

que hedesenvolupat personalment, a diferència d’altres parts del sistema, que

s’han desenvolupat de manera compartida. El resultat final d’aquest projecte

és Daphne, el primer assistent cognitiu de codi obert que dóna suport al

disseny d’alt nivell de sistemes de satèl·lits d’observació terrestre tot ajudant

a la reducció de la càrrega cognitiva de l’enginyer de sistemes.

iii

Resumen
El objetivo de este trabajo de fin de grado es desarrollar un asistente cognitivo

para diseñar sistemas de satélites de observación terrestre. La motivación

para crear este sistema proviene tanto del reciente éxito comercial de distin-

tos asistentes cognitivos como de los retos existentes en el diseño de sistemas

en general, que incluye el de satélites de observación terrestre. El sistema

se ha diseñado con una arquitectura de capas, la primera formada por un

conjunto de interfaces que se ejecutan en diferentes máquinas cliente como

ordenadores, cascos de realidad virtual y encarnaciones físicas (robots). La

siguiente capa es un servidor que distribuye las solicitudes del usuario desde

las interfaces hacia los diferentes backends, que son los responsables de llevar

a cabo las funciones básicas del sistema. Sobre el servidor se ha construido un

sistema de habilidades, piezas de software que proveen las funcionalidades

que utiliza el usuario. Finalmente, los backends y las habilidades utilizan

distintas fuentes de información para llevar a cabo sus funciones. Este in-

forme describe la arquitectura completa, con un énfasis especial en la “Base

de Datos Histórica” y la “Habilidad deHistoriador”, que he desarrollado per-

sonalmente, a diferencia de otras partes del sistema que se han desarrollado

de forma compartida. El resultado de este proyecto es Daphne, el primer

asistente cognitivo de código abierto que apoya al diseño de alto nivel de

sistemas de satélites de observación terrestre ayudando a la reducción de la

carga cognitiva del ingeniero de sistemas.

iv

Acknowledgements
In the first place, my thanks go to my advisor, Daniel Selva, for helping me

develop this project while at the same time helping me adapt to living in the

US and being a great advisor altogether.

In the second place, I would like to thank all of the Daphne team: Hyunseung

Bang,ArnauPrat, AmritKwatra, andRia Singh for helping theproject become

a reality so fast.

I also have to thank all the different sources of funding which have allowed

me to do this project in theUSA: the TFG scholarship fromCFIS and Fundació

Cellex, the MOBINT scholarship from Generalitat de Catalunya, and Cornell

University.

Finally, this project has been funded in part by the following National Sci-

ence Foundation grant: NSF CMMI 1635253 “Improved human-computer

interaction for the design of complex systems”.

v

Contents

Abstract ii

Resum iii

Resumen iv

Acknowledgements v

Contents vi

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Background . 4

1.3 Approach . 8

2 Failed approaches 10

2.1 Reusing an already existing CA system architecture 10

2.1.1 Lucida . 11

2.1.2 Mycroft . 12

2.1.3 Next steps . 13

2.2 Reusing existing QA systems 13

2.2.1 YodaQA . 14

2.2.2 Aqqu . 15

2.2.3 Next steps . 15

vi

2.3 Using unsupervised learning for creating database queries . . 16

2.3.1 Neural programmers . 16

3 Daphne: General architecture 18

3.1 Overview . 18

3.2 Data sources . 19

3.2.1 Design Solutions database 20

3.2.2 Expert Knowledge database 21

3.2.3 Historical database . 22

3.2.3.1 Overview . 22

3.2.3.2 Data scraping 23

3.2.3.3 Data processing 27

3.2.3.4 Data mining 28

3.2.3.5 Ontology . 29

3.3 Back-ends . 30

3.3.1 Architecture Evaluation 31

3.3.2 Data Mining . 32

3.3.3 QA System . 34

3.4 Daphne Brain . 36

3.5 Skills . 38

3.5.1 iFEED Skill . 38

3.5.2 Critic Skill . 40

3.6 Front-ends . 42

3.6.1 Web & Voice Visual Interfaces 42

3.6.1.1 iFEED Interface 42

3.6.1.2 Critic Interface 43

3.6.1.3 Historian Interface 45

3.6.2 Daphne VR . 46

3.6.3 Physical Embodiment 49

vii

4 Historian Skill 52

4.1 Skill overview . 52

4.2 Text processing . 54

4.3 Question classifier . 55

4.4 Definition of a Question Type 58

4.5 Feature extraction . 60

4.6 Data augmentation . 62

4.7 Database querying . 62

4.8 Answer construction . 63

5 Limitations and Future work 64

5.1 Limitations . 64

5.2 Future work . 65

6 Conclusion 67

7 Personal thoughts 68

A Source code of the project 70

References 71

viii

List of Figures

3.1 Overview of Daphne architecture 18

3.2 Historical database schema . 24

3.3 Decision tree for the data mining algorithm 29

3.4 Small portion of the ontology 30

3.5 Screen-shot of the iFEED Interface 43

3.6 Screen-shot of the Critic Interface 44

3.7 Historian temporal interface . 46

3.8 Views of the VR interface . 46

3.9 Design of the VR interface in planar shape 47

3.10 Design of the Daphne physical embodiment 49

3.11 Hardware of the Daphne physical embodiment 49

3.12 Software architecture of the Daphne physical embodiment . . 50

4.1 Example of a question type JSON file 60

ix

To my parents and my sister

x

Chapter 1

Introduction

1.1 Motivation

Architecting Earth Observing Satellite Systems (EOSS) such as the NASA A-

Train or the NOAA Polar weather system is a challenging task, and it will

likely get harder as we demand missions that are more affordable, reliable,

robust and which can generate more and better data products using less

resources.

NASA’s technology roadmap for technology area “TA 11: Modeling, Sim-

ulation, Information Technology, and Processing”, recognizes this problem

as it describes a need for improved “Analysis Tools for Mission Design”.

Specifically, the document states that current tools are thought for monolithic

missions and only take into account small parts of the system at a time [1].

This limits their ability to consider new trends on mission design, which in-

clude distributed, fractionated, or heterogeneous systems [2], and creates lost

opportunities on designs which are not even considered due to the partial

analysis. [3]

This trend towards more distributed missions can be seen in the latest mis-

sions flown by major space agencies, such as ESA’s Earth Explorers (e.g.

SMOS, Cryosat) and NASA’s Earth Science System Pathfinders (e.g. Calipso,

1

Chapter 1. Introduction

CloudSat, and more recently CYGNSS and TROPICS). These missions have

two things in common: the mass and the number of instruments of each

satellite have been reduced compared to the larger monolithic missions of the

early 2000’s (e.g., Envisat, UARS, Terra) [4] and most of them involve some

sort of coordination among multiple assets to achieve the desired functional-

ity (e.g., constellations, clusters, trains) [2]. Two commonly cited advantages

of such distributed architectures are the increase in reliability and robustness

achieved by reducing the number of single points of failure in the system, and

the improved affordability as individual units become smaller and less costly

and leverage miniaturized commercial off-the-shelf components [5]. On the

other hand, the need for coordination among assets in distributed systems

may lead to increased complexity in terms of position and attitude control as

well as inter-satellite communications. [6]

Thus, improved tools are needed to architect these complex constellations,

clusters, and trains, as there is a need to account for the entire system as

opposed to a single satellite during the early design process. There has been

some research in this area [7, 8, 9], including tools curretly being developed

by NASA like TAT-C [10]. One shortcoming of these tools is that they pro-

vide limited cognitive support to the users, who can suffer from information

overload when analyzing large, high-dimensional design spaces (a typical

formulation of an EOSS architecting problem defines billions of valid design

alternatives).

Indeed, system architecting remains mostly an art rather than a science, even

20 years after the publication of the foundational work in the field by Rechtin

and Maier [11]. This is due, mainly, to the fact that it is a task that requires

creativity and adaptability and dealingwith deep uncertainty and ambiguity,

and these abilities are hard, if not impossible, to compartmentalize and stan-

dardize. This does notmean that parts of the process can not be automated; in

2

Chapter 1. Introduction

fact quantitative tools such as simulations and optimization have their space

in systems architecture to help select the preferred system configuration and

alleviate some of the well-known cognitive biases and limitations of humans.

To counter this increase in cognitive difficulty, intelligent agents called Cog-

nitive Assistants (CA) have been studied for the last 20 years. Their objective,

as well as that of most decision support tools developed, is “augmenting

human intellect”, as told by D.C. Engelbart [12] in one of the first works in

human-computer interaction (HCI) back in 1962. What makes CA different

from other intelligent agents in use is the types andmodes of interaction with

the user, as well as the use of cognitive architectures. Most CA send and

receive information to/from the user by means of natural language, either

through a voice or text-based interface. Some of them also can take image

inputs, like Lucida [13, 14], or Google Photos Assistant [15]. Another big

difference with other intelligent agents is the fact that some CA can take the

initiative and act on what they think the user wants, by using different cog-

nitive architectures [16] like Belief-Desire-Intention (BDI) [17], Logic-based

agents [18], Reactive agents [9] or Layered architectures combining different

models. The explicit use of some model of the user’s cognitive process is

arguably the most distinctive trait of modern CA.

The last few years have seen an exponential increase of usage of CA, as

commercial systems have been developed by many large software companies

to help do mundane tasks faster [19, 20, 21, 22, 23]. IBM has also reused parts

of IBM Watson [24] to create the Watson Cloud [25], a set of CA APIs. There

are also some research-focused CA [13, 14, 26, 27, 28, 29], some of which are

open-source.

Motivated by the challenges of system architecture in general and architecting

EOSS in particular, and inspired by the success of these commercial CA, an

opportunity was identified to explore a mixed-initiative approach to this task

3

Chapter 1. Introduction

and thus develop Daphne, the first CA to support the high-level design of

EOSS.

This report explains in detail how the Daphne system was built, including

some failed approaches which ended up leading to the final design. It then

goes on to explain the software architecture: all its different front-ends; the

Brain, a piece of software that distributes the tasks between the different

sub-systems; the different back-ends which do the “heavy work”; the data

sources fromwhich the back-ends obtain the data to work with; and the skills

on top of the Brain which provide all the high-level functionalities that the

end user sees. The report then continues with a detailed description of the

Historian skill, as it was the one to which I devoted the most time. Finally, the

limitations, future work and conclusions of the whole project are presented.

1.2 Background

Intelligent tools have been used to support the design of complex systems

since the dawn of the computing era, like [30] or others as seen in [31, 32].

These tools can take different forms, which include intelligent Computer

Aided Design (CAD) systems [33], knowledge databases [34], design assis-

tants [8] and design critics [35]. Since Daphne is centered on the first stages

of design, sometimes referred as conceptual design (or system architecture

in the case of complex systems), we are going to focus this first part of the

background review on this kind of tools.

Most tools for the first stages of engineering design are catered towards help-

ing the human performing the design task instead of substituting him/her,

and enhancing their cognitive abilities. They usually take the shape of inter-

active visualization and decision support tools which allow for the analysis

of the different design alternatives, and which have the capacity to handle

4

Chapter 1. Introduction

the thousands to billions of options which can exist for a design problem.

Examples of such tools include [36, 37, 38, 39]. Some of the visualization

tools allow the users to alternate between and compare different views of

the data (e.g., decision space vs objective space, or 2D slices of the objective

space), highlight architectures sharing certain features, and reduce the ob-

jective space search to a much more manageable one [36, 37, 40, 41]. Other

tools utilize unsupervised machine learning algorithms such as manifold

learning, feature selection, and clustering to help users visualize solutions in

a high-dimensional space [39, 42]. To further reduce the cognitive load of

system engineers, one of the main objectives of the tool in this paper, other

tools combine visualization with data mining algorithms that extract useful

knowledge or insights, often in the form of simple logical rules with an if-

then structure, such as “IF any spacecraft in the architecture weighs more

than 3,000kg, THEN the architecture is likely to have low cost-efficiency” [43,

44, 8]. The use of logical rules as data structure for these insights has a long

tradition in artificial intelligence, and is motivated by evidence that not only

are logical rules easy to understand by humans, but they may also be the

way human experts actually solve complex problems [45]. But even with all

the work in reducing the information overload [46, 47], often the amount of

data is still so large that it is hard to manage. This means there is a need to

further support the systems engineer to help him or her direct their attention

to specific portions of the dataset or other aspects of the problem, depending

on relevance and other factors, and this is where CA come into play.

CAs (also called intelligent personal assistants or IPA in some of the literature)

have a long story: starting with NLS from Engelbart back in 1962 [12], there

has been a continuous stream of them: DENDRAL [48], MYCIN [49], DARPA

PAL [50], OAA [51], IRIS [52], RADAR [53] or CALO [17]. More recently, as

voice recognition software and natural language processing have advanced

5

Chapter 1. Introduction

to an almost usable level, commercial alternatives have appeared, such as

IBM Watson [24, 25], Wolfram Alpha [54], Siri [19], Google Assistant [20],

Microsoft Cortana [22], Amazon Alexa [21], Facebook M [23] or Mycroft [55].

There has also been research on them, resulting in software such as Lucida

[13, 14, 56], Cougaar [27] or OpenCog [29]. All these systems share the fact

that the interaction is done either by natural language or through pictures and

that all of them are generalist: they try to answer as many queries as possible

from the user using a plethora of data sources, and some of themhelp the user

with personal organization by reading emails, setting appointments and, in

general, making the use of the system where they are simpler. But generalist

CAs are of no usewhen the task at hand is very specialized. Thus, specialized

CAs in the fields of aerospace and design are described next.

Most CAs in aerospace are thought out to be used by humans who are pi-

loting one of the many vehicles which use either air or space as a medium

of navigation: be it planes, helicopters, UAVs or space vehicles. Examples

of these assistants include CAMA, which is an intelligent assistant for ensur-

ing a pilot’s situational awareness during a flight [57]. The CA is capable of

understanding the flight situation and combine that with the intent of the

pilot to keep a human-like communication with him/her to ensure their situ-

ational awareness. In the case of traffic conflict, it signals warning signs and

generates proposals on how to resolve the conflict. A similar type of assistant

for multi-UAV guidance have also been developed [58]. This system also

helps the pilot of multiple UAV systems by telling the pilot when something

strange might be happening in one of the missions and trying to keep the

pilot engaged in all of the missions without getting him to a point of informa-

tion overload. COGAS is another intelligent assistant, and supports crew of

a combat information center in a Navy ship [59]. COGAS combines multiple

sources of information to perform tasks such as obtaining and displaying

6

Chapter 1. Introduction

various track data from various sensors and radars, and identifying an un-

known object around the Naval ship. One very recent project in this field is

[60], which is a CA thought for astronauts who are on missions where real

time communication with Earth is not feasible, meaning they need to have

cognitive assistance with them to solve most of the problems which might

arise without help from Earth.

