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Abstract

In 1977 Stanley proved that the h-vector of a matroid is an O-sequence and
conjectured that it is a pure O-sequence. In the subsequent years the validity of this
conjecture has been shown for a variety of classes of matroids, though the general
case is still open. In this paper we use Las Vergnas’ internal order to introduce a
new class of matroids which we call internally perfect. We prove that these matroids
satisfy Stanley’s Conjecture and compare them to other classes of matroids for which
the conjecture is known to hold. We also prove that, up to a certain restriction on
deletions, every minor of an internally perfect ordered matroid is internally perfect.

Keywords: Stanley’s Conjecture, h-vector, matroid, internal order, internally per-
fect basis, internally perfect matroid

1 Introduction

An ordered matroid is a matroid M = (E,B) together with a linear ordering of the
ground set E. Given an ordered matroidM and a basis B ∈ B(M), an element e ∈ B is
internally passive (with respect to B) if there is a basis B′ ∈ B such that B′ = B − e∪ e′
where e′ < e in the linear ordering of the ground set. An element that is not internally
passive is internally active.

The internal order of an ordered matroid is the poset Pint(M) = (B∪ 1̂,4int) on the set
of bases ofM together with an artifical maximal element 1̂, where B 4int B

′ if and only
if every internally passive element of B is internally passive in B′. In [10], Las Vergnas
proves that the internal order of an ordered matroid is a graded lattice and that the height
of a basis B in Pint(M) is given by the number of internally passive elements of B. The
unique minimal element of Pint(M) is the lexicographically smallest basis of M and is
denoted B0(M).

∗This work was mostly completed during the author’s doctoral studies at the Universitat Politèc-
nica de Catalunya and was partially supported by the project MINECO MTM2012-30951/FEDER with
additional support coming from the MCINN grant BES-2010-030080.
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Given a basis B ofM, the STA-decomposition of B is the partition of B into sets S, T,
and A where

S = S(B) is the set of internally passive elements of B not in B0(M),

T = T (B) is the set of internally passive elements of B in B0(M), and
A = A(B) is the set of internally active elements.

We typically express the STA-decomposition of B in the form B = S T
A . For each f ∈ S,

write Bf for the lexicographically smallest basis inM containing f ∪T and write T (B; f)
for T (Bf ).

Let B = S T
A be a basis of an ordered matroid M. Then B is internally deficient

if T 6=
⋃
S T (B; f). If T =

⋃
S T (B; f) but the union is not disjoint, then B is said to

be internally abundant. If T =
⊔
S T (B; f) is a disjoint union, then B is called internally

perfect. The ordered matroid M is internally perfect if every basis of M is internally
perfect.

(We use the modifier “internally” to stress that our definitions depend on the notion
of internal activity as opposed to the dual notion of external activity. As we will have no
cause to mention the external activity again in this paper, we typically drop the modifier
when the additional stress is superfluous.)

Though the definitions of perfect, abundant, and deficient bases as stated above are
useful in computations, they each have a more intuitive characterization in terms of the
join operator of Pint(M); see Proposition 14. Other highlights of Section 3 include proofs
of the existence of perfect bases in any ordered matroid and that all rank-2 matroids are
perfect (see Proposition 11). These preliminary results give way in later sections to our
two main structural theorems concerning perfect matroids.

The first central result (Theorem 17 in Section 4) details to what extent minors of
a perfect matroid M are perfect when the ordering of the ground set of each minor is
induced from that ofM.

Theorem. LetM = (E,B, φ) be an internally perfect ordered matroid with initial basis B0

and let F1 and F2 be disjoint subsets of E such that any element of F2 ∩ B0 is a coloop.
Then the minorM/F1 \ F2 is internally perfect with respect to the ordering of its ground
set induced by the order ofM.

The second of our main results pertains to a conjecture of R. Stanley concerning
the structure of the h-vectors of matroids. Indeed, this conjecture provided the original
motivation for our study of internally perfect matroids. As such, we take a momentary
diversion to sketch the background of the conjecture as well as the work done in recent
years toward finding a proof.

The h-vector, h(M) = (h0, h1, . . . , hr), of a rank-r matroidM is defined to be the h-
vector of the independence complex ofM, that is, the h-vector of the simplicial complex
on E consisting of all subsets I ⊆ B for some B ∈ B. Given such a matroid M, the
entry hi can be computed in a number of ways. For example, it is the coefficient on xr−i
in the evaluation of the Tutte polynomial, TM(x, y), ofM at y = 1; see [2]. Equivalently,
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for any linear ordering of E, the entry hi is the number of bases ofM with i internally
passive elements; see [1]. By a result of Las Vergnas, one can also obtain hi by counting
the number of bases at height i in Pint(M); see Theorem 5. Any of these results implies
that h0 = 1 and hi > 0 for all i ∈ [r].

While a result of Kruskal [9] and Katona [7] gives an explicit description of the possible
vectors that can occur as the f -vector of simplicial complexes (and hence an implicit
description of possible h-vectors of simplicial complexes), no such description is yet known
when restricting to the matroid complex case. So when given a vector v ∈ Nr+1 it
is natural to ask for tests that would verify (or rebuff) v as the h-vector of a rank-r
matroid.

In [17], Stanley gives such a test by considering order ideals (also known as down-sets)
of the poset P = (Nk,4dom), for some k ∈ N, ordered by v 4 w if and only if vi 6 wi

for all i ∈ [r + 1]. An order ideal O of P is the downset in P of a subset V ⊆ Nk and
the O-sequence of O is (O0,O1,O2, . . . ) where Oi is the number of elements in O with
coordinate sum equal to i. We are only interested in finite order ideals, that is, order
ideals for which Oi = 0 for some i ∈ N. If i ∈ N is the least such that Oi = 0, then we
express the O-sequence as the finite vector (O0,O1, . . . ,Oi−1). An O-sequence is called
pure if it is the O-sequence of a pure order ideal, that is, of an order ideal whose maximal
elements all have the same coordinate sum. Stanley proved that the h-vector of any rank-r
matroid is the O-sequence of an order ideal in P and made the following conjecture:

Conjecture 1 (Stanley 1977). The h-vector of a matroid is a pure O-sequence.

Following a 23-year fallow period during which no partial results were published, the
last fifteen years have seen a flurry of research concerning Stanley’s Conjecture [3, 4, 5,
8, 11, 12, 14, 16]. These results are essentially of two types. In each of [5, 11, 12, 14, 16]
a certain class of matroids is considered and Stanley’s Conjecture is shown to hold by
exploiting properties of the class. In each of the other papers referenced above, general
properties of either matroids or order ideals are studied and then used to prove Stanley’s
Conjecture for a particular class of matroids. The second of our main results is of this
type (see Theorem 30 in Section 5). It states that, up to a relabeling of the nodes, the
internal order of an internally perfect matroid is a pure order ideal.

Theorem. The internal order of an internally perfect ordered matroid is isomorphic to
a pure order ideal.

In particular this result implies that ifM = (E,B) is a matroid such that there exists
a linear ordering of the E making M an internally perfect matroid, then M satisfies
Stanley’s Conjecture.

This article is organized as follows. In Section 2 we fix notation and give the necessary
background on matroids and the internal order. In Section 3 we define and prove prelimi-
nary properties of perfect, abundant, and deficient bases of an ordered matroid. We turn
to the proof of Theorem 17 concerning the minors of perfect matroids in Section 4. We
also provide an example showing that the theorem is the best possible result when the
linear order on the ground set of the minor is induced from that of the original matroid.
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Moreover, we conjecture that one can always find a reordering of the ground set of a
minor of perfect matroid such that the minor is perfect with respect to the new order.
In Section 5 we prove Theorem 30 by explicitly giving the poset isomorphism between
the internal order of a perfect matroid and a pure order ideal. Finally, in Section 6 we
construct a variety of examples of internally perfect matroids including an infinite family
of cographic matroids as well as an example of an internally perfect matroid that is not
contained in any of the classes for which Stanley’s Conjecture is known to hold.

2 Preliminaries: Matroids and the Internal Order

First we fix some notation. For a positive integer n we write [n] := {1, 2, . . . , n}. We use
standard set theory notation with the following exception: for a singleton {f} we suppress
the set braces and simply write f when no confusion can arise.

We now review some basic matroid terminology following [15]. Then we recall the
facts we need concerning activities and the internal order essentially following [10]. We
assume a basic familiarity with posets and simplicial complexes at the level of Chapter 3
of [18] and Chapter 1 of [13], respectively.

2.1 Matroids

A matroidM = (E,B) is a pair consisting of a finite set E and a set of bases B satisfying
the following axioms:

1. B is a nonempty set, and

2. if B1 and B2 are in B and e ∈ B1−B2, then there is an f ∈ B2−B1 such that B1−e∪f
is in B.

LetM = (E,B) be a matroid and let F ⊆ E. Then F is an independent set ofM if it is
a subset of some basis. The set of all independent sets ofM is denoted I. A subset of E
that is not independent ofM is a dependent set and a dependent set that is minimal with
respect to inclusion is a circuit. The set of all circuits ofM will be denoted C = C(M). A
loop ofM is a circuit consisting of one element. We write L(M) for the set of all loops.
If two elements e, f ∈ E form a two-element circuit then they are said to be parallel.
A maximal collection of elements of E containing no loops such that the elements are
pairwise parallel inM is called a parallel class ofM.

The rank of a subset S ⊆ E, denoted rM(S), is the cardinality of any maximal
independent set of M contained in S. It is easy to see from the definition that every
basis ofM has the same rank, say r, called the rank ofM and written r(M) = r. When
the matroid under consideration is clear from the context, we typically drop it from the
notation.

