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Abstract 

The market of rare earths (RE) is currently being controlled by China. In 2010 abruptly reduced 

its exportation quota creating supply disruptions. This, along with the fact that huge increase 

of their demand for supplying new technologies have created a scarcity of rare earth elements 

(REE) and nowadays have been classified by the EU as critical elements and it is a need to 

extract and recover them from secondary sources. 

The recovery of REE as phosphate salts from acid mine water (AMW) samples as a potential 

secondary REE resources has been evaluated in this study. The work has been developed 

using acid mine waters (AMWs) collected in abandoned mines along the Rio Odiel Basin 

(Huelva). Specifically, for this study samples from La Poderosa Mine were used.  As many of 

the AMW of the Odiel Basin are characterized by high presence of transition elements (TE), 

especially Fe, Al, Zn, Cu; and alkaline earths (Ca and Mg). REE recovery efforts were 

developed after removal of Fe, by total oxidation of Fe(II) to Fe(III) and precipitation as Fe(III) 

hydroxides by using a strong alkaline reagent (e.g. NaOH, CaO, and MgO). 

The main objective of this study was to evaluate the precipitation of REE in a pH where the 

precipitation of TE is minimized and then the purity of REE content on the by-product recovered 

is maximized. The total initial REE concentration, the pH of precipitation and the molar ratios 

of phosphate/REE were studied. 

The results show that it is possible to obtain moderate REE recovery (<15%) when using acid 

mine water with a total content of REE lower than 10 mgREE/L. However, using a previous 

concentration stage of REE from AMW  using ion exchange resin the concentration could by 

increased by factors of 15 to 20. Under this conditions, and using an excess of phosphate 

(P/REE (40)) REE recovery ratios of 90±5% were achieved. Furthermore, for pH values below 

2.5 a selective separation of REE and TE were achieved.  

  

 

 

  



Page 2  Memory 

 

Summary 

ABSTRACT ___________________________________________________ 1 

SUMMARY ___________________________________________________ 2 

1. GLOSSARY ______________________________________________ 5 

2. INTRODUCTION ___________________________________________ 7 

2.1. Physical and chemical properties .................................................................. 7 

2.2. Distribution and abundance in the Earth’s crust ............................................ 8 

2.2.1. Primary REEs Sources ......................................................................................9 

2.3. REE Applications and their roles in the modern world ................................. 10 

2.4. The problem of REEs raw materials ............................................................ 10 

2.5. REE Secondary sources .............................................................................. 11 

2.6. REE Extraction and Recovery Technologies ............................................... 15 

2.6.1. Solvent extraction (SX) .................................................................................... 15 

2.6.2. Ion exchange (IX): ............................................................................................ 15 

2.6.3. Precipitation of REE as phosphate minerals .................................................... 15 

2.7. Objectives .................................................................................................... 18 

2.8. Project scope ............................................................................................... 18 

3. EXPERIMENTAL SECTION _________________________________ 19 

3.1. Reagents and solutions ............................................................................... 19 

3.2. Experimental methodology .......................................................................... 20 

3.2.1. Characterization of acid mine water samples. .................................................. 20 

3.2.2. AMW pre-treatment for removal of Fe(III) by oxidation with H2O2 and pH control.

 ......................................................................................................................... 20 

3.2.3. Precipitation experiments with phosphate solutions. ........................................ 21 

3.2.4. Concentration REE from AMW by using ion exchange resin (S11706 resin) in 

column experiments. ........................................................................................ 25 

3.3. Chemical and Mineralogical Analyses. ........................................................ 28 

4. RESULTS AND DISCUSSION _______________________________ 29 

4.1. Characterization of the La Poderosa Mine acid mine water. ....................... 29 

4.2. AMW pre-treatment for removal of Fe(III) by oxidation with H2O2 and pH 

control. ......................................................................................................... 30 

4.3. Precipitation experiments with phosphate solutions results. ........................ 33 

4.4. Concentration REE from AMW by using ion exchange resins (S11706 resin) 

in column experiment. .................................................................................. 39 



Recovery of rare earth elements from acid mine waters 
by using phosphate based  precipitation processes  Page 3 

 

4.5. Economical evaluation. ................................................................................ 46 

4.5.1. The economic evaluation of the expenses to perform the project. .................. 47 

4.6. Project planning ............................................................................................ 49 

4.7. Environmental assessment/sustainability issues. ........................................ 50 

CONCLUSIONS ______________________________________________ 51 

ACKNOWLEDGMENTS ________________________________________ 52 

REFERENCE ________________________________________________ 53 

 





Recovery of rare earth elements from acid mine waters 
by using phosphate based  precipitation processes  Page. 5 

 

1. Glossary  

 

- AMW: acid mine water. 

- TAMW: treated acid mine water. 

- REE: rare earth elements.  

- REO: rare earth oxides. 

- TE: transition elements 

- BV: bed volume 
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2. Introduction 

The rare earth elements (REEs), which include the 15 lanthanide elements (Z = 57 through 

71), yttrium (Z = 39) and Scandium (Sc), less frequently included, are so called because most 

of them were originally isolated in the 18th and 19th centuries as oxides from rare 

minerals.(Castor, S.B., Hendrick, 2006)  

The IUPAC definition divides the REE, into the light REE (lanthanum (La) – samarium (Sm)) 

and heavy REE (europium (Eu) - lutetium (Lu)). Yttrium behaves as a heavy REE. The terms 

‘mid’, ‘middle’ and ‘medium REE’ are also sometimes used to denote samarium(Sm) – 

dysprosium (Dy). The lanthanides are members of the ‘f elements’ or ‘f block’ in the Periodic 

Table as is shown at Figure 1. Some authors prefer to use the abbreviation REY instead of 

REE to denote Y and the lanthanides.(Wall, 2013). 

 

Figure 1. Chemical periodic table delineating the 16 rare earth elements (REE): the 
lanthanides, La through Lu, plus Y, whose geochemical behaviour is virtually 
identical to that of the heavier lanthanides (Haxel, Hedrick, and Orris 2002). 

2.1. Physical and chemical properties 

The REE are soft, silver-coloured metals that tarnish quickly in air and have high melting points. 

The lanthanide series results from filling of the ‘f’ electron shell in the atoms. This gives rise to 

the magnetic and spectroscopic properties that make REE so useful in many applications. 

These inner electrons are shielded and so maintain the distinct elemental properties in various 

bonding situations. The electronic properties give the REE distinct and sharp absorption and 

emission spectra, including distinct colours in solution. Most REE are strongly paramagnetic 
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and the strong magnetism that results from their combination with transition metals such as 

iron and cobalt is one of their most important features. 

One of the most important properties in determining chemical behaviour is cation size and, 

conversely to what might be expected, the size of lanthanide cations (and atoms) decreases 

smoothly with increasing atomic number. In nature, REE almost always occur in the +3 valency 

state (i.e. they form the oxide REE2 O3) but there are two important exceptions in natural 

environments(Castor, S.B., Hendrick, 2006): in oxidising environments, such as weathered 

deposits and seawater deposits, Ce forms Ce4+ (CeO2), a much smaller cation, and in reducing 

environments, Eu forms the larger Eu2+ cation. In the laboratory, +2 valencies are also known 

for Sm, Tm, Yb; Pr6 O11 is a mixed synthetic oxide (4PrO2 ⋅Pr2 O3).(Wall, 2013). 

2.2. Distribution and abundance in the Earth’s crust 

The more abundant REE are each similar in crustal concentration to commonplace industrial 

metals such as chromium, nickel, copper or zinc, molybdenum. Even the two least abundant 

REE (Tm, Lu) are nearly 200 times more common than gold (Haxel et al., 2002). However, in 

contrast to ordinary base and precious metals, REE have very little tendency to become 

concentrated in exploitable ore deposits. Consequently, most of the world’s supply of REE 

comes from only a handful of sources. A summary of each rare element abundance in the 

Earth’s crust is provided in Figure 2. 

 

Figure 2. Crustal abundances of rare earth elements (Data from (Taylor et al., 
1981)). The light rare earths, lanthanum (La), cerium (Ce) and neodymium (Nd), are 

the most abundant rare earth elements in the Earth’s crust. 
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Naturally, REEs occur as salts and are associated with other metals. They often occur together 

in a deposit. More than 250 rare earth minerals have been identified. However, only four are 

the major industrial rare earth minerals bastnaesite, monazite, xenotime, and fluocerite. (Wang 

D, 1996; Zhang et al., 2016). A summary of the major industrial rare earth minerals is provided 

in Table 1. 

Mineral Formula Wt % REO 

CARBONATES/ FLUORCARBONATES 

bastnäsite-(Ce) CeCO3F 75 

PHOSPHATES 

florencite-(Ce) (Ce)Al3(PO4)2(OH)6 32 

monazite-(Ce) CePO4 70 

xenotime-(Y) YPO4 61 

Table 1. The major industrial rare earth minerals, including an indication of the 
percentage by weight (Wt %) of the rare earth oxide (REO) (Chakhmouradian and 
Wall, 2012). 