On the other hand, CAs for design are closer to Daphne in the sense that all

of them are thought out to help the systems engineer come up with a good

design in the field where they are applied. TAC [61], for example, does a

trade-space exploration by following the commands of different stakehold-

ers. In [62], a rule-based system is used to provide recommendations on

manufacturing technology designs. There is also [63], where an expert sys-

tem is used to evaluate alternatives on highway building, having the user

interact by choosing from all the proposed alternatives. A much more recent

effort, PQE [64], tries to model the user curiosity and creativity so it can come

up with design alternatives the user might not have thought of, with the

goal of helping the user think out of the box. Another recent work is [65],

where human and computer synergies are studied so the final designs are

more innovative. There has also been work in making existing design tools

adapt their own functionalities depending on their use [66, 67]: one result is

an email classifier which learns from how the user classifies its emails, while

the other result is a more intelligent version of the Optimization Toolbox of

MATLABwhich can learn what kind of optimization algorithm is needed for

different design problems.

The last part of this section is centered on Question Answering Systems such

as the Historian Skill from Daphne. As long as there has been AI there have

been QA systems, and most CAs have one, including all the commercial ones

referenced before. Examples of current open-source research-focused QA

7

Chapter 1. Introduction

systems and frameworks include OAQA [28], YodaQA [26] and Aqqu [68].

All these QA systems are built to answer simple questions on broad domains,

which is something not needed for Daphne, which requires answering com-

plex questions in a specific domain. This is the reason why the Historian Skill

is implemented as a Natural Language Interface for a Database (NLIDB), a

special kind of Restricted Domain QA system in which all the questions are

translated into database queries. A few notable NLIDBs are PRECISE [69] or

NALIX [70], but there are more recent efforts such as [71, 72, 73, 74, 75] as

well as others as seen in [76, 77].

Finally, neural networkmodels have beenused for the text classification inside

the skill. The model used is [78], with the parameter tuning recommended in

[79] but there are a few more models which are even more up to date [80, 81,

82] but require higher computational power due to the fact that the training

is much less prone to parallelization for a small performance benefit.

1.3 Approach

The objective of this project, as its title states, is to design and develop the

software architecture for a CA for architecting Earth Observation Satellite

Systems.

To achieve this objective, a team was formed, and the project has been de-

veloped as a collective effort. This means that, while most of the design of

the software architecture ended up being on my shoulders, some parts of

the development effort went into other people’s. Although the chapters are

organized following the project structure, who did what is accounted for in

each section inside them.

8

Chapter 1. Introduction

The rest of the report will try to be both a general explanation of the whole

project and at the same time a description of the work done by myself. It is

organized as follows: Chapter 2 explains all the different approaches which

were tried during the development of the project, why they were not chosen

and what was learned from them. Chapter 3 is an overview of the whole

system. Then the report gets to Chapter 4, where the Historian Skill, the one I

devoted the most time to, is explained in detail. Next, Chapter 5 develops the

limitations of the system and the futureworkwhich can be done on it. Finally,

Chapter 6 wraps the whole project up, along with a few personal thoughts in

Chapter 7.

9

Chapter 2

Failed approaches

Personally, I feel that putting this section in the report is a reminder that

research is not always a straight path to success, and for every small step that

tries to push forward the state of the art there are a lot of attempts that simply

utterly fail. This is why I think letting other people know not only of what

works but what does not is important to save time for future researchers who

might think a certain approach has not been tested yet. I believe the fact that

most research papers only explain the way forward without explaining all

the found dead ends is a one-way street to lost time in research.

After this personal statement, here I detail the three failed approaches which

ended up leading to the final design of Daphne. They are ordered as I

tried them during development, so a trend of more general to more specific

approaches can be seen.

2.1 Reusing an already existing CA system archi-

tecture

When beginning a project, and specially a software project, the main task

during literature review is finding software which already fulfills the needs

10

Chapter 2. Failed approaches

of the project and has a license that allows reusing it while expanding or

limiting its capabilities to fit the exact needs of the users. Nobody wants to

reinvent the wheel, as that is a waste of time and resources which can end

with more buggy solutions than the already existing ones.

So I did what was expected: I started searching for cognitive and intelli-

gent assistants which could be reused for Daphne and I found two viable

alternatives, both open-source with permissive enough licenses. These two

solutions were Lucida [13, 14, 56] and Mycroft [55]. The reasons to choose

these two are that, apart from being open-source, they have a very similar

architecture which in turn inspired that of Daphne, and both of them have

been developed recently, which is usually a good thing when trying to run

them on a computer, although nothing is always as easy as it seems.

2.1.1 Lucida

Lucida [13, 14, 56] is an IPA developed by the Clarity Lab at the University

of Michigan. It is a complete CA solution, with Question Answering capa-

bilities for factoid questions using OpenEphyra [83, 84], along with Speech

Recognition using Kaldi [85], and even Image Recognitionwith OpenCV [86].

It also has the ability to add other services which leverage these three basic

functionalities.

The main problem with this system is one which I consider very important:

the ease of installation. The whole system can only be installed and run fully

under an Ubuntu 14.04 system, and this means in less than 2 years it will not

run in any non-obsolete system. It alsomakes permanentmodifications to the

system by creating certain symbolic links and installing some software in an

unconventional way. Although some installation scripts have been improved

and there have been some efforts to port it to Ubuntu 16.04, the system cannot

11

Chapter 2. Failed approaches

(as of yet) run properly in that system, and one must switch the default GCC

compiler version for an older one to be able to use the full system. This ended

up meaning I could not even run the system in my computer after a few days

of work, by which point I decided I would not use it.

This does not mean it has nothing of value to add to the final design: the idea

to build the Daphne Brain came from Lucida’s Command Center, and I also

discovered the Thrift library for Inter Process Communication (IPC) while

looking at the source code for Lucida. Thrift is now used as the communica-

tion layer between some sub-systems of Daphne.

2.1.2 Mycroft

Mycroft [55] is an IPA too, but in this case it is developed by Mycroft AI Inc.,

a for-profit company. It is also a pretty complete system, with support for

Speech Recognition using either its own implementation or one of the im-

plementations from the big data companies, namely IBM, Microsoft, Google

and Amazon. It works in a similar fashion to most other commercial IPA

systems: it provides a bare framework with a few working examples and lets

the developers make their own “skills”, which can add functionality to the

system.

Using Mycroft was a big part of the project until the team realized that it was

much more than what we needed in some areas, like the whole skills system,

and it lacked in other ways, like in interacting with some web applications

developed at the lab which needed to work together with Daphne or having

no support to run as a library as needed for the physical embodiment and the

VR interface. Also, the system is still in heavy development, which meant

that some Application Programming Interfaces (APIs) changed a lot, creating

a lot of headaches to the whole group when trying to keep up to date.

12

Chapter 2. Failed approaches

It got to a point where keeping up to date with the system was taking more

time than actually developing the features needed for Daphne, so the team

took the decision to abandon Mycroft and instead use our own web-based

interface and server, which could be developed at a pace acceptable for the

team.

Ideas taken from Mycroft include using a catch-word to start voice recog-

nition, the way the skill system is implemented, the use of WebSockets for

handling real-time communication between client and server and the idea

to use voice recognition and voice speaking systems developed by the afore-

mentioned big data companies, as other open-source, free solutions have un-

derwhelming performance, as we found out when trying to use the systems

inside Mycroft.

2.1.3 Next steps

As it became clearer that no complete solution in the ecosystem could be

reused as the base for Daphne due to its special needs, a custom solution was

developed, as seen in Chapter 3. This does not mean the search for already

existing solutions stopped, but it was moved to only parts of the system

instead of the whole of it. This is explained in the next section, where the

search for a working QA system is described.

2.2 Reusing existing QA systems

One essential part of the system is the QA system, which has the job of

recognizing the different questions asked by the users and answering them

correctly if it can. Once again, before trying to build the whole subsystem

from scratch I searched for already implemented solutions. Two QA systems

13

Chapter 2. Failed approaches

were chosen as the best options due to their licenses and accuracy results:

YodaQA [26] and Aqqu [68]. QA is an always evolving field, so every year

there are more andmore accurate systems, and this is why once again having

recent implementations is usually a good sign for the system.

2.2.1 YodaQA

YodaQA [26] is an “open source Factoid Question Answering system that

can produce answer both from databases and text corpora using on-the-fly

information extraction”. It is written in Java, which helps in integrating with

the rest of the system, which is written in a mix of Java and Python.

The problems started very soon: the databases YodaQA can use are ontolo-

gies written in RDF format, and although one part of this project includes

developing an ontology of the earth observation missions database in this

format, adapting it for use in this systemwas deemed too time consuming for

the scope of the project, as the system is thought out to answer questions on

DBpedia [87] and Freebase [88], two generalist open RDF databases. Another

big problem is the fact the system is slow and has a low accuracy of around

45% on the most common tests like the TREC benchmark [89] measured as

the Mean Reciprocal Rank (MRR), which is a measure of the probability of

getting the correct answer on a question, as defined in [90]. Finally, the system

has not been maintained for the last year, meaning there is no improvement

in sight for all those problems which have been identified.

All these problems prompted the decision to not use YodaQA and search for

other alternatives, like Aqqu. Trying to use YodaQA made me realize users

want fast and accurate systems, and that I need to use very well-maintained

software solutions if I intend to not lose a lot of time on configuration and

bug-fixing.

14

Chapter 2. Failed approaches

2.2.2 Aqqu

Aqqu [68] is an “end-to-end system that automatically translates a given

natural-language question to the matching SPARQL query on a given knowl-

edge base”. It is written in Python, making it even easier to integrate than

YodaQA.

The problems are very similar to those of YodaQA: the system is written to

work on Freebase, with very few documentation on the code except for the

paper, so this makes it hard to adapt to other databases. It is, though, much

faster andmore accurate than YodaQA, as it advanced the state of the art back

in 2015.

When trying to integrate this system with Daphne, I realized three things:

first of all, using general QA systems was a waste of resources, as they are

catered towards answering easy questions on giant datasets of unstructured

data, whilewhatDaphne users need is complex answers to complex questions

on a small dataset of very structured data. Also, ontologies need to be very

well crafted to obtain good answers on them, which requires a knowledge

and time I do not have. Finally, using software catered for a paper can easily

turn into a very tedious task, as adjusting the program to produce results

which are useful outside of paper publishing can be very hard.

2.2.3 Next steps

After these two attempts, itwas clear that no completeQA systemwould help,

as most of them are too generic to be useful for the task at handwithout much

adaptationwork. It was clear the required systemneeded to be specific for the

historical database. This brings us to the last failure in trying to use existing

15

Chapter 2. Failed approaches

systems: using unsupervised deep learning to automatically translate natural

language questions to database queries.

2.3 Using unsupervised learning for creating

database queries

In the last two years there has been a resurgence [74, 73, 91] of an application

of deep learning known as Neural Programmers: neural networks whose

output is a set of instructions to be executed on the computer. There was

some research on the topic more than 20 years ago [92], but it never took of,

together with the rest of deep learning.

2.3.1 Neural programmers

One possible application of neural programmers is in QA over a database: a

database query is nothingmore than a set of instructions applied over a set of

tables which give as a result either a text, a number or a list. This means that

using such a system can be really helpful in saving development time when

adding new questions to the QA system: instead of having to manually write

a query for each question type, as seen in section 4.7, the system could train

itself by providing access to the database, a lot of example inputs, and a lot of

example outputs.

All this seems too good to be true, and for now it is. As seen in most of

these publications, and especially [91], the accuracy for the task at hand is too

low to be useful for a consumer-facing interface. What’s more, the examples

shown in the papers could be considered toy examples, which means bigger

and harder questions like the ones found in Daphne would bring the system

to its knees both in accuracy and computing power required to train the

16

Chapter 2. Failed approaches

system. All these problems made me take the decision to not use such a

solution until the state of the art in this field is furthered, instead relying on

more classic techniques like text classification, feature extraction and manual

query creation, as seen in Chapter 4.

17

Chapter 3

Daphne: General architecture

This chapter of the report consists of 5 different sections, and it is the main

chapter of this report, as the bulk of the work done is explained here.

3.1 Overview

DATA SOURCES

BACKENDS

Critic Historian

iFEED Interface Historian Interface

Critic Interface

Expert Knowledge Base

iFEED

Historical DatabaseDesign Solutions Database

Architecture Evaluation Data Mining QA System

SKILLS

FRONTENDS

Daphne Brain

Physical embodiment

Web & Voice Visual Interfaces

WebVR Interface

Figure 3.1: Overview of Daphne architecture

Daphne is structured as a 4-layer system: it has three kinds of front-ends

which can interact with the user in different ways (section 3.6), a front-end

18

Chapter 3. Daphne: General architecture

server (the Daphne Brain in section 3.4) to direct all user requests to the

appropriate back-end which also hosts the different skills (described in 3.5),

three back-end services to resolve queries from the users (in section 3.3) and

three data sources fromwhich to obtain the data to answer someof the queries

or save the progress of the user in using the application (explained in section

3.2).

It is easy to notice in figure 3.1 that all the skills also have an interface, and this

is due to them being developed by different people, which meant everyone

built their own interface to test the functionalities of their own skills. One

important task left to do in the future is build a unified interface, as there was

no time during the development of this first version to do so.

Finally, this Chapter is organized from the bottom up: it explains the Daphne

sub-systems starting from the bottom of figure 3.1 and it ends with the ones

at the top, as this helps in understanding the whole system better because

each layer needs to refer to ideas and details from the layer below.

3.2 Data sources

There are three different data sources from which Daphne can get its infor-

mation: a design solutions database, which contains information from a great

variety of possible architectural solutions for the problem at hand; an expert

knowledge database, with expert rules and recommendations on designs;

and a historical database, with data from all past and present public and

civilian earth observation missions.

The three of them help in obtaining a better final design on their own, but the

real powers of the system are obtained when the three of them are combined

19

Chapter 3. Daphne: General architecture

to obtain a comprehensive set of recommendations for the system engineer

developing the EOSS.

An overview of the three data sources is provided, but only the historical

database will be extensively developed, as it is the one I have worked on.

3.2.1 Design Solutions database

The threemain objectives of thedesign solutionsdatabase are to have an initial

data-set of possible designs for the system being designed so the architect has

something to compare its own designs to, to save the designs the engineer

or the computer come up with so they are not lost after the work session is

finished, and last but not least, to have a data-set over which the Data Mining

back-end (subsection 3.3.2) can work and extract features.

The initial designs can be generated using various sampling methods such

as random sampling and Latin Hypercube sampling, which can sample the

feature space in an unbiasedway, or optimization algorithms, which aremore

likely to generate high-quality solutions, thereby introducing a certain bias in

terms of sampling of features.

The data saved for each system design contains which instruments are as-

signed to which satellites, the total cost and the science benefit as computed

by theArchitecture Evaluation back-end (subsection 3.3.1), and the set of rules

triggered in JESS [93] to obtain both the cost and the science benefit using this

back-end. All this data helps in the graphical representation of the designs,

as the two axes which appear in the plot are always cost and science benefit,

in other parts of the interface which need the exact design, and in the internal

workings of the iFEED and Critic skills, as both of them need to reenact the

execution of the Architecture Evaluation back-end to generate their expected

responses.

20

Chapter 3. Daphne: General architecture

This data is saved in JSON files, which are stored either as bare text files or

inside a MongoDB database depending on the needs of each subsystem. The

exact format is a bit-mask for the assignments of instruments to satellites, a

double for the cost, a double for the science benefit, and a text array for the

rules fired. The authors of the generation of information for this database are

Hyunseung Bang and Daniel Selva.

