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Abstract

This thesis only concerns the control design of a unicycle type differential-drive mobile robot following
a path, using the Sliding Mode Control techniques. In the first place, the kinematic and dynamical
models are found so that the mathematical analysis and the simulations can be performed. The model
happens to be non-linear and its control needs two ”state” variables of which only one can be measured.
A linear observer solves the unmeasured variable. Two different modalities of movement include forward
movement and backward movement. These modalities are substantially different due to the geometry of
the vehicle, but require slightly different control analysis. The Lyapunov theorem for non-linear stability
systems is applied in order to find the proper control action. Other details are simulated such us the sensor
characteristics and the motors non linearities. Specifically, the dynamics of the motors are simulated but
not implemented in the dynamical model. Future work could continue this thesis trying to design a control
policy that acts directly over the electric impulse rather than the velocities of the vehicle.

The verification of the proposed control action is conducted with the Matlab Simulink software. This
document includes diagrams and code so that the simulation model can be understood. In addition, a
python app has been developed helping to animate the simulations and the important graphs that can

proof the correct behaviour.
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1 INTRODUCTION

1.1 Topic

This thesis is a part of a bigger project focused on the investigation around autonomous vehicles and
intelligent management of circulation. It includes communication and coordination between vehicles. The
project is at a laboratory stage where the vehicles that are being controlled are replicas of themselves. The
typology of the vehicle can be described as a laboratory prototipe that follows a curve over the floor. It
has two motored wheels and one infrared sensor located at a certain distance from the center point of the
wheels axis. It is bound to follow a black trajectory painted over a white backround. The behaviour of the
vehicle as an individual part of the whole system is essential to eventually apply the proper management
policy for a group of vehicles. The individual behaviour could imply variation of velocity as well as forward
and backward movement. Of course, it has to be reliable. It has to make no mistakes, like losing the track,

for it is needed to avoid collisions and disorder.

1.2 Objectives

Framed within this topic, this thesis has the aim of designing a control policy based on sliding mode control
in order to control the laboratory vehicle in backward and forward movement. The control will be designed
over a non-linear system without trying to linearize it. There are other possible secondary objectives that

include:

The addition of the variation of linear velocity in the control design.

The implementation of the control design in the microcontroller of the laboratory vehicle.

The modelation of the system so that the electric impulses that excite the motors became the two

control actions.

Design of an app that helps to animate the simulations results.
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8 CHAPTER 1. INTRODUCTION

1.3 Thesis scope

This thesis covers the parametrization, kinematic relations and dynamic model of the system formed by
the vehicle and the track. It includes all de mathematica demonstrations of every equation used to model
the system and its dynamics. It also covers the simulations with Matlab Simulink and data acquisition for
the purpose of analysing results and draw conclusions. All the block diagrams are explained in this thesis
as well as part of the equations used in the code. However, it does not cover the explanation of the code
itself.

The animator program designed with Python is a secondary objective. Therefore, the document only
provides an overview of its logics with no deeper analysis. The module used to make a graphic interface
is Pygame. It cannot be expected a tutorial document. The main purpose of this topic is to provide

conclusions about the Pygame usefullness in this ambit.
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2 STATE OF THE ART

The kind of laboratory vehicle that follows a path is something that exists nowadays in different areas.
Automated warehouse, robot competitions and even toys implement different control solutions. However,
every solution is adapted in different ways depending on the typology of the robot and its sensors and
actuators. The next sections aim to put the reader in the current situation offering an introduction to the

needed theory that will be used in this document.

2.1 Previous works

The precedent to this document® covers, amongst other things, the modelation of the system and its
simplification. It also proposes basic control options.

The two wheels are two actuators that can make the vehicle move and redirect. This is a coupled system
due to the fact that the two control actions are not independent. The solution to this problematic is to
apply a change of variables so that the linear velocity and the direction change velocity become the two
control actions of the model. Hence, they become independent one from another. It provides the oportunity
of using only one of the control actions while the other remains constant. While the linear velocity is set
to a constant value, the velocity of the direction change is selected to be the control action. This way, the
system becomes single input multiple output (SIMO).

Two basic controllers are designed in order to test the vehicle in the real world once it has been built:
proportional and integral-proportional. The system is linearized in order to design both controllers. They
both work with no significant differences. However, they can only provide a forward movement with

asymptotic stability.

2.2 Sliding mode introduction

A variable structure system is composed of two or more continuous subsystems and a certain logic that
commutes between them. In the design of the variable structure system, the control action becomes a
discontinous function of the states. When the iteration from a subsystem to another occurs at a high
frecuency, it is called a sliding mode or regime. It offers some advantages like robustness in front of

uncertainty and perturbation, reduced order compensated dynamics and finite-time convergence, amongst
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10 CHAPTER 2. STATE OF THE ART

others.

Let us consider the continuous system:

&= f(x)+g(x)u
y = h(z)

where z is the states vector and w the control action. Defining the conmutation function s(x) with a

(2.1)

Vo(x) # 0 for every state, then the set

o={z:s(z) =0} (2.2)

defines an entity of conmutation that is called sliding surface. The control action u can be defined as a
function of the sign of the sliding surface o.
ut if o(z) <0
Uy = (2.3)
u” if o(x)>0
The control action u is a function of the states. The two possible actions u™ and u~ cannot be equal and

they always satisfy u* > u™.

frgu’ A o(x)

Figure 2.1: The sign of o is the logic that makes the control action conmute from one function to another

(ut and u~ ). The system is commuting along the time while the states ensure the oscilation around o = 0.

There is a sliding regime when the system gets to the surface o and stays locally around it. It is important
that the vectorial fields of the two continuous subsystems (f +gu™ and f + gu™) target locally toward the

surface o. Note that this kind of control provides a finit time approach.
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The system, operating in the sliding mode, commutes ideally at an infinite frequency. That makes it
impossible to find an analitic solution of the state equation. Another way to obtain the dynamics of a
continuous system is to find the equivalent control. The equivalent control corresponds to the control
action solution that makes the system stay at the sliding surface when it gets there.

In order to find the proper control action that ensures the sliding mode, a necessary condition must be

secured. This condition recieves the name of transversality condition.

do

7, 9(@)=0 (2.4)

A basic methodology can be used to design the sliding mode control:
e Select the sliding surface that provides the desired dynamics.
e Obtain the control law that surely will need a function sign of the sliding surface o.
e Determine the sliding domain where the system will be stable.

e Analyze the stability of the ideal sliding dynamics.

Lotro
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12 CHAPTER 3. THE MODEL

3 THE MODEL

3.1 Kinematic relation

In the real world, the system is basically made of two elements: the vehicle itself and the trajectory it
is going to follow. The vehicle has two motored wheels that can be controlled by the proper electric
impulse. The sensor is located at a defined distance from the middle point between the two wheels. A
third wheel gives mechanical stability to the chassis. In order to define and simulate any possible control
action, the system must be characterized. It is necessary to establish a virtual coordinate system and find
the kinematic model. The kinematic model gives us the relation between the velocity and the position of
the vehicle. Eventually, it will also be needed the relation between the vehicle position and the desired
position so that the dynamic model can be defined. But first we will start by defining the parameters and

variables as follows.

Figure 3.1: Representation of the vehicle with the needed parameters and variables. 1 is the distance between
the sensor and the wheels axes. P is the position of the sensor, and the point that must be controlled. P,
is the middle point between the wheels. Y,, and X,, are local axes. 0 is the angle of the vehicle in global

coordinates. d is the distance between P and P,,, it must tend to zero.

e Pm(x,y) is the middle point of the wheels axis.
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e The axes X,, and Y,, are useful to describe the orientation of the vehicle. Their origin is the point

Pm.

e P(z,y) is the point where the infrared sensor is located. This is the point that has to be over the

trajectory.

e P, is the point in the trajectory where the point P is wanted to be. P, is described as the intersection
point in the trajectory with a line that goes perpendicular to the direction of the vehicle and begins

in the point P.

e ¢(q) is the name of the trajectory parametrized with its arc-length ¢. It is a vector that contains the

position of Pq expressed in global axes.
e 0,(q) is the angle between the tangent of the trajectory ¢(g) and the global axis X.

e The variable d is the distance from the point P to F,.

The kinematic model considers the velocity of the change of direction of the vehicle 8, as well as the
velocity of the point Pm expressed in global axes (X,Y’). The model is simplified using two new variables:
uy and ug (see equation 3.2). This two new variables represent the linear velocity of the vehicle (u;) and
its direction change velocity (ug). They allow us to control the vehicle by acting on the direction and linear

velocity independently.

up = S(w -+ W,

L= B+ w,) o)
Uy = ﬁ(wl — wy)

Variables w, and w; are the angular velocity of the right and left wheels respectively. R is the distance

between the two wheels and r their radius.

3.2 Dynamic model

The process of defining the dynamical model starts with the question of which variables must be controlled.

Thus, in order to make the vehicle follow the trajectory, two conditions must be met:

e P, = P or, what is the same, d =0

e 0~ 0, We can suspect that the direction of the vehicle will approximate the direction of the tangent
of the trajectory. However, this is a secondary condition since we are only interested in making it

stable. Thus, the model found will give an answer to this relation.

ain
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14 CHAPTER 3. THE MODEL

In order to fulfill these conditions, the model must contemplate the dynamics of d and the relation between

0, and 6. Firstly, the coordinates of P, are expressed in terms of § and P,,, being R(#) the rotation matrix

p=parre) | )=
d by(q)

The next step is the differentiation of the equation with respect to the time.

in the 2D space:

q)

994 (
S 0 OR®) - [ ! .
oo ()50 ()=o) o

We continue as follows, replacing P,, and 6 by the equations of the kinematic model (3.1).

cos(0) uy + R(0) 0 ) OR() l s = 6‘%&
sin(6) ' d o0 d 2 8¢§qq)

From now on, let us write &%q(q) as ¢, and (%#(Q) as O¢y. Now it is possible to isolate d.

