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Abstract. This paper is the second part of [2] and is devoted to the study of the
spiral orbits of self maps of the 4-star with the branching point fixed, completing
the characterization of the strongly directed primary orbits for such maps.

1 Introduction

In this paper we continue the work done in [2], in order to complete the
characterization of the strongly directed primary orbits for self maps of
the 4-star with the branching point fixed. Remember that we call strongly
directed those periodic orbits satisfying the following condition.

Generalized Directed Rule. Let P be a periodic orbit of a map f € &,.
For each sequence Ay, Ai,...Ar_1 of overlapping arrows of P, it happens
that k > n.
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To develop our study, in [2] we have classified the primary strongly di-
rected orbits of the 4-star into several families, paying attention to several
features of its shape. First, we looked at the number of coloured arrows
the orbit has. For twist orbits, having no coloured arrows, and single or-
bits, with just one coloured arrow, a characterization independent on n is
summarized in [2, Theorem A].

In the case n = 4, the Generalized Directed Rule imposes some crucial
restrictions about the coloured arrows a primary strongly directed orbit can
have. Namely, such an orbit cannot have more than three coloured arrows
and it must be colour compatible (see [2, Theorem B]). For a directed orbit,
to be colour compatible means that for each nonempty set of coloured arrows
the sum of its colours is not a multiple of n. In particular, when n = 4, this
means that the orbit cannot have two red arrows, neither can have green
and blue arrows simultaneously. Moreover, if it has three coloured arrows,
then these arrows must all be of the same colour, green or blue.

The classification of the primary strongly directed orbits in the 4-star
with more than one coloured arrow also depends on another feature of its
shape: the existence of crossing arrows. We already know that such orbits
with crossing arrows are box (see [2, Theorem C]). Strongly directed orbits
without crossing arrows will be called spiral in this paper.

The goal of this paper is to end the characterization of the primary
strongly directed orbits by classifying the primary spiral orbits with more
than one coloured arrow. They are characterized as double (Definition 4.1)
and triple (Definition 5.3) orbits, in Theorems 4.9 and 5.14 respectively.
This part of the characterization of the primary strongly directed orbits is
by far more technical than the previous work done in [2].

This paper is organized as follows. Through Section 2 we describe spiral
orbits in general. In Section 3 we obtain a sufficient condition for spiral
orbits to be primary. Sections 4 and 5 are devoted to the study of double
and triple spiral orbits. Finally, in Section 6 we summarize the main results
of this paper.

2 Spiral orbits

In this section we start the study of the strongly directed periodic orbits
having no crossing arrows, that is, spiral orbits. We recall that two arrows
A and B such that b(A) < b(B) are said to be crossing if e(A) > e(B).
Clearly, single orbits are spiral. On the contrary, directed orbits having
only black arrows obviously have crossing arrows and, hence, are not spiral.



Since we want to characterize the spiral orbits which are primary, in
view of First Theorem (Theorem 2.3) of [1] and [2, Theorem B], in what
follows we shall assume that P is a spiral orbit of an E P-adjusted map
f € X, of period m with v < 3 coloured arrows. When necessary, we also
can assume that P is colour compatible, again by [2, Theorem B].

We note that, since P is directed and has some coloured arrow, m >
n = 4. Since the arrows are not crossing and P is directed, for each branch,
br, we have that either sm(br) = f(sm(oc=1(br)) or sm(br) is the end of
a coloured arrow. Notice that the first condition is not satisfied for every
branch because m > n. Hence there is one branch such that its smallest
point is the end of a coloured arrow. In particular, this implies that single
orbits are the only spiral orbits with a unique coloured arrow. Thus, since
single orbits are already studied, in what follows we only need to study
spiral orbits with v > 2 coloured arrows. So, from now on, v € {2, 3}.

We start by fixing the notation. Let bry be a branch such that smyg is
the end of a coloured arrow Fy. We label the points of P and the branches
of X,, as follows:

r; = f'(smgy) foreach i€ Z, and br;=c"(bry) foreach icZ,.

With this notation, we have Fy = (2, 1, %) and if Fj, withk =1,...v—
1 denote the other coloured arrows, then there exist p € {2,3,...,m — 1},
such that Fy = (xp,_1,1,,) for each k =1,...v — 1. For convenience, when
v = 3, we assume that p; < ps.

If we denote by A; the arrow beginning at x; (that is, b(A4;) = z; and
e(A;) = z;g1 for each i € Z,,) we have that Fy = A, and F}, = A,,_; for
k=1,...v—1. Let usset C = {Fy : k € Z,} and, for i,j € Z,, i # 7,
Cij =CnN {AZ, Ai@l; N Aj@l}- ObViOllSly, Cji = C\CZ] The following lemma
is a simple rewriting of [2, Lemma 2.4].

Lemma 2.1. Fori,j € Z,, i # j, we have

ind(z;) + Y (F) = ind(w;) +j O i

FeCy;

Let us set po = 0 and p, = m to unify the notation. Then the strings of
P are
Sy ={z; € P: p, <i<ppsu} k=0,1,...v—1,

of lengths 1(Sk) = pri1 — Dr-
We define ¢ : Z,,, — Z,, as follows:

for each i€ Z,, q(i)=Fk if x;€ 5.
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We are going to see that each string of a spiral orbit spirals out, which
justifies the name given to these orbits. Note that, by [2, Proposition 2.10],
this property is satisfied by every directed primary orbit with some coloured
arrow. Since we are only interested in the study of the strongly directed
orbits which are primary, we could have imposed this property to our orbits.
However, as we will see in Lemma 2.3, doing this would be redundant. We
start by proving that the beginning of each string is not the largest point in
its branch. This fact, which is evident for zp = smg < e(smA,_1), is stated
for the other strings in the following lemma.

Lemma 2.2. We have x,, < xp _r) and, if v = 3, there exists dy < py
such that xp, < Tp,_d,-

Proof. Let k€ {1,...v—1}. If ¢(F;) < 1(Sk_1), then the ¢(F})) arrows

App—c(F)s App—c(Fr)+15 - - - Apy—1 = Fie

are all black but the last one and, by [2, Lemma 4.3], z,, < &p,_¢p,)- In
particular this is what happens when Fj is green and, by [2, Lemma 4.4],
when k£ = 1. This proves the first statement of the lemma.

If ¢(F) > I(Sk—1) then, from above, we have that k = 2 and the arrows

Ag, e API*C(FI)*I’ APU A Apz—l = FQ, Ap2, e Am—l

are overlapping. Again by [2, Lemma 4.4], we have that py — 1 — ¢(F}) >
c(Fy). That is, py > c¢(F}) + ¢(F»). Since ¢(Fy) > py — p1, we can consider
the ¢(F},) consecutive arrows

Apz—C(F1)—C(Fz)a .o 'API—C(FI)—17 Apn .o -Apzfl = F27

in the above sequence of overlapping arrows. Then, again by [2, Lemma
4.3], we have that Tpy < Tpy—c(Fy)—c(Fy)- |

The next lemma already shows that each string spirals out.

Lemma 2.3. For each k =0,1,...v—1, if I(Sk) > n then xp ;i < Tp, +itn
fori=0,1,...1(Sg) —n—1.

Proof. Since the arrows are not crossing, it is enough to see that x,, < xp, +y.
This is immediate for £ = 0, because x, ~ xqg = smg. Let us see it for
k € {1,...v —1}. On the contrary, we assume that x,, > x, i,. Then
we claim that, for each ¢ = 0,1,...pr — 1, there exists a t € Z,, such that
x; < Zp,++ and we will get a contradiction.
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Now we prove the claim. Clearly, for each branch br there is just one
t € Z,, such that z,, 1, € br. Hence, the statement is true for ; = 0 because
xo = smy. Now we will prove that, if it is true for i € {0, 1,...p, — 2}, then
it is also true for 7 4+ 1. Indeed, if z; is the beginning of a black arrow, then
since the arrows are not crossing x; < x,, 4+ implies that z;11 < 2, 1441
and we are done if ¢ # n — 1. Otherwise, z;11 < Tp,41n < Zp,. If 2; is
the beginning of a coloured arrow, then i = p; — 1 (and k = 2). Thus, by
Lemma 2.2, there exists d; < p; such that ;41 = z,, < x,,_4,. Since the
arrows beginning at x; for j = 0,1,...p; —d; — 1 are all black, from above,
there is a t € Z,, such that x,,_4, < 2,4+ This ends the proof of the claim.

Then we obtain a contradiction in the following way. By Lemma 2.2,
Tp,—d, > Tp,, and for all t € Z,, \ {0}, z,, _4, ~ 2, % ®p, . That is, the
claim is false for : = p, — d. [ |

In what follows, for a,b € Z, when we write a = b we mean that a < b
and ¢ = b. The symbol = will also be used in the natural way. The
next simple corollary follows from Lemmas 2.1 and 2.3 and summarizes the
behaviour of each string of P.

