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Abstract— Recent advances in molecular biology have led to a
continued growth in the biological information generated by the
scientific community. Additionally, this area has become a multi-
disciplinary field, including components of mathematics, biology,
chemistry, and computer science, generating several challenges
in the scientific community from different points of view. For
this reason, bioinformatic applications represent an increasingly
important workload. However, even though the importance of this
field is clear, common bioinformatic applications and their impli-
cations on micro-architectural design have not received enough
attention from the computer architecture community. This paper
presents a micro-architecture performance analysis of recognized
bioinformatic applications for the comparison and alignment of
biological sequences, including BLAST, FASTA and some recog-
nized parallel implementations of the Smith-Waterman algorithm
that use the Altivec SIMD extension to speed-up the performance.
We adopt a simulation-based methodology to perform a detailed
workload characterization. We analyze architectural and micro-
architectural aspects like pipeline configurations, issue widths,
functional unit mixes, memory hierarchy and their implications
on the performance behavior. We have found that the memory
subsystem is the component with more impact in the performance
of the BLAST heuristic, the branch predictor is responsible for
the major performance loss for FASTA and SSEARCH34, and
long dependency chains are the limiting factor in the SIMD
implementations of Smith-Waterman.

I. INTRODUCTION

Advances in molecular biology and genomic research have
led to a growth in the biological information generated by the
scientific community. This information increases continuously
in such a way that it has been necessary to create specialized
databases to store, organize and index the data [10] [4] [2] [1].
Additionally, the use of specialized tools to view and an-
alyze this information makes computational biology a very
multidisciplinary field, including components of mathematics,
biology, chemistry and computer science. However, due to the
immense quantity of information, performing even a simple
analysis on genome-scale data quickly turns into a computa-
tionally difficult and time consuming problem. Because of that,
computational biology and its related components in database
systems, visualization and analysis tools become an emerging
workload that requires high-performance computer systems.

One of the most important tasks in molecular biology is
the comparison and alignment of biology sequences. This is
basically a problem of finding an approximate pattern match-
ing between two sequences, possibly introducing spaces (gaps)
between them. The biological information associated with the

similarity between sequences provides important knowledge of
the significant relationships between gene sequences (DNA,
RNA) or protein sequences of living organisms. A high
sequence similarity, for instance, usually implies functional or
structural similarity, while sequence differences hold the key
information regarding diversity and evolution. For example,
consider the alignment between sequences A=csttpggg with
eight residues (symbols) and B=csdtnglawgg with eleven
residues:

A = c s - t t p g - - - g g
| | | | | | |

B = c s d t - n g l a w g g

In this alignment, we say that b3 = d is inserted into the
first sequence or it is deleted from the second one, depending
on the point of view; and also that a5 = p is substituted by
b5 = n or b5 by a5. Consecutive dashes in the sequences
represent a gap. For example, there is a gap of length one
between a2 and a3 and a gap of length three between a6 and
a7 in the first sequence. This task is computationally intensive
and the scenario can be more challenging if it is required to
detect all the significant similarities between a single encoded
amino-acid sequence and hundred of thousands of protein
sequences that are stored in a typical protein database, or when
it is necessary to compare complete genomes of a variety of
organisms.

Researchers have faced the problem at different levels
of complexity. At algorithm level, researchers have pro-
posed several methods for alignment of two sequences us-
ing dynamic programming techniques (DP) and heuristic
strategies. DP techniques are probably the most impor-
tant programming method used in sequences alignment [25]
and many researchers have proposed different algorithms
based on DP to quantify the similarity of a pair of se-
quences [19] [27] [30] [12]. Among these alternatives, the
most important is the Smith-Waterman (SW) algorithm [30],
which is generally considered to be the most sensitive. Sensi-
tivity is a measure of how well a method can detect the sim-
ilarity between sequences. Nevertheless, the computationally
intensive task involved in the algorithm is a restrictive factor
that prevents its use; its time complexity is O(m, n), where
m and n are the lengths of the two sequences respectively.

On the other hand, heuristic strategies have been proposed to
speed-up the execution of the search and alignment tasks, such
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as FASTA [21] and BLAST [7]. These methods reduce the
execution time by an order of magnitude compared to the SW
algorithm. However, this reduction is obtained at the expense
of sensitivity, and due to this loss of sensitivity some related
sequences cannot be detected in a search. Some interesting
discussion about the sensitivity and selectivity in protein
similarity searches can be found in [28]. This scenario shows
clearly that new computer systems that can provide high-
performance on computational biology applications play an
important role in the development of these areas of knowledge.