0 1 a¢z . cos(&) 8R(9) I
- ) B . _ OR() )
<d> R()l(acby)q (sin(G))l 06 (d>z]
R(0) = ( cos(f)  sin(0) ) ;GLW) _ ( —sin(f) —cos() )
—sin(0) cos() 00 cos(8)  —sin(9)

(0) (cos(@) sin(@))(a@g). (1) (0—1)(1)
.= q-— ur — U2
d —sin(f) cos(f) doy 0 1 0 d

Finally, we extract the resulting two equations from above:

[~

—

Where:

Thus:

d = luy — (a% sin(6) — 9¢ cos(a))q'
. Uy — d- U
9= 96, cos(0) + 0, sin(6)

Note that 0¢, = cos(d,) and 0¢, = sin(f,). It is so because the trajectory ¢(q) is parametrized with its

(3.3)

arclength ¢
¢(q) = [¢2(9); by (q)]

and we know the angle 0, at every point of the trajectory. Consequently

d=lus — (cos(()q) -sin(6) — sin(6,) - 008(9))4

< uy — d - U
a= cos(6,) - cos(#) + sin(d,) - sin(0)

Using the trigonometric relation

&

cos(a — b) = cos(a) cos(b) + sin(a) sin(b)
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we get

d=1lus — ¢ -sin(f — 0,) (3.4)
. Uy — d- u2
7= cos(f — 6,) (3:5)

It is also necessary to model the dynamics of #. In order to simplify it, we will create the variable ., = 0—6,:

09,

Where %—Zq is the curvature ¢ = ¢(q) of the trajectory ¢. Using the kinematic equation of 6 (3.1) and
substituting (3.5) into (3.4) and (3.6) we obtain:

d = lug — tan(0.)(u1 + d - uz)

m(ﬂq + d . UQ)

q’ =
;o _ _ (u1 + d . UQ)
O =—up —c cos(f.)
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4 CONTROL DESIGN

4.1 Model adaptation

We consider a new condition
Gg=v

that makes the vehicle tend to go at a constant speed v. However, it does not mean that the vehicle will
have a constant speed nor it will be v. As seen in the first chapter, the variable ¢ is the length traveled
along the path with which P, is parametrized. Remember that P, is the objective point where the vehicle

point P should be at every moment.
Py = (62(0),0,(0))

Its derivative ¢ is the speed of the objective point F,. It seems intuitive that if the vehicle follows the path
thoroughly, its speed and ¢ will be equal. In other words, the speed of P will be equal to the speed of P,.
If the curvature of the path is different from zero, the tangential speed will depend on which point of the
vehicle we choose (it will depend on the distance to the center of rotation). Thus, the tangential speed of
P (the sensor) will be differernt from wu; (which is the speed of Pm). Consequently, u; may not be equal
to ¢ if the curvature is different from zero. Let us explain it with the proper equations. First, we assume

that the control action u; ensures ¢ = v. We get the simplified model shown in the equation 4.1.

d = lug — vsin(f
e (6c) (4.1)
0. = —ug — c(t)v
Considering a working point given by any d* and ¢* = v, the required control values u; and uy that ensure
d = 0 can be found as follows (note that d=0 implies 6. = 0 if curvature c is constant). First we apply

the conditions of the working point to the dynamical model:

0 = luy —vsin(6}) (4.2)
0=—u5 —cv (4.3)

1
— fdE ok 4.4
v COS(GZ)(UI +d u2) ( )

Isolating u3 from 4.3 and replacing it in the equations 4.2 and 4.4, we obtain
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0% = arcsin(—lc) (4.5)
uj = vcos(6) + dev (4.6)
Replacing the equation 4.5 in 4.6, we obtain
uj = v cos(arcsin(—lc)) 4+ dev = v[cos(arcsin(—lc)) + dc]

An easy trigonometric relation tells us that cos(arcsin(—lc)) = v/1 — [2¢2. Tt is explained as follows.

We apply cos(t) = /1 — sin?(t):

cos(arcsin(—lc)) = \/1 — sin?(arcsin(—Ic))
using an auxiliary variable a we conclude

sin?(arcsin(—lc)) = a
sin(arcsin(—lc)) = a
—le=+/a

a =12

Thus, the required control values u} and u3, that ensure the working point, and the corresponding deviation

angle are

it = o1 1 cd) (47)
uy = —cv (4.8)
0% = arcsin(—cl) (4.9)

As a conclusion of equation 4.7, if the distance d is set to d* = 0, the control signal uj only depends on
the distance [ and the curvature c. The curvature c¢ is not known. Therefore, we can only approximate it
assuming ¢ = 0. Whether the distance [ equals [ = 0 or the path has curvature ¢ = 0, the speed wu; of the

vehicle equals u; = v. The equation 4.7 has the term [%c? that entails the maximum curvature constraint

given by
1
Cmaz = 7 (4.10)
or
1
lmaz = (4.11)
C’ITL(ICL‘

4.1.1 Moving forward

The sliding mode control consists in making the vehicle go directly to the path and slide along it. We
know in advance that the control will be an on/off type. Then, according to the control objective d = 0,
we define the sliding surface
L2,
$5y
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18 CHAPTER 4. CONTROL DESIGN

o=d (4.12)

The sliding surface is the equation that will be controlled. The equivalent control is the control applied
when the vehicle is actually over the line. That means d = 0. In that moment, we want d = 0 in order to
make it slide along surface. In other words, we want d to ramain in the value d = 0 while the vehicle is
moving. Then, the equivalent control can be found by making ¢ = 0. Isolating u5 from the equation 4.1

when d = 0 we obtain:

u;=§smw9 (4.13)

The signal us equals ub (equation 4.13) when ¢ = d = 0. When the vehicle is not in the objective situation,
it must tend to it. Thus, the Lyapunov theorem for non linear systems stability must be applied so that
the sliding surface becomes a stability point. The Lyapunov equation chosen (equation 4.14) responds to

the two first conditions of Lyapunov (4.15).

V:%ﬁ (4.14)
The three conditions of Lyapunov are

V(0)=0

V(e #0)>0 (4.15)

V<0

The third condition gives us some freedom to find the necessary control action (equations 4.16 and 4.17).

.0V, .
V= Fride U(lug - Usm(ee)) <0 (4.16)

U = ujy — ?sign(d) (4.17)

The control action (4.17) guarantees the third condition of Lyapunov (inequation 4.16). Thus, it guarantees
o — 0 in a finite time. Considering a switching control action, the control policy can be defined such that

the control action has two possible values:

uyg . if o<0

wpin, i o >0

Uy =
However, the remaining dynamics of 6, is not necessary stable. Applying d =0 in the dynamical model
(4.1) we get the dynamics of 6. as follows:
. v, .
0. = —7(sm(9€) + )

To proof its stability we can use a phase portrait where the X axis is 6. and the Y axis is 6.. Figure 4.1

shows that the system is stable between —m — 0% and 7 — 6. The arrows indicate the tendency depending

&
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on the sign of 6, and f.. Note that this is true as long as v > 0. In the case that v < 0, the arrows of the

diagram will be inversed and the equilibrium point . will not be stable.

0.

Figure 4.1: 9; is plotted as a function of 6.. 6. increases its value when 96 is positive. Likewise when 96
is negative, . decreases. This behaviour is shown with the arrows. The stability point is 0% for a region

limited by the interval [—m — 0%, m — 0% ].

4.1.2 Moving backward

As pointed out at the begining of this section, the system has local stability if v > 0 in 8} = arcsin(—c- ).
Otherwise, the system has no stability in that region. To make it stable for v < 0 the sliding surface must

contain the variable 6,.

o=d+ f0. (4.18)

The new variable ée is defined such that 6. must be equal to 67 when d = 0 to make o = 0:

0. =0, — 0" (4.19)

The equivalent control is found by making ¢ = 0

d=—30, (4.20)

Replacing the equation 4.20 by the dynamical model, we get

l-ug —v-sin(f,) = —f]—ug — ¢ 1] (4.21)

Isolating us we obtain the equivalent control:
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(sin(6.) + Bc) (4.22)

. v
u =
Once again, Lyapunov must be applied in order to find the control action us that makes the system locally

stable. The Lyapunov equation
V=—-0" (4.23)
must have a negative derivative

V=05<0 (4.24)

Derivating o from (4.18)and replacing it in (4.24) we obtain

V = ofluy — vsin(f.) — Bug + cv)] <0 (4.25)
reorganizing the terms of the equations we get

V = ofus(l — B) — v(sin(fe) + Be)] < 0 (4.26)

Finally, the control action that makes V < 0 is:

Uy = Uy —
2
-5

The stability of 6, can be proven by using the equivalent control (4.22) in the dynamical system

sign(o) (4.27)

0. = (sin(6,) + cl) (4.28)

v
l-p
As seen in the Moving Forward section, a phase portrait can prove the local stability of 6.. This time the

condition to make @} locally stable is that ﬁ > 0. Thus, the term 8 can change its value in order to

change from a fordward movement to backward.