2.2.1. Primary REEs Sources 

Iron-REE Deposits. 

Some iron deposits contain REE resources, and such deposits have been exploited in only 

one area Bayan Obo, China. These deposits constitute the largest known REE resource in the 

world and are now one of the most important REE source in the world. (Castor, S.B., Hendrick, 

2006). The REE ore consists of three major types: REE-iron ore, the most important type; REE 

ore in silicate rock; and REE ore in dolomite (Zhongxin et al., 1992). 

Carbonatite-related REE deposits 

Carbonatites, which are igneous rocks composed of more than 50 per cent carbonate, are the 

main economic source of REE. Minerals include bastnäsite, monazite, and ancylite. The two 

most famous REE-rich carbonatites are in Mountain Pass, USA and Bayan Obo, China. (Wall, 

2013) 

Ion-adsorbed clays 

Ion-adsorbed clays are very important sources of REO, with over 60% of its content in  REO 

coming from Y and little requirement for physical beneficiation needed, can be considered one 

of the most important source of RE, and can be processed almost directly using 

hydrometallurgical methods. Some of the most important deposit can be found in Ganzhou, 

Jiangxi in China. (Yang et al., 2013) 
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2.3. REE Applications and their roles in the modern world 

Due to their unique magnetic, luminescent, and chemical properties, REEs play an important 

role in the development of alternative power and energy efficient technologies.(Seredin and 

Dai, 2012). 

Yttrium is a basic component of superconducting electric power lines, whilst Nd, Pr, Sm, Dy 

and Tb are important components for super-power permanent magnets (Seredin et al., 2013). 

They are needed in industrial generators, since they can transform renewable energies into 

electricity effectively (Seredin et al., 2013). Moreover, REEs are commonly used in hybrid and 

electric vehicles, while phosphors of Y, Eu, and Tb are components of compact fluorescent 

lights and light-emitting diodes (Seredin and Dai, 2012; Seredin et al., 2013). These elements 

were therefore considered critical by the European Commission in 2010, since their use is 

increasing rapidly in several clean technologies, which include alternative power and energy 

saving applications. 

REEs have now become a “corner stone” for modern technologies, especially in alternative 

power and energy saving applications(Seredin and Dai, 2012). REEs consumption has shown 

an exponential growth in recent years and no doubt will continue to grow in the foreseeable 

future.(Seredin et al., 2013).  

2.4. The problem of REEs raw materials 

As shown above, there are two main sources of REEs at present, carbonatite and weathered 

crust elution-deposited (ion-adsorbed) ores, both of which are almost exclusively mined in 

China and have been supplying the world industry for many years. Less than 5% of world 

REEs production is from other sources (Seredin and Dai, 2012).  Due to this complete control 

of its own mining supply chains, the Chinese government has the ability to greatly influence 

the availability and affordability of REEs to the rest of the world.  

Over recent years, China has been steadily decreasing its exports to rare earth importing 

nations, because of newly-instated production quotas by China's Ministry of Land and 

Resources Each year, these quotas have become increasingly stringent; since 2005, China 

has halved these REE export quotas (Morrison, 2012). 

In this connection, the price of some critical metals in the middle of 2011 reached the highest 

in historical record, as shown in Figure 3: Dy> $3 000 000, Tb> $5 000 000, and Eu> $6 000 

000 per ton, 10 times higher than some years ago. (Seredin and Dai, 2012). 
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Figure 3 Metal prices development during the last 10 years for selected REE (Argus 
Metals International - Argus Media) 

Under this situation, all countries in the world are now facing the problem of seeking new REEs 

sources, especially those for crucial metals. 

2.5. REE Secondary sources 

Recycling in-use stocks  

Recycling in-use stocks can be an alternative source, especially for the “big four,” i.e., La, Ce, 

Nd, and Pr (Beltrami et al., 2015). This is possible for metallurgical applications, auto-mobile 

catalysts, and magnets in wind turbines and automobiles, where REE are used in fairly large 

quantities as seen in Figure 4. The availability of less-abundant REE, however, continues to 

be a challenge. 

 

Figure 4. Rare earth in-use stocks in principle applications, by element (2007)(Du 
and Graedel, 2011) 
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Acid mine waters  

Acid mine waters (AMW) is commonly considered an environmental pollution issue. However, 

REE concentrations in AMW can be several orders of magnitude higher than in naturally 

occurring water bodies. With respect to shale standards, the REE distribution pattern in AMW 

is enriched in the less-abundant REE, such as Tb and Dy (Ayora et al., 2016).   

The reasons for the REE enrichment in AMW with respect to the rest of natural waters are 

grounded in their aqueous geochemistry. The majority of REE in igneous and sedimentary 

rocks are occasionally located as major components of carbonates (bastnaesite) and 

phosphates (monazite). Weathering of these minerals in conventional soils occurs due to the 

aggressive action of CO2 and humic acids. Once in solution, REE in soil pore water remain as 

trivalent cations or, at neutral to alkaline pH complexed with CO3
2- and OH-. Due to its large 

positive charge and ionic potential, trivalent cations are strongly sorbed onto the negative 

charged surface of clays, (Bradbury and Baeyens, 2002). As a consequence, REE are mainly 

concentrated in clays, which become a major reservoir of REE in sedimentary rocks. 

A strong correlation between high REE concentrations and acidity has been reported in both 

the surface and ground waters (Beltrami et al., 2015). When acid mine water (AMW) effluents 

mix with neutral waters,the pH increases accordingly and the concentrations of REE are 

greatly increase in these mixing zones as a consequence. 

The Odiel and Tinto basins in the province of Huelva, south-western Spain, has great 

historical significance as well as environmental interest. They are ones of the most polluted 

fluvial-estuarine systems in the world  as well as the city of Huelva has become the site of one 

of the most polluted industrial too (Davis et al., 2000). 

The Iberian Pyrite Belt  is one of the major provinces of massive sulphide deposits,  its mining 

of near the headwaters of the Odiel river  produce the dissolution of Fe sulfides and generate 

acidic solutions with pH values around 2,5. Furthermore, there were quite elevated 

concentrations of many transition elements and other metals (e.g.  Cu, Ca, As, Zn, Fe, Al) in 

the estuaries as a consequence of the mining activities.  

In this work, the samples of the acid mine waters were obtained of the collected in abandoned 

mines along the river Odiel Basin. Specifically, for this study samples from La Poderosa Mine 

were used which is on the mines located in Iberian Pyrite Belt (IPB, southwest Spain), as is 

shown in Figure 5. 
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Figure 5.  Hydrological map of the Odiel basin with location of the most important 
mines. La Poderosa mine is highlighted by a squared area (Sánchez Espańa et al., 

2006). 

The transition elements (TE) and other metals concentration presents in the Odiel basin is 

provide in Figure 6. 

 

Figure 6. Transition elements concentration (pmol/L) in AMW from Odiel basin. 
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REE contents in acid mine water (AMW) from our Odiel basin data consistently show a range 

between 4000 and 23 000 pmol/L, as shown in Figure 7 

 

Figure 7. REE concentration (pmol/L) in an AMW sample from Odiel basin. 
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2.6. REE Extraction and Recovery Technologies 

The REE occur together in ore bodies and the chemical similarity of these element makes their 

extraction and their separation a challenging task. 

Different technologies can be used for the recovery of REE depending on their origin (minerals, 

clays, wastes…) and the REE content. Such as gravity, magnetic, electrostatic and 

photochemical separations, or solvent extraction and ion exchange methods. Especially the 

last two methods, solvent extraction and ion exchange, are used for REE recovery and 

separation from aqueous streams generated among the hydrometallurgical processing stages.  

2.6.1. Solvent extraction (SX) 

Solvent extraction (SX) also recognized as liquid-liquid extraction has been widely used for 

separation of REE is most of the hydrometallurgical processing schemes. This technique 

allows to separate REE into different currents, at first (light REE, medium REE and heavy 

REE), and after separate them from each other (Tang and Steenari, 2015). The most common 

and used extractants have functional groups as phosphinic, and phosphoric acids. Also, 

chelating groups , such as hidroxyquinolines are used (Jha et al., 2016). 

2.6.2. Ion exchange (IX):  

Ion-exchange is a liquid-solid extraction process where REE metal ions are retained at the 

solid phase taking benefits of its functional groups. This technique separates and produces 

very high-purity rare earth products but with limited quantities due to its lower capacity and 

efficiency compared to SX (Zhang et al., 2016). 

Different ion exchange resins are used (Jha et al., 2016), using batch or continuous mode in 

column for extracting REE from leached solutions. In particular, continuous mode and an ion 

exchange resin has been investigated in this study.  

