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Abstract

A (1,≤ `)-identifying code in digraph D is a dominating subset C of vertices of D,
such that all distinct subsets of vertices of D with cardinality at most ` have distinct
closed in-neighbourhoods within C. As far as we know, it is the first time that the
relation between identifying codes digraphs and their spectra is studied. The obtained
results can also be applied on graphs.
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1 Introduction

We consider simple digraphs (or directed graphs) without loops or multiple edges. Unless
otherwise stated, we follow the textbook by Bang-Jensen and Gutin [4] for terminology
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and definitions. Besides, regarding spectral graph theory, we use the notation of Godsil
and Royle [8].

Let D = (V,E) be a digraph with vertex set V and arc set E. A vertex u is adjacent
to a vertex v if (u, v) ∈ E. If there exist arcs (u, v) and (v, u), then we say that both arcs
form a digon. A digraph is symmetric if (u, v) ∈ E implies (v, u) ∈ E. A digon is often
called a symmetric arc of D. A digraph D is said to be oriented if it has no digon. The
girth g of a digraph is the length of a shortest cycle. Hence, an oriented digraph has girth
g ≥ 3. Moreover, observe that every (undirected) graph G with vertex set V and edge set

E can be seen as a symmetric digraph denoted by
↔
G replacing each edge uv ∈ E by the

digon (u, v) and (v, u). In other words, a graph can be seen as a symmetric digraph.

The out-neighborhood of a vertex u is N+(u) = {v ∈ V : (u, v) ∈ E} and the in-
neighborhood of u is N−(u) = {v ∈ V : (v, u) ∈ E}. The closed in-neighbourhood of u
is N−[u] = {u} ∪ N−(u), and the closed out-neighbourhood of u is defined analogously.
The out-degree of u is d+(u) = |N+(u)| and its in-degree d−(u) = |N−(u)|. We denote
by δ+ = δ+(D) the minimum out-degree of the vertices in D, and by δ− = δ−(D) the
minimum in-degree. The minimum degree of D is δ = δ(D) = min{δ+(D), δ−(D)}.
A digraph D is said to be d-in-regular if |N−(v)| = d for all v ∈ V , and d-regular if
|N+(v)| = |N−(v)| = d for all v ∈ V .

The spectrum of the adjacency matrix A of a graph G or digraph D is denoted by
sp(A) = {λm0

0 , λm1
1 , . . . , λmd

d }, where λi are the different eigenvalues and the superscripts
stand for their (algebraic) multiplicities mi = m(λi), whereas ev(A) is the set of the
different eigenvalues (without their multiplicities).

Given a vertex subset U ⊂ V , let N−[U ] =
⋃

u∈U N
−[u]. For a given integer ` ≥ 1,

a vertex subset C ⊂ V is a (1,≤ `)-identifying code in D when, for all distinct subsets
X,Y ⊂ V , with 1 ≤ |X|, |Y | ≤ `, we get

N−[X] ∩ C 6= N−[Y ] ∩ C. (1)

The definition of a (1,≤ `)-identifying code for graphs was introduced by Karpovsky,
Chakrabarty, and Levitin [9], where the minus sign superscripts in (1) can be omitted.
Thus, the definition for digraphs is a natural extension of the concept of (1,≤ `)-identifying
codes in graphs. A (1,≤ 1)-identifying code is referred to an identifying code.

Laihonen [10] proved the following result for graphs.

Theorem 1.1. [10] Let k ≥ 2 be an integer.

1. If a k-regular graph has girth g ≥ 7, then it admits a (1,≤ k)-identifying code.

2. If a k-regular graph has girth g ≥ 5, then it admits a (1,≤ k − 1)-identifying code.

Besides, Laihonen and Ranto [11] showed that if G is a connected graph with at least
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Figure 1: The subdigraphs forbidden by Lemma 1.1: (a) The digon, (b) TT3, and (c)
BT2,2.

three vertices admitting a (1,≤ `)-identifying code, then ` ≤ δ, where δ is the minimum
degree of G.