4.2 Full state observer

In order to properly apply the control action, the 6. should be known. However, it is not sensed and
it cannot be known. Consequently, if possible, it must be observed. To do that, the lineal observer of
Luenberger has been proposed. First of all, the dynamical model of the vehicle needs to be liniarized. The

general equation used for the linearization of multivariable systems at a specific equilibrium point is

S = Sy + gl —at) o+ g Lot u)
h(z,u) ~ h(z*,u*) + Oh (x —a*)+ Oh (u—u®)

Oy OUyy—q*

(4.29)

In the equilibrium point we know that

&
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fla*u) =0

and defining the next new variable of state:

The new system can be expressed as follows

X=in 9 x4 Of y

- axm:ﬂah 8Uu:u*8f (4.30)
Hence, linearizing the dinamical model
d = lug — vsin(6,) (4.31)
. = —uy — c(t)v .
we obtain
d 0 —wvcos(6) d—d* l .
. = + (u2 — u3)
0. 0 0 0. — 07 -1

In order to know whether the system can be observed or not, we analyze the observability matrix® when

the output y = d:

1 0
Wy = (4.32)
0 —wvcos(6)
The observability matrix (4.32) has full rank as long as 0} # £7. This situation means that the vehicle is
going perpendicular to the path and has two possible the system is observable. However, the equilibrium

point 07 is not known. It depends on the curvature (see equation 4.9 of the Sliding Mode Control section).

Considering a curvature ¢ = 0, we can say that 6% = 0. Then, the observer is as follows:

SN

0 —wvcos(6) l Ly

d .
. = . + U2 + (d - d)
O 0 0 0. -1 Lo
It yields the following state matrix:
—L1 —v
—Ls O
With eigenvalues
—L1 + A/ L% + 41}[/2
N 2
'Ql
VVL‘ .J“v
\'l‘_"“‘bb
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Then, the observer must comply two conditions to be stable:

L2+ 4vLy < 0
Li >0

Figure 4.2 shows the observer diagram in Matlab Simulink. The block A is the state matrix of the linearized

system. The block L is the feedback matrix

o
d
d_hat =
KTs
1 'I theta_e_hat n
Discrete-Time thetaEhat

Integrator

Figure 4.2: Luenberger observer designed to return the estimation of 0. (thetahat). The gain A is the
matriz that multiply the variables d and .. The gain B is the matrix that multiplies the control action us.

L is the gain of the error d — d.
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5 REALISTIC DETAILS

5.1 Motor Dynamics
As seen in the first section, the two variables u; and uy are defined in relation to the speed of the wheels:

up = 5(w; + w,)

[\l

uz = 5p (W —wy)
The motors of the wheels have their own dynamics that have not been contemplated so far. In fact, the
designed control described in the previous section acts directly on the speed. In the real world, that is
impossible. The microcontroller sends an electrical signal (that must be amplified) that stimulates the DC
motors inducing the corresponding variation of angular velocity. The electrical signal is not analogycal
but a PWM type. The PWM consist in sending pulses with the same voltage and frequency but different
prolongation in time. This is a common techic used in controlling DC motors that takes advantage of the
rotor inertia. The ”duty cycle” of the PWM determines the percentage of time that the signal is in high
voltage compared with the cycle period. The cycle period is the time of a whole cycle between two pulses.
A non linear relation between the duty cycle and the angular velocity can be found as an equation in a
stationary state. However, there will be a delay until the motor achieves the velocity that corresponds to a
determined duty cycle. Let us say that the real velocity (Vr) of the motor can be expressed as a function

of the duty cycle in a stationary situation.

Vr = f(dutycycle) (5.1)

Let us say that the duty cycle can be defined as a function of the desired velocity (Vd).

DutyCycle = f(Vd) (5.2)

Then, the real velocity would be a linear function of the desired velocity. In fact, they are the same.
The delay between the specification of the desired velocity and the moment when the motor achives that

velocity, can be modeled by a first order transfer function as follows.

1
5.3
Ts+1 (5.3)
LB,
VVL‘ IJ“V
\'l‘_"x‘bb
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The time constant 7 is the time that the motor needs to reach the 63% of the velocity goal. In this case,
the constant of both motors is set to 7 = 0,01s. This dynamic is not considered neither in the model nor
in the control action design. Consequently, the sliding mode control, defined in the previous section, might
fail. In order to prove the robustness of the sliding mode control before this new situation, a new block
has been added to the simulink diagram. This block emulates the dynamics of the motors by changing the

behaviour of the action us.

1
tau.s+1
Motor TF Left

1
tau.s+1
Motor TF Right

Figure 5.1: The motor dynamics block emulates the behaviour of the motors by changing the control action.

Figure 5.1 shows that the control actions u; and wuy are changed in order to emulate the behaviour when

the control actions are not the velocities but the electrical impulses.

5.2 Sensor

The sensor uses two light intensity inputs to calculate the relative position of the path. When the path
gets closer to one spot, that spot receives more black than the other. It indicates that the variable d is not
zero. A specific algorithm can be performed to translate these intensity inputs in a determined distance.
However, this algorithm is not discussed in this document. Figure 5.2 is a sketch that shows the behaviour
of the sensor according to the distance d. When the sensor gets far enough from the trajectory, it cannot
be known whether the path is at the left or the right of the sensor point (P). The control design does
not take into account the sensor limitation. Therefore, due to the little margin of the sensor, the control

design could fail if the vehicle gets far enough.
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A B C D
Black
C B
M
: d
dmin 0 dmax

Figure 5.2: Sketch of the sensor behaviour. The images A, B, C and D show four example situations where
the two spots of the sensor recieve different light intensity. The input of the sensor depends on the position

of the path between the two spots.

The Simulink diagram includes the block Sensor in order to emulate the limitation of the sensor. However,

in this case the value of d equals zero when exceeds the interval [dyin, dmaz]-

d=d x* (d < dmaz) * (d > dmin)

The terms (d < dpnqae) and (d > dpqe.) equal zero when they are false. Despite th
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6 SIMULATION DIAGRAMS

This chapter aims to explain how the matlab simulink model works. Figure 6.1 gives us an overview of the
simulation diagram. Some of the blocks contained in the diagram have already been explained in previous

chapters. Thus, they are not covered in this chapter.

» usims
2

Zero-Order To Workspace1 To Workspace3
Hold

z In1 Out1 2 3
n u »u P x
u=[ulu2
Constantt iz 2 :

Motor Wheel Dynamic StopSimulation
Robot dynamics

wy

3
QDth

Plu

qdot ——p—

dg dynamics

3
uz d d DQsims 4

SMC Sensor

Figure 6.1: Ouerview of the matlab diagram.

6.1 Robot dynamics block

The Robot Dynamics block integrates the kinematic model (equation 6.1) and uses trigonometry relations
to completely define the position of the vehicle (it calculates the position of the wheels, the point P and
P,,). The integration of us gives 6. With 6 and w4, it is possible to find the values of = and y (that are the
coordinates of the point P,,) by integrating them. Once the point P, is known, the position of the wheels

and the point P can be easily found with trigonometry.
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¥ = sin(0)uy (6.1)
0= —UuU2
—» Pm

Wheels position

G )—u Pm » Pm

To Workspace

Pm-dyn
> P
— Pm P To Workspace1
P-dyn
P

Figure 6.2: The robot dynamics diagram contains three blocks. The Pm-dyn calculates de coordinates of
the point Py, by integating w1 and us using the kinematic model. The other two blocks use trigonometry to

calculate the position of the wheels and the point P from the calculated point P,,.

6.2 DQdynamics block

The DQdynamics block (figure 6.3) uses a script that calculates the derivatives of d and ¢ by using the
equations of the dynamical model (equations 6.2). Section 3.2 covers the demonstration of the dynamical

model.

d = lug — (O¢, sin(f) — dp cos(0) )¢
i gbl —d-u ) (62)

- 2
1= B3¢, cos(0) + 0o, sin(0)
Different tracks or trajectories (¢), expressed in the 2D space coordinates (qﬁz(q), d)y(q)), have different d¢,.

and 0¢, (remember that 0¢, and J0¢, are the abreviation for 8;:; and %). The shape of the track (or
trajectory) is defined by setting those partial derivatives into the model with the script already mentioned.

As an example, the partial derivatives of the trajectory with a semicircle shape and radius A are

O¢, = Asin(q)
d¢y = Acos(q)

After the calculation of the partial derivatives of the trajectory, the values of d and ¢ can be found with

the dynamical model equations (equations 6.2) and the values of u; and us.

ain
7 ==\
oy
~) Jx‘bb
ETSEIB
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»(2)
[q; d; theta] qdot
1 q
Tl s
Interpreted Integrator
ut MATLAB Fcn
u u? QDdyn d
1
s > »(_1)
QDth
Integrator1
thet .
4’| 1 2 » 1; =2 » QDsims
Gain1 Integrator2 To Workspace6

Figure 6.3: The DQdynamics block calculates the current values of d, q and 6 by integrating the dynamical
model and setting the parameters of the trajectory. The QDdyn script calculates the derivatives d and ¢
that will be integrated.

To sum up, as shown shown in figure 6.3, and for each iteration:
e The values of g, d and 6 are found by integrating ¢, d and us respectively.

e The values of ¢ and d are calculated in the the script @Ddyn with the equations of the dynamical

model and setting the proper partial derivatives of the path.

6.3 Sliding mode control block

The control design has been explained in previous chapters, as well as the observer needed. Therefore, this
section only explains its modelation in Matlab Simulink. It is recomended to previously read the chapter

Control design.

I e

—494 thoi(l-beta) —é) Zero-Order
" Hold
Gain3 Relay :I

thetahat

S {o e L W

d

Figure 6.4: The SMC block simulates the sliding mode control applyied in discrete time. Gaing: 3. Gainl:

equivalent control.

As shown in figure 6.4, a zero-order hold must be included so that the controller works in discrete time.