2.6.3. Precipitation of REE as phosphate minerals 

Phosphate rocks such as fluorapatite (Ca5(PO4)3F) often contain significant amounts of rare 

earth minerals and considered as rare earth ores. They can be processed to produce 

phosphoric acid as well as rare earth metals. For this reason, processing of apatite ores has 

become more prominent recently.  These deposits however, often require a pre-leach stage 

prior to the acid bake stage at elevated temperature where the latter converts REE-phosphates 

to water soluble REE-sulphates (Stone et al., 2016).The aim of the pre-leach stage of 

ores/concentrates is to remove the calcium which otherwise interfere with liberation of REEs 

in acid bake stage due to formation of gypsum.  
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Recent studies have shown a positive impact on selecting H3PO4 as a pre-leaching agent. 

Their results show maximum leaching efficiencies of calcium (100%) keeping dissolution of 

REEs at a minimum level in H3PO4 at high acid concentrations. (Stone et al., 2016) 

On the other hand, a huge number of minerals bearing phosphates REEs have been found, a 

fact which shows that REEs have a natural tendency to precipitate with phosphates. A 

summary of the varieties of minerals bearing phosphates REEs is provided in Figure 8. 

 

Figure 8. Minerals containing rare earth phosphates (Jha et al., 2016).  

The present study investigated the precipitation of yttrium and lanthanides from acid mine 

waters by the addition of sodium dihydrogen phosphate and H2PO4. Due to the strong affinity 

of Y3+and Ln3+ ions for PO4
3−compared to SO4

2− (Firsching and Brune, 1991; Kim and Osseo-

Asare, 2012) the addition of Na2PO4 to acid mine water that have yttrium and lanthanides was 

expected to trigger the precipitation of REE phosphate (Eq. (1)) even at low concentration of 

REE. 

 

The precipitation of rare earth elements (REE) and transition elements (TE) is pH dependent 

as it could be observed in Figure 9, where the solubility-pH functions for a total phosphate 

concentration is shown. 

2-

44(s)

-3

4(aq)n4 SOn   REEPOPO )REE(SO
2n3-

  (Eq.  1) 
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Figure 9. Solubility diagram for the REE-phosphates in acid mine waters. 
Thermodynamic data from MEDUSA database (Puigdomènech, 2010). 

 

Figure 10. Solubility diagram for the TE-phosphates in acid mine waters. 
Thermodynamic data from MEDUSA database (Puigdomènech, 2010). 

As it could be observed precipitation of divalent TE occurs at higher pH values than for REE 

with the exception of the trivalent TE, specially Fe(III) forming insoluble phosphate and or 

hydroxides at acidic pH values where REE are precipitating as phosphates and Al(III) forming 

insoluble phosphates and hydroxides at pH values higher than 4. This pH window has been 

used as the main separation principle. 
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2.7. Objectives 

Nowadays, recycling in-use stocks of rare earth elements (REE) are being investigated. Even 

though there are large quantities of REE on different industrial and urban waste products, 

currently their recovery is still economically unviable. This is the reason why news sources of 

REE containing wastes and new technologies for their recovery should be identified. 

The main objective of this work is to study the recovery of REE from river waters contaminated 

by acid mine drainage, taking benefit of their tendency to form phosphate minerals. In this 

manner it is integrated in one step the treatment of a polluted effluent as the acid mine water 

(AMW) and its valorisation to recover REE. In this way, a pollutant is transformed into by-

product with added value.  

In order to achieve this objective, a previous stage was need in order to remove the large 

amount of Fe present in the AMW samples. As typically Fe is present in such solutions as 

mixtures of Fe(II) and Fe(III),  Fe was oxidized by using H2O2 and then precipitated by addition 

of strong bases (e.g. NaOH, CaO, and MgO). The resulting solutions are identified as treated 

AMWs (TAMW).  

Finally, working with this treated acid mine waters, different experiments were performed to 

investigate the best conditions of pH and phosphate concentration to optimize in a single step 

their maximum recovery and their separation from transition elements (TE) present on TAMW. 

2.8. Project scope 

The experimental work has covered two different scenarios: 
 

a) Direct precipitation of rare earth elements (REEs) from treated acid mine waters 

(TAMWs) where the rare earth elements are present in concentrations ranges from 0.1 

to 4 mgREE/L, and a total REE concentration below 11 mgREE/L. 
 

b) Precipitation of REE from REE concentrates generated from the treatment of TAMW 
by using ion-exchange resins where REE are present in concentration ranges of 4 to 
77 mgREE/L and a total REE concentration below 240 mgREE/L. 

 

When necessary synthetic solutions of REE were used to study the precipitation reactions and 

determining the optimal conditions in terms of acidity and total phosphate concentration 

needed. 

This project is centred on experimental work at laboratory scale using AMW from the Odiel 

River Basin. It is not inside the scope of the study any environmental study at full scale level 

and similarly any study devoted to analyze the economic viability of the REE separation 

process. 
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3. Experimental section 

3.1. Reagents and solutions 

- REE standard solutions: Ce3+, Y+3 and La3+, solutions of 1000 mgREE/L were prepared 

using CeCl3, La2(SO4)2 and Y2O3 salts after appropriate dissolution with deionized water  

H2SO4 in 1% . Nd+3, Dy+3 and Yb+3 standard solutions of 1000 mg/L in HNO3 1% were also 

used. 

- H2SO4 solutions: H2SO4 solutions (0.1 and 1.8 M) were prepared by dilution of 96% H2SO4. 

- HCl solution: HCl solution 1.1 M was prepared by dilution of 37% HCl. 

- H3PO4 solution:  H3PO4 solution 1.47 M was prepared by dilution of 85% H3PO4. 

- NaH2PO4 solutions; NaH2PO4 solutions of 1 and 0.2 M were prepared by using appropriate 

amounts of NaH2PO4 (98% purity). 

- H2O2 solution: 30% v/v (Panreac) was used to oxidize to Fe(III). 

NaOH solutions, CaO (99% purity) and MgO (98% purity) were used for the pH adjusting on 

the acid mine water samples. 

Aqueous solutions were prepared using deionized water (Milli-Q, Merck-Millipore). 

- Ion exchange resins for REE extraction and concentration: SPC 11706 resin 

SPC 11706 is a macroporous of polystyrene sulfonate, and it have as a functional group 

sulfonic acid and sodium as counter-ion. A summary of the SPC 11706 proprieties is 

provided in Table 2. 

Table 2. General Characteristics of SPC 11706 Resin 

 SPC 11706 Resin proprieties 

Functional group Sulfonic acid 

Structure Macroporus 

Counter-ion Na+ 

Density (mg/L) 1,3 

Minimum Capacity (g/L) 23 

pH range 0-14 

Regeneration agents Strong acid 

- Auxiliary and expendable material for precipitation assays were: 50 mL Centrifuge 

Tubes of PET (Scharlau); 25 mm nylon filters (Phenomenex, 25mm) and 3 mm nylon syringe 

filter with pore size 0.45 μm (SimplePIure 13 mm).  
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3.2. Experimental methodology 

3.2.1. Characterization of acid mine water samples.  
 

Acid mine water samples (AMW) from the Iberian Pyrite Belt (IPB), Rio Odiel basin (Huelva) 

in southwest Spain with pH values between 1.8 and 2.4 were used in the laboratory 

experiments. They were sampled at the outflow of a gallery of the Poderosa mine and 

represented a strong interaction with a shale enclosing rock. Samples present an orange 

colour, due to high concentrations of Fe(II) and Fee(III). 

3.2.2. AMW pre-treatment for removal of Fe(III) by oxidation with H2O2 and pH 

control.  

Fe was removed from AMW samples in a two stages process. In a first stage 3 mL of H2O2 

30% v/v per litter of acid mine water was added to oxidize Fe(II) to Fe(III). Then in a second 

stage Fe was precipitated as Fe(OH)3 by increasing the pH up to pH = 3.7-3.8. In order to 

evaluate the cost of the precipitation stage three alkaline reagents were used: NaOH (50% 

concentration), CaO (99% purity), MgO (98% purity). Precipitation assays were carried out 

using 3L of AMW pre-oxidized by H2O2 and adding an alkaline agent: 9.9 mL NaOH or 8.7g 

CaO(s) or 5,1g MgO(s). 

For solid reagents (CaO(s) and MgO(s)) and due to their low solubility in aqueous solutions 

after each addition of 2g of solid the sample was exposed to ultrasound for 20 minutes using 

a water bath, until a pH = 3.7 was reached. Then the samples were left under magnetic stirring 

for 24 hours (Ovan, Multimix D). 