3.2.2 Expert Knowledge database

The Expert Knowledge database is a little different to the other two in that it

is not made of data but of logical rules: it is a set of if-then rules, to be more

specific. The rules aremade to encode domain-specific knowledge about how

to architect EOSS.

One example is a rule that states that UV/VNIR chemistry spectrometers

should be flown in afternoon sun-synchronous orbits rather than morning

or dawn-dusk orbits. This is because the dawn-dusk orbit has suboptimal

illumination conditions for this kind of instrument, and pollution levels typi-

cally peak in the afternoon as opposed to the morning [94]. Another example

is that an active and a passive instrument that use the same frequency band

should not be used in the same spacecraft, as theymay interference with each

other.

All of these rules can be either simple or complex, but all of them exist for

the same purpose: having access to them without having to look at reference

books or having to remember them during the design process may reduce

the cognitive load of the system engineer, who has to consider many other

design factors, and thus lead to improved performance and better designs.

The rules are written using of combination of raw JESS rules and a Java

programwhich generates rules based on Excel files with a set structure. JESS

21

Chapter 3. Daphne: General architecture

is a superset of CLIPS, so as it happens with this language, rules are actually

stored as raw text either in files or directly into RAMmemory, and its format

can be checked in both CLIPS and JESS documentation. The authors of the

rules are Arnau Prat and Daniel Selva.

3.2.3 Historical database

The historical database has been sourced from a reliable source of information

on Earth Observation Satellites: the Committee on Earth Observation Satel-

lites (CEOS) Database [95], a joint effort by CEOS and the European Space

Agency (ESA) to create a comprehensive database of all the EarthObservation

Satellites which have been launched since the beginning of the Space Age,

with detailed information on the orbits, launch and EOL dates, the agencies,

the purpose, the instruments, the measurements and the data provided by

each one of these missions. The exact number of missions in the database

is 567, with 839 instruments also described. The whole development work

on this database for this project has been done by me, but the authors of the

information are CEOS and ESA.

3.2.3.1 Overview

The procedure to obtain a usable version of this database has been hard, as

the only publicly available of it is the CEOSDatabase website, which contains

tables and detailed pages on all missions, instruments and measurements.

While this is good for reading about single missions and counting, it is com-

pletely insufficient for the advanced uses needed in Daphne, which require

data analysis and data mining to get some answers out of it, as well as ad-

vanced SQL queries which are impossible to perform on the web interface.

22

Chapter 3. Daphne: General architecture

This is why the first task which was performed was to scrape all the data

in the website and save it in a classical SQL database, as explained in sub-

subsection 3.2.3.2. Having the same textual data in a classical database, while

it enables a lot more queries than the ones available from the web, still misses

on a lot of numeric data insights which would be available just by classifying

the data in categories and putting those fields which are numeric as actually

numeric. This is described in detail in sub-subsection 3.2.3.3. While this

helps in answering most queries, sometimes there is information which is

not really there in the database, and some data mining algorithms need to

be run over it, as discussed in sub-subsection 3.2.3.4. Finally, as the database

was originally thought to be used with already existing QA systems which

expected ontologies, an ontologyhas also been built, as seen in sub-subsection

3.2.3.5.

The end result is the database in figure 3.2, with the schema of all the tables.

3.2.3.2 Data scraping

The data scraping has been performed using the Scrapy framework for

Python, which is described as "A Fast and Powerful Scraping andWeb Crawl-

ing Framework" [96]. Using this piece of software has helped save a lot of

time by not having to research how to actually download and navigate a web

page programatically, which could have been really tedious.

Then, the task of data scraping becomes two-fold: on one side, the structure

of the data needs to be discovered and written down so the schema of the

database as seen in figure 3.2 can be built. On the other hand, the “spider”

program (the program which actually navigates the website) needs to be

written. Both tasks complement each other, as the order of the web pages

scraped is really important to maintain consistency in the database, and the

23

Chapter 3. Daphne: General architecture

Figure 3.2: Historical database schema

24

Chapter 3. Daphne: General architecture

structure is easier to discover and write if done at the same time the spider is

being built.

The order in which everything has been scraped is the following: first, all the

measurement types are downloaded, parsed and classified between broad

categories, categories and actual types of measurements. This is done first

as they have no dependencies on other data from the database while all

instruments need to have all this information to be complete. Then the space

agencies are downloaded and saved into the database, as they need to be

referenced in all the missions and instruments. With all this auxiliary data in

place inside the database all the missions are downloaded, parsed and saved,

with all the relations to the agencies included aswell. Finally, the instruments

are added with all their relations to agencies, missions and measurements,

completing the database.

The database is built as an SQL database, and the interface used between

Python and the actual database (which is PostgreSQL but can be changed) is

SQLAlchemy [97], which helps in both making the database easier to model

by implementing an Object Oriented interface on top of the SQL schema and

easier to communicate with thanks to its declarative syntax which is much

easier to compartmentalize compared to pure SQL.

One design point to take into account is how to define the relationships

between the different objects in the database. There are two different options

when talking about relationships: one-to-many (andmany-to-one) andmany-

to-many. One-to-many is usually used inhierarchical relationswhere itmakes

sense for a lot of elements to be linked to a single element. One example of

this kind of relationship is that a lot of measurement types will be of a single

category, but not two. This is implemented using foreign keys in one of the

two related tables in SQL. Many-to-many relationships link any number of

elements of one type with any other number form another type. For example,

25

Chapter 3. Daphne: General architecture

instruments can be used in different missions, and a mission can have more

than one instrument. This is implemented in SQL through an auxiliary table

that contains pairs of foreign keys, with each pair having a key of each of

the related tables. A conservative approach has been taken when modelling

these relationships: first, all relationships are considered one-to-many. If

during the process of data extraction a case of a many-to-many relationship is

discovered for that field then the structure is changed to allow for this more

complex situation. This ensures extra space and complexity is only used

when absolutely needed. In the end, most relationships in the database are

many-to-many, but for the few which are not, this approach has been useful

in saving space and complexity.

It is important to note as well that the database is reset every time the scraper

is run, as in this way the information in the database is much easier to keep

up to date and with no inconsistencies.

As technical notes, a few of the most difficult and bizarre problems encoun-

tered include the POST request crafting for ASP.NET forms as the ones used

by the CEOS database website, which include a lot of hidden fields which

need the exact values so the page returned is actually the requested one. This

brought a lot of headaches. There is also the CSS vs XPath selectors decision.

Initially, everything was coded using CSS selectors as they are easier to learn

and seemed to work fine, but it got to a point where the non-ambiguity of

XPath won over the easy use of CSS. This also helped in discovering that

the web page has a completely different HTML structure depending on the

browser used: the XPath selectors are different if using Chrome, Firefox or

Scrapy, which has lead to really confusing bugs when extracting the informa-

tion.

26

Chapter 3. Daphne: General architecture

3.2.3.3 Data processing

While textual data already enables a lot of queries in a SQL database, when

data is actually numerical it can be good to have it be that way in the database.

This also enables the database to deal with certain queries which depend on

numeric or date ordering or aggregation.

Examples of fields being processed into their real types of data are the ids

of all the agencies, measurements, missions and instruments, as well as the

launch and end of life dates for all missions, together with all the orbital

parameters of each mission like the period, the repeat cycle, the inclination,

the altitude, the longitude or the local sun time, for those missions which

have them.

Another important data processing task in the database is knowing which

fields are actually lists, which are required and which can be empty. The

methodology to obtain this information has been to always consider all ele-

ments a single required field and then, when errors happen during the data

extraction from the web page, change that into either a list or a non required

field, ensuring the most stringent requirements are met in the database.

For those fields with set lists of possible values, constraint checks have been

added to thedatabase so there is nowaya forbiddenvalue endsupbeingused.

If a field is both a list and has a constrained set of values it is implemented as

a many-to-many relationship, which already ensures the values constraint.

Finally, some numerical fields are also post-processed into categories. For

example, orbit altitudes are given classes such as Very Low, Low, Medium,

High or Very High Altitude. This is useful for both sub-subsection 3.2.3.4

and for certain queries which are better expressed in these qualitative terms

rather than crude numbers.

27

Chapter 3. Daphne: General architecture

3.2.3.4 Data mining

At a certain point during development, a question was proposed for the His-

torian Skill: “Which is the most common orbit for taking <measurement>?”.

It seems like a rather normal question a systems engineer might want to ask,

but when trying to craft a single SQL query which obtained this informa-

tion from the database I realized the information was simply not there and

therefore had to be added. This is due to the fact this knowledge needs to

be computed using data already in the database. This is what this section

describes.

The onlydataminingbeingdone in thedatabase is to obtain themost common

orbit where measurements are carried out and where instrument types and

technologies are usually flied. The data mining algorithm works as follows:

1. For eachmeasurement, instrument type and instrument technology, the

set of missions with it is obtained. Let this set be TTS.

2. Then, the algorithm looks for the innermost node of a decision tree

where a set of conditions related to both TTS and a new set defined on

the node, called DTS, are fulfilled. Each level in the decision tree adds

restrictions to the DTS obtained in the last level, making the conditions

harder to fulfill. DTS is the set of missions whose common denomina-

tor is that all of them have the properties defined in the node and all its

ancestors. The decision tree can be seen in Figure 3.3. The conditions

which need to be fulfilled are: |DTS ∩ TTS | ≥ 10 and |DTS∩TTS |
|TTS | ≥ 0.5.

If a node fulfills both conditions it is saved as the last valid node. This

step is performed level by level on the decision tree following the de-

scendants of the last valid node until no nodes fulfill the two conditions.

The last node which does is considered to be the most common orbit for

that specific measurement or instrument technology/type.

28

Chapter 3. Daphne: General architecture

3. The most common orbit is then saved in a table in the database.

Repeat
Cycle

Orbit
Alt itude

Local Sun
Time

Orbit
type

ROOT Orbit
Inclination

LRC

SRC

NRC

VH

H

M

L

VL

PM

Noon

DD

AM

Po

NearPo

MidLat

NearEq

SSO

LEO

HEO

GEO

Eq

None

Figure 3.3: Decision tree for the data mining algorithm

This is the only data mining process in the database for now, but if more

were needed they could be added as well, using a similar structure to the one

already described.

3.2.3.5 Ontology

An ontology, in this context, is nothing more than another kind of database,

one where the basic data unit is a triple of Subject-Relation-Object. There

is a whole field of philosophy dedicated to it, which tries to classify all the

entities of the world into different categories and then relate them to others,

be it through hierarchies or simple relations. Back to Computer Science, they

can be encoded in many different formats, but one of the most common is the

Resource Description Format, or RDF, and this is the one used in this project,

along with RDFlib [98] for Python to handle it more easily.

In the beginning of the project, I thought I would use one of the multiple

available open-source QA systems which work on RDF ontologies by query-

ing them with SPARQL (SPARQL Protocol and RDF Query Language). This

is the reason why a whole ontology which tries to replicate as much as possi-

ble the SQL database is being extracted together with the main database. At

29

Chapter 3. Daphne: General architecture

a certain point I realized that these systems are not yet powerful enough for

the task at hand, so the ontology effort was halted, and this is the reason why

not all the processed fields are in it, although all the textual ones along with

all the relationships are present. An overall view of the ontology as is can be

seen in Figure 3.4.

The data is obtained in the same way as in sub-subsection 3.2.3.2, with the

only difference being that a whole other schema has been created with the

classes of each object in the database and its relations.

Figure 3.4: Small portion of the ontology

3.3 Back-ends

The back-ends in Daphne provide different functionalities which different

skills may use to provide useful kinds of support to the systems engineer.

There are three back-ends: the Architecture Evaluation back-end, which can

be given designs and returns the value of their objective functions; the Data

30

Chapter 3. Daphne: General architecture

Mining back-end, which can run machine learning algorithms on the data-

set of designs for insight generation; and the QA System back-end, which

processes questions, sends them to other back-ends or skills and gives the

answer back in a human readable format, be it text, audio or images.

3.3.1 Architecture Evaluation

Architecture evaluation is one of those tasks in systems engineering which

is very hard to systematize: it is always specific to the task each system

must accomplish, and it is usually comprised of both objective and subjective

measurements. This back-end uses the VASSAR methodology [7, 99], which

is a systematic framework that allows automating the architecture evaluation

process by combining both objective and subjective information.

There is no theoretical limit on how many numerical results can be obtained

for the evaluation, but one has to keep in mind that humans are limited by

us only being able to see 3 dimensions, and the whole point of the system is

to reduce the cognitive load, so creating hard to understand plots is clearly

something to avoid. 3D plots and 4D plots which are done by the use of colors

can be understood by humans, as well as others such as parallel coordinates

plots, scatter plot matrices, and radar charts. Daphne can handle any number

of results with all these different plots, but in the design problem being

handled right now only two results are needed: the science benefit and the

cost, which makes the use of a simple 2D scatter plot enough.

Daphne is a CA made to help design EOSS, so it makes sense that there is

a way to evaluate how good a satellite system design is. This evaluation

system is described in [94], and it uses the VASSARmethodology to compute

both the science benefit and the cost of each system design being studied. It

works this way: starting with a given assignment of instruments to orbits, a

31

Chapter 3. Daphne: General architecture

set of expert rules is executed on a rule engine (JESS). These rules are used to

first compute the measurement capabilities of a given architecture of satellite

systems. Then the capabilities are comparedwith themeasurement objectives

set by the stakeholders. Estimates of the science benefit for each design are

produced by computing how many objectives are being satisfied either fully

or partially (at different levels of performance degradation). Estimates of

lifecycle cost including payload, bus, launch, operations, and overhead cost

are obtained by using cost estimating relationships and a simple spacecraft

design algorithm providing roughmass, volume and power budgets for each

spacecraft.

Thus, this back-end works by receiving a system design and returning a pair

of floating point numbers which represent the science benefit and the cost

for that design. VASSAR was developed by Daniel Selva, my advisor, and

the communication layer between VASSAR and Daphne has been coded by

Hyunseung Bang.

VASSAR is coded in Java and JESS, so a communication layer is needed to

connect to the Daphne Brain. This layer is Thrift [100], a software developed

at Facebook and then at the Apache Software Foundation to provide inter-

language and process communication.

3.3.2 Data Mining

The main task of Daphne is to help the systems engineer perform better

at creating good designs, and one really insightful way to do so is to give

him/her a set of features which are present onmost of the best designs found

by algorithms so he/she can use all these to construct their own designs.

The way Daphne does it is using the Data Mining back-end, which runs

machine learning algorithms on the Design Solutions database to obtain a

32

Chapter 3. Daphne: General architecture

set of logical rules which describe “good” features, meaning the ones which

appear frequently in the Pareto front of the dataset. One example can be that

perhaps most solutions currently on the Pareto front have two instruments

together on the same orbit, or the other way around, never together in the

same orbit.

The data mining method used is called association rule mining [101], and

the algorithm used to extract the rules is called the Apriori algorithm [102].

Association rule mining extracts knowledge by creating logical rules which

describe parts of a dataset. The major advantage of creating categories based

on logical rules is that they are very similar to how humans structure knowl-

edge and are therefore easy to understand [45]. These logical rules can also

be called driving features, and in Daphne they are defined as combinations

of design variables through logical operators such as AND, OR or NOT that

appear to drive designs to a desired (target) region of the tradespace [8]. The

whole idea is that if a design has some of these driving features, the prob-

ability of it being in the desired region of objective values (cost and science

benefit) is also higher.