The frequency of the holder has been set to 5-10~% in order to adjust to a microcontroller frequency. When
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the velocity of the vehicle is set to positive the vehicle goes forward. In that case, the paramter 8 of the
control action is set to zero. In the case that the velocity is negative, which means that the vehicle goes
backwards, the paramter § will need to be modified depending on the characteristics of the vehicle and

the path. A relay is added to work as the function sign(c). The behaviour of the relay is as follows:

1 if o < —0,001
1 ifo>0,001
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7 SIMULATIONS RESULTS

7.1 Methodology

The simulation tests consist in four different tracks (or trajectories) and two directions for each one: for-

ward and backward. The different tracks are parametrized as follows.

Track 1: linear trajectory

o(q) = (¢.0)

Track 2: linear trajectory with sudden deviation

o(q) = (¢ m(q — ¢)(q > av))

Track 3: circular trajectory

o(q) = (D — Dcos(q), D sin(q))

Track 4: sinusoidal trajectory

¢(q) = (¢, Asin(27q))

The term (g > ¢,) of the second track equals 0 when false and 1 when true. The term g, is the value of ¢
when the deviation starts. In the third track, the term D is the diametre of the circle. The parameters set

in the simulations are also important:
e The perpendicular length from the wheels axis to the sensor .
e The distance from each wheel to the middle point of the axis R.
e The radius of the wheels 7.
e The parameter beta, used in the calculation of the control action us.

In order to extract conclusions from the simulations, different conditions must be applied regardless of the
size of the real vehicle that we could prove at the laboratory. The following sections show some of the

different conditions that have been simulated.

&
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7.2 Forward movement with sensor emulator

Figures 7.1, 7.2, 7.3 and 7.4 show the trajectory followed by the vehicle in forward movement. Despite the
oscilations, the control design works properly in forward movement.

The next parameters have been applied: [ = 0,05, R = 0,05, r = 0,02 and beta = 2,5]. The three black
spots represent the wheels, the sensor (point P) and the middle point between the wheels (point P,,)
in their starting position. The red (green, blue) line is the path that makes the left wheel (right wheel,

sensor).

03 r —

0.2 *

01| 1

y [m]
4

0.1 1

0.2 *

704 1 1 1 1 1 1 1 1 1 1
0 01 0.2 0.3 0.4 0.5 06 0.7 0.8 09 1

x[m]

Figure 7.1: Forward movement of the vehicle over a linear trajectory. The sensor emulator is activated.
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0.4 1

031 1

021 1

0.1 1

y [m]

01+ 4

-0.2 [ 1

L L 1 1 1 1 L 1 1 L
0 0.1 0.2 03 04 05 06 07 08 0.9 1
x [m]

Figure 7.2: Forward movement of the vehicle over a linear trajectory with an spontaneous change of direc-

tion. The sensor emulator is activated.

y[m]

01+ 4

L 1 L L L L 1 L L 1 L
0 01 02 03 04 05 08 07 08 09 1
X [m]

Figure 7.3: Forward movement of the vehicle over a circular trajectory. The sensor emulator is activated.
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Figure 7.4: Forward movement of the vehicle over a sinusoidal trajectory. The sensor emulator is activated.
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Figure 7.5: Forward movement of the vehicle over a sinusoidal trajectory. The sensor emulator is activated.
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7.3 Backward movement with no sensor emulator

If the sensor emulator was activated the simulation results wouldn’t tell us how the vehicle would behave
in the cases that it gets out of the path. The behaviour of the vehicle can be completely seen if the sensor
emulator is erased from the simulation. This way, the vehicle knows exactly its perpendicular distance to
the path (d) with no restrictions.

Figure 7.6 show two situations where the distance d is too big to be sensed properly. The two situations

correspond to a reorientation of the vehicle due to the lack of information about the future curvature.

041 1

03 1

y [m]

-0.1 1

0.2 1

-0.3 1

L 1 L 1 1 L 1 1 1 L
0 01 02 03 04 05 08 07 08 09 1
x [m]

Figure 7.6: The vehicle follows the path. It indicates the stability of the control. However, the deviation
d is to high in the points where the vehicle has to redirect itself. The next parameters have been applied:
I = 0,05, R = 0,05 r=0,02 and beta = 2,5l. The three black spots represent the wheels, the sensor
(point P) and the middle point between the wheels (point Py, ) in their starting position. The red (green,
blue) line is the path that makes the left wheel (right wheel, sensor).

Figure 7.7 shows how the vehicle follows the circular path with a constant deviation d # 0. A possible
explanation to that behaviour is that the curvature of the circle is bigger than the maximum. However,
this theory has been disregarded because the maximum curvature equals ¢4, = 20 while the curvature of
this circle equals ¢ = 1/2.

In the forward movement, the sensor knows the path before the wheels get to it. In the backward movement,
on the other hand, the wheels preceed the sensor. This makes the sensor lose contact with the track when
the wheels turn to change the direction. It explains the behaviour of figure 7.7 where a constant curvature

makes the vehicle have a constant deviation d from the track. In other words, the vehicle is constantly



Sliding mode control of a robotic vehicle following a path 35

reorientating itself and, therefore, losing contact with the track permanently.

y [m]

-0.1 *

1 Il Il Il Il Il 1 1 1 Il Il
0 01 02 03 04 05 06 07 08 09 1
x[m]

Figure 7.7: Backward movement of the vehicle over a circular trajectory. The sensor emulator is not
activated. Therefore, the vehicle can follow the trajectory with a remarkable and constant deviation d. The
next parameters have been applied: | = 0,05, R = 0,05, r = 0,02 and beta = 2,5l. The three black spots
represent the wheels, the sensor (point P) and the middle point between the wheels (point P, ) in their
starting position. The red (green, blue) line is the path that makes the left wheel (right wheel, sensor).

Figure 7.8 shows the sinusoidal trajectory when the vehicle moves backwards. Note that the vehicle tends
to follow the maximum curvature but it can only describe a pseudo circle around it. In conclusion, the
sliding mode control designed for backward movement is stable. However, it does not behave properly due
to the curvature or the starting position. We can easily say by looking at figures 7.6, 7.7 and 7.8 that it
has a non acceptable deviation from the objective trajectory. A possible solution is to increase the gain
of the control action uy. That could be achieved by modifying the parameter 3. Its important to remark
that the complexity of the dynamics make it impossible to determine the parameters of the controller by

specifying any properties of the compensated dynamics.
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Figure 7.8: Backward movement of the vehicle over a sinusoidal trajectory. The sensor emulator is turned
off. The vehicle cannot follow the trajectory when the curvature is too high. The maximum curvature that
the vehicle can theoretically follow is Cpar = 20 while the maximum curvature of the trajectory is ¢ = 19, 73.
The next parameters have been applied: 1| = 0,05, R = 0,05, » = 0,02 and beta = 2,5]. The three black
spots represent the wheels, the sensor (point P) and the middle point between the wheels (point P, ) in their
starting position. The red (green, blue) line is the path that makes the left wheel (right wheel, sensor).

7.4 Backward movement with sensor emulator

In this set of simulations, the next parameters have been applied: [ = 0,05, R = 0,05, » = 0,02 and

beta = 2,5l. The sensor is set to fail when its deviation from the line exceeds the interval

—0.005 < d < 40.005

Therefore, any possible deviation shown in the graphics is smaller than the maximum allowed.

Figures 7.9, 7.10, 7.11, 7.12 and 7.13 show the backward movement of the vehicle when the sensor emulator
is activated. Note that only the linear trajectory (figure 7.9) works properly. The curvature is set to ¢ = 0
in the model simulations because it is an unknown parameter.

Figure 7.10 is similar to figure 7.9 with the addition of a sudden change of deviation. In this case, it should
follow the trajectory until the deviation is met. However, the failure is at the begining (see figure 7.10).
The possible explanation to this behaviour is that, when the vehicle turns to follow the linear trajectory,
the sensor gets too far from the trajectory. Figure 7.11 shows the same trajectory as figure 7.10 with a

different starting position. With the new starting position, it works fine until the deviation is met. The
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extreme curvature of the deviation might be the issue this time. The maximum curvature is a concept
explained in the Sliding Mode Control section of the Control Design chapter. It applies not only for the
forward movement but also for the backward movement. Therefore, the same rule that makes the control
work in the forward movement (figure 7.2) should not be a problem in the backward movement (figure
7.11).