The dual matroid, M∗ = (E,B∗), of M is the matroid whose bases are the comple-
ments of bases inM. The bases of the dual matroid are called cobases. More generally,
we prepend the prefix “co-” to any object associated to a matroid to indicate that we
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are discussing the corresponding dual object. In particular, the cocircuits of M are the
circuits ofM∗ and will be denoted C∗. For example, a coloop ofM is a loop in the dual
matroidM∗. Equivalently, a coloop is an element of the ground set that is in every basis
ofM.

Let M = (E,B) be a matroid, B be a basis of M, and suppose e ∈ E is not an
element of B. Then there is a unique circuit, C(B; e), of M contained in the set B ∪ e
called the fundamental circuit of B with respect to e. Similarly, for an element f ∈ B
the fundamental cocircuit of B with respect to f is the unique cocircuit C∗(B; f) ofM
contained in the set E \ B ∪ f . It is a basic fact that for b ∈ B and b′ /∈ B the following
are equivalent:

1. the set B′ := B − b ∪ b′ is a basis;

2. b ∈ C(B; b′); and

3. b ∈ C∗(B′; b′).

The set B′ above is said to be obtained from B by pivoting.
Let M be a rank-r matroid. As the set I of independent sets of M is nonempty

and closed under taking subsets, it forms a simplicial complex ∆(M) on E, called the
matroid (or independence) complex ofM. The dimension of the matroid complex ∆(M)
is one less than the rank of M. The f -vector and h-vector of a matroid M are the f -
and h-vector of its matroid complex, respectively.

Two useful constructions for creating new matroids are deletion and contraction de-
fined, respectively, as follows. Let T ⊆ E. The deletion of M at T , written as M\ T ,
is the matroid whose independent sets are I − T for each I ∈ I, while the contraction
ofM at T is the matroid defined byM/T := (M∗ \ T )∗. When T = e is a singleton we
writeM\ e (respectively,M/e) for the deletion (respectively, contraction) ofM at e. A
minor ofM is any matroid that can be obtained fromM by a sequence of deletions and
contractions.

LetM = (E,B) be a matroid with |E| = n. If φ : E → [n] is a bijection, then the usual
ordering on [n] induces a linear order on E where e ≺φ f if φ(e) < φ(f). The matroidM
together with such a bijection φ is called an ordered matroid. When the map φ is clear from
the context, we write e < f in place of e ≺φ f . For an ordered matroidM = ([n],B, φ1),
a permutation φ2 of the ground set [n] is called an initial basis preserving permutation
if φ(B0(M)) = B0(M′) as ordered sets, whereM′ = ([n], φ(B), φ2).

2.2 The Internal Order

LetM = (E,B, φ) be an ordered matroid, let F ⊆ E, and let e ∈ E. Then e isM-active
with respect to F if there is a circuit C ⊆ F ∪ e ofM such that e = minC. Notice that
this definition depends on the ordering induced by the bijection φ. The set of allM-active
elements with respect to F is denoted ActM(F ). The element e is internally active inM
with respect to F if

e ∈ IAM(F ) := ActM∗(E − F ) ∩ F.
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In other words, e is internally active in M with respect to F if e ∈ F and there is a
cocircuit C∗ of M contained in E − F ∪ e such that e = minC∗. When the underlying
ordered matroid is clear from the context we will simply say that e is internally active
in F . Any element of F that is not internally active with respect to F is internally passive.
We write IPM(F ) for the set of all internally passive elements of F .

In this paper we typically focus on the case when F = B is a basis ofM. Notice that
in this case an element f ∈ B is internally active in B if and only if f is the minimum
element of the fundamental cocircuit C∗(B; f). As M is an ordered matroid, there is a
lexicographically-smallest basis which we denote by B0 and call the initial basis ofM. It is
trivial to check that IA(B0) = B0 and IP(B0) = ∅. Now consider an arbitrary basis B ∈ B.
Using Theorems 2 and 5 below, one can check that if e ∈ IA(B), then e is also in B0. On
the other hand, if e ∈ B − B0, then e is internally passive in B. This motivates us to
partition B into three sets defined as follows:

S = SM(B) := IPM(B)−B0; (1)
T = TM(B) := IPM(B) ∩B0; (2)
A = AM(B) := IAM(B). (3)

We call the elements of S = S(B) perpetually passive (with respect toM and B), while the
elements of T are called provisionally passive. The reason for this choice of nomenclature
will become obvious in the next paragraph. We will often write S T

A for B when we want
to emphasize this partition of the elements of B. The basis B0 is the only basis with
no internally passive elements. Let B = S T

A be a basis. Then B is clean if it has no
provisionally passive elements (i.e., T = ∅). The basis B is called principal if |S| = 1, and
is called f -principal if S = {f}.

If B and B′ are bases of M such that B′ = B − b ∪ b′ where b′ = minC∗(B′, b′) is
an internally active element of B′ and b ∈ C∗(B′, b′) − b′, then B′ is said to be obtained
from B by internally active pivoting and we write B′ ←−b′b B. So an internally active
pivot exchanges an internally passive element of B for an internally active element of B′.
Let B′ ←−b′b B be an internally active pivot. It is trivial to see that if e ∈ S(B) ∩ B′,
then e ∈ S(B′). Moreover, if e ∈ S(B) ∩ B′′ for any basis B′′, then e ∈ S(B′′) which
justifies our calling such an element perpetually passive. On the other hand, if B′ is
obtained from B by an internally active pivot and e ∈ T (B)∩B′, then e is either in T (B′)
or it may become active in B′. It is in this sense that elements of T (B) are provisionally
passive with respect to B. Note that the only elements of B0(M) that are not provisionally
passive with respect to any basis B are the least element of E (with respect to the linear
order on E) as well as every coloop ofM.

We now turn to the internal order of an ordered matroid as introduced by Las Vergnas
in [10]. Let ≺ be the binary relation on the bases ofM defined by B′ ≺ B if and only if
B′ is obtained from B by internally active pivoting. The relation ≺ is trivially irreflexive
and asymmetric. Let 4int be the transitive closure of ≺.

Theorem 2 ([10] Proposition 5.2). Let B,B′ ∈ B(M) be bases of an ordered matroidM.
Then the following are equivalent:
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(i) B 4int B
′;

(ii) IP(B) ⊆ B′;

(iii) IP(B) ⊆ IP(B′);

(iv) B is the lexicographically-least basis of B containing B ∩B′.

In particular, Theorem 2 implies that the pair Pint(M) := (B,4int) is a poset. The
poset P̂int(M) = (B ∪ 1̂,4int) where 1̂ is an artificial top element is the internal order of
the ordered matroid M. As we shall see in the next example, the internal order of an
ordered matroid depends on the particular choice of ordering of the ground set.

Example 3. Consider the vector matroidM =M(M) over Q on six elements given by
the matrix

M :=


1 2 3 4 5 6

1 0 0 0 1 0
0 1 0 1 −2 1
0 0 1 0 1 1

.
The h-vector ofM is (1, 3, 5, 5). The natural ordering on the ground set yields an ordered
matroid whose internal order is shown on the left in Figure 1. In this internal order we
have highlighted the three principal chains in Pint(M): the 5-principal chain has length 2,
while the 6- and 4-principal chains have lengths 1 and 0 respectively.

Let M(M ′) be the ordered matroid obtained by reordering the columns of M using
the permutation that sends the initial basis B0(M) = (1, 2, 3) to (2, 3, 1) so that

M ′ :=


2 3 1 4 5 6

0 0 1 0 1 0
1 0 0 1 −2 1
0 1 0 0 1 1

.
The internal order of this ordered matroid is shown on the right in Figure 1, where we
have highlighted the clean bases in red. The two posets in Figure 1 are not isomorphic
as there are two height-3 bases in the first poset that cover exactly one element while
there is only one height-3 basis in the second poset that covers one element. Nonetheless,
both internal orders have a number of features in common. For example, both are graded
lattices with hi(M) bases at height i.

For an unordered matroidM = (E,B) of rank r on n elements, let Pint(M) be the set
of all isomorphism classes of internal orders Pint(E,B, φ) as φ varies over all permutations
of E. The fact that the internal order ofM depends on the ordering of the ground set E
gives the trivial upper bound of n! on Pint(M). The better upper bound of r! · |B(M)|
is obtained from the next proposition in which we show that any two ordered matroids
that differ by an initial basis preserving permutation have isomorphic internal orders.
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∅123

512 612413

53
1 561 63

1451 461

523 562 563453 456

1̂

∅231

523 621431

51
2 562 63

1463453

531 561 563456451

1̂

Figure 1: Non-isomorphic internal orders for the same matroid with different ground set
orderings

Proposition 4. If M is an ordered matroid and φ is an initial basis preserving permu-
tation of M, then the internal order of M is isomorphic to the internal order of φ(M).
Thus, for an unordered matroid M of rank r, the size of Pint(M) is bounded above
by r! · |B(M)|.

Proof. It is enough to show that φ(IA(B)) = IA(φ(B)) for every basis B ∈ B(M).
Let e ∈ IA(B) for some basis B of M. Recall that this implies that e is an element
of B0(M), and so φ(e) ∈ B0(M′). Moreover, e is internally active in B if and only
if e 6 f for all f ∈ B0(M) such that B − e ∪ f is a basis of M. This is equivalent
to φ(e) 6 g for all g ∈ B0(M′) such that φ(B) − φ(e) ∪ g ∈ B(M′) since φ is an initial
basis preserving permutation. This, in turn, is equivalent to φ(e) being internally active
in φ(B), proving the first claim.