The back-end works by receiving a target region of the dataset, where that

region can take any shape. Then the data mining algorithm is run on that re-

gion, returning a list of the most significant driving features in that subspace.

The significance of a feature is measured by two confidences. Confidence is

a measure of the statistical relation between a feature and the target region.

One of the two confidences is computed as the ratio between the designs with

a certain feature inside the target region and the whole target region, while

the other is computed as the ratio between the designs with a certain feature

inside the target region and the whole set of designs with the feature. The

first confidence measures is the feature is general enough in the target region,

while the seconds measures if it is specific enough to that region. Only if

33

Chapter 3. Daphne: General architecture

both confidences are high enough a feature is considered important enough

to be significant for that region. This whole back-end has been developed by

Hyunseung Bang in Java. A port of the back-end to Python is being developed

by Amrit Kwatra.

3.3.3 QA System

The QA System is one of the key differences of Daphne compared to other

decision support tools available to system engineers. Its goal is to answer

diverse questions from the user. It helps in creating a more intuitive interface

for Daphne, by giving the users a natural language interface, which is cited

as being a better interface with a computer compared to creating code to

develop charts, making database queries, or just using a mouse, which are

the most common ways to interact with a decision support tool [103, 104].

This back-end has been developed by me.

There is usually a trade-off between accuracy and the number of questions

answered in a QA system: some systems choose to answer only a small

set of questions with great accuracy while others decide to answer as much

questions as possible, with the result of lowered accuracy. This can be seen

both in open-domain solutions like Aqqu [68] and YodaQA [26], which have

already been discussed in chapter 2. The first has a lower recall (number

of questions answered) and a high accuracy (number of correctly answered

questions) and the second exhibits the opposite behavior over general datasets

such as WebQuestions [105]. Domain-specific systems like PRECISE [106],

which is basically a translator from natural language to SQL queries, work

over a much smaller set of questions. As a result, it shows a much higher

accuracy for those questions it can answer, but get a low recall from ignoring

the rest of them. Because Daphne has a well-defined application domain, it

34

Chapter 3. Daphne: General architecture

can be assumed that the types of questions that the user will ask are limited

as well. Therefore, the objective is achieving high accuracy rather than high

recall by implementing the QA System in a similar fashion to PRECISE for

generating database queries from natural language questions.

This back-end receives natural language sentences as input. For now, the

language of these sentences is English. The output can be varied, as it can

range from another sentence to some action happening in the screen or the

physical embodiment, as well as images, plots and videos.

The sentences are classified according to their intent, which represents the

objective the user wants the system to accomplish by speaking that sentence.

To classify the intent of the natural language queries, a deep learning model

based on a Convolutional Neural Network (CNN) [78] has been chosen over

simpler methods such as regular expressions because of its greater tolerance

to input variability and the lower difficulty of adding new intents to the set.

Thismodel, trainedwith different parameters each time, is used to classify the

input utterance (another word for a natural language sentence, and the most

common in the literature) into different categories at two different points

in the pipeline: first to decide the intent of the sentence and later, if the

sentence is a question, to classify the type of the question. There is also

a spelling corrector, which uses Sellers’ algorithm [107] to search for close

words, correcting wrongly spelled commands and questions so they make

sense to the different back-ends and skills which need to act based on the

input. A longer discussion on the choices of algorithms and the pipeline can

be seen throughout chapter 4, which explains everything in detail coupled

with an actual example of a skill using the system.

The functional flow of the QA System is as follows:

1. The input question or command is obtained as either a typed or spoken

35

Chapter 3. Daphne: General architecture

sentence. The system assumes that the recognized sentence by the voice

Speech To Text (STT) system is correct and will try to find errors later.

2. The CNN model is used to classify questions and commands into dif-

ferent categories based on what module is responsible for the response.

(a) If the input sentence is a command for any of the back-ends, it is

executed on that back-end and the results are sent back to the user.

These results can be from any of the back-ends already explained,

and they can take different forms: be it JSON files, text messages,

audio clips, plots, etc.

(b) If it is a question, the QA System tries to find a skill which can

give an answer to it, and in case there is a match it is sent there.

The question goes through a full QA pipeline as that in Chapter

4 which results in an answer which can, again, take a variety of

forms: text, audio or multimedia content.

3.4 Daphne Brain

The Daphne Brain is the key piece of the whole architecture that ties ev-

erything together: its job is to forward the user requests in all the different

front-ends to the required back-end, be it voice commands, a click on a button

or just some textual instructions. Its job also includes returning the response

from the back-end to all active front-ends. This job is performed through the

skills system, as will be detailed below. It has been developed by me.

User requests are translated in the front-ends to either pure, classical client-

server HTTP requests like GET, POST, PUT or DELETE; or as a real-time

connection implemented over WebSockets. This is usually a job for a web

server, and this is exactly what the Daphne Brain is. It has been implemented

36

Chapter 3. Daphne: General architecture

using Django [108], a popular Python framework for creating web and REST

servers, using different extensions to it like Django REST Framework [109] for

easy API creation and Channels to leverage advanced features used in some

front-ends like WebSockets and HTTP/2. REST APIs are the standard way

to program APIs for web applications, and they consist on a set of what are

called end-points, which are URLs which receive an input and produce and

output. It is, in a way, similar to how a normal library API works, but the big

difference is each end-point can be on different machines, making the system

much more easily scalable.

As a critical piece of software, it is very important for it not to fail, for it can

be considered a crucial point of failure: the system becomes unresponsive

under a Brain error. This is why it is implemented as 4 different processes

which are clones and will share the incoming requests between themselves,

effectively eliminating the threat of a single critical process failing.

The Brain has a basic API implemented: the Daphne Commands API,

which consists of two end-points: GET /api/daphne/commands, which re-

turns all the voice and textual commands accepted by Daphne; and POST

/api/daphne/command, which receives a command and either defers it to one

of the skills or executes it directly if it is a general Daphne command. This

API acts as a central receiver for all the voice and natural language communi-

cations, and it uses an instance of the QA System (subsection 3.3.3) to classify

the commands between those of a skill and those which are general.

The rest of the requests received by Daphne are handled by the skills. Each

skill is nothingmore than a set of REST andWebSockets end-pointswhich live

inside the Daphne Brain and has access to all the back-ends and data sources.

This gives a lot of flexibility when implementing them, as anything can be

done inside the end-point handler: back-ends can be called, data sources can

be accessed, and computations can be performed. At the same time, having

37

Chapter 3. Daphne: General architecture

this flexibility means it is even more important to have the Brain be resilient

to failures, as they are bound to happen. Some skills are described in the next

section.

3.5 Skills

Skills, as called by most CA, are no more than computer programs which

leverage all the functionalities available to the programmer to perform the

actual useful tasks to the end user, which in this case is the systems engineer.

In the case of Daphne, as already explained, they are implemented as in-

dependent sets of APIs inside the Daphne Brain so they can access all the

back-ends and data sources and communicate back to the front-ends. They

also have a unique Graphical Interface, although this is something which will

not be happening in future versions of Daphne, where all the skills will be

integrated into a Unified UI.

The next few subsections describe the two skills already present in the sys-

tem which have not been developed by me: iFEED, which provides all the

functionalities of [8] and the Critic, which given a design can give back sug-

gestions on how to improve it. Chapter 4 describes the Historian skill, which

has been developed by me. All the skills receive and send data in the JSON

format.

3.5.1 iFEED Skill

iFEED is an interactive tool to support a systems engineer in the task ofmining

the dataset of design solutions for features describing those designs which

are in regions of interest, for example the Pareto front. The job of this skill is to

provide access to all those functionalities inside Daphne which are required

38

Chapter 3. Daphne: General architecture

to perform this mining task. Everything in this skill has been developed by

Hyunseung Bang.

This Skill has a lot of end-points, separated on different groups depending on

which back-end they are accessing. There are end-points for the Architecture

Evaluation back-end, the Data Mining back-end and some for generic iFEED

functionalities, as iFEED needs to access all of them to be able to perform its

functionalities.

There are four end-points to access the Architecture Evaluation back-end:

• POST /api/vassar/get-orbit-list: This endpoint returns a list of the

different orbits in the design space.

• POST /api/vassar/get-instrument-list: This endpoint returns a list

of the different instruments which can be assigned to the different orbits

of the architecture.

• POST /api/vassar/evaluate-architecture: This endpoint returns a

pair of doubles with the values of both the cost and the science benefit

of an architecture it receives through the POST body.

• POST /api/vassar/initialize-jess: This API needs to run once in

the beginning before all the others so the system is prepared to evaluate

all the different architectures.

A single API endpoint is available for the Data Mining back-end, POST

/api/data-mining/get-driving-features, which receives a set of bounds

to the dataset being studied which are sent to the Data Mining back-end

so the driving features of that subset can be extracted using the algorithms

described in [8].

Finally, there are five different generic iFEED end-points, but three of them

are already deprecated. The two useful end-points are:

39

Chapter 3. Daphne: General architecture

• POST /api/ifeed/venn-diagram-distance: This endpoint receives

three areas: two of circles and one of the intersection between them.

It returns the distance between the centers of the circles so that the in-

tersection area is the one requested. It is used in the iFEED front-end

for data analysis.

• POST /api/ifeed/apply-feature-expression: This endpoint applies

the feature it receives as input (as described in subsection 3.3.2) to the

iFEED GUI.

3.5.2 Critic Skill

Criticizing a design is a very specialized task in systems engineering: for a

criticism to be useful it has to provide constructive ideas on how to improve

the design, and these once again depend on the definition of a good design,

which is unique to every system. This means a lot of work is needed to create

a good critic, and Daphne is no exception. The bulk of the work in this skill

has been carried by Arnau Prat, so this section will be a summary of his work.

The Critic skill receives a systemdesign as an input, and its output is feedback

to the user about the strengths and weaknesses of that design, along with

specific suggestions to the user about how to improve a given architecture. It

only has one single end-point, called criticize, and it runs as a WebSockets

endpoint, which receives an architecture and returns the list of criticisms for

it.

The Critic includes four different agents which create different kinds of feed-

back and suggestions: the Expert, theHistorian, theAnalyst and the Explorer.

All of these are explained in the following paragraphs.

The Expert agent uses known design rules written by experts in earth ob-

serving satellites system design. The rules can be considered as basic design

40

Chapter 3. Daphne: General architecture

principles or heuristics that domain experts use for designing good systems.

One example inDaphne use case is two instruments using the same frequency

for radio transmission should not be used in the same spacecraft if at least

one of them is active. All these rules are stored in the Expert Knowledge

database, described in subsection 3.2.2.

The Historian agent (not to be confused with the Historian Skill) uses the

historical database (subsection 3.2.3) to come out with a similarity score of

the current design compared to past, successful, missions. The similarity

is computed by checking how close the instrument configurations and the

orbits are. The agent will then return the closest missions or say that none

match. The motivation for this approach is similar to that of the case-based

reasoning [110], which is one of the popular reasoning methods used in

artificial intelligence. If a mission proposed by the user is very similar to

many missions in the database, chances are that this a good or at least safe

(well-known) option. On the other hand, if there are no similarmissions in the

database, there is a higher risk, as the mission appears to be a one-of-a-kind

mission with little heritage.

The Analyst agent uses the last dataset available, the Design Solutions

database (subsection 3.2.1), to notify the user if a given design shares some

of the driving features usually found among good designs so far. A driving

feature can be any combination of design variables, such as having an instru-

ment in an orbit or having two instruments together. Having good features

is no assurance of success, but it can be helpful. Daphne can also use this

information to suggest changes to the systems engineer, based on known to

be good features.

Finally, the Explorer agent runs a few optimization passes on the user de-

sign and tells the engineer if it has found some better design in the close

neighborhood of the trade-space.

41

Chapter 3. Daphne: General architecture

All these agents are coded in a combination of Java and Python, and the

communication between themselves and with the Daphne Brain is either

done directly for the Python modules or through JPype [111] for the Java

ones. Thrift cannot be used here as everything is run in the same process,

while Thrift demands everything to be run under different processes.

3.6 Front-ends

Daphne has 3 different kinds of front-ends: theWeb&VoiceVisual Interfaces,

which serve as the main interfaces of the system as they provide access to

all the different skills; Daphne VR, a VR interface which is used as both a

demonstration of what could be done and as a part of an experiment; and

the Physical Embodiment, which is a robot with a screen and camera which

provides a different kind of interaction with the system.

3.6.1 Web & Voice Visual Interfaces

There are 3 different web & voice visual interfaces, one for each skill that has

been developed: the iFEED Interface, the Critic Interface and the Historian

interface.

3.6.1.1 iFEED Interface

The iFEED interface is thoroughly described in [8], as it is part of the research

being done by Hyunseung Bang for his PhD thesis.

It allows the user to work on a data-set of design solutions by finding features

which describe regions of interest of the data-set, as these features can be hints

of good designs if the region of interest contains interesting designs for the

42

Chapter 3. Daphne: General architecture

system engineer. Thus, it provides tools to select arbitrary regions of interest,

along with a design inspector which gives information on a certain design

using the functionalities from the back-end in subsection 3.3.1, a feature (filter)

creator, and a data mining interface which allows for features to be built by

the computer by using the back-end described in 3.3.2. All the designs for

the scatter plot are obtained from the Design Solutions Database (subsection

3.2.1).

A screen-shot of this interface can be seen in figure 3.5, with thewhole data-set

being shown along with a region of interest and the mined features below.

Figure 3.5: Screen-shot of the iFEED Interface

3.6.1.2 Critic Interface

The Critic Interface is designed to allow the user to create, evaluate and get

feedback about any design (i.e. satellite constellation). It has been developed

by Arnau Prat.

43

Chapter 3. Daphne: General architecture

Figure 3.6: Screen-shot of the Critic Interface

As it can be seen in figure 3.6, the interface consists of 4 different spaces, which

take the whole screen space: the top left corner is taken by a scatter plot rep-

resentation of the design trade-space (meaning a graphical representation of

different designs alongwith their cost and perceived value or science benefit).

The top right corner has information produced by the Critic skill. The bottom

left one is the design building area, with a blocks in rows representation of

the design being studied at the moment. Finally, the bottom right corner

contains all the different building blocks to create a design: a creator of each

type of instrument and a button to delete any of them. This area also contains

buttons to call the Critic skill and the Architecture Evaluation back-end.

The user interaction flow for this interface is as follows: the user first creates

a design by dragging blocks to the 5 different rows and/or removing them

if needed. When the user is happy with the design, s/he can evaluate it to

see where it lays in the trade-space. Finally, s/he can ask the Critic Skill to

suggest improvements or point out weaknesses of the current design, which

are printed in the space reserved for them.

The interface also includes a tutorial that fires up the first time it is used to

44

Chapter 3. Daphne: General architecture

explain all this work-flow to potential users. It also supports the running of

experiments with human subjects by showing and hiding different parts of

the interface so different treatment groups have access to different versions

of the interface.

This interface is written in HTML, CSS and Javascript, using Tether [112]

to position the elements in the web, Shepherd [113] to create the interactive

tutorial for the application, D3.js [114] to draw the scatter plot and jQuery

[115] for miscellaneous tasks like Ajax.