In this paper, we present a performance analysis of some
of the most recognized sequence alignment tools, including
the BLAST and FASTA heuristics, and the Smith-Waterman
algorithm. Since SIMD extensions have proven very effective
at increasing performance of the Smith-Waterman algorithm,
we analyze and compare three different implementations:
an optimized scalar version (SSEARCH), an Altivec imple-
mentation using 128-bit registers, and a futuristic Altivec
version that uses 256-bit vector registers. Understanding the
characteristics of these applications, detecting performance
bottlenecks, and evaluating the different architectural tradeoffs
will help designers to tune future processor architectures to
increase performance on this emerging class of applications.
We present a detailed workload characterization in terms
of micro-architecture parameters, like IPC, execution time,
instruction distribution, memory behavior, branch prediction,
etc.

This paper is organized as follows. Section II discusses
the related work, section III presents a brief overview of the
sequence alignment task and details some relevant aspects of
the studied applications, section IV describes the experimental
framework and the evaluated processor configurations. Sec-
tion V presents the experimental results. Finally, in section VI
some conclusions and future work are presented.

II. RELATED WORK

While it is clear that bioinformatic is an important field
of research, most of the research effort is dedicated to de-
veloping better and faster algorithms, rather than to designing
architectures better suited to the existing codes. There has been
very little research on how bioinformatic codes exercise the
different aspects of a state-of-the-art computer system, and
even less have looked at the micro-architecture details of a
high performance processor. Since bioinformatic is a new and
emerging field, there is not a well defined benchmark. A few
proposals have been presented, but they are not widely ac-
cepted in the computer architecture community yet. However,
all of them recognize the importance of sequence comparison
and alignment algorithms.

Most of the reported studies about bioinformatic work-
loads focus on parallel programming issues and perfor-
mance evaluations on large high-performance supercomput-
ers [26] [29] [32] [3]. Usually, these studies analyze the impact
of the number of processors in the execution time. However,
they do not analyze the performance of the individual proces-
sors. One interesting work is presented in [11] where a perfor-

mance profiling of BLAST over a real machine is done (HP
zx6000 workstation with dual Itanium-2 processors). Although
they analyze some performance aspects of the application,
their main goal is to determine performance bottlenecks and
evaluate the effect of compiler optimizations on BLAST in a
real machine.

One important step-forward to the definition of a representa-
tive set of bioinformatic applications is the BioBench Suite [6].
It includes a set of applications ranging from sequence com-
parison to pholygenetic analysis. A second important effort to
define a bioinformatic benchmark is BioPerf [9]. Compared
to BioBench, it covers more applications in terms of quantity
and diversity and includes parallel codes of the applications
where available. Both works have the characteristic of meeting
an important group of real and mature bioinformatic tools.
These studies characterize the workload behavior using the
hardware performance counters on a Pentium 3 processor [6]
and Pentium 4 machine [15] or using a combination of the
CHUD framework and the IBM Mambo simulator running
on an Apple G5 (IBM PowerPC 970) Workstation [9], [24].
The use of performance counters provides insight on the
actual architecture, but cannot offer detailed information about
micro-architecture parameters, or insight on future designs that
change these parameters, like functional unit mix, issue width,
cache size, memory latency, and so on.

We contribute with a detailed performance characterization
of some of the most recognized sequence comparison tools:
BLAST, FASTA, and SSEARCH, the best-known scalar im-
plementation of the Smith-Waterman algorithm. Since previ-
ous work has identified SIMD extensions as an excellent way
to improve the performance of SSEARCH [31] [22] [24], we
also characterize the performance of two Altivec implementa-
tions of SSEARCH: one using the existing Altivec instruction
set on 128-bit registers, and a futuristic design that uses 256-bit
registers, that could exploit higher degrees of data level par-
allelism. As a difference with previous work, we use a cycle-
accurate micro-architecture simulator that offers a higher level
of detailed information than hardware performance counters,
and allows us to change the configuration to explore alternative
processor designs, providing a way to detect which are the
most relevant processor features for each different application.

III. SEQUENCE ALIGNMENT STRATEGIES

There are significant differences among the most widely
recognized applications for sequence comparison. To begin
with, some of them use heuristics, while others use dynamic
programming. As we will show, this has severe implications
on the way they exercise the processor architecture.