Figure 7.12 shows that the control fails when going backwards in the circular trajectory. It has already been
mentioned in the previous section. Figure 7.12 demonstrates that the sensor emulator works as expected.
Figure 7.13 corresponds to the fourth track, the sinusoidal track. It shows how the vehicle follows the
trajectory as the curvature increases until a determined point is reached. As it has already been said, the
maximum curvature equals ¢,q; = 20 when [ = 0,05. The curvature of the sinusoidal trajectory can be
calculated by derivating the angle of a tangential line of the curve. Remember that the parametrized curve

¢(q) = (¢, Asin(27q))

Then, the slope of a tangential line is

J0¢y _ OAsin(2mq)

90 B4 = A27 cos(2mq)

and the angle with respect to the X axis is
6, = arctan (A27 cos(27q))

The cruvature is the derivative of 0,

04, 19.7392sin(27q)

dq — 9.8696 cos?(2mq) + 1

The variable ¢ equals ¢ = 1/4 when the curvature of the curve is maximum. In that position the curvature
equals ¢ = 19,7392. The length [ is chanched to [ = 0.005 in order to increase the difference between the
maximum curvature of the curve and the maximum curvature allowed (¢;q. = 200 for I = 0.005). Figure
7.14 shows the result of a length ten times smaller. Comparing figures 7.13 and 7.14 it can be seen that the
vehicle takes longer to lose control in the case with [ = 0.005 than the case with [ = 0.05. Still, it does not
behave properly. To sum up, the maximum curvature concept explained in the Sliding mode control section
is not enough to explain the backward movement failures. It only covers the curvature that geometrically

or physically could the vehicle follow.
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Figure 7.9: Backward movement of the vehicle with sensor emulator. The next parameters have been
applied: | = 0,05, R = 0,05, r = 0,02 and beta = 2,5l. The three black spots represent the wheels, the
sensor (point P) and the middle point between the wheels (point P,,) in their starting position. The red
(green, blue) line is the path that makes the left wheel (right wheel, sensor).
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Figure 7.10: Backward movement of the vehicle over linear track with spontaneous change of direction.
The control fails from the beginning due to the starting position. When the vehicle turns to change the
direction, the sensor gets out of the path and loses control. The next parameters have been applied: 1 = 0,05,
R =0,05, r =0,02 and beta = 2,5l. The three black spots represent the wheels, the sensor (point P) and
the middle point between the wheels (point P,,) in their starting position. The red (green, blue) line is the
path that makes the left wheel (right wheel, sensor).
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Figure 7.11: Backward movement of the vehicle over a linear track with spontaneous change of direction.
The control fails when the deviation of the path is met. The failure is not due to the discontinuity of the
path, nor the starting position. The failure comes when the vehicle turns to follow the new direction and
the sensor gets out of the path, losing control. The next parameters have been applied: | = 0,05, R = 0,05,
r = 0,02 and beta = 2,51. The three black spots represent the wheels, the sensor (point P) and the middle
point between the wheels (point Py, ) in their starting position. The red (green, blue) line is the path that
makes the left wheel (right wheel, sensor).
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Figure 7.12: Backward movement of the vehicle over a circular trajectory. The vehicle fails from the
beginning in the starting position. The next parameters have been applied: | = 0,05, R = 0,05, » = 0,02
and beta = 2,51. The three black spots represent the wheels, the sensor (point P) and the middle point
between the wheels (point P, ) in their starting position. The red (green, blue) line is the path that makes
the left wheel (right wheel, sensor).
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Figure 7.13: Forward movement of the vehicle over a sinusoidal trajectory. The vehicle follows the trajectory
until a determined point is reached where the curvature is too high. The next parameters have been applied:
[ =0,05, R =0,05 r=0,02 and beta = 2,5l. The three black spots represent the wheels, the sensor
(point P) and the middle point between the wheels (point Pp,) in their starting position. The red (green,
blue) line is the path that makes the left wheel (right wheel, sensor).
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Figure 7.14: Backward movement of the vehicle over a sinusoidal trajectory with sensor emulator activated.
The length has been modified to increase the theoretical mazimum curvature ten times over the mazimum
curvature of the path. However, the vehicle loses track. The next parameters have been applied: | = 0,005,
R =0,05, r =0,02 and beta = 2,5l. The three black spots represent the wheels, the sensor (point P) and
the middle point between the wheels (point P, ) in their starting position. The red (green, blue) line is the

path that makes the left wheel (right wheel, sensor).

7.5 Length effect in backward movement

The sensor emulator has been activated and the next parameters have been set in this section:
o [ =10,005
e 3=1,5]

The paramter 3 is used in the control action gain. The proper value of the gain is found by trial and error

due to the complexity of the model.

. P
l-p

Figures 7.15, 7.16 and 7.17 show a proper behaviour in backward movement for the parameters applied.

sign(o)

However, the length [ = 0,005 is ten times smaller than the real one at the laboratory.
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Figure 7.15: Backward movement of the vehicle following a linear trajectory with spontaneous change of
direction. The vehicle length | has been set to I = 0,005 and the sensor emulator is activated. The vehicle
follows the path correctly. The next parameters have been applied: | = 0,005, R = 0,05, r = 0,02 and
beta = 2,51. The three black spots represent the wheels, the sensor (point P) and the middle point between
the wheels (point P,,) in their starting position. The red (green, blue) line is the path that makes the left

wheel (right wheel, sensor).
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Figure 7.16: Backward movement of the vehicle following a circular trajectory with spontaneous change of
direction. The vehicle length | has been set to | = 0,005 and the sensor emulator is activated. The vehicle
follows the path correctly. The next parameters have been applied: | = 0,005, R = 0,005, » = 0,02 and
beta = 2,51. The three black spots represent the wheels, the sensor (point P) and the middle point between
the wheels (point Py, ) in their starting position. The red (green, blue) line is the path that makes the left

wheel (right wheel, sensor).
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Figure 7.17: Backward movement of the vehicle following a sinusoidal trajectory with spontaneous change
of direction. The vehicle length | has been set to I = 0,005 and the sensor emulator is activated. The
vehicle follows the path correctly. The next parameters have been applied: | = 0,005, R = 0,05, » = 0,02
and beta = 2,5l. The three black spots represent the wheels, the sensor (point P) and the middle point
between the wheels (point P,,) in their starting position. The red (green, blue) line is the path that makes
the left wheel (right wheel, sensor).

7.6 Solution summary

As seen in the previous section, the control is stable but does not behave as it is wanted to. The forward

movement works properly but not the backward movement. In this last case, the location of the sensor is

important as well as the term ﬁ that multiplies the sign function of the sliding surface.

Uy = Uy —
2
-5

In the backward movement, the main problem is that the wheels are located ahead while the sensor goes

sign(o)

on the tail. It makes the sensor lose contact with the path when the vehicle turns to follow a determined
curvature. As long as the path or the future curvature cannot be predicted, the vehicle cannot move
backwards with the sensor too far from the middle point of the wheels (P). It is likely to work for a
determined configuration where the mentioned parameters are set properly. However, the next step should

be a careful test in the laboratory to confirm it.
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8 PYGAME ANIMATIONS

The aim of this chapter is to provide conclusions of the experience of programming a tracking animator
with Python and its module Pygame. This is an alternative to the animation tools of Matlab. It has been
proven that the matlab animations are too slow to be attractive and the language is less powerful than
Python. The next section gives some explanations of the program logics with no description of the code

itself.

8.1 Python possibilities

Among the whole programming languages and aplications that may be useful to create a graphical user
interface (GUT), python is one of the most powerful as a consequence of being open source and a high level
interpreter. Lots of modules provide the tools to create GUI applications, and graph ploting, as well as
math packages and image treatment and creation. Some of the most common GUI libraries that could
help are Tkinter, PyQt, wxPython and PyGTK. However, the Pygame module is another option that has
not been designed to create GUIs, but to create 2D games.

The final program must be described before any choice can be made.

e It has to be illustrative. It needs to show the vehicle following the trajectory and the tracks left by
the points of interest (P, P and left and right wheels).

e The graphics of the vehicle could include, if possible, 3D space and textures. Some other tools like

the possibility of zooming a region of the animation could be interesting.

e The program must have the possibility to import data from the matlab simulation tests and plot an
animation. Therefore, the animation should be able to be paused, reinitiate or reproduced in a loop.

These functionalities might include buttons and text inputs.

e At the same time, some graph parameters like the evolution of the distance d or the angular speed

of the wheels should be shown.

With the requirements given, the chosen library is Pygame. With the understanding that a 2D game
engine can provide as well any GUT options. Although the tools that provides might be at a lower level of

programming than the other GUI libraries.
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8.2 Animator logics overview

The first thing to do is to export the data from the Matlab simulation tests. A way of doing it is with a
7.txt” file:

save ('PM. txt’,’Pm’, ’—ascii’)

This example is repeated for all the variables needed. Once the data is saved in a directory in different
text files, it must be readed and saved into a global variable in the Python environment. The length of
the arrays that contain the data is around 55 thousand positions. That amount of data is too heavy to
be ploted one by one in Pygame. Hence, the data must be reduced. Two functions have been written
to load data and make it shorter: loadData() and shortenData(). Figure 8.1 shows the list of events in
blue, at the left and the main actions, mostly buttons, that characterize the program. The shortened data
arrays contain data that is separated in time by a same period. For example, position one is separated

0,05 seconds from position 2, and position 2 is separated 0,05 seconds from position three, and so on.

o shortenData()

Track > loadData() guideLine()
Play/Pause > < stop/resume count

Repeat > / if count > countMax:

count = 0

Zoom > repaintTracks()

DividingBar
d I > repaintGraph()
Resize Screen
Initiate ><_ count=0 |

Figure 8.1: Basic diagram of the behaviour of the program in front of the possible events (blue blocks). The
track event is triggered when any of the four buttons are pressed. They are used to change from one kind
of track to another. The variable count is the index that decides what position on the data arrays has to be

ploted at the current iteration of the program.

The function guideLine() draws the path guide that must be followed by the vehicle. It creates the data
from scratch with the parameters applied in the Matlab Simulations. All of the points created by this
function are connected with lines giving the aspect of a curve. Except for the guide line, which is ploted
in black (8.2), every other plot is being painted step by step, depending on the time of simulation. In
other words, each iteration of the Pygame clock, does not make the whole plot repaint again. To do this,
different alpha (transparent) images have been created. It is over these images that the plots are painted.

The images hold the plots when the screen is reinitiated at every iteration. However, if the zoom event is

ain
7 ==\
oy
~) Jx‘bb
ETSEIB



46 CHAPTER 8. PYGAME ANIMATIONS

applied, all the plots have to be repainted from the beginning to be scaled according to the zoom. It takes
a little delay almost imperceptible, but enough to slower the program if repeated each iteration. To repaint
the plots, two functions have been written: repaintTracks() and repaintGraphs(). The first one repaints
the plot of the tracks and the vehicle on the left (figure 8.2). The second one is explained ahead.