3.6.1.3 Historian Interface

The Historian interface has been developed by me as a placeholder until the

unified Daphne interface is ready.

It has a simple text field to type the historical questions the user can ask, along

with a block of white space where the response can be read.

Below all of that there are different cards with information on the questions

which can be asked from the system and different lists of values for stuff such

as missions, measurements or instrument technologies and types.

This interface also supports voice input which is mirrored in the text field

automatically, and it has voice output as well. Both features are implemented

by the annyang! [116] and the ResponsiveVoice.JS [117] libraries, respectively.

The rest of the interface is built with HTML, CSS and Javascript, with the help

of Foundation 6 [118] and jQuery.

A screen-shot of it is shown in figure 3.7.

45

Chapter 3. Daphne: General architecture

Figure 3.7: Historian temporal interface

3.6.2 Daphne VR

The Daphne VR interface aims to be an alternative to the Web & Voice Vi-

sual Interface and its objective is to explore the benefits of working in a VR

environment compared to the traditional desktop experience. It has been

developed by Arnau Prat.

Figure 3.8: Views of the VR interface

As can be seen in figure 3.8, the interface resembles a screen, which is used to

46

Chapter 3. Daphne: General architecture

show the same graphic that appears in the Critic interface, with a few shelves

below, which are the physical representation of orbits in this case. The blocks

inside each shelf represent instruments which are assigned to the spacecraft

which goes in that orbit. The other component of the interface that can be

seen is a collection of all the block representation of instruments.

Figure 3.9: Design of the VR interface in planar shape

The interface has two more interactive elements, as seen in figure 3.9: the

filter selection area, which is used to emulate some of the filters which can be

used on the dataset in the web interface, and the Critic result space, in which

the results from a call to the Critic Skill are shown so the user can improve

their design.

The user interactswith this interface by looking around, centering the viewon

an interactive portion and clicking on it, either by using a mouse, a keyboard

or action buttons on VR headsets. A few examples of these interactions are

detailed in the following paragraphs.

To add an instrument to an orbit, 2 steps need to happen. First, the orbit in

which the user wants to place the instrument needs to be selected by looking

at the chosen shelf and then selecting it. Finally, the user needs to look at

47

Chapter 3. Daphne: General architecture

the instrument he/she wants to add in the section of the interface with all

of them and select it. This will effectively add the instrument to the wanted

orbit.

To delete an instrument, the user has to select the bin block close to all the

instruments and then keep selecting the instruments s/he wants to remove.

To update the plot shown in the screen after changing the instrument assigna-

tion, the usermust select the “Update” promptwhich appearswhen changing

anything in the shelves.

To get the information from theCritic Skill, the usermust select the “Criticize”

prompt on the back of its head inside the interface.

The filter system can be turned on and off by a block in the filtering system

of the interface. The different filters available in this interface include the

“Instrument in any orbit”, “Instrument in orbit N”, “Instruments together”,

and “Instruments separated”. All of them work in a similar fashion to the

“Add instrument to orbit” filter: the user first selects the filter s/he wants to

use and then keeps selecting the instruments to put in that filter.

This interface is written in Three.js [119], a 3D library for Javascript which is

used as a high level abstraction over all 3Dweb technologies likeWebGL [120]

andWebVR [121]. The system can only work in Google Chrome in VRmode,

as it is the only web browser which supports this feature as of September

2017. That being said, the 3D scene can be seen in any modern web browser.

It is important to note that the end user needs to have access to a Google

Cardboard, Samsung GearVR or a similar headset in order to enjoy the full

Virtual Reality experience. Apart from a mobile VR headset the user does

not require any external controllers or equipment.

48

Chapter 3. Daphne: General architecture

3.6.3 Physical Embodiment

The design of Daphne’s physical embodiment is presented in figure 3.10.

This robot is built using 3D printing technology and its design is open-source

(a link to the source files is provided in the appendix chapter A), meaning

anyone is able to build their own version of it. The design has also been done

by Arnau Prat.

Figure 3.10: Design of the Daphne physical embodiment

The hardware architecture of the robot is presented in figure 3.11. Its main

components are a Raspberry Pi, an Arduino, a 7” LCD screen, a camera, a

microphone, a speaker, two servo motors and a normal rotation motor.

Figure 3.11: Hardware of the Daphne physical embodiment

49

Chapter 3. Daphne: General architecture

The LCD screen is used to either show facial expressions or display any type

of data, as for example images or graphs. The robot also has smooth, variable

speed, pan and tilt moves. These features, together with the camera, are

used to track the user, but also to increase its expressiveness, by giving it

human gestures like nodding. The microphone and the speaker are used as

the physical input and output for Daphne voice interaction. These kind of

features might help improve the interaction and/or human performance in

the task at hand. Finally, the Raspberry and the Arduino act as the brain and

nerves of the robot, by driving the remaining functions.

To perform all the tasks a software architecture is needed, and it is described

in figure 3.12.

Figure 3.12: Software architecture of the Daphne physical em-
bodiment

There is one module for moving the robot, which interacts with the Arduino,

one for controlling the screen and one for the audio input and output. All

these processes are controlled by the main process, which is also in charge

of sending and receiving the results and responses from the Daphne Brain

over the network. It is important to note that all these processes are running

50

Chapter 3. Daphne: General architecture

concurrently and are as non-blocking as possible, as this helps in believing

the robot is more human-like by not having awkward pauses in the middle

of interactions.

51

Chapter 4

Historian Skill

The Historian Skill has been developed by me, and because of this reason I

can detail much more of its design philosophy, and this is also why it has a

special chapter dedicated to it.

4.1 Skill overview

In the first days of Daphne, when the system was being designed, the team

agreed on building a few demonstration skills to check if the system was

being designed correctly by checking if the design included all the needed

parts for each skill to work properly.

One of these skills was the Historian Skill, whose job was one which seemed

really simple at the time: it had to answer questions about the historical

database, which had to be scraped from the internet. Some example questions

are: “which missions can measure <measurement>”, “when was mission

<mission> launched” or “whichmissions are currently flying <technology>”.

Both the scraping and the QA system were deemed as easy tasks, as there

seemed to be readily available systems for both tasks which could do the job

by simply adapting them.

52

Chapter 4. Historian Skill

I was wrong. No open-source software could do the whole job with simple

adaptations, so in the end the development of the skill took almost all of my

development time for the whole duration of the project, as can be seen in

chapter 2 with most of the failed approaches related to the systems needed

for this skill and this whole chapter dedicated to the development of the skill.

The final design of the historian skill is the following: it works as a Restricted

Domain Question Answering (RDQA) system, meaning it can only answer

a limited set of questions about a limited set of knowledge, which is fine

for the use case of answering questions about Earth Observing Missions, as

the set of questions which can be asked is pretty limited and the priority is

getting correct answers over a lot of answers. It is implemented as a Natural

Language Interface for aDatabase (NLIDB), as it basically parses the questions

into database queries, but using state of the art techniques instead of more

classical approaches such as regular expressions, syntax based systems or

semantic grammar systems, for which examples can be seen at [76, 75, 77].

The skill receives a raw text as input and returns another raw text as output,

to keep the interface of it as simple as possible. The processing includes

preprocessing the raw text to obtain relevant information from it, then clas-

sifying the question into one of the answerable classes by using a CNN, and

continuing with the extraction of the relevant data from the question using a

custom algorithm based on approximate string matching. After all this, the

database is queried and a response is constructed based on a template. This

response is then sent back to the user.

With the story behind the skill out of the way, this chapter of the report

explains in detail the final architecture of the Historian Skill: it begins by ex-

plaining how the natural language questions are processed so all the different

subsystems inside the skill can use the text in a more useful way (section 4.2).

It continues, in section 4.3, discussing how the question classifier has been

53

Chapter 4. Historian Skill

programmed. Right after that, section 4.4 describes the configuration files

format for a question type. Section 4.5 explains how the relevant features are

extracted from each question. Next, section 4.6 explains a process done to

increase the range of questions that can be asked by addingmore information

from the user context. Then, section 4.7 describes the process to create the

database query based on the question type. Finally, section 4.8 discusses how

a natural language response is created from all the gathered data and the

database query results.

4.2 Text processing

Text processing of the raw input, which is the voice input as processed by

the Speech To Text system or text from the input field of the interface, is

done by leveraging the models in the spaCy Python library, whose mission

is “to make cutting-edge NLP (Natural Language Processing) practical and

commonly available” [122].

The decision to use spaCy instead of more complex and complete solutions

like NLTK or OpenNLP [123, 124] or even creating a custom solution in-

house was taken after doing a comparison run between the three where

it was seen that the needed functionality existed in all three solutions and

spaCy was the only system that provided a fast enough computation to make

the system work in almost real-time. It must be noted that one of spaCy

goals is to provide fast algorithms, so it makes sense that it is actually faster

than the other two solutions, whose main objectives are completeness and

reconfigurability rather than raw speed.

The very simple interface of spaCy had the potential of turning into a pain

point as Daphne might have needed more than it could deliver in terms of

54

Chapter 4. Historian Skill

customization, but these fears have been dissipatedwith the complete system,

for which spaCy provides more than enough functionality.

This means the raw string is processed by a single call to a function provided

by the spaCy API, and this turns the raw text into a spaCy document, with

all the words tokenized, with part-of-speech tagging, sentence segmentation,

dependency parsing, entity recognition and integrated word vectors.

For every token (word/number/space/punctuation) a lot of information is

provided, such as its lemma (the word you would find in a dictionary), a

lower-case version of the word, all its prefixes and suffixes, if it is a number

or a real word, if it looks like common computer related strings (emails and

urls), its part-of-speech tag, its syntactic dependencies and even the perceived

sentiment, among other features.

Not all this information is needed for the Historian skill, but some of it, like

the lemmas, the classifications and the lower-case versions come in handy for

most of the pipeline.

4.3 Question classifier

With all the information about the question already obtained, the next step

in the skill pipeline is classifying the question into a type of those which can

be answered by the skill.

Classifying a text into a set of different classes is one of the classic Natural

Language Processing problems, due to its various uses, including news classi-

fiers, sentiment analysis, spam detectors, language identification and others,

such as the use case of our Historian skill, where every question is assigned a

type which defines the query to the database and which data will need to be

extracted from the question in order to successfully perform the query.

55

Chapter 4. Historian Skill

Text (sometimes called document) classification has been studied since the

dawn of writing: every library in the world has a class (or topic) ordering of

all its books, and the main problem for most of history has been to decide

which is the “correct” set of classes. It has been, until the last 50 years, a

mostly human task, performed by people who specialize in classifying texts.

In the last 50 years, the types of texts being classified have changed a lot, and

the content being produced has grown exponentially, prompting researchers

and companies to invest money and time researching algorithms and AI

techniques which classify sets of texts into sets of categories or classes, as it is

no longer feasible to have humans do most of these tasks.

As this is a recurrent problemwhen dealing with text, a lot of algorithms and

techniques have been developed since the dawn of computing [125]: rule-

based systems, naïve bayes, k-nearest neighbors, support vector machines,

decision trees, logistic regressions and, for the last 3-4 years, neural networks,

of the convolutional and recurrent varieties. It is easy to see that almost all AI

techniques have been applied to the problem, all with the goal of improving

the accuracy of the last method used while striving to maintain or reduce the

amount of work needed to train the algorithm.

Focusing on neural networks, the state of the art evolved from using the rel-

atively simple CNNs [126], to augmenting them [78] with word embeddings

such as word2vec [127] or GloVe [128] to using Recurrent Neural Networks

(RNNs) with LSTM [129] and attention mechanisms [81].

When deciding what algorithm to use, I tried to strive for a balance between

accuracy, training performance and evaluation performance, as well as imple-

mentation ease, while being as close to the state of the art as possible. As seen

in [81], the accuracy of the neural networks is usually higher than all other

algorithms before them. But training RNNs takes much longer than training

CNNs, due to the more sequential nature of RNNs over CNNs, which makes

56

Chapter 4. Historian Skill

RNN much harder to parallelize. This difference in training time combined

with a less acute loss of accuracy ended up tipping the balance in favor of

the CNNwith word embeddings model in [78]. Its implementation has been

relatively fast to train and for the task at hand its accuracy has been beyond

my expectations, as it is very hard to find sentences which are misclassified.

The accuracy for the question classifier for 10 question types is around 95%

using cross-validation, which is pretty high compared to other systems in the

literature. This might be due to overfitting or the problem being easier than

most, but there is not enough evidence to confirm any of the two hypothesis.

The implementation of the algorithm is based on [130], with all the due

changes to adapt the system to a multi-class classifier as needed by the his-

torian skill, for example by changing the input loader and adding support

for a multi-class output. The whole subsystem is implemented in Tensorflow

[131], a Python library developed by Google to simplify the development

of different machine learning workflows. The training component lives in

the historical_db repository and the actual classifier is running inside the

Historian Skill API on the Daphne Brain. It is also important to note the

hyper-parameter tuning done to the model, with the size of the word filters

set to 3, 4 and 5 words and the number of filters per word size set to 100.

According to [79], these values give consistently good results on different

datasets.

Returning to the input, it is known that machine learning algorithms, and

specially neural networks, need big datasets to be able to perform with great

accuracy. The problem is in the span of this project therewas no time to collect

a big enough dataset of questions which could be asked, so a compromise so-

lution was found: use a question generator which can add random variations

of questions of the same type, with even random words put in the middle

whichmake no sense so the algorithm can be trained on a quasi-human input.

57

Chapter 4. Historian Skill

For the actual training, a set of 2190 examples is generated, with different

numbers for each question depending onhowmanyvariations of the question

there can be. Then, before they are fed into the neural network, they are

cleaned by lemmatizing each word and then removing the so-called stop

words: words which do not help in NLP tasks, and which are selected from a

list already included in spaCywith some exceptions such as the wh- question

words, which are really important in this classification task. Finally, the

questions are fed into the neural network as a vector ofwordvectors computed

with word2vec.

This approach has given good results, as the system testers have a hard

time finding questions that can fool the neural network into misclassifying

a question, while at the same time keeping the time to add a new function

relatively low, as the only two steps needed are generating a new set of

examples with the random generator and retraining the network, which is

already programmed to get the number of output classes from the number

of files with examples which is provided to it. Training the network takes

around 30 minutes on a Nvidia GTX 1050.

4.4 Definition of a Question Type

When programming the analyst back-end and the Historian skill, I realized

that the system needed to be easy to expand, in the sense that adding new

questions to the pool of answerable questions should be a process as easy as

possible so anyone with some database knowledge could do it. This meant

creating a system based on files which could be created and edited without

any intervention fromme. This software architecture is sometimes referred as

data-driven design, as software systems are programmed to read information

58

Chapter 4. Historian Skill

from data files, meaning they only need to be programmed once and can have

totally different behaviors depending on the files read.

In Daphne, and the Historian skill in particular, these files are the definitions

of the different question types, meaning each file describes a question type

completely.

The information contained in each of these files is:

• Parameters: The first field of the file is an array containing all of the

parameters that can be found in a question type, including a name for

each parameter to refer to it later, the type of the parameter to knowhow

to extract it later on, some extra data to be passed to the extract function,

and whether the parameter is mandatory for the question type or not,

as some question types allow for optional parameters.