In this section we briefly describe the applications evaluated
in this paper. They include 3 different versions of the Smith-
Waterman algorithm: a scalar version (SSEARCH), two SIMD
versions using 128-bit and 256-bit registers, and 2 heuristic
strategies (BLAST, FASTA) that trade off comparison accu-
racy for speed. Table I summarizes the selected workload and
the input parameter used to execute them.
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TABLE I

SELECTED WORKLOAD DESCRIPTION

Application Description Input Parameters
Best known scalar implementation of the

SSEARCH (SW implementation) SW algorithm. This is part of the SSEARCH program -q -H -p -b 500 -d 0 -s BL62 -f 11 -g 1
Data-parallel implementation presented in the last

sw vmx128 SSEARCH application that use Altivec SIMD extension -q -H -p -b 500 -d 0 -s BL62 -f 11 -g 1
Data-parallel implementation presented in the last

sw vmx256 SSEARCH application that use Altivec SIMD extension -q -H -p -b 500 -d 0 -s BL62 -f 11 -g 1
NCBI BLAST BLAST program [7]. Heuristic strategies blastp -d -G 10 -E 1 -b 0
FASTA FASTA program. It uses heuristic strategies. -q -H -p -b 500 -d 0 -s BL62 -f 11 -g 1

Listing 1. Typical code in blast
. . .

i f ( s o f f > c o m p r e s s e d w o r d s i z e )
p =∗( s u b j e c t 0 + s o f f − c o m p r e s s e d w o r d s i z e −1);
i f ( s o f f == c o m p r e s s e d w o r d s i z e

| | READDB UNPACK BASE 4( p)!=∗−−q
| | q<query0 ) { l e f t = 0 ;}

e l s e {
i f (READDB UNPACK BASE 3( p ) != ∗−−q

| | q < query0 ) { l e f t = 1 ;}
e l s e {

i f (READDB UNPACK BASE 2( p ) != ∗−−q
| | q < query0 ) { l e f t = 2 ;}

e l s e {
i f (READDB UNPACK BASE 1( p ) != ∗−−q

| | q < query0 ) { l e f t = 3 ;}
e l s e { l e f t = 4 ;}

}}}
p = ∗ ( s u b j e c t 0 + s o f f + e x t r a b y t e s n e e d e d ) ;
q = query0 + q o f f + 4∗ e x t r a b y t e s n e e d e d ; . . .

Listing 2. Typical loops in SSEARCH34 application
. . .
whi l e ( 1 ) {

h = p + ∗pwaa ++;
p = s s j −>H;
i f ( ( e = s s j −>E ) > 0 ) {

i f ( p == −1) goto n e x t r o w ;
i f ( h < e ) h = e ;
e l s e i f ( h > n g a p i n i t ) {

e += g a p e x t ;
goto t r a n s i t i o n ; }

e += g a p e x t ;
s s j −>E = ( e >0)? e : 0 ;
s s j ++−>H = h ; }

e l s e {
i f ( h > 0) {

i f ( h > n g a p i n i t ) {
e = 0 ;
goto t r a n s i t i o n ;

}
s s j ++−>H = h ; }

e l s e s s j ++−>H = 0 ;
} } . . .

Listing 3. Typical loops in SW vmx128 and SW vmx256 applications
. . .
/∗ d b l e n g t h : l e n g t h o f d a t a b a s e sequence ∗ /
/∗ q u e r y l e n g t h : l e n g t h o f query s e q u e n c e s ∗ /
f o r ( i =0 ; i<q u e r y l e n g t h ; i +=8) {

. . .
f o r ( j =8 ; j<d b l e n g t h ; j +=8) {

. . . }
} . . .

A. SSEARCH

Current implementations of the SW algorithm benefit from
the ability of the processor to exploit Instruction Level
Parallelism (ILP). Some implementations also benefit from
SIMD extensions to exploit Data Level Parallelism (DLP).
Among those exploiting ILP, the SSEARCH tool included
in the Fasta Tools is probably the fastest non-parallel im-
plementation of a rigorous alignment algorithm between two
sequences [13] [20]. The code sample shown in listing 2, with
many if-then-else statements shows how challenging
this application will be for modern superscalar processors.
While this code is more efficient than a direct implementation
of the SW algorithm, the branch prediction mechanism may
find it difficult to anticipate the path through the complex
control flow.