The second claim follows from the first by noting that there are |B(M)| ways to choose
an initial basis ofM and r! ways to permute this basis.

Let us make two remarks about Proposition 4. When considering an ordered matroid
of rank r, one typically assumes that the initial basis consists of the first r elements of
the ground set. However, to simplify the Hasse diagrams of the internal orders we will
encounter it is often useful to forgo this assumption, relying on Proprosition 4 to assure
us that we are working with an internal order that is isomorphic to some internal order
corresponding to a permutation of the ground set where the first r elements form a basis.
Secondly, there are examples of matroids for which the upper bound of r! · |B(M)| is far
from optimal. As an extreme example note that the uniform matroid Ur,n of rank r on n
elements has |Pint(Ur,n)| = 1.

Next we give a structural result due to Las Vergnas for the internal order of an ordered
matroid. For this we need the following definition: Given an independent set I of a rank r
ordered matroid M, the minimum basis containing I, written MinBas(I), is defined to
be the lexicographically-least basis in B containing I.

Theorem 5 ([10]). Let M = (E,B, φ) be an ordered rank-r matroid. Then the internal
order of M, P̂int = (B ∪ 1̂,4int), is a graded lattice with height function ht(B) = |IP(B)|
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for all B ∈ B. The meet and join in P̂int of any two bases are given by

B1 ∧B2 = MinBas(IP(B1) ∩ IP(B2))

B1 ∨B2 =

{
MinBas(IP(B1) ∪ IP(B2)) if IP(B1) ∪ IP(B2) ∈ I(M) and
1̂ otherwise.

The following corollary is an easy consequence of Theorems 2 and 5.

Corollary 6 ([10]). LetM = (E,B, <) be a rank-r ordered matroid with c coloops. Then
the height of Pint(M) is equal to r − c.

Proof. By Theorem 5, the height of Pint(M) is the maximal value of | IP(B)| as B varies
over B(M). If e is a coloop ofM, then e is in every basis ofM and hence is internally
active in every basis. Thus, the height of Pint(M) is no greater than r−c. Now let B = S T

A

be a basis ofM that is maximal in Pint(M) and suppose that there is an e ∈ A that is
not a coloop. Then e = minC∗(B; e) and there is an f ∈ C∗(B; e) such that f > e. So
the set B′ = B − e ∪ f is a basis ofM and IP(B) ( IP(B′). Thus, by Theorem 2, B is
strictly smaller than B′ in Pint(M), contradicting the fact that B is maximal. So every
basis that is maximal with respect to the internal order is of the form B = S T

A where A
is the set of coloops ofM, and the result follows.

3 Internally Perfect, Abundant, and Deficient Bases

Throughout this section fix a loopless ordered matroid M = (E,B, φ) of rank r. Our
goal is to define perfect, abundant, and deficient bases of M. To this end, we begin by
proving some preliminary results about minimal and principal bases.

Recall that the minimal basis MinBas(I) of an independent set I ofM is the lexico-
graphically-least basis in B containing I. Equivalently, MinBas(I) = I ∪ J where J ⊆ B0

is the set of all minimal elements of cocircuits of M contained in E − I. Thus every
element of MinBas(I) that is not in I is internally active with respect to MinBas(I).

Given a basis B = S T
A of M, the previous observation implies that if I ⊆ S ∪ T

then MinBas(I) 4int B with equality if and only if I = S ∪ T . In particular, the
basis B is determined by its internally passive elements via B = MinBas(IP(B)). Equiv-
alently, MinBas(I) is the meet in the internal order of all bases containing I. If f is
perpetually passive in B (so that f ∈ S), then the basis B′ = MinBas(f ∪ T ) is a prin-
cipal basis with S(B′) = {f}. Moreover, as B′ 4int B, we have T (B′) ⊆ T . We record
these facts in the following proposition.

Proposition 7. Let M be an ordered matroid and let B = S T
A be a basis of M. Then

the minimal basis MinBas(S ∪ T ) = B and for any f ∈ S the basis B′ = MinBas(f ∪ T )
satisfies S(B′) = f and T (B′) ⊆ T (B).

We now prove two results concerning principal bases. For the first, recall that a (finite)
saturated chain in a poset P is a subposet consisting of elements p1, p2, . . . , pk such that pi+1

covers pi for all i ∈ [k − 1].
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Proposition 8. For any f ∈ E − B0(M), the set of f -principal bases forms a saturated
chain.

Proof. Write C(B0; f)− f = (e1, e2, · · · , ek) where ei < ei+1 with respect to the order on
the ground set ofM. Then every f -principal basis ofM is of the form Bi := B0 − ei ∪ f
for some i ∈ [k]. Moreover, an element g ∈ Bi is internally passive in Bi if and only
if g > ei. It follows that T (Bi) = T (Bi+1) ∪ ei+1 for all 1 6 i 6 k − 1. And so we
obtain IP(Bi+1) = IP(Bi) ∪ ei+1. This in turn implies that Bi+1 covers Bi in Pint(M) by
Theorem 5. Hence the set of f -principal bases forms a saturated chain.

For a basis B = S T
A and an f ∈ S we define the f -part of T to be the set T (B; f)

consisting of provisionally passive elements of B that are also provisionally passive in
the minimal basis MinBas(f ∪ T ), that is, T (B; f) := T (MinBas(f ∪ T )). For a given
basis B, one can read off the f -part of T easily from the internal order using the following
proposition.

Proposition 9. Let B = S T
A be a basis of an ordered matroid and let f ∈ S. Then the

minimal basis MinBas(f ∪ T ) is the maximal f -principal basis that is less than (or equal
to) B in the internal order.

Proof. Let B be as in the statement of the theorem, B1 = MinBas(f ∪ T ) and suppose
that B2 is an f -principal basis such that B1 ≺int B2 4int B. Then, as in the proof of the
previous proposition, there exist e1, e2 ∈ C(B0; f) such that Bi = B0−ei∪f and e1 < e2.
Since e1 is not in B1 and T is a subset of B1, e1 is not an element of T . On the other hand,
by the argument given in the previous proposition, e1 is a provisionally passive element
of B2. So e1 ∈ T (B2) and hence IP(B2) * IP(B). But then B2 is not less than B in the
internal order by Theorem 2. This contradiction implies the maximality of B1.

Given a basis B = S T
A , it is natural to ask to what extent the union over f ∈ S of

the f -parts of T cover T . There are three possible answers to this question which lead us
to the central definitions of this paper.

Definition 10. Let B = S T
A be a basis ofM and let T̃ be the union of the f -parts of T

as f runs over S. Then B is

1. (internally) deficient if T̃ is a proper subset of T ;

2. (internally) abundant if T̃ = T but T̃ is not a disjoint union; and

3. (internally) perfect if T̃ = T and for all f, g ∈ S with f 6= g the set T (B; f)∩T (B; g)
is empty.

We write D,A, and P for the set of deficient, abundant, and perfect bases of M,
respectively. Clearly, these sets partition the bases of M, that is, B = D t A t P .
Moreover, the set of perfect bases P is never empty, as the next proposition shows.
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Proposition 11. Let M be an ordered matroid. If B = S T
A is a basis of M with ei-

ther T = ∅ or |S| = 1, then B is perfect. If, in addition, M is a rank-r matroid with c
coloops and r − c = 2, then every basis ofM is perfect.

Proof. Let B = S T
A be a basis. If T = ∅, then T̃ = ∅ and so T is trivially perfect.

If |S| = 1, then B is a f -principal for some f ∈ E − B0. In this case B is perfect
since B = MinBas(f ∪ T ) by Proposition 9.

Now suppose M is a rank-r ordered matroid with c coloops such that r − c = 2.
Then, by Corollary 6, the height of Pint(M) is two. Thus, if B = S T

A is a basis of M,
then |S| ∈ {0, 1, 2}. In any case, the previous paragraph implies that B is perfect since
either |S| = 1, or |S| ∈ {0, 2} in which case T = ∅.

In particular, the previous proposition tells us that ifM is an unordered matroid of
rank-2, thenM is internally perfect for any linear ordering of its ground set. This is far
from the case for matroids of higher rank. In Example 12 we will see that the matroidM
of Example 3 is not perfect with respect to the natural ordering of its ground set but
is perfect with respect to the ordering (2, 3, 1, 4, 5, 6). Furthermore, in Example 13 we
supply a matroid that is not perfect with respect to any linear ordering of its ground set.

Example 12. Consider the two internal orders in Figure 1. For the poset on the left
one can check directly from the definitions that every basis is perfect except for B = 451

which has
T (B; 4) = T (B; 5) = ∅ 6= T = {1}.

Thus B is deficient with respect to the natural order on [6]. On the other hand, one can
verify that every basis of the ordered matroid whose internal order is given by the poset
on the right is perfect.

Example 13. In this example we provide a matroid that is not internally perfect for any
linear ordering of the ground set. Let M be the vector matroid of the columns of the
matrix M (over Q) given by

M :=


1 0 0 0 0 −2 −1 1
0 1 0 0 0 1 1 1
0 0 1 0 0 −1 0 1
0 0 0 1 0 −2 0 1
0 0 0 0 1 0 0 1

 .

