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Abstract. This note is devoted to the study of the time decay of the one-
dimensional dual-phase-lag thermoelasticity. In this theory two delay param-

eters τq and τθ are proposed. It is known that the system is exponentially

stable if τq < 2τθ [22]. We here make two new contributions to this problem.
First, we prove the polynomial stability in the case that τq = 2τθ as well the

optimality of this decay rate. Second, we prove that the exponential stability
remains true even if the inequality only holds in a proper sub-interval of the

spatial domain, when τθ is spatially dependent.

1. Introduction. The Fourier constitutive law for the heat flux vector proposes
the well-known linear parabolic equation for the heat conduction. This equation
has received criticism from a physical point of view because it implies that the ther-
mal disturbances at some point will be felt instantly anywhere for every distance.
Different theories describing the heat conduction have been established to save this
drawback. The most famous one is the Maxwell-Cattaneo law that proposes an
hyperbolic damped equation for the heat conduction. Two hyperbolic theories of
thermoelasticity have been proposed for this heat conduction. They are the theory
of Lord and Shulman [16] and the theory of Green and Lindsay [6], which are under
intensive study in the recent years. In the 1990’s Green and Naghdi also proposed
three different thermoelastic theories [7, 8, 9] based on the axioms of the continuum
mechanics. The main difference in these theories was the kind of heat conduction
they proposed. More details of the above theories can be found in the books and
review articles [10, 11, 13, 23].
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2 ZHUANGYI LIU AND RAMON QUINTANILLA

In 1995 Tzou [24] suggested an alternative to modify of the classical Fourier law.
He introduced delay parameters in the constitutive equations. To be precise, the
equation he proposed is:

q(x, t+ τq) = −k∇θ(x, t+ τθ), k > 0. (1)

Here θ is the temperature, q is the heat flux vector and τθ and τq are two delay
parameters. This equation assumes that the temperature gradient across a material
volume at position x and at time t+ τθ results in the heat flux to flow at a different
instant t + τq. However the proposition of this theory only builds on an intuitive
point of view, and there is no axiomatic mathematical foundation for it. In fact,
when we adjoin this equations with the classical energy equation

θ̇ + div q = 0, (2)

it has been proved the existence of a sequence of solutions Tn(x, t) = exp(ωnt)Ψn(x),
n ≥ 1, such that the real part of ωn becomes positively unbounded [4]. This says
that the mathematical problem is ill posed in the sense of Hadamard. Therefore,
we see an explosive behavior of the solutions which is not a suitable property for a
heat conduction theory. Nevertheless this theory has caught researchers’ attention
when equation (1) is replaced by its Taylor approximations to the delay parameters.
For instance, by taking the first order approximation of the flux vector and zeroth
order approximation of the temperature gradient we recover the Maxwell-Cattaneo
proposition; and by taking first order approximation to both, we recover the theory
proposed by Morro, Payne and Straughan [18] which is considered in the book by
Flavin and Rionero [5]. Several other order of approximations have proposed some
new and stimulating heat conduction equations to be studied from a mathematical
viewpoint. In this paper we will adopt the following approximation proposed by
Tzou,

θ̇ + τq θ̈ +
τ2q
2

...
θ = k4θ + kτθ4θ̇. (3)

To clarify the stability of this equation is the aim of many research works [1,
19, 21, 15] (among others). It is known that the solutions of this equation decay
exponentially when τq < 2τθ and polynomially when τq = 2τθ. Moreover, they are
unstable when τq > 2τθ. Thus, τq = 2τθ is called the critical case of stability when
the phase-lag τq and τθ are constants.

In this paper we concentrate our attention to the thermoelastic theory based on
the heat conduction equation (3). The system was proposed by Chandrasekharaiah
[3] and studied in [22]. There Quintanilla and Racke considered the one-dimensional
problem and obtained by means of the energy arguments the exponential decay of
solutions in case that τq < 2τθ. Instability of solutions was also proved when
τq > 2τθ [20] by means of the spectral analysis. We would like to continue the
study of this problem and concentrate our attention to two cases. First, for constant
phase-lag, we want to clarify whether τq = 2τθ is still the critical case. The second
problem corresponds to the case that the phase-lag τθ depends on the material
point. A new case arises between τq < 2τθ(x) and τq = 2τθ(x) on the entire spatial
domain, i.e., τq < 2τθ(x) only on a proper sub-domain.