Treated AMW liquid samples, containing REE were prepared by two filtration stages process 

to separate the precipitate iron hydroxides. In a first stage samples were filtered using a 

Kitassato and Whatman N42 paper filter and followed by a filtration using two sand columns 

(10 cm length) in series to remove colloidal matter. The final solution was let in agitation 24h, 

and if the pH decreased below 3.6, the process was repeated. The two sand columns and the 

vacuum filter are exposed in Figure 11.  

 

Figure 11. System filtration by using a Kitassato (a)) and sand columns (b)). 
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3.2.3. Precipitation experiments with phosphate solutions. 

The global objective of this study is to find the optimal conditions to obtain the maximum 

recovery of REE, precipitation of REE(PO4)(s).  

The conditions studied were: 

- Precipitation as a function of pH: different pH values. 

- Precipitation as function of the nature of acid to control pH: acid solutions of 

HCl, H3PO4 y H2SO4 were used to decrease the pH from 3.7 to pH chosen for 

REE precipitation. This study with different acids was carried out to study the 

potential complexation effects as prices could have a potential cost implication. 

- Molar ratio of the total phosphate concentration and to the  total REE 

concentration   (SQ) defined by Eq  2:  

                            

The pH was first fixed with the appropriate acid and in each sample the required mass of 

NaH2PO4 for a given SQ value was added. Finally, the samples were let in agitation for 24 h 

in an overhead shaker (Figure 12) and if the pH increased it was fixed again and let in agitation 

for 24 h more. 

 

Figure 12. Rotatory mechanical agitation system. 

At the end of the experiments, samples were filtered (SimplePIure 13 mm) and metal 

concentration and total sulphur concentrations were measured by ICP-OES and ICP-MS 

depending on the concentration range present, as it is described in section 3.3. 
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Test 1. Evaluation of REE recovery from Fe free treated AMW 

According to the experimental planning a total number of 28 samples of 50 mL of pre-treated 

AMW with NaOH were prepared. Each sample has a different pH, in the range 1.7 to 2.3, 

different molar P/REE ratio (SQ) and different nature of the acid used (HCl, H3PO4 and H2SO4). 

A summary of the different conditions for each sample is given in Table 3. The variation range 

of pH was selected taking into account the solution chemistry of the systems (PO4)–(SO4)–

H2O at 25 °C using the Hydro-Medusa code(Puigdomènech, 2010). Hydra-Medusa code was 

used to estimate equilibrium concentration as it is shown in the solubility diagrams (function of 

pH and the total phosphate concentration) in Figure 17. The molar P/REE ratio (SQ) was varied 

from 1 to 2 .Both REE and transition elements (TE) were evaluated as one of the objectives to 

be achieved is the maximum separation of both types of metal groups. 

Table 3. pH, molar P/REE ratio (SQ) and nature of acid used for each 50 mL aliquot 
of AMW pre-treated with NaOH. 

Reduction in pH with SQ pH  

H2SO4 (1.8 M) 

1 

2,3 Sample1 

2,1 Sample2 

1,9 Sample3 

1,7 Sample4 

1.5 

2,3 Sample5 

2,1 Sample6 

1,9 Sample7 

1,7 Sample8 

2 

2,3 Sample9 

2,1 Sample10 

1,9 Sample11 

1,7 Sample12 

HCl (1.2 M) 

1 

2,3 Sample13 

2,1 Sample14 

1,9 Sample15 

1,7 Sample16 

1.5 

2,3 Sample17 

2,1 Sample18 

1,9 Sample19 

1,7 Sample20 

2 

2,3 Sample21 

2,1 Sample22 

1,9 Sample23 

1,7 Sample24 

H3PO4 (1.47 M) 

2* 2,3 Sample25 

16* 2,1 Sample26 

26* 1,9 Sample27 

41* 1,7 Sample28 
 

*The samples which H3PO4 was used were not added NaH2PO4 since they have stoichiometric 
excess of PO4

3+ in relation to REE.  
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Test 2. Evaluation of REE precipitation from treated acid mine waters (TAMW) 
using excess of phosphate 

A total number of 18 samples 100 mL of pre-treated AMW with NaOH, CaO,and MgO were 

prepared each with pH=2.3 and 2.5, more details were given in section 4.3 Test 2. Molar 

P/REE ratio 40 was chosen to work since the results obtained in Test 1. 

Table 4. pH, molar P/REE ratio (SQ) and nature of acid used for each 100mL aliquot 
of AMW pre-treated with NaOH, MgO and CaO. 

AMW treated with: Reduction in pH with pH SQ  

NaOH 

H2SO4 (1.8 M) 
2,3 40 Sample29 

2,5 40 Sample30 

HCl (1.2 M) 
2,3 40 Sample31 

2,5 40 Sample32 

H3PO4 (1.47 M) 
2,3 88* Sample33 

2,5 53* Sample34 

CaO 

H2SO4 (1.8 M) 
2,3 40 Sample35 

2,5 40 Sample36 

HCl (1.2 M) 
2,3 40 Sample37 

2,5 40 Sample38 

H3PO4 (1.47 M) 
2,3 88* Sample39 

2,5 53* Sample40 

MgO 

H2SO4 (1.8 M) 
2,3 40 Sample41 

2,5 40 Sample42 

HCl (1.2 M) 
2,3 40 Sample43 

2,5 40 Sample44 

H3PO4 (1.47 M) 
2,3 88* Sample45 

2,5 53* Sample46 

*This samples have SQ>40 since the addition of H3PO4 to reach the pH= 2.3 and 2.5.  
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Test 3. Evaluation of Ce and La precipitation with phosphate solutions using 
synthetic acidic solutions. 

A study of the precipitation behaviour of the two representative REEs in the AMW (La and Ce) 

was made using 18 aliquots of 50 mL of La 25 mg/L and another 18 of Ce 25 mg/L as well. 

After the % REE recovery results obtained in Test 1 (Section 4.3 Test 1) in SQ=41 in this 

experiment SQ=40 and 100 were chosen to work. Furthermore, each of them was brought to 

different precipitation conditions (Table 5). 

Table 5. Precipitation conditions (pH, nature of acid used and molar P/REE ratio 
(SQ)) for solutions La and Ce 25 mg/L. 

Reduction in pH with pH SQ 

HCl (1.2 M) 

2,3 
40 

100 

2,5 
40 

100 

2,7 
40 

100 

H2SO4 (1.8 M) 

2,3 
40 

100 

2,5 
40 

100 

2,7 
40 

100 

H3PO4 (1.47 M) 

2,3 
50** 

100* 

2,5 
30** 

100* 

2,7 
17** 

100* 

*The samples which H3PO4 was used were added NaH2PO4 until reach SQ=100. 

** The SQ=50, 30 and 17 were reached only adding H3PO4 for reach the pH= 2.3, 2.5 and 2.7 

in that order. 
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3.2.4. Concentration REE from AMW by using ion exchange resin (S11706 

resin) in column experiments.  

An Omnifit glass column 100 mm long and 15 mm in diameter has been used, which was filled 

with 9.5 ± 0.5 g of resin. Peristaltic pump (Minipuls 3, Gilson MP) was used to pass the different 

solutions through the column. A fraction collector (FC 204 Gilson) was arranged at the exit of 

the column.  

Before the experiment, H2O for 2 h and a flow rate of 1mL/min was circulated through the 

column. Then, TAMW at pH=2.1 was circulated at 1mL/min through the column and the 

factions was collected by the fraction collector. Finally, the elution of the metals adsorbed was 

performed with H2SO4 10 M, which was passed through the column at 0.25 mL/min and 

different fractions were also sampled with the fraction collector. A scheme of the experiment is 

exposed in Figure 13. 

        

Figure 13. Column experiment scheme system for the concentration of REE from 
treated acid mine water (TAMW) using ion-exchange resins. 

Test 4. REE recovery from synthetic solutions from concentrates generated 
in treatment of TAMW with ion-exchange resins (total REE concentration <130 
mgREE/L) 

Treated acid mine waters (TAMW) aliquots of 50 mL were prepared under the same conditions 

of pH and acid used in Table 4. The concentration of Y, La, Ce, Nd, Yb and Dy in each sample 

was increased to reach concentrations of column elution (Table 6) by using standard solutions 

1000 mg/L in HNO3 1%. After adding the necessary amount of La, Ce, Nd, Yb and Dy the 

processed used is the same that the previous experiments: fixed the pH, control the pH adding 

the stoichiometric quantity of NaH2PO4, and let in agitation for 24h. 

Sorption: TAMW 

Elution: H2SO4 
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This experiment worked in SQ=2.5 and 5. To choice the experimental condition a fraction 

diagrams of the system were done, they are given in Annex E. A total of 38 samples were 

filtered by using 25 mm nylon filters (Phenomenex, 25mm) to be analysed by ICP-OES and 

ICP-MS. 

 

Table 6. REE Concentrations (mg/L) in the Test 4 samples reached adding solutions 
standard 1000mg/L HNO3 1%. 