Then M is a rank-5 matroid with 42 bases and h-vector (1, 3, 6, 9, 12, 11). The internal
order of M (with respect to the natural order on the ground set) is given in Figure 2
where the f -principal chains are colored green and the perfect (respectively abundant,
deficient) bases are black (respectively blue, red). For example, the basis B = 5724

0 is
deficient because while T = {24}, the f -parts of T are T (B; 5) = ∅ and T (B; 7) = {4}
and hence their union does not cover T . On the other hand, the basis B′ = 5734

0 is
abundant because the f -part of T = {34} are T (B′; 5) = {3} and T (B′; 7) = {3, 4}, and
their union covers T but is not a disjoint union.
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∅01234

50124 60234 70123

53014 56024 57012 61234 67023 74012

52304 56124 56304 56702 57301 57401 67123 67402 73401

51234 56134 56234 56712 56730 56740 57230 57240 57340 67142 67340 72340

56713 56714 56723 56724 56734 57123 57134 57234 67134 67234 71234

Figure 2: Perfect, abundant, and deficient bases of a rank-5 matroid on 8 elements

Using the Macaulay2 package Posets (see [6]), we were able to verify that there are 410
permutations of the ground set ofM giving non-isomorphic internal orders, and that none
of these permutations makes M into a perfect ordered matroid. Proposition 4 greatly
aids in these kinds of computations as it implies that we only need to check 5040 = 5!∗42
permutations instead of all 8! = 40320 possible permutations. Moreover, our choice
of ordering of the columns of M was chosen because it minimizes the number of join-
irreducible elements (that is, elements that cannot be written as the join of any other
elements) in the internal order.

We now use this example to make some observations in order to motivate upcoming
results. First notice that if B = S T

A is a perfect basis of M, then B covers exactly |S|
bases in Pint and that B can be expressed as the join of principal bases in a unique way.
For example, the perfect basis 56713 covers the bases 5613

4 , 5671
2, and 5673

0 and can only be
written as the join of the principal bases as follows:

B =
∨
f∈S

MinBas(f ∪ T )

= 53
014 ∨ 61

234 ∨ 70123.

Also notice that if B is a perfect basis and B′ 4int B, then B′ is perfect.
When B is abundant, it covers more than |S| bases and can be expressed as the join

of f -principal bases in a number of ways. For example, the basis 5734
0 covers 3 bases and

can be written as such a join in three distinct ways:

B = 53
014 ∨ 734

01 = 53
014 ∨ 74

012 = 50124 ∨ 734
01.

the electronic journal of combinatorics 24(2) (2017), #P2.35 12



Finally, notice that any deficient basis of M cannot be expressed as the join of f -
principal bases.

We now proceed to prove that the properties verified in the previous example hold
in general. We begin by characterizing the three types of bases in terms of the interplay
between principal bases and the join operator in the internal order. For a basis B = S T

A

of an ordered matroidM let

B′ :=
∨
f∈S

MinBas(f ∪ T ). (4)

Let us call B decomposable if B = B′, and undecomposable otherwise. Moreover, call B
uniquely decomposable if B is decomposable and (4) is the unique way to write B as the
join of f -principal bases for f ∈ S, and multi-decomposable otherwise. Since every basis
of M is of exactly one of these three types, we obtain a partition of B(M) which we
call the decomposability partition. With this terminology in hand we can now state our
characterizations of perfect, abundant, and deficient bases.

Proposition 14. Let B be a basis of an ordered matroidM. Then B is perfect (respec-
tively abundant, deficient) if and only if B is uniquely (respectively, multi-, un-) decom-
posable.

Proof. Note that we have two partitions of the bases ofM: the partition B = DtAtP ,
and the decomposability partition. Therefore it is sufficient to prove the “only if” direction
of the proposition.

First we consider the trivial case B = B0(M). In this case B is perfect by Proposi-
tion 11. Since B is the least element of the lattice Pint(M), the typical convention for
empty joins in lattices yields B =

∨
∅ = B′. As this expression is clearly unique, B0 is

uniquely decomposable.
Now we turn to the general case. Let B 6= B0 be a basis ofM. By repeated application

of the expression for the join of two bases in Theorem 5 we may write B′ as

B′ = MinBas

(⋃
f∈S

IP
(

MinBas(f ∪ T
))

.

For every f ∈ S the internally passive elements of MinBas(f ∪ T ) are internally passive
in B by Proposition 7. It follows that

⋃
S IP(MinBas(f ∪ T )) ⊆ IP(B) and, in particular,

that the union is an independent set in M. Moreover, Proposition 7 implies that the
internally passive elements of MinBas(f ∪ T ) are the elements of f ∪ T (B; f) and so we
have

B′ = MinBas

(
S ∪

⋃
f∈S

T (B; f)

)
.

If the basis B is deficient, then IP(B′) = S∪ T̃ ( IP(B) which proves that B′ is strictly
smaller than B in the internal order. Now suppose there is a collection of principal bases
whose join is B. Then this collection must be of the form

{Bf | f ∈ S and Bf is f -principal},
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and there must be at least one f ∈ S for which MinBas(f ∪ T ) ≺int Bf . But then the
minimal basis MinBas(f∪T ) ≺int Bf 4int B which contradicts the fact that MinBas(f∪T )
is the maximal f -principal smaller thanB in the internal order. HenceB cannot be written
as the join of principal bases.

Now fix a basis B that is not deficient. Then IP(B′) = IP(B) and so the bases B
and B′ coincide. Note that in this case we can write B =

∨
f∈S Pf for any collection of

principal bases {Pf | S(Pf ) = f} such that
⋃
T (Pf ) = T . If B is a perfect basis, we must

have Pf = MinBas(f ∪ T ) and so (4) is a unique expression for B as the join of principal
bases. On the other hand, if B is abundant then we can write B =

∨
Pf where S(Pf ) = f

and
T (Pf ) = {t ∈ T (B; f) | f = min{g ∈ S | t ∈ T (B; g)}}.

As the bases Pf are all principal and the sets T (Pf ) partition T it follows that
∨
Pf is an

expression of B as the join of principal bases and that this expression is different from (4),
completing the proof.

Proposition 14 gives us one way to use the internal order of M to determine if a
basis B is perfect. The next proposition gives us another.

Proposition 15. Every basis in the downset of an internally perfect basis in Pint(M) is
internally perfect.

Proof. It is sufficient to prove that every basis covered by an internally perfect basis is
internally perfect. For this let B = S T

A be a perfect basis of an ordered matroidM and
let B′ = B−e∪a be covered by B. As Pint is a graded poset we have |IP(B′)| = |IP(B)|−1
and so either (i) e ∈ S and T (B′) = T (B), or (ii) e ∈ T and S(B′) = S(B). In the first
case we have T (B; e) = ∅ since B covers B′. It then follows that

T (B′) = T (B) =
⊔

f∈S(B)

T (B; f) =
⊔

f∈S(B′)

T (B; f),

as desired. In the second case, since B is perfect and e ∈ T we have a unique f ∈ S such
that e ∈ T (B; f). But then

T (B′) = T (B)− e

= (T (B; f)− e) ∪
⊔

g∈S−{f}

T (B; g).

This union is disjoint, so it follows that B′ is perfect in this case.

In the subsequent sections we will be interested in perfect ordered matroids, that is,
ordered matroids, all of whose bases are perfect. Note that Proposition 15 supplies us
with a useful computational tool to verify that a given ordered matroid is perfect insofar
as it implies that to check that every basis of an ordered matroid is perfect, it is enough
to check that all coatoms of the internal order (i.e., all bases covered by the artificial
top element 1̂) are perfect. Also note that implicit in the proof of Proposition 15 is the
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fact that a perfect basis B = S T
A covers at most |S| many bases in the internal order.

In [10], Las Vergnas shows that the number of bases covered by an arbitrary basis B in
the internal order is no greater than the number of internally passive elements of B. In
the next proposition we compute the exact number of bases covered by a perfect basis B
in the internal order.

Proposition 16. If B = S T
A is a perfect basis of an ordered matroid M, then it covers

exactly |S| bases in Pint(M).

Proof. Let B = S T
A be a perfect basis of M. Then Proposition 14 yields the following

unique expression of B as the join of principal bases:

B =
∨
f∈S

MinBas(f ∪ T ). (5)

For g ∈ S write Ag :=
∨
f∈S−g MinBas(f ∪ T ) and consider the interval [Ag, B] in Pint.

We claim that the interval [Ag, B] is isomorphic to the chain [B0, B
′] where B′ is the

minimal basis MinBas
(
g ∪ T (B; g)

)
. To see this note that a basis B′′ in the half-open

interval (Ag, B] satisifies

S(Ag) ( S(B′′) ⊆ S(B)

T (Ag) ⊆ T (B′′) ⊆ T (B).

As Equation (5) is the unique expression of B as the join of principal bases, it follows
that S(B′′) − S(Ag) = {g} and T (B′′) − T (Ag) ⊆ T (B; g). It follows that B′′ is the join
of Ag and some g-principal basis in [B0, B

′], proving the claim.
Given distinct f, g ∈ S, the bases Af and Ag are incomparable in the internal order

ofM and their join is B. If we write Bg for the basis in the interval [Ag, B] that is covered
by B, then it follows that Bf 6= Bg for distinct f, g ∈ S. This implies that B covers at
least |S| bases in Pint. Since the proof of the previous proposition implies that B covers
at most |S| bases, the result follows.

4 Minors of Perfect Matroids

In the previous section we studied local properties of internally perfect bases of an ordered
matroid. In this and subsequent sections, we take a global perspective and investigate
internally perfect ordered matroids, that is, ordered matroids whose bases are all internally
perfect. For the sake of brevity we typically call such an ordered matroid a perfect matroid.
Moreover, we call an unordered matroid (internally) perfect if there is some linear ordering
of its ground set so that the resulting ordered matroid is internally perfect. Our goal in
this section is to study the minors of perfect matroids in order to prove the following
theorem.