We also analyze the DLP variant of the SSEARCH code
present in the Fasta Tools. This code uses the Altivec SIMD
extension (with 128-bit wide registers) to implement a variant
of the approach presented in [31], that obtains an order of
magnitude higher performance than the scalar version, making
it practical for real use. To our knowledge, this is the fastest
implementation of the SW on a single processor. Listing 3
shows a code example taken from the SIMD implementation.
We quickly appreciate two differences with the scalar imple-
mentation: first, there is no complex control flow within the
loop body; second, the number of loop iterations is fixed, as
it depends on the length of the sequences. In this paper, we
have labeled this version as SW vmx128.

Finally, as a novel contribution of this paper, we present a
SW implementation using the Altivec SIMD extension, but us-
ing 256-bit wide registers. The increased register width should
allow us to exploit more DLP, and so increase performance
over the 128-bit version. The code looks very similar to the
SW vmx128 version, except that now, each Altivec instruction
is operating on twice the number of data elements. We have
labeled this version as SW vmx256.

B. BLAST

BLAST (Basic Local Alignment Search Tool) is probably
the most popular bioinformatic tool due to its fast speed. It
is an heuristic open-source tool to determine which sequences
from a database are most similar to a query sequence. The
main strategy of BLAST is to find a pair of segments of
identical length from two sequences such that extending or
shortening both segments will not improve the similarity score
of the segment pair. This heuristic compromises selectivity
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TABLE II

QUERY SEQUENCES USED IN THE EVALUATIONS

Protein Family Accession (ID) Length (symbols)
Globin P02232 143
Ras P01111 189
Glutathione S-transferase P14942 222
Serine Protease P00762 246
Histocompatibility antigen P10318 362
Alcohol dehydrogenase P07327 375
Serine Protease inhibitor P01008 464
Cytochrome P450 P10635 497
H+-transporting ATP synthase P25705 553
Hemaglutinin P03435 567

(number of matched segments) and sensitivity for speed. A
detailed description of the algorithm and other performance
improvements can be found in [7] and [8]. A profiling analysis
shows that subroutine BlastNtWordFinder contributes about
75% of the total execution time. Listing 1, shows a small
part of code taken from this function. We can see that
although this application is faster than previous ones, also, the
if-then-else statements and other characteristics like the
intensive use of pointer arithmetic, large data structures and
control flow statements limit its performance on superscalar
processors.

C. FASTA

FASTA [20] is a collection of popular bioinformatic codes
that perform a fast protein or nucleotide sequence comparison
against a query sequence. The FASTA algorithm is another
approximate heuristic that prescreens the database for very
short identical matches and then (if optimization of scores is
used) extends these matches. Although not as optimal as the
SW algorithm, the FASTA algorithm offers a different trade
off between comparison accuracy and execution time [5].

IV. EXPERIMENTAL METHODOLOGY

In order to carry out a performance analysis over the men-
tioned sequence alignment applications, we use a simulation-
based methodology. In this section we describe the simulation
infrastructure, the selected input working data set, the evalu-
ated processor models and the code generation methodology.

A. Input Working Set and Database

Evaluations were done using a set of 11 different amino-
acid query sequences against the SwissProt [4] database. These
11 sequences represent a range of well characterized protein
families. The length of these sequences ranges from 143 to
567 amino-acids. It is important to remark that the same
set of queries has been previously used by other researchers
to evaluate different alignment approaches, like BLAST and
ParAlign [7] [23]. Some characteristics of these sequences are
listed in table II. Currently, the SwissProt database contains
more than 62,615,309 residues grouped into 172,233 protein
sequences. All the database searches have been executed with
a gap open penalty of 10 and a gap extension penalty of
1. Additionally, the blosum62 amino-acid substitution score
matrix has been used [14]. For space reasons, in this paper
we only show the results obtained using the query sequence
Glutathione S-transferase.

TABLE III

TRACE SIZE

APPLICATION Instruction count
SSEARCH 319.808.539
SSEARCHVMX128 78.993.134
SSEARCHVMX256 65.570.645
FASTA 27.469.429
BLAST 7.749.725