Y La Ce Nd Dy Yb 

25 20 40 20 10 4 

A summary of the experimental conditions of Test 4 is given in Table 7 . 

Table 7.Experimental conditions of the different samples in Test 4 

AMW treated 
with: 

Reduction in 
pH with 

pH SQ  

NaOH 

H2SO4 (1.8 M) 

2,3 
2,5 Sample47 

5 Sample48 

2,5 
2,5 Sample49 

5 Sample50 

HCl (1.2 M) 

2,3 
2,5 Sample51 

5 Sample52 

2,5 
2,5 Sample53 

5 Sample54 

CaO 

H2SO4 (1.8 M) 

2,3 
2,5 Sample55 

5 Sample56 

2,5 
2,5 Sample57 

5 Sample58 

HCl (1.2 M) 

2,3 
2,5 Sample59 

5 Sample60 

2,5 
2,5 Sample61 

5 Sample62 

MgO 

H2SO4 (1.8 M) 

2,3 
2,5 Sample63 

5 Sample64 

2,5 
2,5 Sample65 

5 Sample66 

HCl (1.2 M) 

2,3 
2,5 Sample67 

5 Sample68 

2,5 
2,5 Sample69 

5 Sample70 
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Test 5. REE recovery from synthetic solutions from concentrates generated 
in treatment of TAMW with ion-exchange resins (total REE concentration <240 
mgREE/L)   

A total number of 6 aliquots (200mL) of AMW pre-treated with NaOH, CaO and MgO were 

used in this experiment. The concentration of Y, La, Ce, Nd, Yb and Dy in each sample was 

increased to reach the maximum concentrations of column elution (Table 8) making use of 

standard solutions 1000 mg/L in HNO3 1%.  The aliquots pH was decreased from 3.7 to 2.5 

by using a H2SO4 solution (1.8 M). Then the necessary amount of NaH2PO4 was added to 

reach the SQ=2.5 and 40. In total, 6 samples were analyzed in this experiment Table 9. 

Table 8. REE concentrations (mg/L) in the Test 5 samples reached adding solutions 
standard 1000mg/L HNO3 1%. 

Y La Ce Nd Dy Yb 

64 42 77 35 13 8 
 

Table 9. Test 5 experimental conditions. 

AMW treated 
with: 

Reduction in pH 
with 

pH SQ  

NaOH H2SO4 2,5 
2,5 Sample71 

40 Sample72 

CaO H2SO4 2,5 
2,5 Sample73 

40 Sample74 

MgO H2SO4 2,5 
2,5 Sample75 

40 Sample76 

The precipitate obtained had an amorphous form. In order to be determined by X-ray diffraction 

(XRD), the precipitate has been given a heat treatment in an oven at 1050ºC for four hours to 

its crystallization. 
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3.3. Chemical and Mineralogical Analyses.  

Measurement of pH was made with a Crison® glass electrode calibrated with buffer solutions 

of pH 7 and 2. Redox potential was measured using a Pt combination electrode 

(ThermoOrionSureFlow® ) that was calibrated with standard buffer solutions of 220 and 468 

mV. Measurements were corrected to the Standard Hydrogen Electrode to calculate pE. Total 

(gross) alkalinity was measured by acid titration using an Alkalinity Test from Aquamerck® 

(limit of detection 0.1 mmol H+/L , analytical error of 0.1 mmol H+/.L ).  Filtered samples (0.1 

μm nylon) were acidified with HNO3 for the analysis of major and trace elements by inductively 

coupled plasma optical emission spectroscopy (ICP-OES) and inductively coupled plasma 

mass spectroscopy (ICP-MS), respectively. Details of the analytical procedures are described 

following.Filtered samples (0.1 μm) were acidified with HNO3 for analysis of major and trace 

elements. Major cations (Ca, Mg, Zn, Fe, Mn, Si) and total S were measured by ICP-AES 

(Perkin-Elmer® Optima 3200 RL) and trace metals (Ni, Cd, Co, Pb) with ICP-MS 

(PerkinElmer® SciexElan 6000). Detection limits were 0.1 mg/L for S; 0.05 mg/L for Ca, Mg, 

Si; 0.02 mg/L for Fe, Zn, Mn; 5 μg/L for Al; 1.5 μg/L for Cu, Ni; 0.5 μg/L for Pb; 0.2 μg/L for Cd, 

Co and REY. The analytical precision error was estimated to be approximately 6% for ICP-

AES and 4% for ICP-MS measurements. Two AMW laboratory standards supplied by P. 

Verplank (USGS), were also analyzed for REE accuracy, giving deviations lower than 5% of 

the recommended valuesS1, with the exception of Eu, giving values 25% below the 

recommended value. Assuming all S to be sulfate, the charge balance error was usually less 

than 5%. 

Once the precipitation experiments were concluded, the solids were recovered by filtration and 

dried at room temperature. The solid samples consisted almost precipitated REE-phosphates. 

The mineralogy was determined by X-ray diffraction (XRD) and field emission scanning 

electron microscopy with energy-dispersive analysis (FESEM−EDS). The major mineral 

phases forming the solid samples were identified by X-ray diffraction (XRD) using a Bruker® 

D5005 X-Ray Diffractometer (XRD) with Cu Lα radiation. The samples were scanned from 0 

to 60 degrees 2θ with a continuous scan at a rate of 0.025°/18 s. Granular material was also 

observed under a JEOL® JSM840 Field Emission Scanning Electron Microscope with Oxford 

Link® Energy Dispersive System (SEM-EDS). 
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4. Results and discussion 

4.1. Characterization of the La Poderosa acid mine water. 

The REE concentrations in the Poderosa acid mine water are summarized in Table 10 . The 

pattern is consistent with the observation that the concentration of REE in similar AMW of the 

Rio Tinto Basin (Ayora et al., 2016) or the country rock of the Sitai coal mine (China) is one 

order of magnitude higher than those of pyrite and coal samples (Zhao et al., 2007). 

Table 10 REEs concentration in the acid mine water sample (mg/L). 

Y La Ce Pr Nd Sm Eu Gd Tb 

1,79±0.2 1,21±0.2 3,28±0.4 0,44±0.04 1,94±0.3 0,51±0.04 0,07±0.01 0,54±0.07 0,09±0.01 

         

Dy Ho Er Tm Yb Lu Hf 

0,40±0.04 0,07±0.01 0,15±0.02 0,02±0.002 0,10±0.02 0,01±0.002 0,37±0.04 

The concentration of REE ranged from 0.01 mg/L for Lu up to 3.3 mg/L for Ce. Three main 

groups could be defined: REE in the range 0.01 to 0.10 mg/L(Lu, Tm, Ho, Eu), REE in the 

range 0.1 to 0.5 mg/L(Yb, Er, Hf, Dy, Pr, Sm) and REE in the range 0.5 to 3.3 mg/L(Gd,La, Y, 

Nd, Ce). According to this classification the main effort on this study was centred on the two 

last groups.   

In the case of transition elements (TE)  the higher concentrations are associated to Fe, with 

1.5 g Fe/L, followed by a group of elements between 100 and 400 mg/L (Al, Mg, Ca, Cu and 

Zn) and a group of elements below 10 mg/L (Co, Ni, Cd between others). 

Table 11. Transition elements (TE) concentrations in the acid mine water sample 
(mg/L). 

Co Cd Ni Ca Mg Cu Zn Al Fe 

1,4±0.2 0,4±0.05 0,3±0.04 161,0±23 181,6±25 111,1±15 100,9±15 374,6±50 1534,78±220 
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4.2. AMW pre-treatment for removal of Fe(III) by oxidation with 

H2O2 and pH control. 

As described in Table 11, raw acid mine water samples contain large quantities of iron 

(e.g.1534.7±220). According to (Ayora et al., 2016) with similar AMW most the iron is present 

as Fe(II). To simplify the separation process in the REE concentration process using ion 

exchange Fe should be removed in a two stage process: a) oxidation of Fe(II) to Fe(III) by 

using H2O2  (1 mL of H2O2 30% per liter of AMW) as it is shown in Eq 3; and b) precipitation of 

Fe(III) as hydroxide by increasing the pH by using alkaline agents. 

 
 

In Figure 14 is shown the variation of the total Fe(III) and Al(III) concentration, in logarithmic 

form, as a function of pH, assuming the formation of Al(OH)3(s) and Fe(OH)3(s) as preliminary 

hypothesis. As it has been described by (Ayora et al., 2016) precipitation of Fe(III) and Al(III) 

happens by formation of complex hydroxi-sulphates (e.g. schwermanite and basaluminite) 

however their solubility constants are under determination. Accordingly to precipitate Fe(OH)3 

the acidic water sample was adjusted to pH = 3.7-3.8 as shown in Figure 14. Under this 

conditions more than 99% of Fe(III) could be totally removed from solution and Al(III) removal 

starts above pH 3 with values below 5%. In order to evaluate REE recovery rate against the 

cost of the sample pre-treatment, three reagents with different chemical and physical 

properties and with different cost  were used: NaOH (50% concentration), CaO (99% purity), 

MgO (98% purity). To treat 3L of sample was needed 9.9 mL NaOH, 8.7g CaO and 5,1g MgO. 