Theorem 17. Let M = (E,B, φ) be an internally perfect ordered matroid with initial
basis B0 and let F1 and F2 be disjoint subsets of E such that any element of F2 ∩B0 is a
coloop. Then the minorM/F1 \F2 is internally perfect with respect to the ordering of its
ground set induced by the order ofM.
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For the remainder of this section let us fix an ordered matroidM = (E,B, φ) that is
internally perfect and an element e ∈ E. In the trivial case where M has exactly one
basis, Proposition 11 implies thatM is internally perfect. Moreover, the same proposition
implies that every minor of M is internally perfect. So without loss of generality we
assume hereafter that |B(M)| > 1.

We prove Theorem 17 in three main steps in order of increasing complexity. First we
show that deleting or contracting a loop or coloop of M preserves perfection. Then we
prove thatM\ e is perfect whenever e /∈ B0(M); see Section 4.1. Finally, in Section 4.2
we demonstrate thatM/e is perfect wheneverM is.

We begin with the case when e ∈ E is either a loop or a coloop. It is a straightforward
exercise to prove that in this case the posets Pint(M),Pint(M/e), and Pint(M\ e) are all
isomorphic. This fact and some simple comparisons of STA-decompositions of bases in
the various matroids are enough to show that ifM is internally perfect, then so are the
matroidsM\e andM/e. Therefore, for the remaining of this section we assume without
loss of generality that e is neither a loop nor a coloop ofM.

4.1 Perfect Matroids and Deletion

Having fixed an internally perfect ordered matroid M and an element e ∈ E(M) as in
the introduction to this section, let N :=M\ e. Our goal is to prove that N is perfect
whenever e is not in the initial basis ofM. We will need the following well-known (and
easy to prove) facts characterizing the bases, circuits and cocircuits of N in terms of those
ofM.

Proposition 18. LetM = (E,B) be a matroid, e ∈ E, and N =M\ e. Then

(i) B(N ) = {B ∈ B(M) | e /∈ B},

(ii) C(N ) = {C ⊆ E − e | C ∈ C(M)}, and

(iii) C∗(N ) is the set of minimal nonempty members of the set

{C∗ − e | C∗ ∈ C∗(M)}.

As any set B ⊆ E − e that is a basis of N is also a basis of M, it is helpful to
introduce notation to clarify the matroid of which we are considering B a basis. For a
basis B = S T

A ∈ B(N ) we write B′ = S ′T
′

A′ for the corresponding basis ofM. Define X(B′)
to be the set of all internally passive elements b of B′ such that {e′ ∈ C∗(B′; b) | e′ < b}
is equal to {e}. The next lemma computes the internally active (respectively, passive)
elements of a basis B ∈ B(N ) in terms of the active (respectively, passive) elements of B′.

Lemma 19. Let B ∈ B(N ) and B′ be the corresponding basis in B(M). Then we
have IP(B) = IP(B′) − X(B′) and IA(B) = IA(B′) ∪ X(B′). Moreover, if e is not
in B0(M), then X = ∅, i.e., the STA-decompositions of B and B′ coincide.
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Proof. An element b is internally passive in B′ if and only if b 6= minC∗(B′; f). Since
the fundamental cocircuit C∗(B; f) is equal to C∗(B′; f)− e, it follows that b ∈ IP(B) if
and only if b ∈ IP(B′) and e is not the only element of the set {e′ ∈ C∗(B′; b) | e′ < b},
proving the first claim. The second claim follows immediately since IA(B) = B − IP(B).

Now suppose e /∈ B0(M). Then e is not internally active in any basis in which
it occurs. We claim that this implies X(B′) = ∅. Otherwise there is a b ∈ B′ such
that {e′ ∈ C∗(B′; b) | e′ < b} = e , from which it follows that e is internally active in
the basis B′ − b ∪ e. This contradiction shows that X(B′) must be empty and hence
that IP(B) = IP(B′) and IA(B) = IA(B′). The fact that the STA-decompositions of B
and B′ coincide now follows from the observation that B0(N ) = B0(M) whenever e is
not in B0(M).

With the previous lemma in hand it is easy to see that N is perfect whenever M is
perfect and e /∈ B0(M). Let B = S T

A ∈ B(N ) and B′ = S ′T
′

A′ be the corresponding basis
in B(M). By Lemma 19, the bases B and B′ have identical STA-decompositions and so

T = T ′ =
⊔
f∈S′

T (B′; f) =
⊔
f∈S

T (B; f)

where the last equation follows from the fact that

T (B′; f) = T (MinBasM(f ∪ T ′)) = T (MinBasN (f ∪ T )) = T (B; f).

Thus we have proven the following corollary.

Corollary 20. Let M be an internally perfect ordered matroid. Then N =M\ e is an
internally perfect ordered matroid with respect to the ordering on the ground set of M
whenever e ∈ E −B0(M).

Taken together, Corollary 20 and the remarks at the end of the introduction to this
section show that N =M\e is perfect whenever e is a (co)loop or is not an element of the
initial basis ofM. This result is the best possible in the sense that there are internally
perfect ordered matroids for which deleting an element of their initial bases yields an
ordered matroid that is not perfect with respect to the order on the original matroid, as
the next example shows.

Example 21. Consider the ordered vector matroid M on seven elements given by the
matrix

M :=


1 0 0 0 0 0 1
0 1 0 0 1 1 2
0 0 1 0 0 1 0
0 0 0 1 0 0 −1

 .

One can verify that each of the three maximal bases in Pint(M) are perfect, and hence
that M is internally perfect by Proposition 15. Note that the second column is neither
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a loop nor coloop of M and that B = {1, 4, 6, 7} is a basis of N = M \ 2. The STA-
decomposition of B is 674

1 but T (B; 6) = T (B; 7) = ∅ and so N is not internally perfect
with respect to the order of its ground set induced by the order ofM.

Though the ordered matroid N is not internally perfect with respect to the linear
order E(N ) = (1, 3, 4, 5, 6, 7), the underlying unordered matroid is internally perfect.
To see this note that the elements 2 and 5 of M are parallel and hence the unordered
matroidsM\2 andM\5 are isomorphic. Since 5 is not an element of B0(M) = {1, 2, 3, 4},
Corollary 20 implies thatM−5 is internally perfect. Thus the ordered matroidN ′ =M\2
with E(N ′) = (1, 5, 3, 4, 6, 7) is internally perfect.

It is natural to ask whether the phenomenon witnessed in the previous example is borne
out in the general case. More precisely, is there always a reordering of the ground set of
the ordered matroid N = M\ e (where e ∈ B0(M)) such that N is internally perfect?
Computational evidence verifies that this is true for matroids with small rank (r(M) 6 4).
Establishing this in the general case would prove the following conjecture.

Conjecture 22. The class of unordered internally perfect matroids is closed under dele-
tion.

4.2 Contractions of Perfect Matroids

We have seen that internal perfection is preserved when deleting elements from a perfect
matroid as long as the elements deleted do not belong to the initial basis. Our present
goal is to show that internal perfection and matroid contraction are more compatible in
the sense that any contraction of an internally perfect is internally perfect. As before, we
fix an ordered internally perfect matroidM = (E,B, φ) and an element e ∈ E. The proof
presented here is essentially a detailed analysis of STA-decompositions of the minimal
bases MinBasN (I) and MinBasM(I), where N =M/e and I is an independent set of N .

First we collect some well-known results concerning matroid contractions (of unordered
matroids).

Proposition 23. LetM = (E,M) be a matroid, e ∈ E, and N =M/e. Then

(a) a set I ⊆ E − e is independent in N if and only if I ∪ e is independent inM;

(b) the circuits of N are the minimal nonempty sets of {C − e | C ∈ C(M)}; and

(c) the set of cocircuits of N is {C∗ ⊆ E − e | C∗ ∈ C∗(M)}.

As M = (E,B, φ) is an ordered matroid, the restriction of φ to E − e makes the
contraction N := M/e an ordered matroid, which in turn allows us to study internal
activity and passivity in N .

Let B be a basis of N . Recall from Section 2.2 that an element b ∈ B is internally
active in N with respect to B if and only if there is a cocircuit C∗ of N contained
in (E − e) − B ∪ b such that b = minC∗. It follows from Proposition 23(c) that such
a cocircuit C∗ of N is also a cocircuit of M. Moreover, since b is the smallest element

the electronic journal of combinatorics 24(2) (2017), #P2.35 18



of C∗ ⊆ E − (B ∪ e) ∪ b, we have that b ∈ IAM(B ∪ e). Since any basis is the disjoint
union of its sets of internally active and internally passive elements, we have the shown
the following proposition.

Proposition 24. Let M be an ordered matroid, e ∈ E(M), and N = M/e. Then, for
any basis B of N , we have

(a) IAN (B) ⊆ IAM(B ∪ e) with equality if and only if e /∈ IA(B ∪ e), and

(b) IPN (B) ⊆ IPM(B ∪ e) with equality if and only if e ∈ IA(B ∪ e).
Let us illustrate Proposition 24 in the case in which it will be predominantly used,

namely, when B = MinBasN (I) for some independent set I ∈ N . In this case the
basis B′′ := B ∪ e ∈ B(M) is equal to MinBasM(I ∪ e), and the proposition tells us that
internally active (respectively, passive) elements of B remain active (respectively, passive)
in B ∪ e.