B. Simulation Framework

We selected the PowerPC architecture with the Altivec
SIMD extension as a base of study. Altivec is one of the
most complete multimedia extensions in terms of the num-
ber of registers, number of operations and support for data
reorganization. The simulation process has been carried out
using Turandot [17] [18], which is a cycle accurate simulator
that models a Power-PC based out-of-order architecture and
supports trace-driven simulation. In order to simulate properly
the code that contains Altivec instructions (SW vmx128 and
SW vmx256), we included Altivec support in the simulator. It
is important to remark that applications for biological sequence
comparison have a very large scale behavior (behavior seen
over billions of instructions). For this reason, it is required to
generate representative traces of the execution. To do this, we
have adapted the Aria tool, which is a framework for doing
architecture and micro-architecture studies over the PowerPC
architecture based on the MET tools from IBM. Table III
summarizes the trace sizes in number of instructions. The
traces have been generated taking into account the behavior
of the applications described in [24] and in order to do
comparisons, the traces belong to the execution on the same
sequences of the database. Experiments performed over bigger
traces showed similar trends as those presented in this work.
To generate the assembler code, we used the GCC compiler
and the GNU binutils. We also extended the GCC back-end
to include Altivec intrinsics manipulating 256-bit registers.

C. Processor Models

The tools used in this study simulate a fully parameterizable
superscalar processor. Manipulating these parameters we can
cover a wide range of configurations to represent multiple
processor design options. As shown in tables IV, V, and VI
we have explored variations of the fetch/issue/commit width,
the cache hierarchy, and the branch prediction mechanism.
The 4-way configuration represents mainstream superscalar
processors such as the PowerPC 970, or Alpha 21264. The
8-way configuration represents more aggressive superscalar
designs like a possible Power 6, or the Alpha 21464. The
16-way configuration is presented as a limit situation, where
the maximum ILP is exploited.

V. EXPERIMENTAL RESULTS

In this section we present the most relevant results and
discuss the main conclusions inferred from them. First, we
show the instruction distribution for each application. Then, in
order to identify the main factors of performance degradation,
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TABLE IV

EVALUATED PROCESSOR CONFIGURATIONS

Resource Parameter 4-way 8-way 16-way

Fetch 4 8 16
Rename 4 8 16

Width Dispatch 4 8 16
Retire 6 12 20
Inflight instrs 160 255 255
GPR 96 128 128

Physical VPR 96 128 128
Registers FPR 96 128 128

LD/ST 2 4 8
FX 3 6 10
FP 2 4 8
BR 2 3 7

Units VI 1 2 6
VPER 1 2 4
VCMPLX 1 2 4
VFP 1 2 4
LD/ST issue 20 40 80
FX issue 20 40 80
FP issue 20 40 80
BR issue 20 40 80

Size VI issue 20 40 80
Queues VPER issue 20 40 80

VCMPLX issue 20 40 80
VFP issue 20 40 80
Ibuffer 18 36 72
Retire 128 180 180
Read ports (8-byte access) 2 3 7
Write ports(8-byte access) 1 2 4

DCache L1 to L2 ports (32 bytes r/w) 1 1 1
Maximum outstanding misses 4 8 16

TABLE V

EVALUATED MEMORY CONFIGURATIONS

Mem Param me1 me2 me3 me4 meinf

Size [KB] 32 64 128 128 Inf
I-L1 Assoc 1 1 1 1 1

Line [B] 128 128 128 128 128
Lat [cycles] 1 1 1 1 1
Size [KB] 32 64 128 128 Inf

D-L1 Assoc 2 2 2 2 2
Line [B] 128 128 128 128 128
Lat [cycles] 1 1 1 1 1
Size [MB] 1 2 4 Inf Inf

DL2 Associ. 8 8 8 8 8
Shared Line [B] 128 128 128 128 128

Latency [cycles] 12 12 12 12 12
Main Mem Latency [cycles] 300 300 300 300 300

we analyze the reason for the processor wasted cycles on the 4-
way configuration. With this information, we start the analysis
of each subsystem of the processor that is responsible for the
lost performance, mainly the memory and branch prediction
subsystems.

A. Instruction Breakdown

Figure 1 shows the instruction distribution for the evaluated
applications. As it has been reported in previous work, the
amount of float point instructions is negligible (these instruc-
tions are grouped into the ”other” group). This confirms that
sequence comparison applications have different nature than
other scientific applications where the amount of floating point
instructions is significant. The instructions distribution for the
heuristic strategies and the non-parallel SW implementation
(BLAST, FASTA and SSEARCH34) has significant differ-
ences compared to the parallel (Altivec) SW implementations
(SW vmx128 and SW vmx256).