Corollary 2.4. If q(i) = q(j) then x; < z; if and only if i < j.

To describe the spiral orbits, since we know already how the points of
a string are situated with respect to the other points of the same string, it
remains to study how each string is intertwined with the other ones. So,
in the rest of the section we shall study the relative position of points of
different strings. To do this we shall define certain numbers which will
determine when and how points of different strings are in the same branch.

For k € Z,, the next string to Sy will be Sig,1 and the previous one
Sko,1- Observe that, since v € {2,3}, given two different strings, they are
always consecutive. The arrow Fj, separates the string Sj from its previous
one.

Lemma 2.5. Two consecutive strings have points in the same branch if
and only if the sum of their lengths is greater than the colour of the arrow
separating them.

Proof. Assume that z; ~ x; with ¢(j) = ¢(i) ®, 1. Then observe that
x; = f"(x;) with r = j©p 1. Set ¢ = ¢(Fy(;)). By Lemma 2.1 we have r = c.
So, since ¢ € Z,, we get that » = ¢. On the other hand, by the definition
of r, it is clear that r < I(Syu)) + 1(Sq())-

Conversely, if [(Sks1) + 1(Sk) > ¢ = ¢(F}) then we can find an x € Sy
such that f°(z) € Si. Indeed, if ¢ > I(Sge1) it is enough to take x = x,,
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and if ¢ < [(Ske1) we take the x € Sy such that f¢(z) = z,,. Hence,
x ~ f¢(z) by [2, Lemma 2.4]. u

In order to analyze the relative positions of points of two consecutive
strings, we fix ¢ € Z,, and look at the strings S, and Syq1. Let ¢ be the colour
of the arrow separating these strings, that is, ¢ = ¢(Fye1). In accordance
with Lemma 2.5, to have points of both strings in the same branch it must
happen that ¢ < [(S;) + {(S4s1). Moreover, from the proof of the above
lemma, we see that in such a case there is an & € S, such that f(x) € Sya1
and x ~ f°(x). Hence f¢(xz) < x by the Generalized Directed Rule. With
this in mind we can define the following numbers:

Definition 2.6. Let ¢ € Z, be.
(a) If e(Fya1) > U(Sy) + 1(Sqw1), then we set 1, = ¢(Fyp1)-
(b) If e(Fye1) < 1(Sy) +I( q@l), then we set:
(b.1) i, = min{i € Z,, : q(i) = ¢ and [0, 2;] N Sye1 # 0}.
(b.2) j, =max{j € Zm cq(j) =q®, 1 and z; < 2, }.
(b.3) 14 = Jq Om iy
U

The motivation for this definition will be seen in what follows. In the
next lemma we gather the basic properties of the numbers i,, j, and r, when
there are points of both strings in the same branch.

Lemma 2.7. Assume that q € Z, and c(Fya1) < 1(S,) +1(Sqa1). Then the
following statements hold.

(a) c(Fya1) =rq <1(Sy) +1(Sye1)-
(b) = Pq OT jq = Dgp1-

(¢) iy = pq is equivalent to r, > 1(S,).
(d) rq+n <m.

Proof. (a) This follows immediately from Definition 2.6 and Lemma 2.1 (see
the first part of the proof of Lemma 2.5).

(b) If iy > py and j, > pge1, then the two arrows (x;, _1,z;,) and
(zj,-1,%j,) are black and, since they are not crossing, z;,—1 > x;,—1, in
contradiction with the definition of 4.

(¢) If iy = py, then r, = j, ©p, and hence r, > 1(S,). Otherwise, by (b),
Jq = Dga1 and then pyey © ry =i, > p,. This implies that r, < [(S,).

(d) Consider the m — r, overlapping arrows A; , A; ¢1,... Aj,c1. Since
P is strongly directed, we get m —r, > n. The 1nequal1ty is strict since at
least one of them is coloured. [ |



Note that, by Definition 2.6(a), the statement r, = ¢(Fyq;) of Lemma
2.7(a) is always true. Then, the next lemma follows straightforwardly from
Lemma 2.1.

Lemma 2.8. For each q € Z,, if q(i) = q and q(j) = ¢ ®, 1, then
i ~x; if and only if jOmi=1,.

The following proposition already describes the relative positions of the
points of the strings S, and Syg;.

Proposition 2.9. For each q € Z,, if q(i) = q and q(j) = q¢ @, 1, then
r; <z if and only if jOmi=1,.

Proof. In the case ¢(Fyg1) > 1(S,) + [(S4e1) there is nothing to prove be-
cause, by Lemma 2.5, for all i, j € Z,, such that ¢(i) = ¢ and ¢(j) = ¢ 1,
we have that z; o ;. Hence, by Lemma 2.8, j © 1 # r,.

Assume then that c(Fye1) < 1(Sy) +1(Sge1) and set w = min(i — p,, j —
Pge1)- Note that ¢(i —w) = ¢, ¢(j —w) = ¢ ® 1 and either i — w = p, or
J—W = pga1- Since the arrows are not crossing, z; < x; if and only if z;_,, <
T; . On the other hand, j ©1i = r, is equivalent to (j —w) © (I — w) =r,.
So it is enough to prove the proposition when either i = p, or j = pya:.

Let us consider first the case i = p,. If z; <z, clearly i, = p,. Then,
by Definition 2.6(b.2) and Corollary 2.4, j =< j,. Since j, = i, ® ry, We
have that j < p, ® r,. Conversely, j = p, @ r, implies I(S,) < r, because
Peer < J < p, @1, Hence, p, =i, by Lemma 2.7(c) and then, p, ® r, = j,-
Therefore, z; < x,, ¢, < ¥, by Corollary 2.4 and Definition 2.6(b.2).

Consider now the case j = pyg1. If p,,, < x; clearly i > i, Since also
Jq = Pga1, then ind(z;) = ind(z;, ) +i—i, and ind(z;,) = ind(2p, 4, ) +Js—Pear
by Lemma 2.1. Since x; ~ x,, ., and z;, ~ x;_, we have 0 = j, —pyg1 +i—1q.
Hence, pygp1 © 1 = j, © iy = 1, as wanted.

Conversely, if pyg1 © 1 = ry, we have that z, ., ~ z; by Lemma 2.8. If
we assume that x; <z, .., then the pye1 © ¢ arrows

Ai, Ai—i—l; S qu®191

are overlapping. Hence, pso1 © ¢ > n by the Generalized Directed Rule.
Let k € Z, be such that j, — p,g1 = k. Therefore pyq1 © 7 > k and, thus,
q(i + k) = q. Since the arrows are not crossing and pyg1 + k = j,, we get
Tipk < Tpygi+k < Tj, < ¥j,. Hence iy > i+k > i > p, and, by Lemma 2.7(b),
Jq = DPga1- Therefore pyg1 © 1 > pyg1 © 1y = 7¢; a contradiction. n
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We already know that, to have points of S, above points of S;a, it must
happen that ¢(Fyg1) < ((S;) +1(S4e1)- Now we get another condition about
the lengths of these strings in order to have points of S, below points of
Sqo1-

Proposition 2.10. Let q € Z, be. There exist i,j € Zy, such that q(i) = q,
q(j) =q®, 1 and x; < z; if and only if 1y +n < 1(Sy) + 1(Sge1). For each
i,J € Ly, such that q(i) = q and q(j) = q¢ ®, 1 we have

x; <xj ifandonlyif ro+n=jO,1.

Proof. Assume that there are i, j € Z,, with ¢(i) = ¢, ¢(j) = ¢®1 and x; <
;. Then, by Lemma 2.8 and Proposition 2.9, r,+n = joi < I(S,)+1(Sea1)-
Conversely, assume that r, +n < I(S,;) + [(Sye1) (in particular this gives
c(Fya1) < 1(Sy) +1(Sye1)). We consider two cases.

If rg +n > 1(S,), then g(p; ® (ry +n)) = ¢® 1 and, by Lemma 2.8,
Tp, ~ Tp,a(rg4n)- When iy > pg, 1, < Tp e 4n) Dy Definition 2.6(b.1). If
iq = Pq, then p, ® 1y = j, by Definition 2.6(b.3) and hence, x, < ¢y, @r,)+n
by Definition 2.6(b.2).

If r + n < I(S,), then i; > p, by Lemma 2.7(c) and j, = pge1 by
Lemma 2.7(b). Furthermore, ¢(pge1 © (1, +n)) = ¢ and, by Lemma 2.8,
Tpos16(rg+n) ~ Tpye- By Definition 2.6(b.3) we have pge © ry = 4,. Hence,
Tpye16(rq+n) < Tp,e: Dy Definition 2.6(b.1).

The last statement of the proposition follows trivially from Proposi-
tion 2.9 and Lemma 2.8. |

In the next lemma we state some special features of the numbers ry and
r,—1. In particular, statement (a) says that these numbers are (almost)
always defined according to Definition 2.6(b).