There is a second basis of M that is natural to consider when dealing with the
basis B = MinBasN (I), namely, B′ := MinBasM(I). Note that if e ∈ B′, then the
bases B′ and B′′ = MinBasM(I ∪ e) coincide. On the other hand, if e /∈ B′, then
evidently B′ ≺lex B′′. In this case, since the basis B is contained in B′ ∩ B′′, we
have B′′ = B′ − a ∪ e for some a ∈ B′ − (I ∪ e). Moreover, as B′′ is the minimum
basis inM containing I ∪ e, the element a must equal max(C(B′; e)− (I ∪ e)). It is then
straightforward to show that a is an internally active element of B′. The next proposition
records these facts.

Proposition 25. Let M = (E,B, φ) be an internally perfect matroid, e ∈ E, and
let N := M/e. For I ∈ I(M) such that I ∪ e is also independent, let B′ denote the
basis MinBasM(I) and write J = I − e. Then

MinBasN (J) =

{
B′ − e if e ∈ B′, and
B′ − a otherwise

where a := max (C(B′; e)− (I ∪ e)) is an internally active element of B′.

The bases B,B′, and B′′ described above satisfy relations that will be crucial in
proving that the matroid N is internally perfect. Let us write B = S T

A , B
′ = S ′T

′

A′ ,
and B′′ = S ′′T

′′

A′′ . The following technical lemmas provide the relations between the
triples (S, T,A), (S ′, T ′, A′) and (S ′′, T ′′, A′′). First, in Lemma 26, we consider the eas-
ier case when e ∈ B′ (so that (S ′, T ′, A′) = (S ′′, T ′′, A′′)). Then we deal with the case
when e /∈ B′ in Lemma 27.

Lemma 26. LetM = (E,B, φ) be a perfect ordered matroid, let e ∈ E, and let N =M/e.
Fix I ∈ I(N ) and let B,B′ and B′′ be as above. If e ∈ B′, then B′ = B′′ and

(S, T,A) =


(S ′, T ′, A′ − e) if e ∈ A′,
(S ′, T ′ − e, A′) if e ∈ T ′,
(S ′ − e, T ′, A′) if e ∈ S ′ and T (B′; e) = ∅, and
(S ′ − e ∪ a, T ′ − a,A′) if e ∈ S ′ and T (B′; e) 6= ∅
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where a := max(C(B0(M); e)− {e}).

Proof. Adopt the notation in the statement of the lemma and let e ∈ B′. Clearly B′ = B′′

and so (S ′, T ′, A′) = (S ′′, T ′′, A′′). So by Proposition 24 we have either (i) A = A′

and IP(B) = IP(B)− e, or (ii) A = A′ − e and IP(B) = IP(B).
Suppose e ∈ B0(M) so that B0(N ) = B0(M)− e. If (i) holds, then e ∈ T ′ and direct

computations show that S = S ′, T = T ′ − e, and A = A′ in this case. For example,
we have

S = IP(B)−B0(N )

= (IP(B′)− {e})− (B0(M)− e)
= (IP(B′)−B0(M))− e
= S ′

where the last equation follows since e ∈ B0(M) and hence e /∈ S ′. On the other hand,
if (ii) holds then e ∈ A′ and it follows immediately that S = S ′, T = T ′ and A = A′ − e.
This proves the proposition in case e ∈ B0(M).

Now suppose e /∈ B0(M). Then e ∈ B′ implies that e ∈ S ′ and so case (i) above holds.
Moreover, the inital basis of N is B0(N ) = B0(M) − a where a is the maximal element
of C(B0(M); e)− e. So A = A′ and

T = IP(B) ∩B0(N )

= (IP(B′)− e) ∩ (B0(M)− a)

= (IP(B′) ∩B0(M))− {e, a}
= T ′ − a

where the final equation follows since e ∈ S ′ implies e /∈ T ′. A similar computation shows
that S = (S ′ − e) ∩ (IP(B′) ∩ a). Finally, as a ∈ T (B′; e) if and only if T (B′; e) 6= ∅, we
have S = S ′ − e ∪ a and T = T ′ − a when T (B′; e) 6= ∅. If T (B′; e) = ∅, then S = S ′ − e
and T = T ′, as desired.

The preceding lemma gives a case-by-case analysis of the STA-decomposition of the
minimal basis MinBasN (I) when e ∈ MinBasM(I). The next lemma provides a similar
analysis when e /∈ MinBasM(I).

Lemma 27. LetM = (E,B, φ) be a perfect ordered matroid, let e ∈ E, and let N =M/e.
Fix I ∈ I(N ) and let B,B′ and B′′ be as above. Then if e is not in B′ then e ∈ IP(B′′)
and the decompositions of B,B′ and B′′ are related as follows: (S, T,A) and (S ′′, T ′′, A′′)
satisfy the relations of Lemma 26 and

(S, T,A) =


(S ′ − e, T ′, A′ − a′) if e ∈ S ′′ and Te = ∅,
(S ′ ∪ a, T ′ ∪ Te − a,A′ − Te − a′) if e ∈ S ′′ and Te 6= ∅, and
(S ′, T ′ ∪ {t ∈ Tf | t 6 e}, A′ − {t ∈ Tf | t < e}) if e ∈ T ′′,

where Te := T (B′′; e), Tf := T (B′′; f), a := max(C(B0(M); e)− e) and a′ is the maximal
element of C(B′; e)− (I ∪ {e}).
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Proof. Suppose e /∈ B′, so that B′ 6= B. Lemma 26 assures us that

(S, T,A) =


(S ′′, T ′′, A′′ − e) if e ∈ A′′,
(S ′′, T ′′ − e, A′′) if e ∈ T ′′,
(S ′′ − e, T ′′, A′′) if e ∈ S ′′ and Te = ∅, and
(S ′′ − e ∪ a, T ′′ − a,A′′) if e ∈ S ′′ and Te 6= ∅.

(6)

By the minimality of B′′, it is straightforward to show that B′′ = B′ − a′ ∪ e and hence
thatB′ = B∪a′. Since I ⊆ B′∩B′′ andB′ = MinBasM(I), the basisB′ is lexicographically
smaller than B′′ and hence e ∈ IP(B′′) = S ′′ t T ′′.

We will prove the lemma by first relating (S ′, T ′, A′) and (S ′′, T ′′, A′′) and then applying
the appropriate case of (6). Note that, as B′ 4int B

′′, Theorem 2 implies that IP(B′) is
strictly contained in IP(B′′) and A′′ ⊆ A′.

To prove the first case of the proposition, let e ∈ S ′′. Then S ′ = S ′′ − e and the
perfection ofM implies that T ′ = T ′′ − Te and A′ = A′′ ∪ Te. We now apply one of the
two last cases of (6) to obtain

S = S ′′ − e = S ′,

T = T ′′ = T ′ ∪ Te, and
A = A′′ = A′ − Te − a′,

proving the lemma in the case when e ∈ S ′′.
Now suppose e ∈ T ′′. The prefection of M implies that there is a unique f ∈ S ′′

such that e ∈ Tf . It follows that in this case S ′ = S ′′, T ′ = T ′′ − {t ∈ Tf | t 6 e},
and A′ = A′′ ∪ {t ∈ Tf | t < e}. Using these facts and the second case of (6), we
obtain S = S ′′ = S ′,

T = T ′′ − e = T ′ ∪ {t ∈ Tf | t 6 e} and
A = A′′ = A′ − {t ∈ Tf | t < e},

as desired.

Theorem 28. The class of perfect ordered matroids is closed under contraction.

Proof. Let B = S T
A ∈ B(N ). Then B′ = S ′T

′

A′ := B ∪ e ∈ B(M) is perfect and so

B′ =
∨
f∈S′

MinBasM(f ∪ T )

and this is the unique way to write B′ as the join of principal bases. We now consider
separately the three cases determined by which set of the STA-decomposition of B′ con-
tains e.

If e ∈ A′, then e ∈ A(MinBasM(f ∪ T ′)) for all f ∈ S ′. It follows immediately
that MinBasN (f ∪ T ′) = MinBasM(f ∪ T ′)− e. Thus the first case of Lemma 26 applies
and we obtain S = S ′ and T (B; f) = T (B′, f) for all f ∈ S. So

T = T ′ =
⊔
f∈S′

T (B′; f) =
⊔
f∈S

T (B; f)
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shows that B is perfect when e ∈ A′.
Now suppose e is an element of T ′. Then applying the second case of Lemma 26

yields S = S ′, T = T ′ − e and A = A′. By the perfection ofM, there is a unique g ∈ S ′
such that e ∈ T (B′; g). Note that T (B; g) = T (B′; g) − e and, for all f ∈ S ′ − g the
element e is active in MinBasM(f ∪ T ′). Thus T (B; f) = T (B′; f) for all f ∈ S ′ − g and
so

T = T ′ − e

=
⊔
f∈S′

T (B′; f)

= (T (B; g)− e) t
⊔

f∈S′−g

T (B; g)

=
⊔
f∈S

T (B; g),

and so B is perfect when e ∈ T ′.
Suppose e ∈ S ′. We deal with the cases T (B′; e) = ∅ and T (B′; e) 6= ∅ separately.

If T (B′; e) = ∅, then S = S ′ − e and T = T ′. Moreover, for all f ∈ S ′ − e we have

T (MinBasM(f ∪ T ′)) = T (MinBasM(f ∪ T ))

= T (MinBasN (f ∪ T )),

where the last equation holds by the first case of Lemma 27. Now we see that

T = T ′ =
⊔
f∈S′

T (B′; f)

=
⊔

f∈S′−e

T (B′; f)

=
⊔
f∈S

T (B; f)

as desired.
Finally suppose e ∈ S ′ and that T (B′; e) 6= ∅. Then S = S ′ − e ∪ a and T = T ′ − a.