The most important global variable is the one that decides which line of the data arrays has to be ploted
at the current iteration of the program. The name for that variable is count. This variable is an integer
that increases each iteration by one unless the buttons pause and initiate are activated. The maximum
value of the variable count is the length of the arrays that contain the shortened data. When the button
initiate is pressed (see figure 8.1) all the plots have to be erased so that the plots start over.

As shown in figure 8.2, there is a bar that divides the vehicle tracks region on the left from the graphs
region on the right. The movement event of this bar recieves the name dividingBar in figure 8.1. The
width of the left and the right parts of the interface are modified by dragging this bar to the left or the
right.

£ Animation

“y . fps: 59.5 Time: 3.4 s
C10 ad EB N EN el 0,00
o

NN

Figure 8.2: Animator program made with Python and its Pygame module.

One of the main problematics was the time control. In other words, how the time of the animation is
controlled. Pygame gives the possibility to set the frames per second. Like in the cinema, the minimum
would be 24 frames per second (FPS). If we know how many iterations of the program occur in one second,
we also know the period. Thus, a variable can control the time in every iteration from the beginning by
making the summatory of the period of every iteration.

#we ask what is the FPS in the current iteration

fps2 = fpsTime. get_fps ()

; # if the program is not paused, and it has not reached the end of the track(lenPshort)

. # update the time wvariable
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if not pause and count<lenPshort:

try: time += 1/fps2#1/fps

except: time += 1/fps
Once the time is known, we need to find in the data arrays which one corresponds to that time so that it
can be ploted on time. When the data arrays were made shorter, the array that contains the clock of the
Matlab simulations was also made shorter. They were made shorter and equidistant in time. That is, any
position of the array from the next one have the same time interval. Thus, we can control the varible int

variable count comparing it with the float variable time as follows.

1 # If the animation is not paused nor it has reached the end,

2 # and the float variable ”time” is bigger than the interval

3 # multiplied by the ”count” wvariable, increase the ”count”

1+ # variable by one.

if time >= intervalxcount and count<lenPshort and not pause:

count += 1

This code makes the animation be consequent with the real time and the behaviour in the Matlab simulation

tests.

8.3 Conclusions

Despite that the Pygame library provides basic tools with which complex programs can be created, there
is a lack that makes it less atractive. The fact that the functions that should provide anti-aliasing painting
do not work properly. Thus, all the lines and text shown in figure 8.2 have aliasing. In the graphics
environment, the aliasing is a problem that apears when the pixels are too big to plot a line without
appearing rough to our eye. There are algorithms that change the color of the painting depending on
which pixel of a line is going to be painted, but Pygame does not include them.

On the other hand, the freedom that offers Pygame could be of good used to experienced users. As shown
in the previous chapter, every specification has been accomplished. However, the buttons and text input
could be solved easily with other GUI libraries. A good combination of a GUI library and Math libraries
might be the best solution. Thus, the final recomendation is to explore other libraries in case that an

application of this kind is needed.

7 ==\
oy
~) Jx‘bb
ETSEIB



48 CHAPTER 9. BUDGET

9 BUDGET

The creation of this document and all the time spent in regarding its creation has taken 300 hours of a

superior engineer. A cost per hour of 45 €/h corresponds to a total cost of:

Cost = 300h - 45% = 13500 €
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10 CONCLUSIONS

The sliding mode control makes the control robust in front of uncertainty. It works perfectly when the
vehicle moves forward. However, it does not behave properly when the vehicle moves backwards. Different
tests prove that the behaviour depends on the control action gain and the geometry of the vehicle. As a
definitive conclusion, it must be said that the current sensor implemented in the laboratory vehicle is not
enough to provide a proper backward movement. A possible solution is to make the distance from the
middle point of the wheels axes to the sensor smaller. Still, that situation works only in the simulation
but could not work in the real world where the system is yet more complex than its modelation.

Other solutions could be implemented. For example the usage of one more sensor: one backwards and
another forwards. The sensor has a thin area of work and that is a handicap. The best option might be to
implement a sensor with a bigger range of work or a camera. However, the implementation of a camera,
despite being quite more interesting, is far more complicated. It implies image processing and, maybe, a
more powerful microcontroller.

Regarding to the Python program, the Pygame module for Python is not the best option to create the
kind of programs that require data plotting and graphic user interface. That is so because of the lack of a
anti-aliasing solution to any shapes and text painted. On the other hand, the flexibility that provides the

language and its library (Pygame) can be of good use for an experienced user.
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Figure A.5: [ = 0,05, sensor emulator off, forward movement.
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Figure B.1: [ = 0,005, sensor emulator off, forward movement.

05
x[m]

Figure B.2: [ = 0,005, sensor emulator on, backward movement, 8 = 1,5l.
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D Simulation results track 4
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E Pygame code

import pygame, sys, random, math
from pygame.locals import =x
from math import =

import pygame.gfxdraw

import os

os.environ [ ’SDL_-VIDEO_-WINDOW_POS’ |

size = [1000,800]

pygame. init ()

fpsTime = pygame. time . Clock ()
fps = 60

= "%d,%d” % (100,100)

font = pygame. font.SysFont(”tahoma” ,15)

fontLittle = pygame.font.SysFont (”tahoma” ,10)

5 pygame. display.set_caption (’Animation’)

; screen = pygame. display .set_mode (size ,HWSURFACE|DOUBLEBUF | RESIZABLE)
overScreen = pygame. Surface ((2000,2000), pygame.SRCALPHA, 32)

overScreen overScreen.convert_alpha ()

color = 255,255,255

A+ SIMULATION PARAMETERS #4444
track = 4

A= 0.5

R = 0.05

1 = 0.05

r 0.02

Il
o

Tmax

dMax = 0

Il
o

urMax

ulMax = 0

4phiis SPRITES CLASSES Aottt
class graph(pygame.sprite. Sprite):

def __init__(self ,xname,yname, type):
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global viewerWindow, Ngraphs

self.scale = 1
self .xname = xname
self .yname = yname

self.width = int (screen.get_size () [0]*(1—viewerWindow))
self.height = int ((screen.get_size ()[1]—60)/Ngraphs)
self .image = pygame. Surface ((self.width—10,self.height))
self.imageAxis = pygame. Surface ((self.width—10,self.height), pygame.SRCALPHA, 32)
self.color = (0,0,0)
self.axesColor = (255,255,255)
self.image. fill (self.color)
self . vgap = 20 #pixels
self . hgap = 50 #pixels
self .leftMargin = 20
self.rightMargin = 5
self . upMargin = 10
self.downMargin = 10
self .axisMarginLeft = 37
self .axisMarginRight = 10
self .axisMarginUp = 40
self .axisMarginDown = 30
self .type = type
if type = ’d’:

self .pos = int(screen.get_size () [0]*viewerWindow)+5, self.upMargin
elif type =— ’ur’:

self .pos = int (screen.get_size () [0]*viewerWindow)+5, self.upMargin + self.height
elif type =— ’ul’:

self .pos = int(screen.get_size () [0]*viewerWindow)+5, self.upMargin + 2xself.height

elif type = ’th’:

self .pos = int(screen.get_size () [0]*viewerWindow)+5, self.upMargin + 3xself.height

def axes(self):
global Tmax, dMax, urMax, ulMax

#Paint horizontal line of the axis

pygame.draw. line (self.imageAxis, self.axesColor ,( self.axisMarginLeft ,self.height/2),(

self.width—self.axisMarginRight , self.height/2))

#Paint vertical line of the axis

pygame.draw. line (self .imageAxis, self.axesColor ,( self.axisMarginLeft , self.axisMarginUp)

,(self.axisMarginLeft ,self.height—self.axisMarginDown))

#Paint horizontal marks on the axis

xLength = (self.width—self.axisMarginLeft—self.axisMarginRight)/self.hgap
n = Tmax/xLength

for i in range(int(xLength)):

pygame.draw. line (self .imageAxis, self.axesColor ,(self.axisMarginLeft+(i+1)*self.hgap,

self.height/2—2), (self.axisMarginLeft+(i+1)*self.hgap,self.height/242))
text = fontLittle.render(str (round(n*(i+1),1)),0,(255,255,255))
self.imageAxis. blit (text ,(self.axisMarginLeft+(i+1)*xself.hgap,self.height/2+3))
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81 #Paint vertical marks on the axis

82 yLength = int ((self.height/2—self.axisMarginUp)/self.vgap)

83 n = dMax/yLength

84 for i in range(yLength):

85 pygame.draw. line (self .imageAxis, self.axesColor ,( self.axisMarginLeft —2,self.height/2—
self .vgap—ixself.vgap), (self.axisMarginLeft+2,self.height/2—self.vgap—ixself.vgap))

86 text = fontLittle.render(str(round(n*100x(i+1),1)),0,(255,255,255))

87 self.imageAxis. blit (text ,(self.axisMarginLeft —25,self.height/2—self.vgap—ixself.vgap
—11))

88 for i in range(int ((self.height/2—self.axisMarginDown)/self.vgap)):

89 pygame.draw. line (self .imageAxis, self.axesColor ,(self.axisMarginLeft —2,self . height/2+
self .vgapt+i*self.vgap), (self.axisMarginLeft+2,self.height/2+self.vgapt+ixself.vgap))

90 text = fontLittle.render (str(round(—n*100%(i+1),1)),0,(255,255,255))

91 self.imageAxis. blit (text,(self.axisMarginLeft —29,self.height/2+self.vgap+i*xself.vgap
))