Regarding digraphs, the authors proved in [2] that every 1-in-regular digraph has a
(1,≤ 2)-identifying code if and only if its girth is at least 5. They also characterized
the 2-in-regular digraphs having a (1,≤ 2)-identifying code or a (1,≤ 3)-identifying code.
Moreover, they gave some sufficient conditions for a digraph of minimum in-degree δ− ≥ 2
to admit a (1,≤ δ−)-identifying code. As a corollary of this result, they proved that a
graph of minimum degree δ ≥ 2 and girth at least 7 admits a (1,≤ δ)-identifying code.

Recall that if D admits a (1,≤ `)-identifying code, then it admits a (1,≤ `′)-identifying
code for any `′ < `.

A digraph with adjacency matrix A = (auv) has eigenvalue λ and eigenvector x = (xu)
if and only if

Ax = λx ⇔
∑
v∈V

auvxv =
∑

v∈N+(u)

xv = λxu for all u ∈ V. (2)

This last equation leads to the charge displacement interpretation; for more information
about it, see Fiol and Mitjana [6] or Godsil [7]. Moreover, the spectral radius of A is the
largest among the absolute values of its eigenvalues.

Recall also that a transitive tournament TT3 if formed by vertices u, v, and w, and arcs
(u, v), (u,w), and (v, w). Besides, we called bipartite tournament BT2,2 to the digraph
formed by vertices u, v, w and x, and arcs (u,w), (u, x), (v, w) and (v, x). See both
digraphs in Figure 1 (b) and 1 (c), respectively.

Our first lemma is the only non-spectral result of this paper.

Lemma 1.1. Let D be a d-in-regular digraph on n vertices, without any of the subdigraphs
of Figure 1. If D admits a (1,≤ `)-identifying code, then ` ∈ {d, d+ 1}.

Proof. Theorem 2 (ii) in [2] states the following: Let D be a twin-free digraph with
minimum in-degree δ− ≥ 1. Suppose that D does not contain any subdigraph as those of
Figure 1, then D admits a (1,≤ δ−)-identifying code. Besides, Corollary 1 in [2] states:
Let D be a digraph admitting a (1,≤ `)-identifying code. If there exists a vertex u of
minimum in-degree δ− ≥ 2 such that N+(u) 6= ∅, then ` ≤ δ− + 1.
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Figure 2: The forbidden subdigraphs characterizing a 2-in-regular digraph admitting a
(1,≤ 1)-identifying code (only (a)), or a (1,≤ 2)-identifying code (all of them). The
subdigraph (g) and (m) have their vertices numbered in the interior, and the entries of
the eigenvector corresponding to eigenvalue −1 in the exterior.

For our d-in-regular digraphs, from the first result, we get that ` ≥ d; and, from the
second one, ` ≤ d+ 1. So, ` ∈ {d, d+ 1}.

2 Main results for digraphs

We begin with a result that gives a sufficient (spectral) condition for a digraph to admit
a (1,≤ 1)-identifying code.

Lemma 2.1. Let D be a digraph with adjacency matrix A and with a set of eigenvalues
denoted by ev(A). If −1 6∈ ev(A), then D admits a (1,≤ 1)-identifying code.

Proof. We reason by contradiction. The digraph D does not admit a (1,≤ 1)-identifying
code if and only if there exits a pair of vertices u and v such that N−[u] = N−[v]. So, (A+
I)eu = (A + I)ev, where eu and ev are the unitary characteristic vectors corresponding
to vertices u and v, respectively, and I is the identity matrix. Then, (A + I)x = 0 with
x = eu − ev, whence Ax = −x and −1 ∈ ev(A).