To prove our main theorems we will use the semigroup arguments. For the first
case we apply a theorem obtained by Borichev and Tomilov [2] which characterize
the polynomial decay of solutions by the resolvent operator behavior on the imagi-
nary axis. This kind of treatment has been applied to a large class of problems in
the literature. For the second case we adopt the semigroup arguments similar to
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the one in [12]. It is worth noting that special multipliers are introduced to handle
both elastic equation and heat equations. We refer the readers to the comment
after (89).

This paper is organized as follows. Section 2 is devoted to the statement of the
problem and review of several results we will use later. In Section 3 we consider
the first case, and prove the polynomial decay of the solutions and its optimality.
In the last Section we consider the second case, and obtain the exponential decay
of the solutions. This confirms that the behavior of solutions for the critical case of
the thermoelastic system (8)-(9) coincide with the known one for the dual-phase-lag
heat equation (3).

2. Preliminary. The basic system which determined the thermoelastic vibrations
for the dual-phase lag thermoelasticity is determined by the system

utt = a1uxx −mθx, (4)

θttt = − 2

τq
θtt −

2

τ2q
θt −

2mθ0
τ2q

ũtx +
2k

τ2q
(τθ(x)θtx)x +

2k

τ2q
θxx, (5)

where we have used the following notation f̃ = f + τq ḟ +
τ2
q

2 f̈ . Our system becomes

ũtt = a1ũxx −
τ2qm

2
θttx − τqmθtx −mθx, (6)

θttt = − 2

τq
θtt −

2

τ2q
θt −

2mθ0
τ2q

ũtx +
2k

τ2q
(τθ(x)θtx)x +

2k

τ2q
θxx, (7)

Notice that if this system can be solved, then the first system can be solved too,

because ũ = u+ τqu̇+
τ2
q

2 ü and this is an ordinary differential equation. In fact, the
asymptotic behavior will agree for the variables u and ũ. Hence, we can consider
the system

utt = a1uxx −
τ2qm

2
θttx − τqmθtx −mθx, (8)

θttt = − 2

τq
θtt −

2

τ2q
θt −

2mθ0
τ2q

utx +
2k

τ2q
(τθ(x)θtx + θx)x, (9)

u(0, t) = θ(0, t) = u(L, t) = θ(L, t) = 0, (10)

u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x), θtt(x, 0) = θ2(x),

where we have deleted the tilde to simplify the notation. This system will be the
target of our investigation in this paper.

Define

a(x) = τθ(x)− τq
2
. (11)

We say that a(x) is locally positive if

a(x) =

{
> 0, x ∈ (x1, x2)
= 0, otherwise

(12)

for some x1, x2 ∈ [0, L].
For the simplicity of notation, we use prime to denote the derivative about x

hereafter. In order to obtain a properly defined energy for this system, we multiply
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equation (8) and (9) by θ0ut and
τ2
q

2 (
τ2
q

2 θtt+τqθt+θ), respectively. Then we integrate
for x to get

d

dt

θ0
2

∫ L

0

(|ut|2 + a1|u′|2)dx = −mθ0
∫ L

0

(
τ2q
2
θtt + τqθt + θ)′utdx (13)

d

dt

1

2

∫ L

0

|
τ2q
2
θtt + τqθt + θ|2dx = mθ0

∫ L

0

ut(
τ2q
2
θtt + τqθt + θ)′dx (14)

− k
∫ L

0

(τθ(x)θ′t + θ′)(
τ2q
2
θ′tt + τqθ

′
t + θ′)dx.