Lemma 2.11. The following statements hold.
(a) c(Fy) < I(Sp) + 1(S1) and, if v = 2 or P is colour compatible, then
also c(Fy) < 1(Sy—1) + 1(Sp).
(b) Jo =p1, ro <1(S0), io =p1 — 1o and xp, < Tp,_p,-
(c) 1(Sy—1) < Tyt + 1.

Proof. (a) [2, Lemma 4.4] with j = p; — 1 shows that [(Sy) > ¢(F}). There-
fore, c¢(Fy) < 1(So) + 1(S1). If v = 2 we have that ¢(Fy) < n < m =
[(S1)+1(Sy). When P is colour compatible and v = 3, since all the coloured

arrows are of the same colour (see [2, Definition 4.11}), from I(Sy) > ¢(F})
we get ¢(Fy) = ¢(Fy) < 1(S,—1) + 1(Sh)-



(b) Since xy = smyg, we have that iy > py = 0 by Definition 2.6(b.1).
Therefore, by Lemma 2.7(b,c), jo = p1 and ry < [(Sp). Hence, ig = p; — 1o
and z,, < ,,_, by Definition 2.6(b).

(c) ifr,_y+n <I(S,_1), then g¢(m —r,_;y —n) = v — 1 and, by Propo-
sition 2.10, z, »,_,—n < Zp, a contradiction with xy = smy. |

The relationships between the different numbers r, are given in the next
three propositions.

Proposition 2.12. If v = 2, then ro + 1, = m — n.

Proof. By Lemma 2.11(a), Definition 2.6(b.1) and Proposition 2.10, it is
clear that p; =iy if and only if ro+n < I(Sy) = p; and that, in such a case,
Tpy—ro—n < Tp,. Therefore, if ro +n < 1(Sp), also by Proposition 2.10 and
Definition 2.6(b), we have p; —rg —n = j; = p; & r; = p1 + 1 — m. That
is, m—n=ry+rq.

Assume now that ro +n > [(Sp). Then, i; > p; and, by Lemma 2.7(b)
and Definition 2.6(b.3), we have that j; = po = 0 and 4y = j; &1 =
m — r1. On the other hand, since ¢(rp + n) = 1 by Lemma 2.7(d), we
also have zy < z,,4, by Proposition 2.10. Hence, ¢y < 2y, < ZTpyin
by Definition 2.6(b.1). Then, from zq < Zp_,, We get ro +n = m — ry
by Proposition 2.10. From z,,—,, < Zyo4n, We get m —ry = 19 +n by
Corollary 2.4. This ends the proof of the proposition. [ |

Proposition 2.13. Ifv =3 then ro+ri +ro =m —n.

Proof. Assume first that ¢(Fye1) > 1(Sy) + [(Sge1) for some ¢ € Z,. Note
that, by Lemma 2.11(a), ¢ > 1. Then, by Definition 2.6, r, = ¢(F,a1).
Since ¢(Fyg1) > 1(Sy), there is an x € P such that x < z,,. Indeed, if such
an x does not exist, then by [2, Lemma 4.4] applied to the sequence

Apss Apits - Amo1, Ay Ap,

Pq>

with j = [(S,) — 1 we obtain a contradiction. Moreover, x € S, U S,a1 by
Corollary 2.4 and Lemma 2.5. Therefore, there is a point from S,_; which
is smaller than z,,. In particular, by Lemma 2.5, ¢(F,) < I(Sg—1) + 1(S,).
Moreover, by Proposition 2.10, [(Sy—1) +[(Sy) > 1q—1 +1n > rg_y + c(Fyan).
Hence pyg1 © (141 +1r4) > pg—1. On the other hand, from ¢(F 1) > I(S,)
we obtain p, > pya1 © ¢(Fyp1). So we have p, 1 < pgp1 © (rg-1 +74) < Py,
that is ¢(pge1 © (rg-1 + 1)) = ¢ — 1. Thus, by Lemmas 2.7(a) and 2.1,

Tpgar ™ Tpg@16(rg—1+rq)-
Let us show that ., < Tp, o 601 4r,)- Otherwise, the ry_; +r, arrows

qu@le(rq,1+rq)a Tt quen@l
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would be overlapping. By Definition 2.6(b) we have that pyg ©1 > j,1 >
Pg > Pgar © c(Fye1) and pg > ig—1 = jg—1 — Tg—1 > Pea1 © (c(Fya1) +7-1).-
Hence Aiqfl, .. -qu,1—1 are 7,_; consecutive arrows in the above sequence.
Since z;,_, > x;,_,, the ry = c(Fye1) arrows

APq@l@(Tq_1+Tq)a s Aiq—1*17 qu_n s qugm@l

would be overlapping, in contradiction with the Generalized Directed Rule.
Hence .4, < Tp,oi6(r,_14r,) and, by Proposition 2.10, r¢e1 + n = m —
(rg—1 + 7). That is, rg_y + 1y + rge1 = m — n.

Let us assume now that c(Fyg1) < I(Sy) + {(Sye1) for each ¢ € Z,,. If
i1 = pp then, by Lemma 2.7, Definition 2.6(b.3) and Lemma 2.11(b), we
have that z,,+,, < xp, < Zp,_r, with ¢(p1 +71) = 2 and ¢(p; — r¢) = 0.
Hence, by Proposition 2.10, ro4+n =< m—rg—ry. That is, ro+r;+ry = m—n.

When i; > p; then j; = ps, and we have to consider two more cases. If
io = po then Ty, 1r,—m < Tp, < Tpy—py, With g(pa + 172 —m) = 0 and ¢(ps —
r1) = 1, by Lemma 2.7 and Definition 2.6(b). Hence, by Proposition 2.10,
ro+n=m-—r;—1ry. Thatis, ro + 71 + 1o = m —n. If iy > py, we
have that r, < {(S,) for all ¢ € Z,, by Lemmas 2.7(c) and 2.11(b). Adding
up these three inequalities we get 7o + 71 + r9 < m. On the other hand,
by [2, Lemma 2.6] and Lemma 2.7(a) we have ry + r; + ro = m. Thus,
ro+71r+ro=m—n. [ ]

Whereas the above proposition gives an upper bound to the sum of all
the r,, the following one gives a lower bound of the same sum, valid only
when there are points of each string below points of the next string.

Proposition 2.14. If v = 3 and ry +n < I(S;) + [(Sge1) for all ¢ € Z,,
then ro +ri +ro =m — 2n.

Proof. Assume first that r; +n < [(S;). Then ¢(ps — 1 — n) = 1. By
Lemma 2.11(c), m — ps = I(S2) < ro +n < I(S2) + 1(Sp) = m — ps + p1
and, hence, q¢(po —m + 12 +n) = 0. Thus, Zp, r,—n < Tp, < Tpy—mtroin
by Proposition 2.10. Therefore, m — r; — ry — 2n = ry by Proposition 2.9.
That is, 7o + 71 + 12 =m — 2n.

When 71 +n > 1(S;), we consider two cases. If rg +n < [(Sp), then
Tpy—ro—n < Tp, < Tp,+r,+n by Proposition 2.10, with g(py —ro —n) = 0 and
q(p1 +7r1+n) = 2. Hence, m — ry — r; — 2n = ry by Proposition 2.9. That
is, 7o + 71 +ro =m —2n. If ro +n > [(Sy), since by Lemma 2.11(c) we
have ro +n > [(S), by adding up we get (rg +n) + (ry +n) + (ro +n) > m.
That is, rq + 1 + ro > m — 3n. Since ry + 1 + ro = m by [2, Lemma 2.6]
and Lemma 2.7(a), we have ry + ry + ry = m — 2n. [
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In view of Proposition 2.9 we can say that, for every x; € S, r, is the
maximum number of steps needed to go from z; to any point z; € Sye;
which is below z; (if there is such a point). Actually, Definition 2.6(b)
guarantees that, if there are points of both strings in the same branch, we
can find x € S, and y € S;g1 such that y < x and f"*(x) = y. Analogously,
Proposition 2.10 allows us to give a similar meaning to the number m —
(ry +n) when we interchange the roles of these strings. Moreover, in the
proof of that proposition we see that, if r, +n < [(S;) +1(Sze1), then there
are points ¥ € Sye; and y € S, such that y < x and f™ e+ (z) = y. To
simplify the use of the numbers r, and m — (r, +n) we define the functions
x and d as follows.

First consider the vx v lower triangular matrix x = (x4 ) whose elements

are: f k
_ _J o it ¢g<k,
qu_X(q’k)_{1 if ¢>k.

Let i,j € Zy,, be with ¢(j) = q(i) ®, 1. Then, by Proposition 2.9, we have
that
x; <x; ifand only if j—i+ x(q(i),q(4)) m=ry,

and, by Proposition 2.10,
r; <x; ifand only if ryp +n=j—1i+ x(q(i),q(j)) -m.

The following definition will help us in dealing with the above two con-
ditions.