The perfection of B′ implies that a ∈ T (B; f) if and only if f = e. For f ∈ S ′,
let B′f be the basis MinBasM(f ∪ T ′). When f = e, we have a ∈ T (B′; f) = T (B′f ; f)
and T (B′; f) ∈ I(N ). So in this case we have

S(MinBasN (T (B′; f))) = a, and

T (MinBasN (T (B′; f))) = T (B′; f)− a.

When f ∈ S ′ − e, let B′′f := MinBasM(f ∪ T (B′; f) ∪ e). Applying the first case of
Lemma 27 gives

S(MinBasN (f ∪ T (B′; f))) = S(B′f ) = f,

T (MinBasN (f ∪ T (B′; f))) = T (B′f ) = T (B′; f), and

A(MinBasN (f ∪ T (B′; f))) = A(B′f )− a′f
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where a′f is the maximal element of C(B′f ; e)− (F ∪ T (B; f)∪ e). We now have all of the
ingredients necessary to show that B is perfect when e ∈ S ′:

T = T ′ − a

=
⊔
f∈S′

T (B′; f)− a

= (T (B′; e)− a) t
⊔

f∈S′−e

T (B′; f)

= T (B; a) t
⊔

f∈S−a

T (B; f)

=
⊔
f∈S

T (B; f).

Combining Corollary 20 and Theorem 28 proves Theorem 17. We saw in Example 21
that if we wish to preserve the ordering of the ground set of a perfect matroidM when
passing to a minor N , then in general we may only delete or contract elements of B0 that
are coloops. If, on the other hand, we allow a reordering of the ground set of N , then we
have found no example of a minor of a perfect matroid that is not perfect. Thus we close
by offering the following conjecture that would follow directly from our results here and
Conjecture 22.

Conjecture 29. The family of internally perfect unordered matroids is minor-closed.

5 Internally Perfect Matroids and Stanley’s Conjecture

As mentioned in the introduction, our study of internally perfect matroids is motivated
by the desire to prove Stanley’s Conjecture using the internal order of a matroid. To
this end, we make the following definitions. Let M = (E,B, φ) be an ordered matroid
and let P = Pint(M) be the internal order of M less the artificial top element 1̂. Write
F = E − (B0(M) ∪ L(M)). and let S be the monoid over N generated by F , that is,

S :=
⊕
f∈F

Nef .

The dominance relation on S is defined by u 4dom v if vf − uf > 0 for all f ∈ F .
Call a map µ : P → (S,4dom) valid if µ is a height-preserving map whose image is an
order ideal of (S,4dom). Then since P is pure and the number of bases ofM at height i
in P equals hi(M), the existence of a valid map µ implies that M satisfies Stanley’s
Conjecture.

The main result of this article is that internally perfect matroids satisfy Stanley’s
Conjecture:

Theorem 30. Given an unordered matroidM, if there exists an ordering of the ground
set that makesM into an internally perfect matroid thenM satisfies Stanley’s Conjecture.
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In order to prove that such a matroid satisfies Stanley’s Conjecture we need to produce
a pure order ideal whose O-sequence equals the h-vector of the matroid. We will prove
the theorem via a sequence of lemmas that actually imply a stronger result: the internal
order of an internally perfect matroid is isomorphic to a pure order ideal.

For the remainder of this section we fix a rank-r internally perfect matroidM on the
ground set E. If e ∈ E is a loop inM, then e does not occur in any basis. This in turn
implies that the h-vector ofM\e equals the h-vector ofM. Therefore, we assume without
loss of generality thatM contains no loops. The first step is to define the monoid in which
we will construct the appropriate order ideal. Let B0 be the lexicographically-least basis
ofM and write F := E −B0. For each f ∈ F fix a generator ef and let

S :=
⊕
f∈F

Nef .

As |F | = h1(M) we have S ∼= Nh1 .
Recall that, by Theorem 5, there are exactly hi(M) bases at height i in the internal

order of M. Thus a natural next step is to define a map that sends the bases of M to
elements of S in such a way that the coordinate sum of the image of each basis equals
the cardinality of its set of internally passive elements. Since the matroidM is internally
perfect, Proposition 14 guarantees that each basis B = S T

A ofM can be written uniquely
as the join of principal f -bases ∨

f∈S

MinBas(f ∪ T (B; f))

where S ⊆ E − B0 and the set {T (B; f) | f ∈ S} is a partition of T . It is therefore
natural to consider the map µ : B(M)→ S defined by

µ(B) =
∑

f∈S(B)

∣∣f ∪ T (B; f)
∣∣ef .

It is evident that for any basis B the coordinate sum of µ(B) is equal to the number of
internally passive elements of B, and hence µ is height-preserving.

The first lemma we will prove is that µ injective.

Lemma 31. LetM be an internally perfect matroid and let µ : B(M)→ S be as above.
Then µ is injective.

Proof. Suppose there are two bases, B = S T
A and B′ = S ′T

′

A′ , of an internally perfect
matroidM such that µ(B) = µ(B′). Then by the definition of µ we have S = S ′ and, for
all f ∈ S, the cardinalities of the sets T (B; f) and T ′(B′; f) are equal. As the set of all
principal f -bases forms a maximal chain in Pint, there can be at most one prinicpal f -basis
at any height. This implies that

MinBas(f ∪ T (B; f)) = MinBas(f ∪ T ′(B′; f))
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for all f ∈ F . SinceM is internally perfect, so are both B and B′. So applying Proposi-
tion 14 for perfect bases, we see that

B =
∨
f∈S

MinBas(f ∪ T (B; f))

=
∨
f∈S′

MinBas(f ∪ T ′(B′; f))

= B′,

which shows µ is injective.

We will now prove that ifM is an internally perfect matroid, thenM satisfies Stanley’s
Conjecture by showing that the image of µ is a pure order ideal in S. Given a matroidM,
we call an order ideal O ⊂ S(M) valid forM if O is a pure order ideal whose O-sequence
equals the h-vector ofM.

Theorem 32. LetM be an internally perfect matroid and let µ : B(M)→ S be as above.
Then the image of µ is a valid order ideal forM.

Proof. To see that the image of µ is an order ideal we need only check that for any
basis B = S T

A of M and any ef in the support of µ(B), the vector µ(B) − ef is in the
image of µ. Note that for any element f ∈ F the generator ef is in the support of µ(B) if
and only if the element f ∈ S. Since B is a perfect basis it covers |S| bases in the internal
order by Proposition 16. By Lemma 31, the map µ is injective, so the |S| bases covered
by B in Pint get mapped to |S| distinct vectors in S with support contained in S whose
coordinate sum is one less than that of µ(B). As µ(B) has support |S|, it follows that for
every f ∈ S there is a unique basis B′ ∈ B such that µ(B′) = µ(B)− ef .

Now we check that the image of µ is a pure order ideal. By Theorem 5, the internal
order P̂int is a graded lattice. It follows that Pint (the internal order with the top element
removed) is a pure graded poset, and so the image of µ is a pure order ideal.

Finally, since µ is an injective map sending the hi(M) bases in Pint at height i to
vectors with coordinate sum i in S, it follows that the h-vector ofM is a pure O-sequence
completing the proof.

The preceding proof shows that the internal order of a perfect matroidM is isomorphic
to the corresponding valid order ideal given by the map µ, and hence that M satisfies
Stanley’s Conjecture. Stanley’s Conjecture is known to hold for a number of families of
matroids, and in the next section we compare these families to the family of internally
perfect matroids. In particular, in Example 34 of the next section we provide a perfect
matroid that is not in any of the families for which Stanley’s Conjecture is known to hold.

6 Perfect Matroids: Constructions, Examples and Counterexam-
ples

We now turn to the construction of internally perfect matroids. We have already seen in
Proposition 11 that every rank-2 matroid is internally perfect. Other matroids that are
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trivially internally perfect include the graphic matroidM(Cn) where Cn is the the cycle
on n vertices, as well as the 0- and 1-sums of perfect matroids.

The smallest graphic matroid that is not internally perfect for any ordering of its
ground set isM(K4). As K4 is planar and self-dual, we see that the cographic matroids
are not contained in the set of internally perfect matroids. On the other hand we now
construct an infinite family of nontrivial perfect cographic matroids as follows. First
we take M1 = M(C2) to be the cycle matroid on two elements represented by the
matrix M1 := [1 1] and, for r > 1, define Mr := PE(PL(Mr−1, ∅), {2r − 2, 2r − 1})
where PE and PL denote the principal extension and principal lift, respectively. It is easy
to see that, for all positive integers r, the matroid Mr is a graphic. Indeed, for r > 1,
define the graph Gr = (Vr, Er) inductively by Vr = Vr−1∪{r+ 1} and Er = Er−1∪{e, f},
where e = (r, r + 1) and f = (1, r + 1). Then we haveM(Gr) =Mr. For r = 1, 2, 3, the
graphs corresponding to theMr are given in Figure 3. The graph corresponding toMr

is planar and self-dual, soMr is also cographic.

1 2 3 4 5 6 7 8 9
1

2

1

2
4

3 1
2

4
6

3 5

Figure 3: Graphs giving rise toMr for r = 1, 2, 3

Proposition 33. For any positive integer r, the matroid Mr is internally perfect with
respect to the natural ordering on its ground set.