Note that

k

∫ L

0

θ′(
τ2q
2
θ′tt + τqθ

′
t + θ′)dx

= k

∫ L

0

(
|θ′|2 −

τ2q
2
|θ′t|2

)
dx+

d

dt

∫ L

0

(
kτq
2
|θ′|2 +

kτ2q
2
θ′θ′t

)
dx, (15)

and

k

∫ L

0

τθ(x)θ′t(
τ2q
2
θ′tt + τqθ

′
t + θ′)dx

= k

∫ L

0

τqτθ(x)|θ′t|2dx+
d

dt

∫ L

0

(
kτθ(x)

2
|θ′|2 +

kτ2q τθ(x)

4
|θ′t|2

)
dx. (16)

Then the sum of (13) and (14) yields

1

2

dE

dt
= −k

∫ L

0

|θ′|2dx− kτq
∫ L

0

(
τθ(x)− τq

2

)
|θ′t|2dx

= −k
∫ L

0

|θ′|2dx− kτq
∫ L

0

a(x)|θ′t|2dx, (17)

where

E(t) =

∫ L

0

(
θ0|ut|2 + a1θ0|u′|2 + k(τθ(x) + τq)|θ′|2 +

kτ2q τθ(x)

2
|θ′t|2 + kτ2q θ

′θ′t

+ |
τ2q
2
θtt + τqθt + θ|2

)
dx

=

∫ L

0

(
θ0|ut|2 + a1θ0|u′|2 +

kτq
2
|θ′|2 + kτq|θ′ +

τq
2
θ′t|2 + |

τ2q
2
θtt + τqθt + θ|2

+ ka(x)|θ′|2 +
kτ2q
2
a(x)|θ′t|2

)
dx. (18)

Let v = ut, φ = θt, ψ = θtt, and z = (u, v, θ, φ, ψ)T . Define the state space

H := H1
0 (Ω)× L2(Ω)×H1

0 (Ω)×H1
0 (Ω)× L2(Ω),

equipped with the inner product which induces the energy norm in (18). Then, we
can rewrite (8)-(9) as a first order evolution equation in H

dz

dt
= Az, z(0) = z0, (19)
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where

Az =



v

−a1u′′ −
τ2qm

2
ψ′ − τqmφ′ −mθ′

φ
ψ

− 2

τq
ψ − 2

τ2q
φ− 2mθ0

τ2q
v′ +

2k

τ2q
(τθ(x)φ′)′ +

2k

τ2q
θ′′


(20)

with domain

D(A) = {z ∈ H | u, θ, φ ∈ H2(Ω)}. (21)

It is obvious that D(A) is dense in H. From (17), we also have the dissipativeness
of A. Moreover, 0 ∈ ρ(A) which will be proved in next section where we show the
imaginary axis is in ρ(A). By Theorem 1.2.4 in [17], we have

Theorem 2.1. Let operator A defined above is the infinitesimal generator of a
C0-semigroup eAt of contractions in the Hilbert space H.

Our main tools are the following two theorems.

Theorem 2.2. [12] Let S(t) = eAt be a C0−semigroup of contractions in a Hilbert
space H. Then, S(t) is exponentially stable if and only if

iR ⊂ ρ(A), (22)

lim|β→∞|‖(iβI −A)−1‖H <∞. (23)

Theorem 2.3. [2] Let S(t) = eAt be a C0−semigroup of contractions in a Hilbert
space H. Then, S(t) is polynomially stable of order 1

k if and only if

iR ⊂ ρ(A), (24)

sup|β|>1
1

βk
‖(iβ −A)−1‖ ≤ ∞ for some k > 0. (25)

Here, polynomial stability of order 1
k means that there exists a positive constant

C > 0 such that

‖etAz0‖ ≤ C(
1

t
)

1
k ‖z0‖D(A), ∀t > 0, (26)

for all z0 ∈ D(A).
Throughout this paper, we use 〈·, ·〉 and ‖ · ‖ for the standard inner product and

norm in L2.

3. Polynomial Stability for a(x) ≡ 0. In this section, we consider the case

a(x) ≡ 0, x ∈ [0, L], (27)

i.e., τθ and τq are positive constants, and τθ =
τq
2 .

Theorem 3.1. The semigroup etA is polynomially stable of order γ = 1
2 when

2τθ = τq, i.e., for all z0 ∈ D(A), there is a constant C > 0 such that the solution z
of (19) satisfies

‖z‖H ≤
C√
t
‖z0‖D(A). (28)
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Proof. Assume that (25) is false. Then by the uniform boundedness theorem, there
exist a sequence βn →∞ and a unit norm vector sequence zn = (un, vn, θn, φn, ψn)T ∈
D(A) such that

βγn‖(iβnI −A)zn‖H → 0, (29)

which implies that

βγ(iβu− v) = o(1), in H1
0 (Ω), (30)