First, the number of control instructions (branches and

TABLE VI

BRANCH PREDICTOR CONFIGURATION

Description Parameter Value

Branch Predictor: (Combined branch
predictor that selects between GP
gshare and bimodal).
Branch Predictor Table size 16K
Branch Target Table Associativity 4
NFA table size 4K
Latency of a miss in the NFA buffer (BTB) 2 cycles
NFA associativity 4
Maximum number of predicted conditional branches 12
Miss Predicted recovery cycles 3
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Fig. 1. Instruction breakdown for the different workloads

jumps) in the parallel SW is very small (around 2%). This
is due to the fact that these parallel implementations avoid
the algorithm optimizations that imply many if-then-else
sentences. Instead, most of the calculus are packed into the
128- and 256-bit registers. In the other applications, the
amount of control instructions is very significant (25% in
SSEARCH, 18% in FASTA and 16% in BLAST) because they
are based on algorithm optimizations that avoid unnecessary
computation based on specific data values. Given the high ratio
of control flow instructions we can expect the branch predictor
to play a significant role in these applications.

Second, the results reveal that there is a significant amount
of load instructions in all applications. (22% in SSEARCH,
16% in SW vmx128, 17% in SW vmx256, 17% in FASTA and
21% in BLAST). However, the number of store instructions is
much smaller, specially in the parallel applications. This is due
to the fact that all the applications have to load each database
sequence from memory and at the end of the computation, they
do not store the same amount of data, but only (basically) the
score value of the comparison. The data locality will determine
the performance of the cache hierarchy.

Third, the largest percentage of the executed instructions are
ALU instructions, that is, 44% integer ALU in SSEARCH34,
48% in FASTA34, 54% integer ALU in BLAST, 15% integer
ALU and 21% integer Altivec in SW vmx128, and 18% inte-
ger ALU and 14% integer Altivec in SW vmx256. Comparing
these results with the instruction distribution for the SPEC
2000 made in [6], where the average ALU instructions is
around 40%; we see that these applications put more pressure
over the execution units than the SPEC suite (integer or SIMD
functional units). As we will show, this causes the applications
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to be effectively compute-bound. The length of dependency
chains will determine the effectiveness of superscalar excution.

B. Pipeline stalls

It is common for a pipeliened processor to stall during many
cycles in the execution of an application. There are many
possible reasons for such pipeline stall: branch mispredictions,
cache misses, full issue queues, result dependecies, etc. Our
simulator framework is able to keep track of operations as
they flow through the processor pipeline, and records the
reason (trauma) for an operation not making forward progress.
Traumas recorded by the simulator are grouped into 56 classes
, as described in [16]. Table VII sumaryzes the list of traumas
in the processor, for space reasons, we do not describe all the
possible traumas that can be collected, but only those which
have been detected to be important in the execution of our
applications.

Figure 2 shows the distribution of traumas in the exe-
cution of the applications for a specific 4-way processor
configuration. The results show that for BLAST, most trau-
mas are associated with dependencies on integer operation
(RG FIX), followed by accesses to the second level cache
(trauma MM DL2), branch miss-prediction (IF PRED), and
accesses to the first-level data cache (MM DL1). FASTA has
a similar distribution of traumas. However, in SSEARCH34
the relevance of branch mispredictions is more significant than
for BLAST, while cache misses play a less important role.

On the other hand, the parallel implementations of the
SW algorithm, SW vmx128 and SW vmx256, exhibit a very
different distribution of traumas, associated to the use of SIMD
instructions. On both applications, the most frequent traumas
are dependencies on integer SIMD operation (RG VI) and
dependencies on SIMD permutation operation (RG VPER).
However, taking into account that SW vmx256 is similar
to SW vmx128 (the basic difference is that the first one
use Altivec register with 256-bit length), it is interesting to
observe that even though this version tries to extract more
DLP, at the end, dependecies on SIMD permutation operations
(RG VPER) become more important and other sources of stall
emerge. That is the case of accesses to the first- and second-
level data cache (MM DL1 and MM DL2), and register depen-
dencies with the results from memory operations (RG MEM).

In the next subsections, we will analyze in a deeper way
the impact of the most important sources of performance loss,
that is: ILP exploitation on different processor configurations,
the memory subsystem, and the branch prediction subsystem.