• Query: The second field of the file contains the different building blocks

(or templates) of the database query. It includes the “always” section,

which is executed all the time, followedbyan array of optional filters and

sub-queries which depend on some of the optional parameters being

present. Then there is the “end” portion, which is always appended at

the end of the query. The last two sections are the “result_type” and

the “result_field”, which define if the result is a number, a text or a

list, for example, and tell the system which field of all those returned

by the database is the needed result. All the sections are written using

the SQLAlchemy declarative syntax, whichmakes it much easier to add

new parts to the query compared to the regular SQL syntax.

• Response: The last field of the file contains a Python template [132] on

how to build the response which is going to be sent back to the user.

This template allows to put any HTML on it, but as images or audio

cannot be generated as a response for now, only text is usually written

59

Chapter 4. Historian Skill

here. All parameters alongwith the query result can be used in building

the response.

These files are written in JSON format so they are lightweight and easy to

understand, and an example is provided in figure 4.1.

Figure 4.1: Example of a question type JSON file

4.5 Feature extraction

Once the skill and the back-end know which parameters need to be present

in the question being processed, the next step is to actually extract them. The

algorithm works as follows:

1. For each parameter, an extract function is called depending on the type

of the parameter. These functions can be of three types: it can use the

named entity recognition of spaCy to obtain the required features from

the question if spaCy already implements the algorithm for that type

of feature; it can be a sub-string matcher based on the lists of possible

values for each parameter type being extracted from the database; or

it can be just a sub-string search to see if there are sub-strings in the

question which comply with certain conditions. For example, the years

are extracted by checking if there is any sub-string that looks like a year

according to spaCy and then saving all of them in order in case more

60

Chapter 4. Historian Skill

than one is needed. For missions, measurements and technologies the

process is more complex, and is described in the following steps:

(a) First, a list with all the possible values is obtained from the

database.

(b) Then, all the elements in the list are compared to the whole ques-

tion using Sellers’ algorithm [107], and the result is the same list,

but with the elements ordered by the maximum similarity of each

of them to the question. The maximum similarity is computed

by checking the edit distance for each element against all the sub-

strings with the same size in the question string and then com-

puting a ratio with the following formula: max_similarit y �

max
(
∀substrin gs len gth_element−edit_distance(element ,substrin g)

len gth_element

)
. The

list is then cropped to only the elements with a high enough max

similarity (0.75 for now).

(c) The list is cropped to only the number of required elements of the

same type if it is longer than that.

(d) The list is then reordered by the appearing position of each element

in the question and then saved in that order for the rest of the

pipeline.

2. Once the extraction is done, the list of features is passed through a

process function which applies certainmodifications to each feature de-

pending on its type. For example, years are converted into specific dates

depending on an optional parameter which is written in the JSON.Most

other features remain roughly the same, with some minor adjustments

like the elimination of spaces at the beginning and at the end of the

string or some changes in the capitalization.

61

Chapter 4. Historian Skill

3. All the extracted and processed features are sent back to the main

pipeline so they can continue their journey to the answer.

4.6 Data augmentation

Evenwith all the data collected from the question, sometimes people consider

some information to be common knowledge and so it does not appear in the

question. One clear example is the meaning of “now”. While people know

which is the date of today, the Historian skill will not unless someone tells

him so. This is the reason why this step exists in the pipeline. Its job is to

simply add some of this implicit contextual information humans have and

expect the computer to have when interacting with it.

For now the system only adds the current date as contextual information,

as this is the only extra information needed to answer all the programmed

questions.

4.7 Database querying

The next step in the pipeline is querying the database to obtain the required

information from it. The data needed in this step is all the augmented data

from the question along with all the query templates already mentioned

in section 4.4. There are a few sub-steps to it, which are described in the

following list:

1. First, the “always” template is run through the Python template engine

to obtain the first part of the query which is going to be run.

2. Then, for each “optional” template, the condition of activation is

checked against all the available data, and if it evaluates to true then

62

Chapter 4. Historian Skill

the template is run through the engine and appended to the end of the

query.

3. Finally, the “end” portion of the query is run through the engine and it

is appended to the end of the query.

With the query fully constructed, it is run in the database and its results are

obtained.

With the results in hand, the portion of the answer which depends on them

is built. Responses can be of completely different types, and each type has a

completely different process to build itself.

For example, if the response is a list, all the query results are appended in a

string with separating commas. In case it is a date, the date is written in a

human readable form, as the database stores it as a UNIX timestamp. The

last implemented case is for orbits, as the orbit related questions have their

answers stored in a format which can encode all the information from the

decision tree in section 3.2.3.4, and this means a parser needed to be built in

order to decode that information into a human readable format.

4.8 Answer construction

Finally, the last step in the pipeline is actually building the answer the user

will see in his/her screen. The answer is built running the answer template

corresponding with the question type on the template engine with all the

augmented data from the question together with the response from the last

step.

The result can sometimes sound awkward to a human, and future improve-

ments are discussed in Chapter 5.

63

Chapter 5

Limitations and Future work

While developing the whole system, a lot of ideas were postponed as they

were considered not basic for the project to actually be in a working state.

Some difficult to solve problems were also identified, which are listed as

limitations of the project.

5.1 Limitations

The three main limitations of the system as of now are the following:

• Not testing the system: There has been no formal test with humans

to see if the system really accomplishes its intended benefits. There

is anecdotal evidence that it does, but it cannot be considered hard

evidence. This limitation is going to be solved soon after this report

is finished, as some tests are planned as part of a journal paper to be

published in the next months.

• Scaling: Adding a new question type or a command to the system

implies retraining the whole statistical model for classification of the

input, which takes time. Also, the process of actually adding and pro-

gramming the question is hard, as it requires knowledge on the internal

structure of the database, SQL and SQLAlchemy declarative syntax,

64

Chapter 5. Limitations and Future work

which is out of reach for most non-programmers. An improved work-

flow would help much in this, but it is difficult to develop and thus is

really far away in the list of tasks to do.

• Generalization: The system is not thought out to be reused in other

domains, even inside system design. A lot of the work done here has

been specific to the task at hand, and it is not clear how much of the

project can be generalized without almost starting form scratch. One

idea is to make the whole QA pipeline a standalone project, with a

command line interface which allows the end-user to only run a single

command to obtain a completely functional QA server, but this requires

time and more thought, which I do not have right now.

5.2 Future work

On a brighter note, these are features which can actually be developed in a

short time frame and for which I have time and a plan:

• Unified web interface: Right nowDaphne is running on three different

web interfaces: iFEED, Critic and Historian. A new, unified interface

with the functionality of all the other interfaces coupled together has

already been planned and designed on paper, which means only the

actual coding of it is left to do.

• Better command classification: The Daphne Voice and Text Command

Classification is now implemented as a system of ifs and elses which

changes a state machine so the commands are actually routed to the

correct skill. The original idea was to reuse parts of the Historian skill

so the commands are routed automatically using a statistical model

instead of the solution implemented now, which is just a placeholder.

65

Chapter 5. Limitations and Future work

• Dialog system: The system should be able to maintain a conversation

with the user, keeping the context of what has already been said and

being able to answer follow-up questions from the user on questions

asked before. One of the main steps forward for Daphne is to add some

kind of cognitive architecture like those presented in section 1.1 behind

it, so this project is already starting.

• Visual answers: The system only answers questions with textual re-

sponses, but there are no limitations on the kinds of output the system

can emit. And some questions are better answered with plots, images

or videos. Actually adding these kinds of responses is then something

which can be worked out in the future.

• More human answers: No one wants to hear “Mission X was launched

in 2030” when it is still 2017, as it might make you feel old. Building a

more robust answer system which can actually output the correct verb

tense when talking about dates among other common human details is

a project which might be worth pursuing.

66

Chapter 6

Conclusion

The aim of this final degree thesis was to develop a fully functional CA for

helping system engineers design EOSSs. This main objective has been fully

completedwith thedevelopment of thewholeDaphne architecture, including

all the front-ends, the Daphne Brain, the back-ends, the data sources, and,

most importantly, the three demo skills: the Historian Skill, the iFEED Skill

and the Critic Skill.

Until now, most CA have been developed for commercial general usage. But

there has been a recent trend of specializing these tools, as the problem of

cognitive overload of humans is becoming common in a lot of fields, with de-

sign and aerospace being two of them. While there have been CA developed

for both aerospace and design, as seen in section 1.2, Daphne is the first CA to

support the task of designing EOSS. It also tries to set a precedent by making

the system completely open, which is something sorely missed in aerospace,

where most technologies are completely locked down.

The work done on the QA pipeline for the Historian Skill is also interesting

as it has combined the latest trends on NLP using Deep Learning to create

a NLIDB which is more flexible and easier to configure than most existing

systems, but can still be made easier if there is some more time investment.

67

Chapter 7

Personal thoughts

Through the development of the whole Daphne architecture along with the

Historian skill I have had the chance of explaining in detail how the research

and software building processesworkwith the failed approaches chapter and

the two development chapters. I am specially happywith Chapter 2, as it tells

a story which is usually hidden from the majority of people, who can only

judge a project by its success or failure. I feel this has been said a lot of times,

but every success is built on a mountain of failures, and this project is no

exception.

I did not expect to have to work with a team in this project, but having had to

do so has been a good experience at tackling what people sometimes call soft

skills such as time management, scheduling, and communication with other

people in a team: these are important for any career but are almost never

taught, which is strange considering most career advancements depend on

them.

As a final note, finishing this project and thesis brings a sense of closure for

me, as, after more than five years of hard work doing two bachelor degrees

at the same time, this is the end result of the whole effort. I could not be

prouder of it, as I have been able to use a lot of knowledge I learned along

68

Chapter 7. Personal thoughts

the way in both my degrees and I feel this is like putting the icing on the very

sweet cake that has been my experience for the years.

69

Appendix A

Source code of the project

The source code for the whole project can be found under different reposito-

ries in Github, under the seakers group: https://www.github.com/seakers.

• Daphne Brain: https://github.com/seakers/daphne_brain

• iFEED: https://github.com/seakers/iFEED

• VASSAR: https://github.com/seakers/VASSAR

• Data Mining: https://github.com/seakers/data-mining

• VR Interface: https://github.com/seakers/daphne-VR

• Physical Embodiment: https://github.com/seakers/daphne-robot

• Historical DB: https://github.com/seakers/historical_db

• Daphne Current Interface: https://github.com/seakers/daphne-

visual

• Daphne Unified Interface: https://github.com/seakers/daphne-

interface

70

https://www.github.com/seakers
https://github.com/seakers/daphne_brain
https://github.com/seakers/iFEED
https://github.com/seakers/VASSAR
https://github.com/seakers/data-mining
https://github.com/seakers/daphne-VR
https://github.com/seakers/daphne-robot
https://github.com/seakers/historical_db
https://github.com/seakers/daphne-visual
https://github.com/seakers/daphne-visual
https://github.com/seakers/daphne-interface
https://github.com/seakers/daphne-interface

References

[1] National Aeronautics and Space Administration. NASA Technology

Roadmaps: Introduction, Crosscutting Technologies, and Index. Tech. rep.

July. 2015.

[2] Daniel Selva et al. “Distributed and Federated Satellite Systems: What

is Needed to Move Forward?” In: Journal of Aerospace Information Sys-

tems 14.August (2017), pp. 412–438. doi: 10.2514/1.I010497.

[3] National Aeronautics and Space Administration. NASA Technology

Roadmaps TA 11: Modeling, Simulation, Information Technology, and Pro-

cessing. Tech. rep. May. 2015.

[4] Daniel Selva and Edward F. Crawley. “Integrated assessment of pack-

aging architectures in earth observing programs”. In: IEEE Aerospace

Conference Proceedings. 2010. doi: 10.1109/AERO.2010.5446885.

[5] T. Spear and NASA. NASA faster, better, cheaper task final report. Tech.

rep. Washington: NASA Headquarters, 2000, pp. 1–18.

[6] R. W. Kingsbury, D. O. Caplan, and K. L. Cahoy. “Implementation

and validation of a CubeSat laser transmitter”. In: Proceedings of SPIE.

Vol. 9739. 2016, pp. 1–9. doi: 10.1117/12.2217990.

[7] Daniel Selva and Edward F. Crawley. “VASSAR: Value assessment of

system architectures using rules”. In: Aerospace Conference, 2013 IEEE.

IEEE, 2013, pp. 1–21. doi: 10.1109/AERO.2013.6496936.

[8] Hyunseung Bang and Daniel Selva. “iFEED: Interactive Feature Ex-

traction for Engineering Design”. In: ASME 2016 International Design

71

https://doi.org/10.2514/1.I010497
https://doi.org/10.1109/AERO.2010.5446885
https://doi.org/10.1117/12.2217990
https://doi.org/10.1109/AERO.2013.6496936

REFERENCES

Engineering Technical Conferences and Computers and Information in En-

gineering Conference. 2016, pp. 1–11.

[9] Robert E Thompson et al. “Disaggregated Space System Concept Op-

timization: Model-Based Conceptual Design Methods”. In: Systems

Engineering 18.6 (2015), pp. 549–567. doi: 10.1002/sys.21310.

[10] SreejaNag, StevenPHughes, and JacquelineLeMoigne. “Streamlining

the Design Tradespace for Earth Imaging Constellations”. In: AIAA

Space 2016. 2016, pp. 1–17. doi: 10.2514/6.2016-5561.

[11] Mark W Maier and Eberhardt Rechtin. The Art of Systems Architecting.

3rd ed. Boca Raton, FL, USA: CRC Press, 2009.

[12] Douglas C. Engelbart. Augmenting human intellect: a conceptual frame-

work. Tech. rep. Washington D.C.: Stanford Research Institute, 1962,

p. 144.

[13] JohannHauswald et al. “Sirius: AnOpen End-to-EndVoice andVision

Personal Assistant and Its Implications for Future Warehouse Scale

Computers”. In: Twentieth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems - ASPLOS ’15.

2015, pp. 223–238. doi: 10.1145/2694344.2694347.

[14] Johann Hauswald et al. “DjiNN and Tonic”. In: ACM SIGARCH Com-

puter Architecture News 43.3 (2015), pp. 27–40. doi: 10.1145/2872887.

2749472.

[15] Google. Photos | Google Blog. 2017. url: https://www.blog.google/

products/photos/ (visited on 09/10/2017).

[16] Gerhard Weiss. Multiagent Systems. 2nd ed. Cambridge, Mas-

sachusetts, USA: The MIT Press, 2013, p. 920.

[17] Karen Myers et al. “An intelligent personal assistant for task and time

management”. In: AI Magazine 28.2 (2007), pp. 47–62. doi: 10.1609/

aimag.v28i2.2039.

72

https://doi.org/10.1002/sys.21310
https://doi.org/10.2514/6.2016-5561
https://doi.org/10.1145/2694344.2694347
https://doi.org/10.1145/2872887.2749472
https://doi.org/10.1145/2872887.2749472
https://www.blog.google/products/photos/
https://www.blog.google/products/photos/
https://doi.org/10.1609/aimag.v28i2.2039
https://doi.org/10.1609/aimag.v28i2.2039

REFERENCES

[18] John Grant, Sarit Kraus, and Donald Perlis. “A logic-based model

of intention formation and action for multi-agent subcontracting”. In:

Artificial Intelligence 163.2 (2005), pp. 163–201. doi: 10.1016/j.artint.