βγ

(
iβv − a1u′′ +

τ2qm

2
ψ′ + τqmφ

′ +mθ′

)
= o(1), in L2(Ω), (31)

βγ(iβθ − φ) = o(1), in H1
0 (Ω), (32)

βγ(iβφ− ψ) = o(1), in H1
0 (Ω), (33)

βγ
(
iβψ +

2

τq
ψ +

2

τ2q
φ+

2mθ0
τ2q

v′ − 2τθk

τ2q
φ′′ − 2k

τ2q
θ′′
)

= o(1), inL2(Ω).(34)

For the simplicity of notation, we omit the subscript n hereafter.
Let γ = 2. From dissipation, we have

β‖θ′‖ = o(1). (35)

Combining (35) and (32), we also have

‖φ′‖ = o(1), (36)

which further implies that, due to (33),

1

β
‖ψ′‖ = o(1). (37)

Take the inner product of ψ
β2 and φ

β2 with (33) and (34) in L2(Ω), respectively.

We have

iβ〈φ, ψ〉 − ‖ψ‖2 = o(1) (38)

iβ〈ψ, φ〉+
2

τq
〈ψ, φ〉+

2

τ2q
‖φ‖2 +

2mθ0
τ2q
〈v′, φ〉 − 〈2k

τ2q
(τθφ

′′ + θ′′), φ〉 = o(1). (39)

Integrating by parts shows that last three terms on the left-hand side of (39) con-
verges to zero due to (35) and (36). It is clear the second and third term on the
left-hand side of (39) also converges to zero. Therefore, (38),(39) now lead to

‖ψ‖ = o(1). (40)

Dividing (34) by β3 and using (30), it can be simplified into

i
2mθ0
τ2q

u′ − 2k

βτ2q
(τθφ

′′ + θ′′) = o(1). (41)

The inner product of (41) with u′ in L2(Ω) leads to

i
2mθ0
τ2q
‖u′‖2 + 〈2k

τ2q
(τθφ

′ + θ′),
1

β
u′′〉 − 2k

βτ2q
(τθφ

′(x) + θ′(x))ū′(x)
∣∣L
0

= o(1). (42)

It follows from (31) and (35)-(37) that 1
β ‖u

′′‖ is bounded. Hence, the second term

on the left-hand side of (42) converges to zero. On the other hand, the boundary
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terms can be estimated by the Gagliardo-Nirenberg inequality as follows.∣∣∣∣ 1β (τθφ
′(ξ) + θ′(ξ))ū′(ξ)

∣∣∣∣
≤C

(
‖τθφ′ + θ′‖ 1

2

∥∥∥∥ 1

β
(τθφ

′′ + θ′′)

∥∥∥∥ 1
2

+
‖τθφ′ + θ′‖

β
1
2

)(
‖u′‖ 1

2

∥∥∥∥ 1

β
u′′
∥∥∥∥ 1

2

+
‖u′‖
β

1
2

)
=o(1), (43)

for ξ = 0, L. Here, we have also employed the fact that
∥∥∥ 1
β (τθφ

′′ + θ′′)
∥∥∥ is bounded

which is from (41). Therefore,

‖u′‖ = o(1). (44)

Finally, simplify (31) by diving β3. We obtain

iv − a1
β
u′′ = o(1), (45)

where we have used (36)-(37). Then, the inner product of (45) with v in L2(Ω)
yields

i‖v‖2 + a1〈u′,
1

β
v′〉 = o(1) (46)

which further leads to, in reference to (44) and (30),

‖v‖ = o(1). (47)

This completes the proof of condition (25).
To verify condition (24), we assume iω ∈ σ(A). Then, there exist a sequence

β → ω and a unit norm vector sequence z = (u, v, θ, φ, ψ)T ∈ D(A) such that

iβu− v = o(1), in H1
0 (Ω), (48)

iβv − a1u′′ +
τ2qm

2
ψ′ + τqmφ

′ +mθ′ = o(1), in L2(Ω), (49)

iβθ − φ = o(1), in H1
0 (Ω), (50)

iβφ− ψ = o(1), in H1
0 (Ω), (51)

iβψ +
2

τq
ψ +

2

τ2q
φ+

2mθ0
τ2q

v′ − 2τθk

τ2q
φ′′ − 2k

τ2q
θ′′ = o(1), in L2(Ω). (52)

It follows from the dissipation of A that

‖θ′‖ = o(1), (53)

which further implies

‖φ′‖, ‖ψ′‖ = o(1) (54)

since β is bounded in (50) and (51). By the Poincaré inequality, we also have

‖ψ‖ = o(1). (55)

Replace v′ in (52) by iβu′. Repeating the same argument between (41) and (47),
we obtain

‖u′‖, ‖v‖ = o(1). (56)

Thus, condition (24) holds.