Proof. We proceed by induction on r and note that the base case is trivial. For r greater
than 1, each basis ofMr takes exactly one of the following three forms:

1. B = B′ ∪ {2n− 1} where B′ is a basis ofMr−1;

2. B = B′ ∪ {2n} where B′ is a basis ofMr−1;

3. B = B′−{2n−2}∪{2n−1, 2n} where B′ is a basis ofMr−1 such that 2n−2 ∈ B′.

If B = B′ ∪ e is a basis of Mr of type (1) or (2) then e is internally active in B and
hence S(B) = S(B′) and T (B) = T (B′). It follows that B is perfect. Otherwise we
have B = B′−{2n− 2}∪ {2n− 1, 2n} where both e := 2n− 1 and f := 2n are internally
passive in B. Moreover e is in the f -part of T and in no other g-part of T for g ∈ S(B).
It follows that T =

⊔
e∈S(B) T (B; e) and so B is internally perfect, proving the result.

Example 34. To illustrate this proposition we give the internal order of M4 in Fig-
ure 4. The internal order of M3 is a subposet of Pint(M4) and we have highlighted the
corresponding bases in blue. Notice that these bases are precisely those containing the
element 7 but not the element 8, and in every such basis the element 7 is an internally
active element.
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∅1357

2357 4157 6137 8135

2457 2637 4357 4617 6517 2835 4815 6813 8713

2467 2657 4637 6357 2485 2683 2873 4681 4835 4871 6851 8571

2468 2487 2685 2857 4683 4837 6835 8357

Figure 4: the internal order ofM4

Let M be a matroid with rank r on n elements and let the h-vector of M be
denoted h(M) = (h0, h1, . . . , hs, . . . , hr) where hs is the last nonzero entry of h(M).
ThenM satisfies Stanley’s Conjecture if any of the following hold:

1. M∗ is graphic [11],

2. M∗ is transversal [14],

3. M∗ has no more than n− r + 2 parallel classes [3],

4. n 6 9 or r(M∗) 6 2 [5],

5. r 6 4 [8],

6. M is paving [12],

7. M is a truncation [3], or

8. hs 6 5 [3].

This list represents the state of the art concerning Stanley’s Conjecture at the writing of
this article. For the sake of brevity let us call a matroidM interesting if it satisfies none
of the above properties. A priori it is not clear that there are any interesting internally
perfect matroids. Thus, to show that Theorem 30 is of theoretical interest, we must
exhibit such a matroid. In the next example we describe an interesting, perfect, rank-7
matroid on 10 elements. Then we generalize this matroid to obtain an infinite family of
interesting matroids and we conjecture that every such matroid is perfect.
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Example 35. LetN = N (N) be the rank-3 ordered vector matroid overQ on 10 elements
given by the columns of the matrix

N :=


e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
2 1 3 3 −1 −1 0 0 −1 −1
1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 −1 −1 1 1


and letM = N ∗ be the dual of N .

We first show thatM is interesting and then prove thatM is internally perfect. The
restriction ofM∗ = N to {e1, e2, e3, e5} is isomorphic to the uniform matroid U2,4 which
shows thatM∗ is not graphic. SoM does not satisfy Property (1) above. To see thatM
doesn’t satisfy (2) above note that the restriction ofM∗ to the set {e5, e6, e7, e8, e9, e10}
is the matroid obtained from the cycle C3 by adding a parallel element to each edge. This
restriction is not transversal by Theorem 14.3.1 in [19]. It is easy to see that transversal
matroids are closed under taking restrictions, and it follows thatM∗ is not transversal.
Also,M∗ is a rank-three matroid on ten elements with six parallel classes, and so satisfies
neither (3) nor (4) above.

Now we showM does not satisfy any of the final four properties listed above. As the
rank ofM is six,M violates (5). The circuits ofM are

C(M) = {1234, 125678, 1345678, 2345678, 1256910, 13456910, 23456910, 78910}

where, for example, 78910 refers to the set {e7, e8, e9, e10}. Since 1234 is a circuit with
fewer than r(M) elements, M is not paving. Moreover, one can show that for any
circuit C of M the cardinality of the closure of C is at most 8. So M contains no
spanning circuits. By Remark 1.12 in [3], this shows thatM is not a truncation. Finally,
the h-vector of M is (1, 3, 6, 10, 13, 15, 14, 6) which shows that M does not satisfy (8)
above. SoM is interesting.

Now we show that M is internally perfect with respect to the linear order induced
by the order of the columns of the matrix N . By Proposition 15, it is enough to check
that the maximal bases of M (with respect to the internal order) are perfect. Each of
these bases is of the form STA where S = {4, 8, 10} and A = ∅. We give these bases below
together with the partition 4T (Bi;4)8T (Bi;8)10T (Bi;10):

B1 = S2367 = 42386710∅

B2 = S2369 = 4238∅1069

B3 = S2567 = 4∅8256710∅

B4 = S2569 = 4∅8∅102569

B5 = S3567 = 43856710∅

B6 = S3569 = 438∅10569.

For i ∈ [6], we have T (Bi) =
⊔
f∈S(Bi)

T (Bi; f) and so Bi is internally perfect. It follows
thatM is internally perfect, as desired.
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Building on the previous example, we now define an infinite family of interesting
matroids. For n > 3, let G = Gn,D be the graph consisting of the double cycle C2

n (the n-
cycle with two copies of each edge) together with some set D of edges of the form (1, i)
such that i ∈ [n] \ 1. Orient each edge {i, j} so that i → j if i < j, and order the set of
all edges lexicographically. Write N = N(n,D) for the vertex-edge incidence matrix of G
and let N ′ be the (n× 4)-matrix with first two rows given by(

2 1 3 3
1 1 1 1

)
and all other rows having all entries equal to zero. Let N = Nn,D be the ordered vector
matroid given by the matrix [N ′|N ] and letM = N ∗. Note that N is a rank-n matroid
on 2n + |D| + 4 elements with n + |D| + 3 parallel classes. Moreover, the matroids U2,4
and C2

n can be obtained as restrictions of N . This shows that the matroidM = N ∗ does
not satisfy any of the properties (1)-(4) above. The matroidM has rank-n+ |D|+ 4 > 6
and the set {e1, e2, e3} is always a circuit of M, and so M does not satisfy (5) or (6).
Moreover, it is not hard to show by induction on n and |D| that M has no spanning
circuit and that the last entry of the h-vector ofM is at least 6. ThusM does not satisfy
either (7) or (8).

Computer experiments have shown that for n 6 7 and any collection of diagonals D
the matroid M = (Nn,D)∗ is internally perfect. We conjecture that this is always the
case.

Conjecture 36. For n > 3, let M be the dual of the ordered matroid Nn,D defined
above. ThenM is internally perfect.

We now compare the family of internally perfect matroids to each of the families of
matroids for which Stanley’s Conjecture is known to hold. We write IP for the set of all
internally perfect (unordered) matroids and Fi for the family of all matroids satisfying
property (i) above. The interesting perfect matroid in Example 35 shows that IP * Fi
for all i ∈ [8]. We will now show that none of the opposite inclusions hold by providing a
matroid in each family Fi that is not internally perfect for any linear order of its ground
set.

Example 37. As noted at the beginning of this section the matroid M = M(K4) is
a cographic matroid that is not internally perfect for any linear ordering of the ground
set. One easily verifies that M is a rank-3, self-dual, paving matroid on six elements.
Moreover, it satisfies the first condition of property (4). It follows that Fi * IP for i ∈
{1, 4, 5, 6}.

Example 38. Next we consider the uniform matroidM := Ur,n of rank r on n elements.
We will show that if r > 2 and n > r+ 1, thatM is not internally perfect with respect to
the natural ordering of the ground set, from which it will follow thatM is not perfect for
any such ordering. Note that, sinceM∗ is also uniform, if B is a basis ofM and e ∈ B
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then the fundamental cocircuit C∗(B; e) = E −B ∪ e. It follows that if B and B′ are two
bases such that B′ = B − e ∪ f and if e′ ∈ B ∩B′, then

C∗(B; e′) = C∗(B′; e′)− e ∪ f. (7)

Now let B be an f -principal basis ofM and let g ∈ [n]− [r]. Then B′ := B− f ∪ g is
a g-principal basis. Moreover, it is evident from (7) that e ∈ B ∩ B′ is internally passive
in B if and only if it is internally passive in B′. Thus if we write B = fTA , then B′ = gTA.
It follows that the join of B and B′ in Pint is perfect if and only if T = ∅. This implies
that the rank-r uniform matroid on n elements is perfect if and only if r = 2 or n = r+ 1.

In particular, the rank-3 uniform matroid U3,5 is not perfect. The dual of U3,5 is U2,5,
a rank-2 transversal matroid. Moreover, U3,5 is obviously a truncation of U4,5. Thus U3,5
is in Fi for i ∈ {2, 4, 5, 6, 7} and we have shown that Fi * IP for any such i.

Example 39. Let N be the rank-2 linear matroid on eight elements defined by the matrix(
1 1 0 0 1 1 1 1
0 0 1 1 −1 −1 1 1

)
and letM = N ∗. ThenM is a matroid of rank 6 on eight elements with 24 bases whose
dual has four parallel classes. Moreover, the h-vector ofM is {1, 2, 3, 4, 5, 6, 3}. It follows
thatM ∈ Fi for i ∈ {3, 4, 8}. Moreover, one can show thatM is not internally perfect
for any ordering of its ground set. This implies that IP * Fi for i ∈ {3, 4, 8}.

The previous examples show that none of the families of matroids for which Stanley’s
Conjecture is known to hold consist entirely of perfect matroids. Moreover, note that
the duals of the matroids U3,5 andM from Example 38 and 39, respectively, are rank-2
matroids. This implies that (U3,5)∗ andM∗ are internally perfect for any ordering of their
respective ground sets, and hence that the set of internally perfect matroids is not closed
under matroid duality.
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