Remark 2.1. The converse is not true since, if −1 ∈ ev(A), this does not imply that
some of its corresponding eigenvectors are of the form ei − ej. For example, the digraph
in Figure 2 (j) has −1 as an eigenvalue, but it does admit a (1,≤ 1)-identifying code.

In [2] the authors gave the following theorem, which is a combinatorial characterization
of a 2-in-regular digraph admitting a (1,≤ 1)-, (1,≤ 2)-, or (1,≤ 3)-identifying code.

Theorem 2.1 ([2]). Let D be a 2-in-regular digraph. Then,

(i) D admits a (1,≤ 1)-identifying code if and only if it does not contain any subdigraph
isomorphic to Figure 2 (a).
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(ii) D admits a (1,≤ 2)-identifying code if and only if it does not contain any subdigraph
isomorphic to one of the digraphs of Figure 2.

(iii) D admits a (1,≤ 3)-identifying code if and only if it is oriented, TT3-free and does
not contain any subdigraph isomorphic to one of the digraphs of Figure 3.

Next, we present an algebraic-combinatorial sufficient condition for a 2-in-regular di-
graph to admit a (1,≤ 2)- or (1,≤ 3)-identifying code, but first we need the following
lemma.

Lemma 2.2. Let D′ be a digraph with maximum in-degree ∆− having an eigenvalue λ
with eigenvector x′ = (x′u), such that x′v = 0 for any vertex v ∈ V (D′) with d−(v) < ∆−.
Then, any ∆−-in-regular digraph D containing D′ as a subdigraph has also the eigenvalue
λ.

Proof. Let A′ = A′(D′) be the adjacency matrix of D′. We know that A′x′ = λx′. Let A
be the adjacency matrix of D containing D′ as a subdigraph, such that aij = a′ij for all
i, j ∈ V (D′). Now let us show that λ also is an eigenvalue of A. To see this, it is enough to
check that vector x, obtained from x′ by adding zeros to the entries of D corresponding
to the vertices that are not in D′, is an eigenvector of A with eigenvalue λ. Indeed, from
(2), for all u ∈ V we get∑

v∈N+(u)

xv =
∑

v∈N+(u)
v∈V ′

xv +
∑

v∈N+(u)
v 6∈V ′

xv =
∑

v∈N+(u)
v∈V ′

xv, (3)

because by construction of vector x, the sum when v 6∈ V ′ is zero. Then,

• If u ∈ V ′, then (3) gives ∑
v∈N+(u)

xv = λxu.

• If u 6∈ V ′, then (3) provides ∑
v∈N+(u)

xv = 0 = λxu,

because, again by construction of x, both
∑

v∈N+(u)
v∈V ′

xv and xu are zero.

Theorem 2.2. Let D be a 2-in-regular digraph with adjacency matrix A.

(i) If −1 6∈ ev(A) and D does not contain any subdigraph isomorphic to (b), (c), (d),
(f) and (i) of Figure 2, then D admits a (1,≤ 2)-identifying code.
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Figure 3: The forbidden subdigraphs characterizing a TT3-free, 2-in-regular and oriented
digraph admitting a (1,≤ 3)-identifying code.

(ii) If −1, 0 6∈ ev(A) and D does not contain any subdigraph isomorphic to (b)-(`) of
Figure 3, then D admits a (1,≤ 3)-identifying code.

Proof. To prove (i), by Theorem 2.1(ii), we know that if a 2-in-regular digraph D does
not contain any of the subdigraphs of Figure 2, then D admits a (1,≤ 2)-identifying code.
The subdigraphs (a), (e), (g), (h) and (j) − (m) satisfy Lemma 2.2 for λ = −1. Then,
we only need to forbid the subdigraphs (b), (c), (d), (f) and (i) to get the result. Let us
see that one of the subdigraphs with λ = −1 satisfies Lemma 2.2. By way of example, in
Figure 2 (g), it is shown a subdigraph with a vertex of in-degree less than 2 having charge
0, so satisfying Lemma 2.2. To prove (ii), reasoning similarly, we get that the subdigraph
(a) of Figure 3 satisfies Lemma 2.2 for λ = 0, and subdigraphs (m)-(o) satisfy Lemma 2.2
for λ = −1, so we only need to forbid the rest of the subdigraphs in this figure.