Definition 2.15. For ¢,k € Z,, we set

d(g, k) =14 x(q,k)-m—r, if k=qg®1 and c(Fy) < I(S,) + 1(Sk),
re+n—x(k,q)-m if k=¢o1 and rp+n <I(Sk) +1(S,).

O

Remark 2.16. Observe that, for k& # ¢, we do not define d(g, k) unless
there are points of Sy below points of S,. Hence, from now on, when we
write d(q,k) we assume that it is defined. From Lemma 2.11(a) we have
that d(0,1) = —r¢ is always defined.

When v = 2, again by Lemma 2.11(a) we have that d(1,0) = m —
is also defined. Moreover, since I(Sy) + [(S1) = m, by Lemma 2.7(d) both
d(0,1) and d(1,0) are defined in another way: d(0,1) = r, +n — m and
d(1,0) = ro +n. Clearly, by Proposition 2.12, both definitions coincide. O
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The following result summarizes all previous ones about the relative
positions of the points of P.

Proposition 2.17. For each i,j € Z,, x; > x; if and only if

i=j+d(q(i), q(j)) -

Proof. The statement follows directly from Corollary 2.4, Definition 2.15
and the comments preceding it, having in mind that, since v < 3, every two
different strings are always consecutive. [ |

3 A sufficient condition for primarity

We continue studying spiral orbits P of EP-adjusted maps f € A, with
v € {2,3} coloured arrows. At the end of this section we shall get a sufficient
condition for such orbits to be primary. To do this we must obtain some
properties of the length of loops in the E'P-graph of the map.

We will use the notation from the previous sections. We take the EP-
basic intervals labeled by their largest endpoint. That is, for each i € Z,,,
we set I; = [a,x;] with a € EP, z; € P, a < x; and (a,z;) N P = 0.

Since the arrows are not crossing, I; — I;; for each ¢ € Z,,. That is, in
the E P-graph of f we can always find the fundamental loop Iy — I; — - - -
— I,y — Iy, which has length m and is associated to P.

Since f is EP-adjusted, if I; = [a,z;] — I; = [b,x;] there is an =, €
{a,z;} N P such that z; < z44;. In particular, if s = m — 1 then j = 0. We
get now our first inequality for a single step in the F P-graph of f.

Lemma 3.1. If I, — I; then

i+1=7+d(q(i),q(s)) + x(a(s), (s B 1)) - m + d(q(s B 1), 9(5))-
Proof. Since z; < z; and z; < x441, by Proposition 2.17,
i=s+d(q(i),q(s)) and s®l=j+d(g(s®1),q(j))-
Since s®1=s+1—x(q(s),q(s® 1)) - m the lemma is proved. [

Now, for any path I;,; — I;, — -+ — I;,_, — I;, in the EP-graph of f, we
denote by z,, the endpoint of I;, such that z; . < 2,6 (k=0,1,...1—1).
. From the above lemma (applied to each step of the path) we obtain the
fundamental inequality for loops. We restrict ourselves to consider loops of
length m because these are the only relevant loops in order to study the
primarity of P. Certainly we could easily do a more general work (including
any path), but here it seems not necessary.

12



Lemma 3.2. [f[io — [il — e I
EP-graph of f, then

m—1

m= S (dgli), a(se)) + x(a(se), alse ® 1)) - m + d(g(se ® 1), alixen)))
0

— I, is a loop of length m in the

m—1

Proof. By Lemma 3.1, we have

ik + 1 = dker +d(q(in), a(sk) +x(a(s8), q(sx ® 1)) - m +d(q(s, D 1), q(iken))
for each k € Z,,. Adding up these inequalities, the lemma is proved. [ |

Formula 1 from the above lemma is basic in our study. However, it is
cumbersome working with it because of its complicated right hand side. To
conveniently handle this expression, we have chosen to make use of a special
combinatorial graph with the strings of P as vertices. To do this we are
going to extend the notion of graph we have been using until now.

Let V be a finite set whose elements will be called vertices and let S
be a finite set whose elements will be called labels. Then I' = (V,S,U) is a
generalized oriented labeled graph (gol graph, for short) if U C V x V' x S.
The elements of U are the (labeled) arrows of the graph. Usually, an element
(u,v,e) € U will be represented graphically by u - v.

Now we define the graph which will help us to handle the expression in
the right hand side of (1).

Definition 3.3. The ¢P-graph of f is the gol graph (Z,,{d, x},U) such
that

(i) (4,74,d) € U if and only if d(i, ) is defined.

(ii) (4,j,x) € Uifand only if j =i or j =i, 1.
The loop 0 %15 -+ 5 v —1 % 0 in the ¢P-graph of f will be called

fundamental. Any loop of a gol graph of the form i = ¢ with ¢ € V and
e € S will be called trivial. O

Definition 3.4. To each arrow of the ¢P-graph of f it is assigned a weight
in the following way: (i, j,d) = d(i, j) and (i, 7, xX) = Xij - m.

For each path A\ = iy — i} —> -+ i, o 1; of length [ in the qP-
graph of f it is defined its weight W(\) as the sum of the weights of all
steps. That is,

U(N) = Y (tk,y Tht1, €k) -
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Case v =2:

M=035%150 U(Ng) =m (fundamental loop)
AM=05%1%0 U(\) =ro+n
A=0%1%0 W(X) =m —rg
A=051%0 T(N3) =n

Case v =
M=05152%0 V(X)) =m (fundamental loop)
AM=05%1%2%0 U(A\) =m—r
A=05%1%2%0 T(N) =m—r
AM=051%2%0 U(A3)=m—ri—ry
M=051%2%0 (A\) =m —r
A=051%2%0 U(As) =m—ro— 1y
X=0%1%2%0 U(Xg) =m—ro— 1y
)\7:0i>1—d>2—d>0 U(A;)=m—rg—1r1 —79
A=0%2%1%0 U(N\s)=ro+7r+7r2+3n—m
A=051%0 (X)) =ro4n
Mo=0%1%0 (M) =7
AMi=152%1 U(Ay) =r +n
Ap=1%2%1 (M) =n
Az =0-522%50 U(N\3) =ro4n
Aa=0%2%0 U(A\y) =n

Table I: The weights of the elementary loops of the ¢P-graphs of f.

Remark 3.5. By the definitions we have (i, 7, x) = 0 except if i = v — 1
and j = 0. In this case (v — 1,0,x) = m. Therefore, the fundamental
loop in the gP-graph of f has weight m. Moreover, by straightforward
computations we can obtain Table I, which gives the weights of loops in
some qP-graphs of f. O

Now, we are going to study the relation between the £ P-graph and the
qP-graph of f.
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Definition 3.6. Each arrow I; — I; in the EP-graph of f generates the
following path (4, j) of three arrows in the ¢P-graph of f:
N d d .
q(i) 5 q(s) S q(s D 1) = q(4)
%

Then, each path w = [, — I,
E P-graph of f generates a path

- — I;, | — I, of length [ in the

-1

®(w) = p(io, 11)p(ir, 2) - - (ir—1,11)

of length 3/ in the ¢ P-graph of f, which is the concatenation of the [ paths
of three arrows generated by the arrows of w. O

With these definitions we can restate Lemmas 3.1 and 3.2 as follows.
Lemma 3.7. If I; = I;, then i+ 1= j + V(p(i,7)).

Lemma 3.8. If w is a loop of length m of the EP-graph of f, then m =
(P (w)).

Remember that in any graph (in gol graphs too) an elementary loop is
a loop that has no repeated vertices and that each loop can be obtained as
a concatenation of elementary loops. So we will focus our attention on the
elementary loops of the ¢P-graph of f.

Remark 3.9. The loops shown in Table I are all non-trivial elementary
loops in all possible ¢ P-graphs of f. O

Lemma 3.10. If A is an elementary loop of the gP-graph of f, then U(\) >
0. Moreover W(X\) =0 if and only if X is trivial.

Proof. If X is trivial it is clear that W(\) = 0 because for each i € Z, we
have that x(i,7) = 0 and d(4,7) = 0. Now we show that if A is not trivial
then W(\) > 0.

In the case v = 2, by Remark 3.9 it is enough to look at the list of loops
and weights given in Table I, taking into account Proposition 2.12.

Also, in the case v = 3 the loops \; (i = 0,1,...,14) listed in Table I are
all the elementary non trivial loops that a ¢ P-graph of f can have. In view
of their weights it is clear that ¥();) > 0 for ¢ = 9,10,...,14 and i = 0.
Proposition 2.13 assures us the same for ¢ = 1,2,...,7 and Proposition 2.14
shows that ¥(\g) > 0. u

We are, at last, ready to give the promised sufficient condition for the
primarity of P. Let A be the set of all elementary non trivial loops different
from the fundamental one of the ¢P-graph of f. For a spiral orbit P of
period m we consider the following condition:
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Primarity Condition.

mZY YN with i€ Zy,.

AEA

The name given to the above condition is justified by the following the-
orem.