2004.11.003.

[19] Apple. iOS - Siri - Apple. 2017. url: https://www.apple.com/ios/

siri/ (visited on 09/10/2017).

[20] Google. Google Assistant - Your own personal Google. 2017. url: https:

//assistant.google.com/ (visited on 09/10/2017).

[21] Amazon. Alexa. 2017. url: https://developer.amazon.com/alexa

(visited on 09/10/2017).

[22] Microsoft. Cortana | Your Intelligent Virtual & Personal Assistant |

Microsoft. 2017. url: https://www.microsoft.com/en-us/windows/

cortana (visited on 09/10/2017).

[23] MIT Technology Review. Facebook’s Perfect, Impossible Chatbot -

MIT Technology Review. 2017. url: https://www.technologyreview.

com/s/604117/facebooks-perfect-impossible-chatbot/ (visited

on 09/10/2017).

[24] D. A. Ferrucci. “Introduction to “This is Watson””. In: IBM Journal of

Research and Development 56.3.4 (2012), pp. 1–15. doi: 10.1147/JRD.

2012.2184356.

[25] IBM. Watson Products and Services - IBM Watson. 2017. url: https://

www.ibm.com/watson/products-services/ (visited on 09/10/2017).

[26] Petr Baudiš. “YodaQA : A Modular Question Answering System

Pipeline”. In: POSTER 2015-19th International Student Conference on

Electrical Engineering. 2015, pp. 1156–1165.

[27] Aaron Helsinger, Michael Thome, and ToddWright. “Cougaar: a scal-

able, distributed multi-agent architecture”. In: 2004 IEEE International

Conference on Systems, Man and Cybernetics. Vol. 2. 2004, pp. 1910–1917.

doi: 10.1109/ICSMC.2004.1399959.

73

https://doi.org/10.1016/j.artint.2004.11.003
https://doi.org/10.1016/j.artint.2004.11.003
https://www.apple.com/ios/siri/
https://www.apple.com/ios/siri/
https://assistant.google.com/
https://assistant.google.com/
https://developer.amazon.com/alexa
https://www.microsoft.com/en-us/windows/cortana
https://www.microsoft.com/en-us/windows/cortana
https://www.technologyreview.com/s/604117/facebooks-perfect-impossible-chatbot/
https://www.technologyreview.com/s/604117/facebooks-perfect-impossible-chatbot/
https://doi.org/10.1147/JRD.2012.2184356
https://doi.org/10.1147/JRD.2012.2184356
https://www.ibm.com/watson/products-services/
https://www.ibm.com/watson/products-services/
https://doi.org/10.1109/ICSMC.2004.1399959

REFERENCES

[28] Di Wang and Eric Nyberg. “CMU OAQA at TREC 2016 LiveQA : An

Attentional Neural Encoder-Decoder Approach for Answer Ranking”.

In: Text REtrieval Conference (TREC) 2016. 2016, pp. 1–6.

[29] Ben Goertzel andGino Yu. “A cognitive API and its application to AGI

intelligence assessment”. In: InternationalConference onArtificialGeneral

Intelligence. 2014, pp. 242–245. doi: 10.1007/978-3-319-09274-4_25.

[30] JohnMcDermott. “R1: A rule-based configurer of computer systems”.

In: Artificial intelligence 19.1 (1982), pp. 39–88.

[31] Caroline C. Hayes et al. “Intelligent Support for Product Design: Look-

ing Backward, Looking Forward”. In: Journal of Computing and Informa-

tion Science in Engineering 11 (2011), pp. 1–9. doi: 10.1115/1.3593410.

[32] Ashok K. Goel et al. “Cognitive, collaborative, conceptual and creative

- Four characteristics of the next generation of knowledge-based CAD

systems: A study in biologically inspired design”. In: CAD Computer

Aided Design 44.10 (2012), pp. 879–900. doi: 10.1016/j.cad.2011.03.

010.

[33] William C Regli, Simon Szykman, and Ram D Sriam. “The role of

knowledge innext-generationproduct development systems”. In: Jour-

nal of computing and information Science in Engineering 1 (2001), pp. 3–

11.

[34] Yoshinobu Kitamura et al. “Deployment of an ontological framework

of functional design knowledge”. In: Advanced Engineering Informatics

18.2 (2004), pp. 115–127.

[35] Stephanie A Guerlain et al. “Interactive critiquing as a form of deci-

sion support: An empirical evaluation”. In: Human Factors 41.1 (1999),

pp. 72–89.

[36] John Eddy and Kemper E Lewis. “Visualization of Multidimensional

Design and Optimization using Cloud Visualization”. In: Proceedings

of DETC’02 (2002), pp. 899–908. doi: 10.1115/DETC2002/DAC-34130.

74

https://doi.org/10.1007/978-3-319-09274-4_25
https://doi.org/10.1115/1.3593410
https://doi.org/10.1016/j.cad.2011.03.010
https://doi.org/10.1016/j.cad.2011.03.010
https://doi.org/10.1115/DETC2002/DAC-34130

REFERENCES

[37] Gary M Stump et al. “Design Space Visualization and Its Application

to a Design by Shopping Paradigm”. In: Proceedings of DETC’03. 2003,

pp. 795–804.

[38] PoWenChiu andChristina L. Bloebaum. “Hyper-Radial Visualization

(HRV) method with range-based preferences for multi-objective deci-

sion making”. In: Structural and Multidisciplinary Optimization 40.1-6

(2010), pp. 97–115. doi: 10.1007/s00158-009-0361-9.

[39] Nathan Knerr and Daniel Selva. “Cityplot: Visualization of High-

Dimensional Design Spaces with Multiple Criteria”. In: Journal of Me-

chanical Design 138.9 (2016), pp. 1–53. doi: 10.1115/1.4033987.

[40] PW Chiu and CL Bloebaum. “Visual Steering for Design Generation

in Multi-objective Optimization Problems”. In: 47th AIAA Aerospace

Sciences Meeting. January. 2009, pp. 1–14. doi: 10.2514/6.2009-1167.

[41] Gary Stump et al. “Visual Steering Commands for Trade Space Ex-

ploration: User-Guided Sampling With Example”. In: Journal of Com-

puting and Information Science in Engineering 9.4 (2009), pp. 1–10. doi:

10.1115/1.3243633.

[42] Xin Yan et al. “Work-Centered Visual Analytics to Support Multidis-

ciplinary Design Analysis and Optimization”. In: 12th AIAA Avia-

tion Technology, Integration, and Operations (ATIO) Conference and 14th

AIAA/ISSM. 2012. doi: 10.2514/6.2012-5662.

[43] S Watanabe, Y Chiba, and M Kanazaki. “A proposal on analysis sup-

port system based on association rule analysis for non-dominated

solutions”. In: 2014 IEEE Congress on Evolutionary Computation (CEC).

2014, pp. 880–887. doi: 10.1109/CEC.2014.6900650.

[44] GuidoCervone, Pasquale Franzese, andAllen P.K. Keesee. “Algorithm

quasi-optimal (AQ) learning”. In:Wiley Interdisciplinary Reviews: Com-

putational Statistics 2.2 (2010), pp. 218–236. doi: 10.1002/wics.78.

75

https://doi.org/10.1007/s00158-009-0361-9
https://doi.org/10.1115/1.4033987
https://doi.org/10.2514/6.2009-1167
https://doi.org/10.1115/1.3243633
https://doi.org/10.2514/6.2012-5662
https://doi.org/10.1109/CEC.2014.6900650
https://doi.org/10.1002/wics.78

REFERENCES

[45] Allen Newell. Human Problem Solving. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1972.

[46] Daniel Keim et al.Mastering The Information Age – Solving Problems with

Visual Analytics. Jan. 2010.

[47] NWHirschi andDDFrey. “Cognition and complexity:An experiment

on the effect of coupling in parameter design”. In: Research in Engineer-

ing Design 13 (2002), pp. 123–131. doi: 10.1007/s00163-002-0011-3.

[48] EdwardA Feigenbaum, Bruce G Buchanan, and Joshua Lederberg.On

generality and problem solving: A case study using the DENDRAL program.

Tech. rep. Stanford University CS Department, 1970.

[49] Edward H Shortliffe and Bruce G Buchanan. “A model of inexact rea-

soning in medicine”. In: Mathematical Biosciences 23.3 (1975), pp. 351–

379. doi: https://doi.org/10.1016/0025-5564(75)90047-4.

[50] DARPA. PAL - The PAL Framework. 2011. url: https://pal.sri.com/

(visited on 09/10/2017).

[51] Adam Cheyer and David Martin. “The Open Agent Architecture”. In:

Autonomous Agents and Multi-Agent Systems 4.1-2 (2001), pp. 143–148.

doi: 10.1023/A:1010091302035.

[52] Adam Cheyer, Jack Park, and Richard Giuli. “IRIS: Integrate. Relate.

Infer. Share”. In: Proceedings of the 2005 International Conference on Se-

mantic Desktop Workshop. Aachen, Germany, Germany, 2005, pp. 59–

73.

[53] Michael Freed et al. “RADAR : A Personal Assistant that Learns to

Reduce Email Overload”. In: Twenty-Third AAAI Conference on Ar-

tificial Intelligence. 2008, pp. 1287–1293. doi: 10.1093/acprof:oso/

9780199606375.003.0001.

[54] Wolphram Alpha LLC. Wolfram|Alpha: Computational Knowledge

Engine. 2017. url: http://www.wolframalpha.com/ (visited on

09/10/2017).

76

https://doi.org/10.1007/s00163-002-0011-3
https://doi.org/https://doi.org/10.1016/0025-5564(75)90047-4
https://pal.sri.com/
https://doi.org/10.1023/A:1010091302035
https://doi.org/10.1093/acprof:oso/9780199606375.003.0001
https://doi.org/10.1093/acprof:oso/9780199606375.003.0001
http://www.wolframalpha.com/

REFERENCES

[55] Mycroft AI Inc. Mycroft AI - Open Source Artificial Intelligence Voice

Assistant. 2017. url: https://mycroft.ai/ (visited on 08/31/2017).

[56] Clarity Lab. Lucida. 2017. url: http://lucida.ai/ (visited on

08/31/2017).

[57] Reiner Onken and Anton Walsdorf. “Assistant systems for aircraft

guidance: Cognitive man-machine cooperation”. In: Aerospace Science

and Technology 5.8 (2001), pp. 511–520. doi: 10.1016/S1270-9638(01)

01137-3.

[58] Diana Donath, Andreas Rauschert, and Axel Schulte. “Cognitive as-

sistant system concept for multi-UAV guidance using human operator

behaviour models”. In: Humous’10. 2010.

[59] E. Özyurt and B. Döring. “A Cognitive Assistant for Supporting Air

Target Identification on Navy Ships”. In: IFAC Proceedings Volumes.

Vol. 45. 2. IFAC, 2012, pp. 469–474. doi: 10.3182/20120215-3-AT-

3016.00082.

[60] G. Tokadli. Cognitive Assistant | ACSL. 2017. url: http://www.imse.

iastate.edu/acsl/cognitive-assistant/ (visited on 09/10/2017).

[61] Kimberle Koile. “An Intelligent Assistant for Conceptual Design”.

In: Design Computing and Cognition ’04. Ed. by John S Gero. Dor-

drecht: Springer Netherlands, 2004, pp. 3–22. doi: 10.1007/978-1-

4020-2393-4_1.

[62] P. Floss and J. Talavage. “A knowledge-based design assistant for in-

telligent manufacturing systems”. In: Journal of Manufacturing Systems

9.2 (1990), pp. 87–102. doi: 10.1016/0278-6125(90)90024-C.

[63] LawrenceMandowand Jose Luis Perez-De-La-Cruz. “Sindi: An intelli-

gent assistant for highway design”. In: Expert Systems with Applications

27.4 (2004), pp. 635–644. doi: 10.1016/j.eswa.2004.06.005.

77

https://mycroft.ai/
http://lucida.ai/
https://doi.org/10.1016/S1270-9638(01)01137-3
https://doi.org/10.1016/S1270-9638(01)01137-3
https://doi.org/10.3182/20120215-3-AT-3016.00082
https://doi.org/10.3182/20120215-3-AT-3016.00082
http://www.imse.iastate.edu/acsl/cognitive-assistant/
http://www.imse.iastate.edu/acsl/cognitive-assistant/
https://doi.org/10.1007/978-1-4020-2393-4_1
https://doi.org/10.1007/978-1-4020-2393-4_1
https://doi.org/10.1016/0278-6125(90)90024-C
https://doi.org/10.1016/j.eswa.2004.06.005

REFERENCES

[64] KazjonGrace et al. “Personalised Specific Curiosity for Computational

Design Systems”. In:DesignComputing andCognition ’16. 2017, pp. 593–

610. doi: 10.1007/978-94-017-9112-0. arXiv: 1011.1669v3.

[65] Tony McCaffrey and Lee Spector. “An approach to human–machine

collaboration in innovation”. In: Artificial Intelligence for Engineering

Design, Analysis andManufacturing 2012 (2017), pp. 1–15. doi: 10.1017/

S0890060416000524.

[66] J.S. Gero and W. Peng. “A situated agent-based design assistant”. In:

Computer-Aided Architectural Design Research in Asia Conference. 2004,

pp. 145–157.

[67] W Peng and JS Gero. “Computer-aided design tools that adapt”. In:

Computer-Aided Architectural Design Futures. 2007, pp. 417–430.

[68] Hannah Bast and Elmar Haussmann. “More Accurate Question An-

swering on Freebase”. In: Proceedings of the 24th ACM International on

Conference on Information and Knowledge Management. 2015, pp. 1431–

1440. doi: 10.1145/2806416.2806472.

[69] Ana-Maria Popescu et al. “Modern natural language interfaces to

databases: Composing Statistical Parsing with Semantic Tractability

Ana-Maria”. In:Proceedings of the 20th international conference onCompu-

tational Linguistics - COLING ’04. 2004, pp. 1–7. doi: 10.3115/1220355.

1220376.

[70] Yunyao Li, Huahai Yang, and H. V. Jagadish. “NaLIX: an interactive

natural language interface for querying XML”. In: Proceedings of the

2005 ACM SIGMOD international conference on Management of data -

SIGMOD ’05. 2005, p. 900. doi: 10.1145/1066157.1066281.

[71] YongjunZhu, Erjia Yan, and Il Yeol Song. “Anatural language interface

to a graph-based bibliographic information retrieval system”. In:Data

and Knowledge Engineering July 2016 (2017), pp. 1–17. doi: 10.1016/j.

datak.2017.06.006.

78

https://doi.org/10.1007/978-94-017-9112-0
http://arxiv.org/abs/1011.1669v3
https://doi.org/10.1017/S0890060416000524
https://doi.org/10.1017/S0890060416000524
https://doi.org/10.1145/2806416.2806472
https://doi.org/10.3115/1220355.1220376
https://doi.org/10.3115/1220355.1220376
https://doi.org/10.1145/1066157.1066281
https://doi.org/10.1016/j.datak.2017.06.006
https://doi.org/10.1016/j.datak.2017.06.006

REFERENCES

[72] BSujatha andSVishwanadhaRaju. “Natural LanguageQueryProcess-

ing for Relational Database using EFFCNAlgorithm”. In: International

Journal of Computer Sciences and Engineering 4.02 (2016), pp. 49–53.