We provide some necessary notation introduced by Powers [12] and referenced in the
book by Cvetković, Rowlinson and Simić [5]. Let P(x) = {i : xi > 0} and N (x) = {i :
xi < 0}. Let x be an eigenvector associated to an eigenvalue λ different from the spectral
radius, and let z be an eigenvector associated to the spectral radius. Hence, x and z are
orthogonal, yielding that P(x) and N (x) are nonempty, because all the entries of z are
positive.

Let us show the meaning of the sign of a real eigenvalue on the sets of in-neighbourhoods
of vertices.

Proposition 2.1. Let D = (V,E) be a digraph with adjacency matrix A having some
real eigenvalue, say λ ∈ ev(A), different from the spectral radius. Let x = (xu)u∈V be an
eigenvector of A associated to λ such that X = P(x) and Y = N (x). Then, depending on
the sign of λ, the following holds:

(a) If λ < 0, then X ∪N−(X) = Y ∪N−(Y ) (⇔ N−[X] = N−[Y ]).

(b) If λ > 0, then X ∪N−(Y ) = Y ∪N−(X).
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(c) If λ = 0, then N−(X) = N−(Y ).

Proof. Let ΦN−(i) = Aei denote the characteristic vector of the open in-neighbourhood of
vertex i, where ei is the unitary characteristic vector of i. Let x+ be the vector obtained
from a vector x by changing all its negative components to zero. Similarly, x− is obtained
from x by changing all its positive components to zero. Then, x = x+ + x−. Since x is
a λ-eigenvector of A, we get Ax = λx or Ax− λx = 0. Now we distinguish the possible
cases according to the sign of λ:

(a) and (b): If λ < 0 or λ > 0, we have∑
i∈X

xiΦN−(i) − λx+ +
∑
j∈Y

xjΦN−(j) − λx− = 0.

For the case λ < 0,
∑

i∈X xiΦN−(i) and −λx+ are positive, whereas
∑

j∈Y xjΦN−(j) and

−λx− are negative. Thus, for the global sum to be 0, we must have N−[X] = N−[Y ]. For
the case λ > 0,

∑
i∈X xiΦN−(i) and −λx− are positive, whereas −λx+ and

∑
j∈Y xjΦN−(j)

are negative. Then, the global sum is 0 if X ∪N−(Y ) = Y ∪N−(X).

(c) Finally, if λ = 0, the vector equality∑
i∈X

xiΦN−(i) +
∑
j∈Y

xjΦN−(j) = 0

yields the result.

The same result holds for graphs by changing N−(X) and N−(Y ) by N(X) and N(Y ),
respectively. Moreover, a similar result concerning out-neighbourhoods (instead of in-
neighbourhoods) can be obtained by applying Proposition 2.1 to the converse digraph of
D or, equivalently, considering the left (instead of right) eigenvectors of D. The next
result gives an upper bound for ` in a digraph D having a (1,≤ `)-identifying code.

Corollary 2.1. Let D be a digraph admitting a (1,≤ `)-identifying code. Let A be its
adjacency matrix having at least one negative eigenvalue −λ (with λ > 0) with x =
(x1, . . . , xn) any associated eigenvector. Then ` < min

x
max{|P(x)|, |N (x)|}.

Example 2.1. Consider the digraph of Figure 2 (m). Its spectrum is {04, 11,−11}. The
eigenvector corresponding to the eigenvalue −1 is (0,−1, 1,−1, 0, 1). The positions of the
positive entries of this eigenvector give us vertex subset X = {2, 5}, and the positions of the
negatives entries give Y = {1, 3}. We can check that N−[X] = N−[Y ] = {0, 1, 2, 3, 4, 5}.
Then, this digraph does not admit a (1,≤ 2)-identifying code.