 

Figure 14. Variation of Al and Fe concentrations with pH using the speciation code 
HYDRA (Puigdomènech, 2010). The shaded rectangular field indicates the best pH 

range to precipitate Fe(OH)3. 

Fe(3+) 2+ O2H =2H+ + OH +Fe(+2) 2 2 22  (Eq. 3) 
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Figure 15. Samples treated (a)) Acid mine water, (b)) Acid mine water treated to 
remove Fe. 

The change of the sample after treatment can be seen in Figure 15. The REE and TE 

concentration changes on the solution composition after the treatment with the different 

reagents is summarized on Table 12. 

Table 12. Concentration (mg/L) of transition elements and REEs after oxidation pre-
treatment of acid mine water (AMW) 

 Co Cd Ni Ca Mg Cu Zn Al Fe 
AMW 

treated 
with 
CaO 

1,4±0.2 0,4±0.05 0,3±0.04 582,0±80 195,0±30 109,5±15 107,6±15 331,1±45 2,3±0.3 

AMW 
treated 

with 
NaOH 

1,4±0.2 0,4±0.05 0,3±0.04 147,0±20 171,5±25 108,0±15 102,9±15 302,2±40 2,2±0.3 

AMW 
treated 

with  
MgO 

1,5±0.2 0,5±0.05 0,3±0.04 273,0±40 1025,0±145 107,3±15 105,1±15 302,2±40 2,8±0.3 

AMW 1,4±0.2 0,4±0.05 0,3±0.04 161,0±23 181,6±25 111,1±15 100,9±15 374,6±50 1534,78±220 

      

 Y La Ce Pr Nd Sm Eu Gd 
AMW 

treated 
with 
CaO 

1,81±0.2 1,16±0.1 3,00±0.4 0,40±0.04 1,78±0.2 0,47±0.04 0,07±0.01 0,54±0.07 

AMW 
treated 

with 
NaOH 

1,78±0.2 1,21±0.2 3,24±0.4 0,43±0.04 1,89±0.2 0,51±0.04 0,07±0.01 0,54±0.07 

AMW 
treated 

with  
MgO 

1,83±0.2 1,27±0.2 3,11±0.4 0,43±0.04 1,86±0.2 0,50±0.04 0,07±0.01 0,55±0.07 

AMW 
1,79±0.2 1,21±0.2 3,28±0.4 0,44±0.04 1,94±0.3 0,51±0.04 0,07±0.01 0,54±0.07 
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 Tb Dy Ho Er Tm Yb Lu Hf 
AMW 

treated 
with 
CaO 

0,08±0.01 0,41±0.04 0,07±0.01 0,15±0.02 0,02±0.002 0,10±0.02 0,01±0.002 0,41±0.04 

AMW 
treated 

with 
NaOH 

0,09±0.01 0,40±0.04 0,07±0.01 0,15±0.02 0,02±0.002 0,10±0.02 0,01±0.002 0,33±0.04 

AMW 
treated 

with  
MgO 

0,08±0.01 0,40±0.04 0,07±0.01 0,15±0.02 0,02±0.002 0,10±0.02 0,01±0.002 0,43±0.04 

AMW 
0,09±0.01 0,40±0.04 0,07±0.01 0,15±0.02 0,02±0.002 0,10±0.02 0,01±0.002 0,37±0.04 

As shown in Figure 16 the AMW treated with CaO has higher loss percentages of the most 

representative REEs (around 8 %). The treatment with NaOH provided the lower removal 

ratios of REEs. In relation to iron elimination the three pre-treatment provided similar removal 

ratios (99.9 %). However, in terms of aluminium removal the pre-treatment with CaO had the 

lowest percentage of removal. 

 

Figure 16. Loss percentages of the most representative REEs (a)), Al and Fe (b)) in 
the AMW. 

The pre-treatment stage of Fe removal by pre-oxidation with H2O2 was successfully achieved 

and the solution could be treated increasing the pH with removal efficiencies of Fe higher than 

99.9% and low removal ratios of REE (values below 5%). 

The percentages of the concentration variation of each element is given in Annex A. 
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4.3. Precipitation experiments with phosphate solutions 

results. 

Test 1. Evaluation of REE recovery from Fe free treated AMW 

Initial molar ratios selected ranged from 1 to 2.3. According to the precipitation conditions 

(Figure 17 ) as a function of pH and for different molar ratios (phosphate/REE), experiments 

at pH 1.7, 1.9, 2.1 and 2.3 were carried out . According to Figure 17 and using the composition 

of the acid mine water (Ayora et al., 2016) it could be seen that precipitation of Al(III) by 

phosphate occurs at pH values higher than 2.3, assuming the precipitation of  AlPO4 (s). 

 

Figure 17. Solubility and fraction diagram of Ca(II), Fe(III) and Al(III) aqueous species with pH 

in acid media and [PO4
3-]= 40 mM). Thermodynamic data from MEDUSA database 

(Puigdomènech, 2010) 

In terms of REEs recovering results, 3 samples (25, 27, and 28) from the 28 samples prepared 

had a total REE recovery percentage higher than 7%. As can be seen in Table 3, these 

samples were decreased in pH by using H3PO4 and had an excess of stoichiometry of PO4
3- 

as a consequence of e the use H3PO4 to reach at pH=2.3, 1.9 and 1.7. A summary of the 

conditions of the 3 samples is given in Table 13. 

Table 13. Experimental conditions of the 3 samples with % total REE recovery > 7% 

Reduction in pH with SQ pH  

H3PO4 (1.47 M) 
2,3 2,3 Sample25 

26,0 1,9 Sample27 

41,3 1,7 Sample28 
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The REEs and TE recovery percentages of samples 25, 27 and 28 are represented in Figure 

18 and Figure 19. Global results for other samples are summarized in Annex B. 

 

Figure 18. %REE Recovery in the samples 25, 27 and 28 described in Table 13. 

An increase in the % REEs recovery is observed when SQ increase (sample 28). In this 

samples H3PO4 were used and consequently the SQ increase to achieve the lower pH values. 

In terms of the transition elements the higher precipitation ratios were also observed for sample 

28. 

Results on Figure 18 and Figure 19 indicate the higher contribution of the excess of phosphate 

on the recovery efficiency of REE, however also the TE precipitation increases. As TE are 

present with concentrations up to three orders of magnitude than REE in the raw AMW and 

being a potential problem on the final purity of the solids recovered, the reduction of the 

removal ratios should be an objective. For this reason, the selection of the phosphate excess 

will be compromise between recovery efficiency of REE and presence of TE.  

 

Figure 19. % Transition elements precipitation in the samples 25, 27 and 28 described 
in Table 13. 
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Test 2. Evaluation of REE precipitation from TAMW using excess of phosphate  

Molar ratio 40 (SQ=40) was selected to work in this experimental. Unlike Test 1, the pH points 

chosen to work in this test were pH=2.3 and pH=2.5. As it can see in Annex C, in the REE 

fraction diagrams, at pH= 2.3 and 2.5 most of REEs should be precipitated for a SQ=40. 

However, the REE recovery results in real AMW samples from this experiment have not 

exceeded 10% as shown in Figure 20. 

 

Figure 20. %REE recovery in the samples conditions described in Table 4. 

 

Figure 21. %Transition elements precipitation in the samples conditions described in 
Table 4. 

As it is shown in Figure 21 AMW pre-treated with MgO have higher aluminium and iron 
precipitation in comparison to the samples pre-treated with CaO and NaOH. The percentage 
of REE recovery and the transition elements precipitation is in the same order in the samples 
pre-treated with CaO and MgO (around 8%). 
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Molar Fraction versus total phosphate concentration (–Log([PO4
3-])) diagrams were developed 

for different pH values to study the excess of phosphate needed for the REE precipitation. 

These diagrams showed that the [PO4
3-] needed to obtain REEPO4(s) increase when the target 

working pH is lower Diagram a) and b)). 

However, taking into account that the total initial concentration of Y (III) (as example) was 21.7 

μmol/L and total phosphate concentration was 2,7 mmol/L at pH=2.5 , this value of total 

phosphate concentration is lower than 10 mmol/L (logarithmic values lesser than -2) and then 

it could not provide high recovery efficiencies of REE . This could explain the recovery rates of 

approximately 8% obtained in this Test 2. 
 