[73] Scott Reed and Nando de Freitas. “Neural Programmer-Interpreters”.

In: International Conference on Learning Representations. 2016, pp. 1–13.

arXiv: 1511.06279.

[74] Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. “Neural Pro-

grammer: Inducing Latent Programs with Gradient Descent”. In: In-

ternational Conference on Learning Representations 2015. 2015, pp. 1–18.

doi: 10.1016/j.physa.2015.05.013. arXiv: 1511.04834.

[75] Manju Mony et al. “An Overview of NLIDB Approaches and Imple-

mentation for Airline Reservation System”. In: International Journal of

Computer Applications 107.5 (2014), pp. 36–41. doi: http://dx.doi.

org/10.5120/18750-0006.

[76] Neelu Nihalani, Sanjay Silakari, and Mahesh Motwani. “Natural lan-

guage Interface for Database: A Brief review”. In: International Journal

of Scientific and Computational Intelligence 8.2 (2011), pp. 600–608.

[77] Yunyao Li and Davood Rafiei. “Natural Language Data Management

and Interfaces”. In: Proceedings of the 2017 ACM International Conference

on Management of Data - SIGMOD ’17. 2017, pp. 1765–1770. doi: 10.

1145/3035918.3054783.

[78] Yoon Kim. “Convolutional Neural Networks for Sentence Classifica-

tion”. In:Conference on EmpiricalMethods inNatural Language Processing.

Aug. 2014. arXiv: 1408.5882.

[79] Ye Zhang and Byron Wallace. “A Sensitivity Analysis of (and Practi-

tioners’ Guide to) Convolutional Neural Networks for Sentence Clas-

sification”. In: arXiv (2015). arXiv: 1510.03820.

79

http://arxiv.org/abs/1511.06279
https://doi.org/10.1016/j.physa.2015.05.013
http://arxiv.org/abs/1511.04834
https://doi.org/http://dx.doi.org/10.5120/18750-0006
https://doi.org/http://dx.doi.org/10.5120/18750-0006
https://doi.org/10.1145/3035918.3054783
https://doi.org/10.1145/3035918.3054783
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1510.03820

REFERENCES

[80] Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. “A Hierarchical Neu-

ral Autoencoder for Paragraphs andDocuments”. In: arXiv (2015). doi:

10.3115/v1/P15-1107. arXiv: 1506.01057.

[81] Zichao Yang et al. “Hierarchical Attention Networks for Document

Classification”. In: Proceedings of the 2016 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies. 2016, pp. 1480–1489. doi: 10.18653/v1/N16-1174.

arXiv: 1606.02393.

[82] Franck Dernoncourt, Ji Young Lee, and Peter Szolovits. “Neural Net-

works for Joint Sentence Classification in Medical Paper Abstracts”.

In: Proceedings of the 15th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics: Volume 2, Short Papers. 2016. doi:

10.18653/v1/E17-2110. arXiv: 1612.05251.

[83] Nico Schlaefer et al. “Semantic Extensions of the Ephyra QA System

for TREC 2007”. In: Sixteenth Text REtrieval Conference (TREC). 2007.

[84] Nico Schlaefer. OpenEphyra Code Repository. 2014. url: https://

github.com/TScottJ/OpenEphyra (visited on 08/31/2017).

[85] D. Povey et al. “The Kaldi speech recognition toolkit”. In: IEEE Work-

shop on Automatic Speech Recognition and Understanding. IEEE Signal

Processing Society, 2011.

[86] OpenCV Team. OpenCV library. 2017. url: http://opencv.org/ (vis-

ited on 08/31/2017).

[87] Jens Lehmann et al. “DBpedia - A large-scale, multilingual knowledge

base extracted from Wikipedia”. In: Semantic Web 6.2 (2015), pp. 167–

195. doi: 10.3233/SW-140134.

[88] Kurt Bollacker et al. “Freebase: a collaboratively created graph

database for structuring human knowledge”. In: SIGMOD 08 Proceed-

ings of the 2008 ACM SIGMOD international conference on Management

of data. 2008, pp. 1247–1250. doi: 10.1145/1376616.1376746.

80

https://doi.org/10.3115/v1/P15-1107
http://arxiv.org/abs/1506.01057
https://doi.org/10.18653/v1/N16-1174
http://arxiv.org/abs/1606.02393
https://doi.org/10.18653/v1/E17-2110
http://arxiv.org/abs/1612.05251
https://github.com/TScottJ/OpenEphyra
https://github.com/TScottJ/OpenEphyra
http://opencv.org/
https://doi.org/10.3233/SW-140134
https://doi.org/10.1145/1376616.1376746

REFERENCES

[89] Text REtrieval Conference (TREC). Question Answering Collec-

tions. 2002. url: http://trec.nist.gov/data/qa.html (visited on

09/05/2017).

[90] Ellen M Voorhees. “The TREC-8 Question Answering Track Report”.

In: Natural Language Engineering 7.04 (1999), pp. 77–82. doi: 10.1017/

S1351324901002789.

[91] ArvindNeelakantan et al. “Learning a natural language interfacewith

neural programmer”. In: arXiv (2016). arXiv: 1611.08945.

[92] Astro Teller andManuela Veloso. “Neural programming and an inter-

nal reinforcement policy”. In: Late breaking papers at the genetic program-

ming 1996 conference. Stanford University Bookstore. 1996, pp. 186–

192.

[93] Sandia National Laboratories. Jess, the Rule Engine for the Java

Platform. 2013. url: https://herzberg.ca.sandia.gov/ (visited on

09/15/2017).

[94] Daniel Selva. “Knowledge-intensive global optimization of Earth ob-

serving systemarchitectures: a climate-centric case study”. In:SPIERe-

mote Sensing. Vol. 9241. 2014, pp. 1–22. doi: doi:10.1117/12.2067558.

[95] CEOS.THECEOSDATABASE:MISSION, INSTRUMENTSANDMEA-

SUREMENTS. 2017. url: http://database.eohandbook.com/ (vis-

ited on 09/16/2017).

[96] Scrapinghub. Scrapy | A Fast and Powerful Scraping and Web Crawling

Framework. 2017. url: https://scrapy.org/ (visited on 09/16/2017).

[97] SQLAlchemy. SQLAlchemy. 2017. url: https://www.sqlalchemy.

org/ (visited on 09/16/2017).

[98] RDFLib Team. RDFLib is a Python library for working with RDF. 2013.

url: https://github.com/RDFLib/rdflib (visited on 09/16/2017).

[99] Daniel Selva, Bruce Cameron, and Edward F. Crawley. “A rule-based

method for scalable and traceable evaluation of system architectures”.

81

http://trec.nist.gov/data/qa.html
https://doi.org/10.1017/S1351324901002789
https://doi.org/10.1017/S1351324901002789
http://arxiv.org/abs/1611.08945
https://herzberg.ca.sandia.gov/
https://doi.org/doi:10.1117/12.2067558
http://database.eohandbook.com/
https://scrapy.org/
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://github.com/RDFLib/rdflib

REFERENCES

In: Research in Engineering Design 25.4 (2014), pp. 325–349. doi: 10.

1007/s00163-014-0180-x.

[100] Apache Software Foundation. Apache Thrift - Home. 2017. url: https:

//thrift.apache.org/ (visited on 09/15/2017).

[101] RakeshAgrawal, Tomasz Imieliński, andArunSwami. “Mining associ-

ation rules between sets of items in largedatabases”. In:ACMSIGMOD

Record 22.2 (1993), pp. 207–216. doi: 10.1145/170036.170072.

[102] Rakesh Agrawal and Ramakrishnan Srikant. “Fast algorithms formin-

ing association rules”. In: Proceedings of the 20th International Conference

on Very Large Data Bases. Vol. 1215. 1994, pp. 487–499.

[103] Gary G Hendrix et al. “Developing a natural language interface to

complex data”. In: ACM Transactions on Database Systems (TODS) 3.2

(1978), pp. 105–147.

[104] Gary G Hendrix. “Natural-language interface”. In: Computational Lin-

guistics 8.2 (1982), pp. 56–61.

[105] Jonathan Berant et al. “Semantic Parsing on Freebase from Question-

Answer Pairs”. In: Proceedings of EMNLP. October. 2013, pp. 1533–

1544.

[106] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. “Towards a the-

ory of natural language interfaces to databases”. In: Proceedings of the

8th international conference on Intelligent user interfaces - IUI ’03. 2003,

p. 327. doi: 10.1145/604045.604120.

[107] Peter H Sellers. “The theory and computation of evolutionary dis-

tances: Pattern recognition”. In: Journal of Algorithms 1.4 (1980),

pp. 359–373. doi: 10.1016/0196-6774(80)90016-4.

[108] Django Software Foundation. The Web framework for perfectionists with

deadlines | Django. 2017. url: https://www.djangoproject.com/ (vis-

ited on 09/15/2017).

82

https://doi.org/10.1007/s00163-014-0180-x
https://doi.org/10.1007/s00163-014-0180-x
https://thrift.apache.org/
https://thrift.apache.org/
https://doi.org/10.1145/170036.170072
https://doi.org/10.1145/604045.604120
https://doi.org/10.1016/0196-6774(80)90016-4
https://www.djangoproject.com/

REFERENCES

[109] Tom Christie. Home - Django REST framework. 2017. url: http://www.

django-rest-framework.org/ (visited on 09/15/2017).

[110] L D Xu. “Case based reasoning”. In: IEEE Potentials 13.5 (1994), pp. 10–

13. doi: 10.1109/45.464654.

[111] SteveMenard and Luis Nell. JPype documentation - JPype 0.6.2 documen-

tation. 2014. url:http://jpype.readthedocs.io/en/latest/ (visited

on 09/15/2017).

[112] HubSpot. Tether. 2017. url: http://tether.io/ (visited on

09/15/2017).

[113] HubSpot. shepherd. 2017. url:http://github.hubspot.com/shepherd/

(visited on 09/15/2017).

[114] Mike Bostock. D3.js - Data-Driven Documents. 2017. url: https://

d3js.org/ (visited on 09/15/2017).

[115] The jQuery Foundation. jQuery. 2017. url: http://jquery.com/ (vis-

ited on 09/15/2017).

[116] Tal Ater. annyang! Easily add speech recognition to your site. 2017. url:

https://www.talater.com/annyang/ (visited on 09/16/2017).

[117] LearnBrite. ResponsiveVoice.JS. 2017. url: https://responsivevoice.

org/ (visited on 09/16/2017).

[118] ZURB. The most advanced responsive front-end framework in the world.

| Foundation. 2017. url: http://foundation.zurb.com/ (visited on

09/16/2017).

[119] Ricardo Cabello. three.js - Javascript 3D library. 2017. url: https://

threejs.org/ (visited on 09/15/2017).

[120] Khronos Group. WebGL Overview - The Khronos Group Inc. 2017. url:

https://www.khronos.org/webgl/ (visited on 09/15/2017).

[121] W3C. WebVR Spec Version List. 2017. url: https://w3c.github.io/

webvr/ (visited on 09/15/2017).

83

http://www.django-rest-framework.org/
http://www.django-rest-framework.org/
https://doi.org/10.1109/45.464654
http://jpype.readthedocs.io/en/latest/
http://tether.io/
http://github.hubspot.com/shepherd/
https://d3js.org/
https://d3js.org/
http://jquery.com/
https://www.talater.com/annyang/
https://responsivevoice.org/
https://responsivevoice.org/
http://foundation.zurb.com/
https://threejs.org/
https://threejs.org/
https://www.khronos.org/webgl/
https://w3c.github.io/webvr/
https://w3c.github.io/webvr/

REFERENCES

[122] Explosion AI. spaCy - Indusrtial-strength Natural Language Processing in

Python. 2017. url: https://spacy.io/ (visited on 09/16/2017).

[123] NLTK Project. Natural Language Toolkit. 2017. url: http://www.nltk.

org/ (visited on 09/16/2017).

[124] Apache Software Foundation. Apache OpenNLP. 2017. url: https://

opennlp.apache.org/ (visited on 09/16/2017).

[125] Aurangzeb Khan et al. “A review of machine learning algorithms

for text-documents classification”. In: Journal of advances in information

technology 1.1 (2010), pp. 4–20.

[126] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. “A con-

volutional neural network for modelling sentences”. In: arXiv (2014).

arXiv: 1404.2188.

[127] Tomas Mikolov et al. “Efficient estimation of word representations in

vector space”. In: arXiv (2013). arXiv: 1301.3781.

[128] Jeffrey Pennington, Richard Socher, and Christopher Manning.

“Glove: Global vectors for word representation”. In: Proceedings of

the 2014 conference on empirical methods in natural language processing

(EMNLP). 2014, pp. 1532–1543.

[129] Kai Sheng Tai, Richard Socher, and Christopher D Manning. “Im-

proved semantic representations from tree-structured long short-term

memory networks”. In: arXiv (2015). arXiv: 1503.00075.

[130] Denny Britz. Implementing a CNN for Text Classification in Ten-

sorFlow - WildML. 2015. url: http://www.wildml.com/2015/12/

implementing-a-cnn-for-text-classification-in-tensorflow (vis-

ited on 09/16/2017).

[131] Martín Abadi et al. “Tensorflow: Large-scale machine learning on het-

erogeneous distributed systems”. In: arXiv (2016). arXiv: 1603.04467.

84

https://spacy.io/
http://www.nltk.org/
http://www.nltk.org/
https://opennlp.apache.org/
https://opennlp.apache.org/
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1503.00075
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow
http://arxiv.org/abs/1603.04467

REFERENCES

[132] Python Software Foundation. 6.1. string - Common string operations -

Python 3.6.2 documentation. 2017. url: https://docs.python.org/3/

library/string.html#template-strings (visited on 09/16/2017).

85

https://docs.python.org/3/library/string.html#template-strings
https://docs.python.org/3/library/string.html#template-strings

	Abstract
	Resum
	Resumen
	Acknowledgements
	Contents
	List of Figures
	Introduction
	Motivation
	Background
	Approach

	Failed approaches
	Reusing an already existing CA system architecture
	Lucida
	Mycroft
	Next steps

	Reusing existing QA systems
	YodaQA
	Aqqu
	Next steps

	Using unsupervised learning for creating database queries
	Neural programmers

	Daphne: General architecture
	Overview
	Data sources
	Design Solutions database
	Expert Knowledge database
	Historical database
	Overview
	Data scraping
	Data processing
	Data mining
	Ontology

	Back-ends
	Architecture Evaluation
	Data Mining
	QA System

	Daphne Brain
	Skills
	iFEED Skill
	Critic Skill

	Front-ends
	Web & Voice Visual Interfaces
	iFEED Interface
	Critic Interface
	Historian Interface

	Daphne VR
	Physical Embodiment

	Historian Skill
	Skill overview
	Text processing
	Question classifier
	Definition of a Question Type
	Feature extraction
	Data augmentation
	Database querying
	Answer construction

	Limitations and Future work
	Limitations
	Future work

	Conclusion
	Personal thoughts
	Source code of the project
	References