To give a general result not depending on some specific eigenvector, but only on the
multiplicity of the corresponding eigenvalue, we give the following lemma. More precisely,
next result shows that, given a real eigenvalue with geometric multiplicity m, some of its
eigenvectors can be chosen with at least m− 1 zero entries.
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Lemma 2.3. Let D be a digraph on n vertices with adjacency matrix A, and let λ be a real
eigenvalue of A with geometric multiplicity m. For any given index set I ⊂ {1, 2, . . . , n}
with |I| = m − 1, there exists an eigenvector x with eigenvalue λ and entries xi = 0 for
every i ∈ I.

Proof. Every eigenvector x = (x1, . . . , xn) associated to the eigenvalue λ is a solution of
the homogeneous system (A − λI)x = 0. Since the geometric multiplicity of λ is m, it
follows that the rank of A−λI is n−m > 0. Hence, there is a triangular matrix B having
null the last m rows, and diagonal entries bii = 1 or bii = 0, for i = 1, . . . , n−m, such that
B · x = 0. Thus, each of the first n −m components of x can be expressed as a linear
combination of the last m ones, that is,

xi =

n∑
j=n−m+1

αi
jxj , i = 1, . . . , n−m.

This implies that

x =
n∑

j=n−m+1

(α1
jxj , . . . , α

n−m
j xj , xn−m+1, . . . , xm),

yielding that the set of m vectors

(α1
n−m+1, . . . , α

n−m
n−m+1, 1, 0, . . . , 0),

(α1
n−m+2, . . . , α

n−m
n−m+2, 0, 1, 0, . . . , 0),

...

(α1
n, . . . , α

n−m
n , 0, . . . , 0, 1).

is a base of eigenvectors associated to λ, and clearly, all of them have at least m− 1 zero
entries.

With the following remark, we state that our results can be applied on graphs.

Remark 2.2. Corollary 2.1 can also be applied to graphs, which always have real eigen-
values.

Let us see an example on a graph.

Example 2.2. Consider the Heawood graph (see Figure 4). Its spectrum is {31,
√

2
6
,−
√

2
6
,

−31}. The eigenvector corresponding to −3 and the 6 eigenvectors of −
√

2 are, respec-
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Figure 4: The Heawood graph.

tively,

(−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1);

(−1, 0, 1, 0,−1,
√

2, 0,−
√

2, 1, 0, 0, 0, 0, 0),

(−1, 0, 1,−
√

2, 0,
√

2,−1, 0, 0, 0, 0, 0, 1, 0),

(0,−1,
√

2,−1, 0, 1,−
√

2, 0, 0, 0, 0, 1, 0, 0),

(0,−1,
√

2, 0,−
√

2, 1, 0,−1, 0, 1, 0, 0, 0, 0),

(0,−
√

2, 1, 0,−1,
√

2,−1, 0, 0, 0, 1, 0, 0, 0),

(−
√

2, 0,
√

2,−1, 0, 1, 0,−1, 0, 0, 0, 0, 0, 1).

The last one is one of the eigenvectors whose entries have the maximum number of zeros
and with the minimum difference between the number of positive and negative entries. The
positions of the positive entries of this eigenvector give us the set of vertices X = {2, 5, 13}.
The positions of the negatives entries give the set Y = {0, 3, 7}. We can check that
N−[X] = N−[Y ] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13}. Then, the Heawood graph does not admit
a (1,≤ 3)-identifying code. By Theorem 1.1 we know that the Heawood graph, which is
3-regular and it has girth 6, admits a (1,≤ 2)-identifying code.

References

[1] G. Araujo-Pardo, C. Balbuena, L. Montejano, and J. C. Valenzuela, Partial linear
spaces and identifying codes, European J. Combin. 32 (2011) 344–351.
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