Theorem 3.2. The polynomial decay rate found in Theorem 3.1 is optimal.
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Proof. Notice that when m = 0 in system (8)-(9), the system decoupled into a
dissipative phase-lag heat equation and a conservative wave equation. It has been
proved in [15] that the energy of that heat equation, which coincides the heat energy
defined in this paper, decays at a rate of 1√

t
, same as the one we derived in Theorem

3.1. If we can show 1√
t

is the optimal energy decay rate for the heat equation, then

the energy decay rate in Theorem 3.1 can not be faster.
Denote by A1 the restriction of A to the last three components where m = 0,

and by H1 the last three spaces in H. Consider the sequence

Fn = (0, 0, sin pnx)T

where pn = nπ
L . This sequence is bounded in H1. Indeed,

‖Fn‖H1
=
τ2qL

2
, for all n.

We will find solution in the form zn = (θn, φn, ψn)T to the equation

(iβnI −A1)zn = Fn. (57)

Eliminating φn, ψn in (57), we obtain

(−i τ
2

2
β3
n − τβ2

n + iβn)θn − k(1 + iβn
τ

2
)θ′′n = sin pnx, (58)

where τ is used to denote τq and 2τθ. Due to the boundary conditions, the functions

θn(x) = An sin pnx (59)

solves the equation (58) if and only if An satisfies[
i

(
−τ

2

2
β3
n + (

kτ

2
p2n + 1)βn

)
+ (kp2n − τβ2

n)

]
An = 1. (60)

We choose βn such that

β2
n =

2

τ2

(
kτ

2
p2n + 1

)
. (61)

Then,

kp2n − τβ2
n = −2

τ
.

This gives An = − τ2 . Now, the vector function

zn = (An sin pnx, iAnβn sin pnx,−β2
nAn sin pnx)T

is the solution to the resolvent equation (57).
Therefore,

‖zn‖H1 ≥ C‖ψ‖ = O(β2
n) = O(n2), (62)

which implies that for any ε > 0, we can find βn →∞ such that

1

β2−ε
n

‖(iβnI −A1)−1Fn‖H1 =
1

β2−ε
n

‖zn‖H1 = O(nε)→∞. (63)

This shows that 1√
t

is the optimal decay rate.

Remark 1. It is worthwhile to point out that by coupling the dual-phase-lag heat
equation with a conservative wave equation, the optimal polynomial decay rate
remains the same. The heat dissipation is passed to the conservative equation most
efficiently.
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4. Exponential Stability for Locally Positive a(x). In this section, we consider
the case of locally positive a(x). Assume that there is a positive constants C such
that

|a′(x)| ≤ Ca 1
2 (x) x ∈ (x1, x2). (64)

Remark 2. Condition (64) is satisfied if a(x) ≥ a0 > 0 and differentiable on
(x1, x2). But if a(x) = 0 at the interface, it imposes a restriction on the slope of
a(x) near the interface. In this case, condition (64) can be satisfied, for example, if
a′′(xi), i = 1, 2 are finite. We believe that condition (64) is only needed because of
the multiplier method we will use in the proof of next theorem.