 

Figure 22. Yttrium  Fraction–Log([PO4
3-]) diagrams of La Poderosa acid mine water 

system in different pH: (a)) pH=1.7, (b))pH=1.9, (c))pH=2.5 and (d))pH=2. 
Thermodynamic data from MEDUSA database (Puigdomènech, 2010). 

The limited removal ratios of REE, below 10% indicates that  higher phosphate concentration 

is needed when working at low concentrations of REE (<11 mgREE/L), however the increase 

of phosphate also will promote and increase on the removal ratios of TE that could reduce the 

purity of the formed precipitated in terms of REE content. 
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Test 3. Evaluation of Ce and La precipitation with phosphate solutions using 
synthetic acidic solutions. 

The aim of this experiment is to study the precipitation behaviour of La and Ce in high 

concentration (25 mg/L) without interference of the others metals and a high molar P/REE ratio 

(SQ =40 and 100). For this reason samples of 50 ml of La and Ce 25mg/L were prepared. 

 

Figure 23. La and Ce Fraction–Log([PO4
3-]) diagrams of La and Ce 25 mg/L and La 

Poderosa acid mine water system in different pH;(a))La at pH=2., (b)) La at pH=2.7, 
(c))La at pH=2.3, (d)) Ce at pH=2.3, (e)) Ce at pH= 2.5 and (f)) Ce at pH= 2.7. 
Thermodynamic data from MEDUSA database (Puigdomènech, 2010). 
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The molar Fraction–total phosphate concentration (Log([PO4
3-]) diagrams of La and Ce were 

calculated and they are shown in Figure 23.For a total initial concentration of La(III) and Ce(III) 

was 25 mgREE/L,  equivalent to approximately 0.18 mmol/L, the value of total phosphate 

concentration for a molar P/REE ratio 40 was fixed at 7.2 mmol/L. This value is higher than 

0.001 mol/L (logarithmic values higher than -3) and it could provide removal efficiencies higher 

than 99.9% according to Figure 23. For that reason pH values of 2.3 2.5 and 2.7 were chosen 

to work. 

For both elements measured removal ratios were <99% for most of the SQ and pH values 

evaluated as could be seen in Figure 24. 

 

Figure 24. % La and Ce Recovery in samples prepared at pH= 2.3, 2.5 and 2.7 
decreased with H2SO4 ,HCl and SQ=40 and 100 except the samples where were used 
H3PO4 which have SQ= 17, 30, 50 and 100.  
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4.4. Concentration REE from AMW by using ion exchange 

resins (S11706 resin) in column experiment.  

A preliminary study on the possibility to concentrate REE in TAMW was carried out using ion-

exchange resins. The main mechanism of the resin used is provided in Eq 4. 

 

The breakthrough curves representing the evolution of the ratio C/Co as a function of the 

treated effluent quantified as bed volume is shown in Figure 25. For simplicity REE and TE 

breakthrough curves are shown separately. Further details of these experiments are found in 

Annex D. 

 

Figure 25.  Column extraction results working with SPC11706 resin and AMW treated 
with NaOH: REEs sorption results (a)) and transition elements sorption results (b)); 
Elution curves carried out with H2SO4 (10 M): REEs elution results (c)), Transition 
elements elution results (d)). 

  NaMRSO 3)( MNa3RSO 33

3-

3  (Eq. 4) 
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As Figure 25 shows, the REEs breakthrough starts from 35 BV (C/Co >0.02) and at the 

maximum volume tested (140 BV) saturation has not yet been reached ((C/Co = 1). Therefore 

the maximum sorption capacity for REE was not achieved along the experiment. Contrary for 

TE, the rupture occurs from 10 BV, with typical S shape curves and saturation is reached from 

35 BV, except for Ca (II). 

Elution of the loaded resin was carried out using concentrated sulphuric solutions and the 

elution curves are shown on the bottom part of Figure 22. Elution curves of REE and TE are 

shown separately. Elution of REEs and TEs occurs between 1.5-2 BV, and it is not possible to 

separate both groups. According to the ratio of the BV values for breakthrough and the elution 

curves concentration factor of 5 were achieved for TE and concentration factors higher than 

20 could be achieved for most of the REE 

Then as specified in the methodology section (Test 4 and Test 5), the concentration of Y, La, 

Ce, Nd, Dy and Yb in the treated acid mine water (TAMW) was increased until reach 

concentration factors higher than 20. The two levels selected corresponds for given volumes 

indicated in Figure 25 (green mark for the Test 5 and blue mark for the Test 4). As is shown in 

the results of Test 3 and Test 2, the REEPO4(s) precipitation did not show high % recovery at 

low concentration of REEs (Test 2) but working with high concentration (La and Ce 25 mg/L) 

in Test 3 the % recovery is of the order of 99 %.For that reason Test 4 and Test 5 were carried 

out. 

Test 4. REE recovery from synthetic solutions from concentrates generated 
in treatment of TAMW with ion-exchange resins (total REE concentration <130 
mgREE/L)  

In this experiment the concentration factor was set up for an Elution BV of 1 in Figure 25 (blue 

mark). The concentrations reached in the samples are given in Table 6. This experiment was 

done at SQ=2.5 and 5.  

The samples which have the best results are Sample 49 and 50, it have the highest results 

of % REE recovery (e.g. La, Ce, Y with 94%, 92%, 93% respectively ) and the lowest % 

precipitation of transition elements. 

The experimental condition of the Samples 49 and 50 were: AMW pre-treated with NaOH , 

H2SO4 was used to decrease the pH until 2.5 and SQ=2,5 and 5. In order to compare 

the %REE recovery and the % transition elements precipitation of the samples 49 and 50 to 

the others samples Figure 26 shows the results of the samples pre-treated with NaOH also.  
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Figure 26. (a))%REE recovery and b))%Transition elements precipitation in the 
experimental conditions describe in Table 7.  

 

 

 

 

 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Sample47 Sample48 Sample49 Sample50 Sample51 Sample52 Sample53 Sample54

SQ=2,5 SQ=5 SQ=2,5 SQ=5 SQ=2,5 SQ=5 SQ=2,5 SQ=5

pH=2,3 pH=2,5 pH=2,3 pH=2,5

H2SO4 HCl

NaOH

R
ec

o
ve

ry

 Y  La  Ce  Nd  Dy  Yb

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

Sample47 Sample48 Sample49 Sample50 Sample51 Sample52 Sample53 Sample54

SQ=2,5 SQ=5 SQ=2,5 SQ=5 SQ=2,5 SQ=5 SQ=2,5 SQ=5

pH=2,3 pH=2,5 pH=2,3 pH=2,5

H2SO4 HCl

NaOH

P
re

ci
p

it
at

io
n

 Cu  Zn  Al  Fe  Ca  Mg  Ni  Cd  Co
(b)

(a) 



Page 42  Memory 

 

Test 5. REE recovery from synthetic solutions from concentrates generated 
in treatment of TAMW with ion-exchange resins (total REE concentration <240 
mgREE/L) 

In this experiment the concentration factor was increased at it was set up an Elution BV of 

1.25, green mark in Figure 25. Solution pH was adjusted by using H2SO4 at pH=2.5, these 

conditions were chosen to work since the good results that had in Test 4 in the Samples 49 

and 50. The molar P/REE ratio was SQ= 2.5 and (Table 9). 

 

 

Figure 27.(a))%REE recovery ad (b)) %transition elements precipitation in the samples 
conditions described in Table 9.  

As it is shown in Figure 27 the higher REE recovery achieved was for samples 74, 76 and 72, 

which were prepared with the higher molar ratios SQ=40. The increase of phosphate 

concentration increases the recovery ratio of REE. Furthermore, the recovery of TE were 

below 20%  
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On the other hand, as is shown in Figure 27 (b) % precipitation of P is represented and it is 

around %60. This means that the experiment could have worked at a molar ratio lower than 

40. For that reason, optimization of molar ratio in these conditions could continue to be studied. 

Finally, in this test unlike Test 4, REE precipitation is obtained in samples pre-treated with MgO 

and CaO also. This leads us to believe that phosphate precipitation works independently of 

the pre-treatment in samples with high concentration of REE and high molar ratio. However, 

for samples with low REE content and low molar ratio the working pre-treatment should be 

NaOH. 

Recovered precipitates were analysed by XRD and in general samples analysed showed an 

amorphous form as it is shown in Figure 28 for one of the samples. For that reason samples 

were subjected to a heat treatment at 1050 ° C for 4h for its crystallization, the results is shown 

in Figure 29, 27 and 28. 

                        

 

Figure 28. XRD result of the samples without heat treatment, which presented an 
amorphous. 
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Figure 29. XRD result for the Sample72 (pre-treated with NaOH, reduced in pH with 
H2SO4, and SQ=40). 