C. Instructions per Cycle

Figure 3 shows the execution time, measured in CPU cycles
of each application for different processor (4-way to 16-way)
and different memory configurations (I1/DL1/L2: 32k/32k/1M
to infinite). We observe that the SIMD implementations of
SW, and specially BLAST, are the only ones that exhibit
significant differences in execution time as we change the
memory hierarchy. All applications experience approximatey
an 8% speedup when going from the 4-wide to the 8-wide

TABLE VII

LIST OF SOME IMPORTANT TRAUMAS

Name Description Stage
IF NFA Next Fetch Address miss-pred. Fetch
IF PRED Branch miss-prediction Fetch
IF FULL Instruction Buffer Full Fetch
FULL MEM Too many mem instrs ready Issue
MM DL2 L2 cache data miss Memory access
MM DL1 L1 D-cache miss Memory access
RG FIX Result dependency in INT units Register dependencies
RG MEM Result dependency in MEM units Register dependencies
RG VI Result dependency in SIMD-int units Register dependencies
RG VPER Result dependency in SIMD-perm units Register dependencies
OTHER Miscellaneous reasons Other reason
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Fig. 4. IPC vs memory configuration

configuration. From that point, SSEARCH and BLAST do not
show any performance improvement when going to the 8-wide
configuration, while the SIMD codes and FASTA still show a
moderate speedup.

Figure 4 shows the number or instructions completed each
cycle for the same set of configurations. The results show
that, although the configurations tested can exploit high levels
of ILP, they only achieve very modest IPC values. Only the
SIMD implementations execute more than 2 instruction in
parallel. As will be confirmed in the next subsections, the
high regularity of SIMD code and the lack of complex control
flow help these application to efficiently schedule instructions
and exploit data locality. On the other hand, FASTA, and
SSEARCH34 achieve very poor IPC results. Furthermore, the
graph shows that going from a small cache configuration to an
ideal memory does not improve this poor IPC performance,
indicating that the cause must be either data dependencies or
poor branch prediction on the complex control flow code they
contain. Finally, BLAST obtains moderate IPC results, but
only in the presence of an ideal memory configuration. When
we use small cache sizes, the performance drops significantly
(52% slowdown from ideal caches to 32k L1 caches).

D. Memory hierarchy behavior

Figure 5 shows how the cache size has an effect on (a)
the cache miss rate, and (b) the IPC of each application.
We simulate L1 cache sizes ranging from 1K to 2M, always
using a 2M L2 cache and a 4-way processor configuration.
The results show that all applications except SSEARCH34
require at least 4K caches to fit their working set. BLAST
is the application with the highest miss rate, for any but the
smallest cache sizes. While all others already have a negligible
number of misses on a 32K cache, BLAST still has close to
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Fig. 2. Histogram of traumas in configuration 4-way, IL1 32K, DL1 32K, L2 1M and real branch predictor
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Fig. 3. Cycles vs memory configuration

4% misses. However, as we observe from the IPC figure, it
is the SIMD codes that benefit most from the fact that the
working set fits in cache, exhibiting more than a 2x speedup
as we grow the cache beyond 8K.

Figure 6 shows how the cache associativity impacts the
miss ratio and IPC. We set the cache size at 32K and change
the associativity from direct-mapped to 8-way set associative.
BLAST is the only application that shows a significant de-
crease of misses when using set associatve caches, as it is the

only one that can not fit its working set in the 32K cache.
However, as can be observed in the IPC figure, the miss rate
reduction obtained does not translate to improvements in the
application performance. Clearly, a 32K cache is not enough
for BLAST, no matter what associativity is used.

Figure 7 shows the impact of the L1 cache latency on IPC
for each application. We fix the IL1/DL1/L2 cache sizes at
32K/32K/1M and the associativity at 1/2/8 set respectively,
and change the hit latency from 1 to 10 cycles. The results
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show that the SIMD codes are the most sensitive to the cache
latency, since they were the most compute-bound. Since all
load operations (SIMD and scalar) go to the L1 cache, if we
increase the time it takes to bring data to the functional units,
the whole dependency chain is delayed.

Finally, since SIMD codes are the most sensitive to memory
latency, we perform an experiment where we only increase the
latency of the 256-bit vector load operations by 1 extra cycle.
This is a more fair comparison to the 128-bit version, as it
reflects the scenario where both codes have the same load/store
bandwidth (the double width is pipelined, and so it requires an
addiitonal cycle). The results in Figure 8 show that even with
the added cycle latency, the 256-bit version is still 5% faster
than the 128-bit version, but the performance advantage has
diminished significantly. As we observed in Section V-B, these
applications are compute bound, and have long dependency
chains, which prevents the 256-bit registers from exploiting
twice the amount of DLP.
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Fig. 7. L1 latency behavior
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E. Branch Prediction Study
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Fig. 9. Perfect and real branch predictor

Figure 9 shows the impact of using a real branch predictor
compared to an ideal branch predictor. The real branch predic-
tor is described in table VI. There is an interesting correlation
between the number of control flow instructions shown in
Figure 1 and the impact of the branch prediction mechanism.
As was to be expected given the low number of branches
in SIMD instructions, the branch predictor has a negligible
impact on these applications. On the other hand, SSEARCH34,
FASTA, and BLAST, which have a large number of complex
if-then-else structures, the branch predictor plays a
critical role. BLAST and FASTA benefit from their heuristic
approach, which reduces the number of required computations
to provide the results, and SSEARCH also reduces the amount
of computation avoiding it when not necessary, however, in
both cases they become heavily dependent on the accuracy of
the branch predictor.