Theorem 4.1. The semigroup etA is exponentially stable when a(x) satisfies con-
dition (64), i.e., for all z0 ∈ H, there exist constant M,ω > 0 such that the solution
z of (19) satisfies

‖z‖H ≤Me−ωt‖z0‖H. (65)

Proof. Since (22) has been proved in last section, we only need to verify condition
(23). Assume that it is false. Then by the uniform boundedness theorem, there
exists a sequence β → ∞ and a unit norm vector sequence z = (u, v, θ, φ, ψ)T ∈
D(A) such that

iβu− v = f1 = o(1), in H1
0 (Ω), (66)

iβv − a1u′′ +
τ2qm

2
ψ′ + τqmφ

′ +mθ′ = f2 = o(1), in L2(Ω), (67)

iβθ − φ = f3 = o(1), in H1
0 (Ω), (68)

iβφ− ψ = f4 = o(1), in H1
0 (Ω), (69)

iβψ +
2

τq
ψ +

2

τ2q
φ+

2mθ0
τ2q

v′ − 2k

τ2q
(τθ(x)φ′ + θ′)′ = f5 = o(1), inL2(Ω).(70)

From the dissipation,

‖θ′‖ = o(1), ‖a 1
2 (x)φ′‖ = o(1). (71)

We are going to derive ‖z‖H = o(1) from (66)-(71), which is a contradiction. The
rest of the proof is divided into two parts. First, we show ‖z‖H is of o(1) locally.

More precisely, ‖a 1
2 (x)z‖H = o(1). Then, we extend the local result to global. This

strategy is adopted from [14].
Step 1
The inner product of (70) with 1

βa(x)ψ in L2(Ω) yields

i‖a 1
2 (x)ψ‖2 − 2mθ0

τ2q
〈v, (a(x)ψ)′

β
〉+

2k

τ2q
〈τθ(x)φ′ + θ′,

(a(x)ψ)′

β
〉 = o(1). (72)

Here, we have removed two inner product terms since ‖φ′‖, ‖ψ‖ are bounded, and

‖ (a(x)ψ)
′

β ‖ = o(1) due to (69) and (71). This equation can be further simplified into

‖a 1
2 (x)ψ‖ = o(1) (73)

because ‖v‖, ‖φ′‖ are bounded, and ‖θ′‖ = o(1).
Next, dividing (70) by β and using (66) to obtain

iψ + i
2mθ0
τ2q

u′ − 2k

βτ2q
(τθ(x)φ′ + θ′)′ = o(1), in L2(Ω). (74)
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The inner product of (74) with a(x)u′ in L2(Ω) leads to

i〈ψ, a(x)u′〉+ i
2mθ0
τ2q
‖a 1

2 (x)u′‖2 +
2k

τ2q
〈τθ(x)φ′ + θ′,

1

β
(a(x)u′)′〉

− 2k

βτ2q
(τθ(x)φ′(x) + θ′(x))a(x)ū′(x)

∣∣L
0

= o(1). (75)

The first term on the left-hand side of (75) is of o(1) because ‖u′‖ is bounded and
(73). The third term can be estimated as follows.

〈τθ(x)φ′+θ′,
1

β
(a(x)u′)′〉 = 〈τθ(x)φ′+θ′,

1

β
a′(x)u′〉+〈a(x)(τθ(x)φ′+θ′),

1

β
u′′〉 = o(1)

(76)
since ‖ 1βu

′′‖ is bounded which can be seen from (67). Here, we also used (71). The

boundary terms in (75) vanish if a(0) = a(L) = 0. Otherwise, by the Gagliardo-
Nirenberg inequality,∣∣∣∣ 1β a(ξ)(τθ(ξ)φ

′(ξ) + θ′(ξ))ū′(ξ)

∣∣∣∣
≤C

(
‖a(x)(τθφ

′ + θ′)‖ 1
2

∥∥∥∥ 1

β
[a(x)(τθφ

′ + θ′)]′
∥∥∥∥ 1

2

+
‖a(x)(τθφ

′ + θ′)‖
β

1
2

)
×

×

(
‖u′‖ 1

2

∥∥∥∥ 1

β
u′′
∥∥∥∥ 1

2

+
‖u′‖
β

1
2

)
= o(1), (77)

for ξ = 0, L. Therefore, we obtain

‖a 1
2 (x)u′‖ = o(1). (78)

Finally, we take the inner product of (67) with 1
βa(x)v in L2(Ω), i.e.,

i‖a 1
2 (x)v‖2 + a1〈u′,

(a(x)v)′

β
〉+m〈

τ2q
2
ψ′ + τqφ

′ + θ′,
a(x)v

β
〉 = o(1). (79)

It follows from the local results (71),(78), and the equations (66),(69), that the
above two inner product terms converge to zero. We arrive at

‖a 1
2 (x)v‖ = o(1). (80)