As it is shown in Figure 29, for the Sample 72 XRD results, the major mineral phases (red and 

blue) were Preseodymium Phosphates (PrPO4) and Cheralite (CePO4) in which the Ce could 

be replaced by other lanthanide, Th, Ca or U. Xenotime (YPO4), whit pink colour, is also notably 

present in the precipitated Finally, the other minor phase (green) identified was Aluminium 

phosphate (AlPO4). 

 

Figure 30. XRD result for the Sample 74 (pre-treated with CaO, reduced in pH with 
H2SO4, and SQ=40). 

Sample 74 has similar results to sample 72 and the major phases were (red, blue and pink: 
Praseodymiun Phosphate (PrPO4) and Cheralite (CePO4), Xenotime (YPO4) and Aluminium 
Phosphate (AlPO4) was present as minor phase. 
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Figure 31. XRD result for the Sample 76 (pre-treated with MgO, reduced in pH with 
H2SO4, and SQ=40). 

Finally, sample 76 has similar results to sample 72 and 74 although it was also identified a 

Calcium Magnesium Yttrium Phosphate phase that is not present in the other samples. 
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4.5. Economical evaluation. 

A simple preliminary cost evaluation it terms of reagents consumption and value of the 

recovered by products was carried out. Additionally to the ion-exchange process, were also 

the main cost is associated to reagents the main processes involved are pre-treatment stage 

typically carried out at industrial scale using limestone and air-oxidation and the precipitation 

reactions where the main operational cost is associated to reagents consumption. Cost of the 

main reagents used are summarized in Table 14. Values were provided by chemical 

companies providing reagents for laboratory scale. Then, results could not be used for being 

extrapolated at process scale level. 

Table 14. Market prices of the most representative reagent used and the indicative 
price of Ce 

Reagent Price Format Source 

H2SO4 (98%) 1,12 €/l 25L (Productos químicos industriales - 
Vadequimica) 

HCl (35%) 1,08 €/l 25L (Productos químicos industriales - 
Vadequimica) 

H3PO4 (85%) 4,40 €/l 25L (Productos químicos industriales - 
Vadequimica) 

NaH2PO4 3,40 €/Kg 25Kg (Productos químicos industriales - 
Vadequimica) 

NaOH 1,54 €/Kg 25Kg (Productos químicos industriales - 
Vadequimica) 

CaO 0,44 €/Kg 25Kg (Materiales Incera. Tienda online - 
Materiales Incera) 

MgO 2,52 €/Kg 25Kg (Productos químicos industriales - 
Vadequimica) 

Ce 1870 €/Kg 100 g 
(Merck Millipore. Productos 
químicos industriales y de 

laboratorio) 

La 4320 
€/Kg 

25 g 
(Merck Millipore. Productos 
químicos industriales y de 

laboratorio) 

Y 8440 
€/Kg 

25 g 
(Merck Millipore. Productos 
químicos industriales y de 

laboratorio) 

Nd 3820 
€/Kg 

25 g 
(Merck Millipore. Productos 
químicos industriales y de 

laboratorio) 

Yb 22600 
€/Kg 

5 g 
(Merck Millipore. Productos 
químicos industriales y de 

laboratorio) 

Dy 12000 
€/Kg 

10 g 
(Merck Millipore. Productos 
químicos industriales y de 

laboratorio) 

With the results obtained in the experiments, calculations were performed for the case, use of 

sulphuric acid, where the higher recovery percentage (90% of REE) was achieved and with 

the minimum presence of TE. Then, it is not possible to discuss the economic difference in the 

use of the three different acids since HCl and H3PO4 did not recover REE. 
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Regarding the use of NaOH, MgO and CaO as can be seen in Figure 16 the alkaline reagent 

that precipitates less REE is NaOH pre-treatment with precipitation of Fe 99%. MgO and CaO 

precipitate about 8% each of REE. The price (Table 14) of losses of REE (from 1870 to 22600 

€ / kg) is very high compared to the savings given between using CaO and NaOH. Finally, 

MgO is more expensive than NaOH and gives more REE losses, so it is discarded as a 

reagent. 

4.5.1. The economic evaluation of the expenses to perform the project. 

Three different categories have been considered to have an estimation of the total cost of the 

project: Materials and Reagents, Energy consumption and Human resources. 

Table 15. Reagents used during experimental phase 

 Amount (L) Cost (€/L) Total (€) 

H2SO4 0,036 1,12 0,04032 

H3PO4 0,01 4,4 0,044 

HCl 0,01 1,08 0,0108 

    

 Amount (kg) Cost (€/kg) Total (€) 

NaOH 0,05 1,54 0,08 

CaO 26,10 0,44 11,48 

MgO 15,30 2,52 38,56 

NaH2PO4 9,38E-02 3,40 0,32 

La 1,00E-04 2030 0,20 

Ce 1,00E-04 4320 0,43 

Y 1,00E-04 8440 0,84 

Yb 1,00E-04 22600 2,26 

Nd 1,00E-04 3820 0,38 

DY 1,00E-04 12000 1,20 

    

Sum   55,85 

 

Table 16. Cost of sample’s analysis 

 Amount of samples Unit cost (euro) Total cost (€) 

ICP-MS/ICP-OES 112 21,13 2366,56 

XRD 6 40 240 

    

Sum   2606,56 
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Table 17. Energy consumption 

 Consumption (kWh) Unit cost (euro/kWh) Total cost (€) 

Agitator 280 0,15 42 

Oven 130  19,5 

Vacuum 15  2,25 

    

Sum   63,75 

 

Table 18. Cost of human resources 

 Amount Salary (euro/h) Time(h) Total cost (€) 

Engineer 1 15 800 12000 

Supervisor 2 40 40 3200 

     

Sum    15200 

In Figure 32 cost breakdown is provided, its shows the percentage of each category cost 

regarding the total cost of the project. 

 

Figure 32. Cost breakdown. 
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4.6. Project planning  

The overall planning of the entire project is summarized in the following Figure 33 and Table 

19.  

 

Figure 33. The Project planning 

Table 19. Details of the project planning 
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4.7. Environmental assessment/sustainability issues. 

The project is purely experimental in laboratory scale. It is not valued within the scope of the 

project to make a comprehensive assessment of the environmental impact generated by the 

project both on a large scale and on a small scale. However, this project has as main objective 

to solve an environmental problem: the contamination of the water mine of La Poderosa. In 

addition, it was sought to obtain an economic benefit from this contamination: rare earth 

elements (REE). That is why if this project were carried out on a large scale the environmental 

benefits would be very large, since REE and transition elements could be separate and 

eliminate in the river water. 

On the other hand, in this project it has been evaluated that the precipitate of REEPO4 (s) would 

be sent for its purification, obtaining two elements of economic interest: REE and H3PO4. 

The good laboratory practice: The wastes generated during the experimental phase were 

disposed accordingly; the solutions with pH below 4 were disposed in the container for residual 

pH solution. The solution containing REE were saved separately for later uses. The solutions 

with concentration of transition elements were disposed in the respectively container. 
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Conclusions 

The experimental work developed on the evaluation of the potential routes to recover REE 

from acid mine waters from the Odiel River Basin provide the conclusions summarized 

below.   

  

- In the evaluation of AMW pre-treatment for removal of Fe(III). 

 The alkaline agent which gives less REE losses is NaOH. However, in terms of 

the Fe elimination CaO, MgO and NaOH give a 99% of removal. 

- In the evaluation of the rare earth recovery in the acid mine water by means of precipitation 

with phosphates. 

 REE precipitation in pre-treated AMW for the elution of Fe (III) by the use of 

phosphates is possible after a concentration of REE performed by column 

extraction. 

 The percentage of REEPO4(s) precipitation is maximum with the highest of REE 

content and molar ratio. Under these conditions, the acid used to set the working 

pH which gives better results is H2SO4 and the alkaline agent used in the pre-

treatment (CaO, MgO or NaOH) do not have any influence. 

 In AMW samples with high REE content but low molar ratio the alkaline agent used 

in the pre-treatment have big influence since the REEPO4(s) precipitation only take 

place in the sample pre-treated with NaOH. Furthermore, the acid used should be 

H2SO4 also. 

 In AMW samples with low REE content is not possible to precipitate REEPO4(s) in 

a pH range around 1.7-2.3 at room temperature and in a molar ratio range of 1 to 

80. 

 Analysis of the precipitates by XRD generated indicated the formation of in general 

non-crystalline mineral phases. 

 Analysis of the precipitates, after being treated thermically at 1050ºC, shown for 

most of the samples analysed the presence of Preseodymium Phosphates 

(PrPO4) and Cheralite (CePO4) where Ce could be replaced by other lanthanide, 

Th, Ca or U and Xenotime ( YPO4) as major phases. However, also were identified 

as minor phase aluminium phosphate (AlPO4) and Calcium Magnesium Yttrium 

Phosphate. 
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