Figure 11 compares the performance of different branch
prediction strategies as a function of the predictor size. The
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Fig. 11. Branch predictor accuracy

results show that the low prediction accuracy is neither due
to the branch predictor size, since near optium accuracy is
achieved beyond 512 bytes, not to the prediction strategy, since
all 3 compared predictor achieve similar results. We conclude
that the low prediction accuracy observed is mainly due to
the unpredictable nature of heuristic approaches in BLAST
and FASTA, and the data-dependent nature of the computation
avoidance in SSEARCH.

F. Resource utilization

Figure 10a,b shows the usage of the different instruction
issue queues (integer, load/store, branch) for the FASTA and
SW vmx128 applications. Figure 10c,d shows the number of
in-flight instructions, and pending memory operations. We do
not show the remaining applications due to space limitations.

Also, we use the 32K/32K/1M/ memory configurations and the
4-way processor configuration. The results for FASTA show
that the queues are mostly empty, or with little occupation.
BLAST and SSEARCH34 (not shown) follow the same trend.
This is due to the poor branch prediction accuracy obtained,
which causes a high number of pipeline flushes that can be
observed in the low number of in-flight instructions, and limits
the ILP that can be exploited.

On the other hand, the results for SW vmw128 show that
there is a significant usage of the issue queues, specially the
vector integer queue. The high prediction accuracy allows the
processor to maintain a high number of in-flight instructions,
and exploit ILP. This confirms what we have observed before,
that the performance limit is caused by data dependencies and
contention on the vector functional units.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have adopted a simulation-based approach
to perform a detailed workload characterization of typical
applications for sequence comparison and alignment task.
We have analyzed architectural and micro-architectural as-
pects like pipeline configurations, issue widths, functional
unit mixes, memory hierarchy, branch prediction and resource
utilization.

Although memory accesses are a significant component in
all heuristic strategies for sequence comparison, their impact
on performance differs significantly between applications.
Whereas the memory system is critical for the BLAST ap-
plication, it has a minimal impact in FASTA, where branch
prediction becomes the major responsible for performance
degradation.

In the case of the non-parallel implementation of SW
algorithm (SSEARCH34), results show that branch prediction
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has the most important impact in the performance degrada-
tion. This situation is basically the result of the algorithm
optimizations applied in the implementation, which include
many if-then-else statements in the source code with a
non-simple behavior pattern.

For the parallel implementations of the SW algorithm, we
were interested in the evaluation of the impact of SIMD
alternatives on performance improvement. To reach this goal,
we have used the best reported SIMD implementation of the
SW, which is included as an optional tool in the SSEARCH34
toolset. This implementation is based on the use of Altivec
SIMD extension presented in current IBM PowerPC proces-
sors. In order to explore the performance gains using wider
registers, we have also written a new version of this SW
implementation using 256-bit registers. The results show that
both 128- and 256-bits SIMD implementations have a big
component of memory access (scalar and SIMD access).
However the impact of the memory system in performance
is low. This is basically due to the fact that most of these
accesses are contiguous in memory and then, they can take
advantage of the data locality. On the other hand, the amount
of branch instructions and their prediction are not decisive
in the performance of these SW implementations. In these
implementations, the critical part is the execution of vector
integer and vector permute instructions.

Additionally, the speed-up obtained using wider SIMD
register is not as important as it was to be expected. The
instruction reduction using 256-bit SIMD (18% on average)
does not translate directly into time reduction (9% on average).
As we discussed in Section V-B this is mainly due to the true
data dependencies and contention on the vector integer and
permute functional units.

Future work includes the analysis and performance char-
acterization of other important biological applications, such
as multiple sequences analysis, genome-level alignment, phy-
logenetic analysis, molecular dynamics and so on. These
studies will set the bases to define architectural and micro-
architectural optimizations in order to speedup the execution of
this emerging workload in future high performance processors.
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