Theorem 3.11. If P is a spiral orbit of an EP-adjusted map f € X,
of period m with v € {2,3} coloured arrows and satisfies the Primarity
Condition, then P is primary.

Proof. Let w =1;, =+ I;;, — -+ — I,  — I;, be a loop of length m in
the E P-graph of f. We are going to show that w must be the fundamental
loop. Since f is EP-adjusted and P is associated to the fundamental loop,
by [1, Proposition 1.10] and the First Theorem (Theorem 2.3 of [1]), this is
enough to see that P is primary.

We write ®(w) as a concatenation of elementary loops. Let ng be the
number of times that the fundamental loop of the ¢ P-graph of f is repeated
in this expression. For each A\ € A, let n) be the number of times that the
loop A is repeated in this expression. Then, by Lemmas 3.8 and 3.10, we
have

m=U(Q(w)) =nem+ Y _mPT()).
AEA
Since, for each A € A we can set ny = n\n+by with n) > 0 and by € Z,,, we
get that n\U(\) = nfyU(\)-n+b ¥ (A) = b, ¥(A) by Lemma 3.10. Therefore,

m = nom + Z T ()
AEA

with by € Z,. Since ¥(\) > 0, we have ng < 1. On the other hand, the
hypothesis implies ny > 0. Hence ng = 1 and, therefore, n, = 0 for all
A €A

This means that in ®(w) there are no arrows of the form (i, 7, d) with
i # j, and that there appears one and only one of the form (v — 1,0, x) (of
course, there will also be many trivial loops). That is, from Definition 3.6 it
follows that for each arrow I;, — I;,, of the loop w we have q(i) = q(si)
and q(sx @ 1) = q(ige1). Also, there is one and only one k' € Z,, for which
s = m — 1. Hence, by Lemma 3.1 (or 3.7), for each k € Z,,,

ikeﬂgik—i—l if k?ékl and ik/@lgik1+1—m.
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Neither of these inequalities can be strict, for otherwise, adding up them all
we would get 0 < 0. Hence, iyq = ix+1ifk # k' and 0 < iprg = g +1—m.
This last relationship implies iz = m —1 and ixg1 = 0. From this, by using

the other equalities in an ordered way, we get that {ig,i1,...,0,_1} IS a
cyclic permutation of {0,1,...,m — 1} (namely, iy, = k& (m — 1 — k') for
each k € Z,,) and, hence, w is the fundamental loop. [ |

In the next sections we shall see that the Primarity Condition is also
necessary for the primarity of P. In fact, in each case (v = 2 or 3) we
obtain necessary conditions for primarity which are equivalent (but easier
to handle) to the Primarity Condition.

4 Double orbits

In this section we characterize the primary spiral orbits with exactly two
coloured arrows. To this end we keep the notation of the previous sections.
In particular we assume that P is a spiral orbit of period m of an EP-
adjusted map f with v = 2 coloured arrows. Remember that, in this case,
both d(0,1) and d(1,0) are defined (see Remark 2.16).

We shall show that primary spiral orbits with two coloured arrows are
precisely those defined as follows.

Definition 4.1. A spiral orbit with two coloured arrows is called double if
it satisfies

m % By(m—r,) forany q€Z, and S, €Z,. (2)
U

The fact that double orbits are primary follows from the following result
and Theorem 3.11.

Lemma 4.2. Let P be a spiral orbit with v = 2. Then the Primarity
Condition is equivalent to (2).

Proof. For v = 2, by Remark 3.9, the ¢P-graph of f has three elementary
non trivial loops different from the fundamental one, whose weights are n,
m — ro and, by Proposition 2.12, ro + n = m — r;. Then, the Primarity
Condition is written as follows:

for any S, By, B1 € Zy, m Z B+ Bo(m — o) + fi(m —11).

Setting 8 = Bye1 = 0, we get (2).
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Conversely, if (2) holds, we have that

m Z Bn + Bo(m — ro) + Bi(m — 1)
when By = 0 or 5, = 0. If 531 > 0, by Proposition 2.12, we have that
Bo(m —1o) +fim—r)=m—ro+m-—ri=m+n>m.
Hence the Primarity Condition is also satisfied. [ |

To complete the characterization of the primary spiral orbits with two
coloured arrows, we still need some more technical results, which will be
obtained in the following lemmas.

Since, by Proposition 2.12, ry and r; determine one another, from now
on we simplify the notation by setting r = ry. Then r; = m — (n + r).
Remember also that jo = p; = [(Sy) > r, 49 = p1 —r and x, < z,,_, by
Lemma 2.11(b).

In what follows we will use the labeling of F P-basic intervals introduced
in the previous section.

Lemma 4.3. [, , ; — I,,.

Proof. Since ig = p; — r, we have that I, _,_1 = [a,xp, _,—1] with a = 0 or
a € Sy by Definition 2.6(b.1). Hence, z,,_, > z,, > f(a). u

Lemma 4.4. If m —r < py, then I,_._1 — Iy.

Proof. Since m —r < py, we have ¢(m — 1 —r) = 0. By Corollary 2.4, if
Tm_1 < x; then ¢(i) = 0 and, by Proposition 2.9, i = m — r — 1. Hence,
Iyr 1 = [®m_1, Tm_1-r]- Since (Ty_r_1,Tm_r) is black and (z,,_1,x¢) is
coloured, the lemma is proved. [ |

Lemma 4.5. Assume that n+r < py. If I,,_1 = [a,xp,_1], then I, 1 —
Iy, —n—r, except when simultaneously we have a = T,y and py =n +r.

Proof. Since n 4+ r < p;, we have that ¢(p; — n —r) = 0 and, by Proposi-
tion 2.10, z,, > =p, _p—,. Furthermore, the arrow A, _; is coloured. There-
fore, I,,_1 — I, _n—, except if the arrow (a, f(a)) has the same colour as
A, 1 and f(a) > xp,_n—r. In this case, (a, f(a)) = Fy; that is a = 4
and f(a) =2y = xp, n_r. Hence, p =n +r. [ ]

Lemma 4.6. Assume that n < py. If I,,_1 = [a,zp,—1] and (a, f(a)) is
black, then I,y — I, .
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Proof. If a € Sy, then a = x,,_;_, by Corollary 2.4 and so f(a) = z,, _y.
If a € Sy, then @ = x,,_14, by Proposition 2.9. Since (a, f(a)) is black,
f(a) = zp,4r € Si. Therefore, f(a) > x,,_, by Proposition 2.10. Since the
arrow A, _; is coloured, the lemma is proved in both cases. [ |

Lemma 4.7. If ry < py, then I, 1 =[x, 1, Tp1] = I.,. If, furthermore,
m—n>p, then I, 1 — I, .

Proof. By Lemma 2.7(a) we have that 7y > 0. Hence ¢(ry — 1) = 0.
Therefore, by Proposition 2.10, z, -1 < Zp—1. Then, again by Proposi-
tion 2.10 and Corollary 2.4 we have that (z, _1, Z»—1) N P = (. Hence,
Iy 1 =[xr, 1, Tpm_1]. Since (z,, 1, x,,) is black and (x,, 1, o) is coloured,
Ly 1 — 1.

If m—n > p; then, by Proposition 2.9, we have that z,,_,, < z,,. Hence,
Io1 — L. |

Lemma 4.8. Assume that n +r < py. If ri > pi, then Iy _1ipyr =
[xmfla :Up171+n+r] and [p171+n+r - IPI*(TL‘}’T‘)'

Proof. Since m—n—r = r; > p; we get ¢(p1+n+r—1) = 1. Then, by Propo-
sition 2.10, zp,—1 < Tp,—14n+r and, as above, we obtain (z,,-1, Tp, —14n4r) N
P = 0. Hence, Iy, —11n+r = [Tp—1, Tp,—14ntr). Moreover, A, _1ipn4, must
have a different colour than A, _; (which is coloured) because, otherwise,
e(Ap, —14n+r) = To and then these two arrows would be crossing. By Propo-
sition 2.10 we have z,, > xp _(nqr). Hence, Iy, 1ynyr — Iy _(nir)- |

Now we can state the main result of this section.

Theorem 4.9. A spiral orbit with two coloured arrows is primary if and
only if it is double.

Proof. Let P be a spiral orbit of a map f € & with two coloured arrows. By
First Theorem (Theorem 2.3 of [1]) we may assume that f is F'P-adjusted.
As it has been said before, the fact that (2) is sufficient for P to be primary
follows immediately from Lemma 4.2 and Theorem 3.11. Thus, double
orbits are primary.

Now we will show that if P is primary then it satisfies (2) and so, it is
double. Assume then that P is primary.

By Lemma 2.7(a) and Proposition 2.12 we have that ¢(Fye1) = r, =
m — rqe1 for each ¢ € Zy. Then, by [2, Proposition 4.7], we already know
that m # f,(m —r,) for each ¢ € Z, and j, € {0, 1}.