Step 2
In this step, we will establish the following identity

4θ0
τ4q

∫ L

0

(q(x)τθ(x))′|βu|2dx+
4a1θ0
τ4q

∫ L

0

(q(x)τθ(x))′|u′|2dx+

∫ L

0

(q(x)τθ(x))′|βφ|2dx

+
2k

τ2q

∫ L

0

q′(x)|τθ(x)φ′ + θ′|2dx− 4a1θ0
τ4q

q(L)τθ(L)|u′(L)|2 − 2k

τ2q
q(L)|τθ(L)φ′(L) + θ′(L)|2

= o(1). (81)

First, we substitute (66) into (67) to get

− β2u− a1u′′ +
τ2qm

2
ψ′ + τqmφ

′ +mθ′ = f2 + βf1. (82)
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For any nonnegative function q1(x) ∈ C1(Ω) with q1(0) = 0, we take the real part
of the inner product of (82) with 2q1(x)u′ in L2(Ω). Then,

〈q′1(x)βu, βu〉+a1〈q′1(x)u′, u′〉−q1(L)a1|u′(L)|2+Re〈
τ2qm

2
ψ′+τqmφ

′, 2q1(x)u′〉 = o(1),

(83)
since we have ‖θ′‖ = o(1) in (71), ‖f ′1‖ = o(1), and

〈f2 + βf1, q1(x)u′〉 = 〈f2, q1(x)u′〉 − 〈(q1(x)f1)′, βu〉 = o(1). (84)

Next, Substitute (69) into (70) and use the fact that ‖φ‖ = o(1) to get

−β2φ+
2

τq
ψ+

2mθ0
τ2q

v′− 2k

τ2q
(τθ(x)φ′)′− 2k

τ2q
θ′′ = f5 +βf4 +o(1), in L2(Ω). (85)

For any function q(x) ∈ C1[0, L] with q(0) = 0, taking the real part of the inner
product of (85) with 2q(x)(τθ(x)φ′ + θ′) in L2(Ω) yields

〈(q(x)τθ(x))′βφ, βφ〉+
2k

τ2q
〈q′(x)(τθ(x)φ′ + θ′), (τθ(x)φ′ + θ′)〉

− q(L)
2k

τ2q
|τθ(L)φ′(L) + θ′(L)|2 − Re〈β2φ, 2q(x)θ′〉+ Re〈 2

τq
ψ, 2q(x)τθ(x)φ′〉

+ Re〈2mθ0
τ2q

v′, 2q(x)(τθ(x)φ′ + θ′)〉 = o(1) (86)

since

〈f5 + βf4, q(x)(τθ(x)φ′ + θ′)〉 = 〈f5, q(x)(τθ(x)φ′ + θ′)〉 − 〈(q(x)τθ(x)f4)′, βφ〉
+ 〈(q(x)f4)′, βθ〉 = o(1). (87)

Note that two terms in (86) can be simplified and removed as follows.

− Re〈β2φ, 2q(x)θ′〉+ Re〈 2

τq
ψ, 2q(x)τθ(x)φ′〉

= − Re〈iβφ, 2q(x)iβθ′〉+ Re〈ψ, q(x)
4τθ(x)

τq
φ′〉

= − Re〈ψ, 2q(x)φ′〉+ Re〈ψ, q(x)
4τθ(x)

τq
φ′〉+ o(1)

=
4

τq
Re〈ψ, q(x)

(
τθ(x)− τq

2

)
φ′〉+ o(1)

=
4

τq
Re〈ψ, q(x)a(x)φ′〉+ o(1) = o(1) (88)

due to the local dissipation of φ′ in (71).
Furthermore, the last term on the left-hand side of (83) and (86) are related. If

we chose

q1(x) =
4θ0
τ4q

q(x)τθ(x),
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then

Re〈
τ2qm

2
ψ′, 2q1(x)u′〉+ Re〈2mθ0

τ2q
v′, 2q(x)τθ(x)φ′〉

= Re〈
τ2qm

2
(iβφ′), 2q1(x)u′〉+ Re〈φ′, 4mθ0

τ2q
q(x)τθ(x)v′〉+ o(1)

= Re〈φ′, −τ2qmq1(x)v′〉+ Re〈φ′, 4mθ0
τ2q

q(x)τθ(x)v′〉+ o(1)