92 #Paint name of the vertical axis

93 text font.render (self.xname,0,(200,150,100))

94 self.imageAxis. blit (text ,(10,2))

95 #Paint name of the horizontal axis

96 text = font.render(self.yname,0,(255,150,100))

o7 self.imageAxis. blit (text ,(self.width/2,self.height—self.axisMarginDown))
98 #Blit alpha axes image on the graph image

99 self . blitAxes ()

100

101 def blitAxes(self):

102 self .image. blit (self.imageAxis,(0,0))

103

104 def relocate(self):

105 global viewerWindow

106 if self.type = ’d’:

107 self.pos = int(screen.get_size () [0]*viewerWindow)+self.leftMargin, self.upMargin
108 elif self.type = ’ur’:

109 self .pos = int(screen.get_size () [0]*viewerWindow )+self.leftMargin, self.upMargin +

self . height + 5

)

110 elif self.type = ’ul’:

111 self .pos = int(screen.get_size () [0]*viewerWindow)+self.leftMargin

2xself.height + 5x2

self.upMargin +

112 elif self.type =— ’th’:
113 self .pos = int(screen.get_size () [0]*viewerWindow )+self.leftMargin

3xself.height + 5x%3

self . upMargin +

114
115 def resize(self):
116 global viewerWindow
117 self . width = screen.get_size () [0]
118 self.width *=(1—viewerWindow)
119 self.width —= self.leftMargin + self.rightMargin
120 self.height = (screen.get_size ()[1]—self.upMargin)/Ngraphs—self.downMargin
\'l‘_;x'é'l
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self .image = pygame. Surface (( self.width, self.height))
self.image. fill (self.color)
self.imageAxis = pygame. Surface ((self.width—10,self.height), pygame.SRCALPHA, 32)

self .axes ()

def graphPaint (self ,posl, pos2):
global dMax,urMax,ulMax

if self.type = ’d’:
MAX = dMax
color = (255,0,0)
elif self.type =— ’ur’:
MAX = urMax
color = (100,200,0)
elif self.type = ’ul
MAX = ulMax

color = (110,50,250)

7o

posl = list (posl)
list (pos2)
posl [0] = self.axisMarginLeft+posl [0]/Tmaxx*(self.width—self.axisMarginLeft—self.

pos2

axisMarginRight)

posl [1] = posl[1]/MAXx((self.height—self.axisMarginUp—self.axisMarginDown) /2)
pos2 [0] = self.axisMarginLeft+pos2[0]/Tmax*(self.width—self.axisMarginLeft—self .
axisMarginRight)

pos2[1] = pos2[1]/MAXx((self.height—self.axisMarginUp—self.axisMarginDown) /2)

if int(posl[0])!= int(pos2[0]) or int(posl[1l])!= int(pos2[1l]):

pygame.draw. line (self .image, color ,(posl[0],int ((self.height—self.axisMarginUp—self.

axisMarginDown) /2)+self . axisMarginUp—posl [1]) ,(pos2[0],int ((self.height—self.
axisMarginUp—self . axisMarginDown) /2)+self . axisMarginUp—pos2[1]) ,1)
#self . blitAxes ()
def repaint(self):
global graphTime
graphTime = 0
self.resize ()
self.relocate ()

self.axes ()

class dividingBar (pygame. sprite. Sprite):
def __init_-_(self):
global viewerWindow
self.height = screen.get_size ()[1]+50
self.width = 4

self.image = pygame. Surface ((self.width, self.height))

self.image. fill ((100,100,100))

pygame.draw. line (self .image,(200,200,200) ,(0,0) ,(0,self.height) ,1)

pygame.draw. line (self.image,(200,200,200) ,(self.width,0) ,(self.width,self.height) 1)
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164 self .pos = screen.get_size () [0]*viewerWindow—self.width, 0
165 self .rect = pygame.Rect ((self.pos[0],self.pos[1l]) ,(self.width,self.height))
166 self.active = False

167
168 def relocate(self):
169 global viewerWindow , dGraph, urGraph, ulGraph, graphPanel#, thGraph

170 if self.active:

171 viewerWindow = pygame.mouse. get_pos () [0]/screen. get_size () [0]

172 self .pos = [screen.get_size () [0]*viewerWindow —4, 0]

173 self .rect = pygame.Rect ((self.pos[0],self.pos[1l]) ,(self.width,self.height))
174 dGraph.repaint ()

175 urGraph . repaint ()

176 ulGraph . repaint ()

177 #thGraph . repaint ()

178 graphPanel = pygame. Surface ((screen.get_size ()[0]*(1—viewerWindow) ,screen. get_size ()

(1))

179 graphPanel. fill (graphPanelColor)

181 def toggle(self):

182 global activeGraph
183 if self.active:

184 self.active = False
185 activeGraph = True
186 else:

187 self.active = True
188 activeGraph = False
189

190 def update(self):

191 if self.active:

192 self . relocate ()

193 pos = pygame.mouse. get_pos ()

194 if self.rect.collidepoint (pos):

195 pygame.mouse. set_cursor (size , hotspot ,*cursor)
196 else:

197 if B[0] = 0:

198 pygame.mouse. set_cursor (xpygame. cursors .arrow)

200 class button(pygame.sprite.Sprite):

201 def __init__(self name,pos):

202 self .imageNorm = pygame.image.load (’skins/ +namet+’.png’)

203 self.image = self.imageNorm

204 self.imagelnv = pygame.image.load (’skins/ +namet+’ _inv '+’ .png’)
205 if name == ’pause’:

206 self.imagePlay = pygame.image.load (’skins/play.png’)

207 self.imagePlaylnv = pygame.image.load (’skins/play_inv.png’)
208 self.imagePause = self.imageNorm

209 self.imagePauselnv = self.imagelnv

ain
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if name — ’forward ’:

self .imageBackward = pygame.image.load (’skins/backward.png’)

self .imageBackwardInv = pygame.image.load ( ’skins/backward_inv.png’)
self.imageForward = self.imageNorm
self .imageForwardInv = self.imagelnv

self.pos = pos

self .rect = self.image.get_rect ()

self . rect [0] = pos[0]

self . rect [1] = pos[1]
self .name = name
if name[: —1] = ’track ’:

global track

self.track = int(self.name[—1])
if track = self.track:
self.image = self.imagelnv

def restart(self):
global count, repeat, pause, time, Pshort, thetaMatrix, track, Ppath, RWpath, LWpath,
graphTime, dGraph, urGraph, ulGraph, test #, thGraph
Ppath = []
RWpath [
LWpath = []

track = self.track
loadData ()
loadGraphData ()
pathGuide ()
graphTime = 0
dGraph.repaint ()
ulGraph.repaint ()
urGraph . repaint ()
#thGraph.repaint ()
def action(self):
global count, repeat, pause, time, Pshort, thetaMatrix, track, Ppath, RWpath, LWpath,
graphTime, dGraph, urGraph, ulGraph, test #, thGraph

if self.name — ’repeat ’:
if repeat == True:
repeat = False
else:
repeat = True
elif self.name — ’pause’:

if not pause:

pause = True

self.imageNorm = self.imagePlay

self.imagelnv = self.imagePlaylnv
else:

pause = False

self .imageNorm = self.imagePause

self.imagelnv = self.imagePauselnv
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255 elif self.name =— ’forward’:
256 Ppath = []
257 RWpath = []
258 LWpath = []
259 graphTime = 0
260 dGraph.repaint ()
261 urGraph . repaint ()
262 ulGraph.repaint ()
263 #thGraph.repaint ()
264 count = 0
265 time = 0
266 theta = —Pshort [count |[2]
267 thetaMatrix = Rz(pi/2+theta)
268 if test = 2:
269 test = 1 #moving forward
270 self .imageNorm = self.imageForward
271 self.imagelnv = self.imageForwardInv
272 loadData ()
273 loadGraphData ()
274 ellislel:
275 test = 2 #moving backwards
276 self .imageNorm = self.imageBackward
277 self.imagelnv = self.imageBackwardInv
278 loadData ()
279 loadGraphData ()
280
281 elif self.name = ’playlnit ’:
282 Ppath = []
283 RWpath = []
284 LWpath = []
285 graphTime = 0
286 dGraph.repaint ()
287 urGraph . repaint ()
288 ulGraph.repaint ()
289 #thGraph.repaint ()
290 count = 0
291 time = 0
292 theta = —Pshort [count | [2]
293 thetaMatrix = Rz(pi/2+theta)
294
295 elif self.name = ’trackl’ or self.name =— ’track2’ or self.name =— ’track3’ or self.
name = ’track4 ’:
296 self .restart ()
297
208 ###H# MATH FUNCTIONS NEEDED A4+
209 #SCALAR PRODUCT
so0 def SxV(s,v):
\'L_;x‘é'l



70 APPENDIX E. PYGAME CODE

v2 = []
for i in range(len(v)):
v24=[s*v[i]]

return (v2)

306 #ROTATION FUNCTIONS

def Rx(a):

Rx = [[1,0,0],[0,cos(a),—sin(a)],[0,sin(a),cos(a)]]
return (Rx)

def Ry(a):

Ry = [[cos(a),0,—sin(a)],[0,1,0],[sin(a),0,cos(a)]]
return (Ry)

def Rz(a):

Rz = [[cos(a),—sin(a) ,0],[sin(a),cos(a) ,0],[0,0,1]]
return (Rz)

7 #MULTIPLICATION of ROTATION-MATRIX and a VECTOR
s def MxV(M,v):

v2 = [0,0,0]

v2[0] =M[0][0]*v[O0] + M[O][1]*v[1] + M[O][2]=*v[2]
v2[1] =M[1][0]*v[O0] + M[1][1]*v[1] + M[1][2]=*v[2]
v2[2] =M[2][0]*v[0] + M[2][1]*v[1] + M[2][2]=*v[2]

return (v2)