Now we shall prove that if for some g € Z there is some 3, € Z,,\ {0,1}
such that m = f,(m—r,), then we can find a nonrepetitive loop of length m
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in the E P-graph of f, different from the fundamental one and going through
some nonbranching interval. This will end the proof of the theorem because,
by [3, Lemma 2.2] and [1, Proposition 1.11] there exists a periodic orbit of
period m different from P. Hence, by First Theorem (Theorem 2.3 of [1]), P
is not primary. We shall build the wanted loop by concatenation of suitable
elementary loops. We consider two cases:

Case (a). m= By(m —ro) for some py € Z, \ {0,1}. By Lemma 4.3, we
may consider the elementary loop

A=Iy == =1L, == In1— 1

of length m — r. This loop can be concatenated with the branching loop,
a. If m > fo(m — r), since m = By(m — r), then m = By(m — r) + In with
[ > 1. Hence, the loop \%a! has length m and is nonrepetitive. Moreover,
by Lemma 2.7(d), m —r > n, hence A goes through some basic interval not
containing 0. Then we are done. Assume now that m = [Sy(m — r). Since
Bo > 1, it follows that r = (fy — 1)(m — r). Hence, since p; > r, we have
that p; > m — r. Therefore, by Lemma 4.4, we also have the elementary
loop
y=Iy—=0L—--—1,,1—1

of length m — r. Then, the loop A’0=Y~ is the one we are looking for.

Case (b). m = Bi(m — ry) for some 5, € Z, \ {0,1}. If z, is the
smallest point in its branch we can change the labeling of the points of the
orbit in such a way that z,, is relabeled as zy and we are done by Case
(a). Therefore, we may assume that (0,2, ) N P # 0. By Corollary 2.4,
(0,2,,) NP C Sy. Hence, iy = p, and, by Lemma 2.7(c), we see that
m—n—r =ry >1(S;) =m — p;. Therefore, p; > n+r. Now we consider
two subcases.

Subcase (b.i). I, = [a,2,,_1] with a # x,—1.  The interval I, _; is
not branching, because z,,_; is the beginning of a coloured arrow. Hence,
a is the beginning of a black arrow. By Lemmas 4.5 and 4.6 we have the
elementary loops

)‘p = Ipl—l - [pl—(n-lrr) — Ipl—l

and
Hp = Ip—1 — Ipl—n — Ipl—l

of lengths n +r = m — r; and n, respectively. If m > fj(m — ry), since
m = [1(m —ry), then there exists [ > 0 such that the loop Agluﬁ, has length
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m and, of course, is nonrepetitive. Since this loop obviously goes through
I,,,_1 which is not branching, we are done.

Assume now that m = B;(m — ). We still have two possibilities. If
r1 < p1, then Lemma 4.7 gives the elementary loop

Am = m—1_>Ir1_>"'_>Im—1

of length m —r; = n+r. This loop is different from A, and can be concate-
nated with it, because r; < p; —1 < m—1. So, we are done by considering,
for instance, the loop AJ1='\,,.

If r; > py, then Lemma 4.8 gives the elementary loop

n= [p171+n+r - Ip1—(n+r) s Ip171+n+r

of length 2(n+r). Since p; — (n+7) <p;—1 < p; — 1 +n+r, this loop can
be concatenated with A\,. Moreover, we have that m > p; +n-+r > 2(n+r).
If we assume that m = 2(n+r), we get m = p; + n+r and p; = n+r and
then, by Proposition 2.10, we have that z,, 1 < x,_1 and zy < z,,. This
is a contradiction with the fact that the arrows are not crossing. Thus, we
have that 2(n +r) < m = fy(n +r). Therefore, f; = 3 and the loop 0\, is
the one we are looking for.
Subcase (b.ii). [, 1 = [Zm_1,%p,—1]. By Proposition 2.9, m — 1 —r =
p1 — 1. Hence ¢(m — 1 —r) = 0 and, again by Proposition 2.9 and by
Corollary 2.4, xpy—1 < Zp—1—y < p,—1. That is, py = m — r. Hence,
r1 < p; and, by Lemma 4.7, we have the elementary loop A,, of Subcase
(b.i). Moreover, if py = n +r, then ry =m — (n+r) =m —p; = r, and
we are in Case (a). Therefore, we may assume that p; > n + r. Thus, by
Lemma 4.5, we also have the elementary loop A, which, as in Subcase (b.i),
is different from \,, and can be concatenated with it. So, as above, we are
done if m = By (m — ry).

When m > f1(m — r1) we still need a suitable loop of length n. If
m —n > p1, by Lemma 4.7, we have the elementary loop I, 1 — I,,_, —
«oo — I, 1 of length n. If m —n < py, then r; < p; —r — 1. Therefore,
since p; < m — 1, by Lemmas 4.7 and 4.3, we have the elementary loop

Iy =1 — o= Loy — Iy — o= Ly

of length n (I,,_r—1 — I, is a shortcut of r arrows in the loop A, of length
n + ). These two loops can be concatenated with \,,. Since \,, also goes
through a non branching interval (namely, I,, 1), we get the wanted loop
as in Subcase (b.i). This ends the proof of the theorem. u
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We recall that for maps from ), double orbits must have the coloured
arrows of the same colour. In that case, we can define numbers ry and r;
in a similar way to Definition 2.6. However, these two numbers coincide.
Namely, r, — 1 is the number n from [1, Definition 4.27]. We have an
analogous result for double orbits of maps from X; with coloured arrows of
the same colour.

Corollary 4.10. Let P be a spiral orbit with v = 2 and c(Fy) = c(F}).
Then, P is primary if and only if ro = ry £ 2. In such a case, ry =
(m —n)/2.

Proof. By Theorem 4.9 it is enough to show that (2) is equivalent to rq =
T §é 2.

Let us set ¢ = ¢(Fy) = ¢(Fy). First of all, by Lemma 2.7(a), we have
r =19 = c(Fy) and r = ¢(Fp). Hence, r = ¢ = r, for any ¢ € Zy. Thus, for
each q € Zy, m = 2r = 2(r, + n) = 2(m — rye1) by Proposition 2.12.

Assume that (2) holds. Then m < 2(r, + n) for each ¢ € Z,. That is,
m = 27, +n. From this and Proposition 2.12 it follows that r,q < r, for
each ¢ € Z,. Therefore, ry = r1. Moreover, r # 2 since (2) implies that
m # 0.

Assume now that ro =7, =r # 2. Since r = ¢ # 0 and r # 2, we have
that r = ¢ € {1,3}. Hence m = 2r = 2. Then, since m —r =r +n = r,
clearly m # f(m —r) if 5 € {0,1,3}. On the other hand, m = 2(m — r)
but, by Proposition 2.12, 2(m — r) = 2r +2n = m +n > m. Thus, (2) is
satisfied.

The last statement of the corollary follows immediately from Proposi-
tion 2.12. |

5 Triple orbits

In this section we study the last class of orbits we need to consider to end
our characterization of strongly directed primary orbits. Namely, the spiral
orbits P with three coloured arrows. We keep, of course, the notation of the
previous sections and assume that f is FP-adjusted. We note that if we
want P to be primary then it must be colour compatible by [2, Theorem B.
That is, all three coloured arrows must have the same colour ¢ € {1, 3} (see
2, Definition 4.11]). We also know, by [2, Theorem 5.10], that m cannot be
a multiple of 3. Moreover, by [2, Lemma 2.6], m must be congruent with
3c.

Theorem 3.11 gives a sufficient condition for P to be primary. We want
to show that this condition is also necessary. In fact we are going to show
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that, under the hypotheses c¢(Fy) = ¢(F1) = ¢(Fy) = ¢ € {1,3} and m
not a multiple of 3, there is a simpler condition which is equivalent to
primarity and to Primarity Condition. To state this new condition we need
the following definition. Note that, if m € N is not a multiple of 3 and
m = 3¢, we can write m = (3l + k)n + 3¢ with [ > 0 and k € Z; \ {0}.
Definition 5.1. For m = (3l + k)n + 3c with [ > 0 and k € {1, 2}, we set
=g R

The properties of p summarized in the next lemma are obvious (see
Lemma 2.7(a) and Definition 2.6(a)).

Lemma 5.2. Let P be a spiral orbit of period m not a multiple of three,
with three coloured arrows of the same colour c. Then p = ¢ <, for each
q€Zz andm—2n=3u=m — n.

We shall show that the primary spiral orbits with three coloured arrows
are precisely those defined as follows.
Definition 5.3. A spiral orbit P of period m will be called triple green
(resp. blue) if it satisfies:

(i) m is not a multiple of 3.

(ii) P has exactly three coloured arrows, and all arrows are green (resp.

blue).

(iii) ro=ro=p=r.

(iv) If d(2,1) is defined or d(1,0) or d(0,2) are not defined, then r; = p.
When the colour of the arrows does not mind, we shall call these orbits
simply triple. O

We begin by showing that triple orbits are indeed primary.
Proposition 5.4. Triple orbits are primary.