= Re〈φ′, [
4mθ0
τ2q

q(x)τθ(x)− τ2qmq1(x)]v′〉+ o(1)

= o(1). (89)

Here, we remark that the inner product of ψ′ with u′, and v′ with φ′ are not small.
However, by using related multipliers q1(x) and q(x), the sum of these two terms is
small as shown in (89). On the other hand, we also have

Re〈τqmφ′, 2q1(x)u′〉+ Re〈2mθ0
τ2q

v′, 2q(x)θ′〉

= Re〈u′, 2q1(x)τqmφ
′〉+ Re〈2mθ0

τ2q
(iβu′), 2q(x)θ′〉+ o(1)

= Re〈u′, 2q1(x)τqmφ
′〉+ Re〈u′, −4mθ0

τ2q
q(x)(iβθ′)〉+ o(1)

= Re〈u′, 8mθ0
τ3q

q(x)τθ(x)φ′〉+ Re〈u′, −4mθ0
τ2q

q(x)φ′)〉+ o(1)

= Re〈u′, 8mθ0
τ3q

a(x)q(x)φ′)〉+ o(1)

= o(1). (90)

We now add (83) and (86). Taking into account of (88)-(89), this gives us (81).
Step 3

Pick q(x) =

∫ x

0

a
1
2 (ξ)dξ in (81). Then, q′(x) = a

1
2 (x), and

|(q(x)τθ(x))′| = |a 1
2 (x)τθ(x) + q(x)τ ′θ(x)|

= |a 1
2 (x)τθ(x) + q(x)a′(x)|

≤ Ca 1
2 (x) (91)

due to the condition (64). Therefore, by the local dissipation derived in Step 1,
(81) become

− 4a1θ0
τ4q

āτθ(L)|u′(L)|2 − 2k

τ2q
ā|τθ(L)φ′(L) + θ′(L)|2 = o(1), (92)
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where ā =

∫ L

0

a
1
2 (x)dx > 0. We now can simplify (81) into

4θ0
τ4q

∫ L

0

(q(x)τθ(x))′|βu|2dx+
4a1θ0
τ4q

∫ L

0

(q(x)τθ(x))′|u′|2dx+

∫ L

0

(q(x)τθ(x))′|βφ|2dx

+
2k

τ2q

∫ L

0

q′(x)|τθ(x)φ′ + θ′|2dx = o(1). (93)

Pick q(x) =
x

τθ(x)
in (93). Then,

4θ0
τ4q

∫ L

0

|βu|2dx+
4a1θ0
τ4q

∫ L

0

|u′|2dx+

∫ L

0

|βφ|2dx+
2k

τ2q

∫ L

0

τθ(x)|φ′|2dx

=o(1) +
2k

τ2q

∫ L

0

xτ ′θ(x)|φ′|2dx. (94)

Since ∣∣∣∣∣
∫ L

0

xτ ′θ(x)|φ′|2dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ L

0

xa′(x)|φ′|2dx

∣∣∣∣∣
≤ C

∫ L

0

a
1
2 (x)|φ′|2dx = o(1),

it follows from (94) that

‖βu‖, ‖u′‖, ‖βφ‖, ‖φ′‖ = o(1), (95)

which further implies that

‖v‖, ‖ψ‖ = o(1) (96)

due to (66) and (69). We have reached the promised contradiction.

Remark 3. The conclusion in Theorem 3.1, 3.2 and Theorem 4.1 also hold for
other boundary conditions, such as the Dirichlet-Neumann boundary conditions

u(0, t) = u(L, t) = θx(0, t) = θx(L, t) = 0,

or the Neumann-Dirichlet boundary conditions

ux(0, t) = ux(L, t) = θ(0, t) = θ(L, t) = 0.

The proof above can be repeated with very minor changes, such as the definition
of the state space, the boundary terms from integration by parts. In fact, we don’t
need to use the Gagliardo-Nirenberg inequality to estimate boundary terms since
they vanish in the above two cases.

Remark 4. The most general case corresponds to that both delay parameters
depend on the material point. However, the analysis seems to be very cumbersome.
We are unable to find a proper dissipative energy even just for the dual phase-lag
heat equation (3). It is our plan to address this problem in future studies.
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