Proof. By Theorem 3.11, we only have to prove that if P is a triple orbit
of colour ¢, then P satisfies the Primarity Condition. To do it we use the
notation of Definition 5.3 and Table I. By (iii) and (iv) of Definition 5.3,
the weights of the fourteen elementary non trivial loops different from the
fundamental one which we can find in the ¢P-graph of f satisfy:

U(N) = m—p for i=1,24.
U(\) = m—2u for i=3,56
U(Ar) = m—3p

U(Ag) = 3(p+n)—m

U(\) = p+n for i=9,11,13.
U(\) = n for i=10,12 14.
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(where the first three inequalities are equalities except, maybe, when d(2, 1)
is not defined but d(1,0) and d(0, 2) are).

If k € Z3 \ {0} is such that m = 3u + kn then, for each choice of the
numbers Sy € Z,, for A € A, we can write

S BN = a2+ kn) + B(u+n) =S
AEA

for some a, f € Z,,. It is enough to see that m % S.

When af > 0, since S > 3u+ (k+ 1)n = m +n > m, we get that
m% S.

If « > 0 and 8 = 0, we see that m % S because m # a(2u + kn) for
each o € Z,. Indeed, since m = 3¢, p = ¢ and ¢ € {1, 3}, it follows that
m=3orl,2u=2and a2u+kn) =0 or 2.

If =0, fromm = 3¢, p = cand ¢ € {1, 3}, it follows that m £ 3(u+n)
for p € Z, \ {3}. When 5 = 3, we have 3(u+n) = m+ (3 — k)n > m.
Hence, m%; S. [ |

Now we want to prove the converse of this proposition. Therefore, until
otherwise stated, we assume that P is a primary spiral orbit with three
coloured arrows.

First we have the following result which is already well known.

Lemma 5.5. If P is a primary spiral orbit with three coloured arrows, then

P satisfies (i) and (ii) of Definition 5.3.

Proof. 1t follows from [2, Theorem 5.10] and [2, Theorem B] (see also [2,
Definition 4.11]). [

In what follows we will denote by ¢ the colour of the three coloured
arrows of P. Now only it remains to show that P also satisfies (iii) and (iv)
of Definition 5.3. To do this we will use the following technical lemmas.

Lemma 5.6. min(rq, r,79) = p.

Proof. By Lemma 5.2, y = min(rg,r1,73). So, if g < min(rg,r1,rs2), then
p+ n = min(rg,r1,72). Hence 3(p+n) =< rog+1r +ry = m —n by
Proposition 2.13. However, by Lemma 5.2, we have that 3u+3n=m+n. R

Recall that r, +n < I(S,) + {(Sye1) is the condition we need to define
d(g® 1,q), for each ¢ € Z3 (see Remark 2.16 and Proposition 2.10). The
following lemmas give useful relationships when each of the numbers d(q @
1,q) are defined.
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Lemma 5.7. If r,+n < I(S,)+1(Ssae1) for some q € Zs, then there are r,+
n — 1 = p black arrows, By, By,...,B, 1, such that By, By, ..., B, 1, Fyg
are overlapping.

Proof. By Proposition 2.10 we get that z, . o +n) < Tp,e if 74 + 1 <
I(Sq) and zp, < @p,@(ry+n) if 7 + 1 > 1(S;). Then we have that the ar-
TowWs Ay oi0(rgtn)s - - s Apggior i the first case and A, o\, .. Ap o, +n-1)
Ap,s .- Apgio1 in the second one, are overlapping. [ |

Lemma 5.8. If ry+n < I(S,) + (Sye1) for some q € Zs, then ry = pu.

Proof. By Lemma 5.2 we have that r, = p. Assume that r, < p. Then,
rq +n = p. That is, 4 = r, + n+ k'n for some k' > 0. Let £ > 0 be such
that m = 3u + kn. By Lemma 5.7 and [2, Lemma 4.5], f has a single orbit
of period ry+n. Then, by [2, Lemma 3.7(b)], and the Adjusting Lemma (|1,
Lemma 1.18]), f has a periodic orbit of period 3(r, +n) + (3k" + k)n = m,
with span strictly included in (P). Since f is E'P-adjusted, this contradicts
the primarity of P by First Theorem (Theorem 2.3 of [1]). [ |

Lemma 5.9. If r, + n < I(S,;) + (Sye1) for some q € Zj, then r, =
max(rg, 71, 2).

Proof. We will show that for each k € Z3\{q} we have rp < r,. If ¢ > I(Sk)+
[(Ska1), then by Definition 2.6(a) and Lemma 5.2 we have r, = ¢ = r,. So
we assume that ¢ < [(S) 4+ 1(Ske1). By Definition 2.6(b), the m —rj arrows

Ajyo o Ajor

are overlapping. Note that we get this sequence of arrows by eliminating
the arrows A;, , ... A;, o1 from the whole sequence of arrows of P. Hence we
have eliminated exactly one coloured arrow, namely Fjqq, which separates
the strings Sy and Skg;. That is, in the remaining sequence all the arrows
are black except A, o1 = Fj and A, o1 = Freor-

Assume that 7, > r,. By Lemma 5.2 we have r, = r, + [n for some
[ > 1. We note that, since r, =c¢ > 1, then p =r,+n —1 > n. We claim
that the n black arrows By, By, ..., B,_1 from Lemma 5.7 are overlapping.
To prove the claim we consider several cases.

. From the proof of Lemma 5.7 it follows that if r, +n < (S,), then the
arrows By, Bi,..., By, 1 are Ay o oretn)s - -5 Apggio(ra+1)- They are over-
lapping because, by Corollary 2.4, 7, o\ o(rg4n) < Tp,e10m,-

Assume now that r, +n > [(S;). We note that p, ® (1, +n) > pga1 +n
if and only if 7, > 1(S,). So, from the proof of Lemma 5.7, we see that
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the arrows By, By, ..., By, 1 are Ay o, Ay argan—1)s Apys - - Apgrome+1)
when r, < I(Sy) and Ay, 5, ,..., Apg,+n—1 When v, > [(S;). In the first
case they are overlapping because z, ., < Tp 5 0or, by Proposition 2.9. In
the second one we have z, ., < 7, . ,+n by Corollary 2.4 and the claim is
proved.

. From the claim and Lemma 5.7, we obtain the 7, overlapping arrows

(Bo, Biy ..., Buot)" !, Bo, By, ..., Byoi, Fya, (3)
where (By,...,Bn,_1)""! means that the sequence By, By, ..., B,_; is re-
peated [ — 1 times. We note that all of them are black except the last one,

FqEBl-
Since ¢ # k, g® 1 € {k,k & 1}. So we can connect this sequence of
arrows with the one obtained above. In this way we get a sequence of m
overlapping arrows, Cy,C,...,C,_1. We will use this sequence of arrows
to obtain a contradiction with the primarity of P.
Assume that for some p € {p; © 1, pre1 © 1}, I, = [a, x,] is such that a
is the beginning of a black arrow. Let us label the arrows Cy, C1, ..., C), 1,
in such a way that Cyp = A,. Then we define the intervals J, = [0, b(C})] for
t=1,2,...,m—1and Jy = I,. In this way, since z, is the beginning of a
coloured arrow, Jy — J; — -+ = Jyu_1 — Jo. By [1, Lemma 1.12], since
Jy is a basic interval, we get a loop
— 1

S0

Iy, =1y — - —1

Sm—1

of basic intervals, of length m, with I, C J; for each ¢t € Z,, (in particular
Iy, = I,). Moreover, for each t € Z,, the step I, — I,,, is of the same
colour as ;. This loop is nonrepetitive since it has three coloured steps and
m is not a multiple of 3. Also it goes through I, which does not contain 0.
Then, by [3, Lemma 2.2], f has a periodic point y € I, of period m such
that f'(y) € I, for each t € Z,,. Let @ be the orbit of this point.

We claim that @ # P. Otherwise, y = z,, because the step I;, — I, is
of the same colour as Cy and, hence, different from the colour of (a, f(a)).
Then we can see inductively that b(C;) = x,q, for all t € Z,,,. Indeed, since
fi(y) € I,, I, C J; and the arrows C; are overlapping, for ¢ > 1 we have
that

Tppt = ft(y) <max I, <b(Cy) <e(Cy 1) = f(xpeB(t*l)) = Tpeopt-

Therefore, Cy = Apg: and, hence, b(C;) = e(Cyey) for all t € Z,,,. But this
is a contradiction with the definition of the arrows C;. Indeed, since there
exists j € Z,, such that C; = A;, and Cjs1 = A, o1, for such j we have
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b(C;) # e(Cje1). This ends the proof of the claim. Then, since f is EP-
adjusted, the First Theorem (Theorem 2.3 of [1]) gives a contradiction with
the primarity of P. Up to now we have proved that r; < r, when some of
the intervals I, o1 or I, o1 has the beginning of a black arrow as its lower
endpoint.

Assume now that none of the intervals I, o1 and I, _ o1 has an endpoint
which is the beginning of a black arrow. Since there are only three coloured
arrows, these two intervals must have a common point. In particular, xz,,_;
must be the smallest of the three endpoints of these intervals since, other-
wise, A,, 1 would cross with another coloured arrow. Hence, since the upper
endpoints of I, and I, o1 are the beginnings of the arrows A, o1 = F},
and A, o1 = Fre1 respectively, then Fyq1 = A, = Fp, that is, k = 2.
Furthermore, I,,_y = [%p, m_1], where z, is the beginning of a black arrow,
because x,,_; is not one of the smallest points. Moreover, since x,,_; is the
beginning of the coloured arrow Fy, x,—1 < xp,—1. So, by Proposition 2.10,
ro+n=p; —1— (m—1)+m;that is, ro =< p; —n = [(Sy) — n. Therefore,
since 1 < ¢ =1y < I(Sy), q(ra — 1) = q(ry) = 0. Hence, A,, ; is also
black. Furthermore, ro — 1 — (m — 1) + m = r5. Hence, by Proposition 2.9,
Tpy—1 < Ty—1. Therefore, z,,_1 <z, and so z,, < f(z,). We have then the
sequence of m — ry overlapping arrows

Apgreo Ay 1y Aty Aa, Ay

Since ¢ # k = 2, Fyq, is either A, _; or Ay,_;. So, with this sequence and
the sequence (3) we can construct a new sequence of m overlapping arrows
which will also be called Cy, C4,...,C),_1.

Now the rest of the proof follows in a similar way as the previous case
by replacing I, by I,,—1 and taking C; = A, and Cjs1 = Ap—a. [ |

In the following lemmas we will see that P satisfies (iii) and (iv) of
Definition 5.3.

Lemma 5.10. If r, +n < I(S,) + [(Sye1) for all ¢ € Zs, then ry = ry =
To = .

Proof. By Lemma 5.9 we have that max(rg,ri,7m) = 19 = 11 = 19 =
min(ry, 71, 72). On the other hand, by Lemmas 5.6 and 5.8, we have p =
min(rg, 71, 7). [ |

Lemma 5.11. If ro +n > 1(Sy) + [(S1), then rg =11 =19 = pp = ¢ and
m = 3c+ n.
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Proof. ;From rq+n > 1(Sy)+1(S1) and ro+n > 1(Ss) (see Lemma 2.11(c)),
it follows ro + 794+ 2n > m. That is, m —2n < ro+ 19 < rq+ 11+ 2. Hence,
ro + r1 + 1o = m —n by Proposition 2.13. Then r; =m—n— (ro+1r3) <n
and, hence, ry = ¢ = min(rg, r1,72) by Lemma 5.2.

If 1y +n < I(Sy) + 1(S2), by Lemma 5.9, r; = max(rg,r,79). Hence,
To=T1 =Ty =C.

If ry+n > 1(S1) +1(S2) we have that ro+7r14+2n > m+1(S) = ro+r +
ro+n—+1(S1). That is, ro < n—1(S;) and, hence, ro = ¢ = ry. If we assume
now that ro +n < [(S2) + 1(Sp), again by Lemma 5.9, ro = max(ro, r1,72).
Hence ro = ry = ro = ¢. If on the contrary, ro +n > [(S3) + [(Sy), adding
this inequality to 7o +n > 1(Sg) + 1(S1) and r; +n > 1(Sy) + [(S2), we get
ro+ri+re+3n > 2m. Since ro+r1+71r9 = m—n, we get that n > ro+r;+7ry
and, then, ro = ¢ (in fact ro = =ry =c =1).

Since rg =11 = ry = ¢, we have m = 3¢+ n and, so, u = c. [ |

Lemma 5.12. If ro +n > 1(S) + 1(Sy), then ry =11 =19 = f1.

Proof. We may assume that 7o +n < [(Sp) + [(S1) since otherwise, by
Lemma 5.11, the conclusion is true. Then, by Lemma 5.9 we have that
ro = max(rg, r1,r2) and, by Lemma 5.8, 7o = p.

;From the hypothesis it follows r9 + n > 1(Sp). Since 79 < [(Sp) by
Lemma 2.11(b), we have that 7y +n > ro. Thus, ro = r( since ro = 1 by
Lemma 5.2. Therefore, ry = ry = max(ro, 71, 72).

If ri + n < I(Sy) + 1(Ss), then also r, = max(rg,71,72) by Lemma 5.9
and rog = ry = ry. If, on the contrary, r +n > [(S;) 4+ [(S2), then from
Proposition 2.13 it follows that o+ = m—(r1+n) < m—(1(S1)+1(S2)) =
[(Sp) < ro+n. Hence, ry < n and, therefore, ry = ¢ = min(rg, r1,r2). Then,
also rg = ry = rs.

Finally, the inequality 4 = ry = r, = ry cannot happen to be strict.
Otherwise, again by Proposition 2.13 and Lemma 5.2, we would obtain
m—n=rg+r +ry=3(p+n)=m+n; a contradiction. [ ]

Lemma 5.13. If ry +n > 1(Sy) + [(Ss), then rg =19 = p=ry.

Proof. We may assume that r, +n < ((S;) + [(Sye1) for ¢ =0 and ¢ = 2.
Otherwise we already know that ro = ry = ro = p by Lemmas 5.11 and
5.12. Then, by Lemmas 5.9, 5.8 and 5.6, we have that max(rg,r,75) =
ro = ro = = min(rg,ry,ry) = 11.

;From the hypothesis and from 7o+ +75 = m—n (see Proposition 2.13)
it follows that ro + ro < I(Sp). Let us see that p = rqg = ry. Otherwise,
by Lemma 5.2, p+n =19 =rpo and m —ry —rg = m — 2 — 2n = L.
Then, [(S2) < m —1(Sy) < m—1r9—rg < pu < 7T9. S0, Ty, > Tpyar, DY
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Lemma 2.7(c) and Definition 2.6(b). Since 15 > [(Ss), po®res = pa+ro—m =
I(So) +1(S1)+rs—m =1ry—1(S2). S0, Tp, > Tp,—i(s,). Since xp, _p, > xp, by
Lemma 2.11(b) and 7o — I(Sy) < 1m0 < 1(Sy) — 19 = p1 — 10, the m —ry — g
ATTOWS

AT‘2*I(S2)7 B API*T0*17 AP17 s AP2*1

are overlapping and are all black except A,, ;. Then, [2, Lemma 4.5] gives
a single orbit of period m — ry — ry. Let k € {1,2} and k¥’ > 0 be such
that m = 3u + kn and = m — ro — 1o + k'n. By [2, Lemma 3.7(b)] and
the Adjusting Lemma ([1, Lemma 1.18]), we obtain an orbit @ of period
3(m —ry — o) + (3k" + k)n = m, with three coloured arrows. This orbit is
different from P since the strings of ) have lengths at least m — ry — g >
[(S2). By First Theorem (Theorem 2.3 of [1]), this is a contradiction with
the primarity of P. Hence, 4 = ry = ry. This ends the proof of the
lemma. [ |

Lastly, we can state the main result of this section. It characterizes the
primary spiral orbits with three coloured arrows and, hence, it ends the
characterization of the primary strongly directed orbits of maps from X.

Theorem 5.14. A spiral orbit with three coloured arrows is primary if and
only if it is triple.

Proof. Triple orbits are primary by Proposition 5.4. Hence, we only have to
prove the converse. Conditions (i) and (ii) of Definition 5.3 are satisfied by
Lemma 5.5. Conditions (iii) and (iv) of Definition 5.3 are satisfied by virtue
of Definition 2.15, Remark 2.16 and Lemmas 5.10, 5.11, 5.12 and 5.13. N

6 Conclusions

With the study of triple orbits, we have finished the characterization of
the strongly directed primary orbits for self maps of the 4-star with the
branching point fixed. In this section we summarize the main results of the
two papers where this characterization is carried out. The first of the next
statements is [2, Theorem A] about primary directed orbits of maps from
X, having at most one coloured arrow. The second one puts together [2,
Theorems B and C], and Theorems 4.9 and 5.14 about primary strongly
directed orbits of maps from X, with at least two coloured arrows.

Theorem A. Let P be a directed orbit of a map f € X, withv < 1 coloured
arrows.
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(a) If P has only black arrows, then P is primary if and only if it is twist.

(b) If P has a coloured arrow A, then P is primary if and only if it is
single of colour c(A).

Theorem B. Let P be a strongly directed orbit of a map f € Xy withv > 2
coloured arrows.

(a) If P is primary, then v < 3 and it is colour compatible.
(b) If P has crossing arrows, then P is primary if and only if it is v-box.

(c) If P has no crossing arrows and v = 2, then P is primary if and only
if it is double.

(d) If P has no crossing arrows and v = 3, then P is primary if and only
if it is triple.
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