5 #MATRIX MULTIPLICATION

326 def mxdM(ml,m2):

M= [[0,0,0],[0,0,0],[0,0,0]]
for i in [0,1,2]:

for j in [0,1,2]:

MEE][j] = ml[i][0]*m2[0][j] + ml[i][1]+m2[1][j] + mi[i][2]+m2[2][]]
return (M)

#WHEEL POINTS: calculates all the vertexes of a polygon respect to a generic path

def polygon (path,points):

global theta, count

c =l

for i in range(len(points)):
c+=[(MxV(thetaMatrix ,SxV(scale ,points[i]))[0]+ path[count][0] ,MxV(thetaMatrix ,SxV(scale
,points[i]))[1]+ path[count|[1] ,MxV(thetaMatrix ,SxV(scale ,points[i]))[2]+ path[count
112])]
n = MxV(GRM, (c¢[i][0] —origin_pos [0] ,c[i][1l] —origin_pos[1l],c[i][2]))
c[i] = n[0]+origin_pos [0] ,n[l]+ origin_pos [1]

return(c)

def polygon2(path, points):

global theta, count

c =l
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for i in range(len(points)):

c+=[(MxV(thetaMatrix ,SxV(scale ,points[i]))[0]+ path[count][0] ,MxV(thetaMatrix ,SxV(scale
,points[i]))[1]+path[count][1] ,MxV(thetaMatrix ,SxV(scale ,points[i]))[2]+ path[count

112D ]
n = MxV(GRM, (c[i][0] —origin_pos [0] ,c[i][1] —origin_pos[1],c[i][2]))
c[i] =n[0],n[1],n[2]

return (c)

2 #UPDATE FOLLOWING TRACKS OF WHEELS AND POINT P

def updateTracks():
global Ppath, RWpath, LWpath, count

Ppath = []

RWpath = []

LWpath = []
count_dump = count
count = 0

for i in range (count_dump):
Ppath += polygon (Pshort ,[[0,0,0]])
RWpath += polygon (RWshort,[[0,0,0]])
LWpath += polygon (LWshort,[[0,0,0]])
count+4=1

count = count_dump

#HHHF PROGRAM VARIABLES & PARAMETERSHHHHH

wasd = [False, False ,False, False] #Moving up, left , down and/or right
origin_pos = [900,900] #Origin displacement

origin = [—700,—700]

origin2 = tuple(origin)

scale = 200 #scale of image: lu = 500px

time = 0 #Measure of time from ”frames per second”
interval = 0.02 #Period between positions
76 count = 0 #Position iteration
reset = 0
path = []
Pshort = []

RWshort = []
LWshort = []

graphPanel. fill (graphPanelColor)
graphCount = 0

test = 1 # 1: forward movement 2: backward movement
Ngraphs = 3
5 viewerWindow = 0.5
graphPanel = pygame. Surface ((screen. get_size () [0]*viewerWindow ,screen.get_size () [1]))
graphPanelColor = (20,20,70)

ain
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dGraph = graph(’d[m] x0,01’,’t[s]’,’d”)

dGraph . axes ()

urGraph = graph(’w([rad/s]| right wheel’,’t[s]’, ur’)
urGraph . axes ()

ulGraph = graph(’wlrad/s] left wheel’,’t[s]’, ul”’)
ulGraph . axes ()

graphTime = 0

activeGraph = True
bar = dividingBar ()
theta = 0

thetaMatrix = [[1,0,0],[0,1,0],[0,0,1]]

hl =0

: h2 = 0.015

chPoints =[]

chPoints 4+= [[[0,0,h2],[R/4,0,h2],[R/2,1/5,h2] ,[R/2,1,h2],[-R/2,1,h2],[-R/2,1/5,h2],[—-R

/4,0,h2]]] #chassis points with respect to point p

whPoints = [[-r/4,r,0] ,[r/4,r,0],[r/4,—1,0],[—r/4,—1,0]] #wheels points with respect to

the wheel centre

Ppath = []

RWpath = []

LWpath = []

d=1

ul = []

ur = ]

cursor = pygame.cursors.compile(pygame.cursors.sizer_x_strings ,black="." ,white="X")
size = len(pygame. cursors.sizer_x_strings [0]), len(pygame.cursors.sizer_x_strings)

hotspot = (6,6)

; buttons = [button(’ playInit’,(1,1)),button(’pause’,(51,1)),button(’repeat’,(101,1)),

button (’forward’,(151,1))]
buttons2 = []
for i in [1,2,3,4]:
buttons2 += [button(’track '+str (i),(151+50%i,20))]

collision = False
B = [0,0,0]
pause = False

repeat = False
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236 GRM = [[1,0,0],[0,1,0],[0,0,1]] #Global Rotation Matrix

460

461

462

463

464

> Az =

ax =
ay =
az —
Ax =
Ay

SO O © O o o

#iHH#H#F LOAD DATA #1HAHA

def loadData () :
global Pshort
time = 0
count = 0
P =
T =[]
RW = []
LW = []
filel = open(
file2 = open(
file3 = open(

file4 = open( 'IW’'+str (track)+’ - '+str(test)+’ . txt

linel = filel
line2 = file2
line3 = file3
line4d = file4

while linel !=
linel = str.
line2 = str.
line3 = str.

lined = str.

float

= float

= float
= float

( [
( [
( [
= float (line3 |
( (
( [
( [
( [

5 # P location list of the wvehicle

, RWshort, LWshort ,

'P’+str (track )+’ - +str (test )+’ . txt’
"T’+str (track )+’ _+str (test )+’ . txt’
RW’+str (track )+’ _'+str(test )+ . txt

.readline ()
.readline ()
.readline ()
.readline ()

99

split
float (linel [
linel
float (linel
float (line3
line3
line4
float
line4

float

(line2 [0]) ]

= [line3]

= filel .readline ()
= file2 .readline ()

RW +=
LW += [line4]
linel
line2

iteration

count ,

)

b

)

)

time ,

track , T, P, RW, LW, Tmax,

test
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line3

line4

= file3 .readline ()
= file4 .readline ()

shortenData ()

Tmax = max (T)

def shortenData():
global P, Pshort, RW, RWshort, LW, LWshort, T, Tshort
# SHORTENED PATHS:

# Short and fixed interval between positions in P list

=

Pshort

RWshort
LWshort
QDsimsshort = []

= ]

Tshort
t =0

for i

[l
=1

in range(len (P)):
if T[i] >= t:

Pshort += [(P[i][0]*scale + origin_pos[0], —P[i][1]*scale + origin_pos[1], P[i][2])]

RWshort += [(int RW[i][0]*scale) + origin_pos[0],
[1], RW[i][2]) ]

LWshort += [(int (LW[i][0]* scale) + origin_pos [0],
(1], TW[i][2]) ]

QDsimsshort += [(int (LW[i][0]* scale) + origin_pos[0], int(—LW[i][1]* scale) +
origin_pos [1], IW[i][2]) ]

Tshort += [T[i]]

t 4= interval

def loadGraphData() :

global d, ul, ur,dMax,urMax,ulMax, test

filel
file2
file3
linel
line2
line3

while

open(’d’+str (track)+’-'+str(test)+’ . txt’,’r’)

= open(’ur’+str (track)+’_'+str(test)+’ . txt’,’r”)

linel !=

open(’ul’+str (track)+’ - '+str(test)+’.txt’,’r’)
filel .readline ()
filel .readline ()
filel .readline ()

99 5

linel = str.split(linel

line2

line3
linel [0] = float (linel [0])
line2 [0] = float (line2[0])
line3 [0] = float (line3 [0])
d+=linel

)
= str.split(line2)
= str.split(line3)

ur+=line?2

and RW list

int(-RW[i][1]*scale) + origin_pos

int(-LW[i][1]*scale) + origin_pos
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ul4+=line3

linel = filel .readline ()

line2 = file2 .readline ()

line3 = file3 .readline ()
dMax = max(abs(max(d)) ,abs(min(d)))
urMax = max(abs (max(ur)),abs(min(ur)))

ulMax = max(abs(max(ul)),abs(min(ul)))

loadData ()

536 loadGraphData ()

s L CREATE BLACK PATH LINE A4kt

530 #Creates a list with the objective points to follow.

540

563

564

565

566

567

568

569

570

#And draws the point onto pathlmage
def pathGuide():

global path, A, track

path = []

if track = 2:
m = 0
qr = 1/2
j =0

for i in range(101):
if i >= qr*100 and j==0:
m= 1/3
i=i
path += [(int(i/100%xscale)+origin_pos [0],int(—mx(i—j)/100xscaletorigin_pos[1]))]
n = MxV(GRM, (path[i][0] —origin_pos [0] ,path[i][1l] —origin_pos[1],0))
path[i] = n[0]4+ origin_pos [0] ,n[1l]4+ origin_pos [1]
elif track = 3:
for i in range(180):
path += [(int (0.5%(cos(i*pi/180)*scale+scale))torigin_pos[0],int(0.5%x(—sin(i*xpi/180)
xscale))dorigin_pos [1])]
n = MxV(GRM, (path [i][0] —origin_pos [0] ,path[i][1l] —origin_pos[1],0))
path[i] = n[0]4+origin_pos [0] ,n[l]+origin_pos [1]
elif track = 4:
for i in range(101):
path += [(int(i/100xscale)4origin_pos[0],—int (Axsin (2xpixi/100)*scale)torigin_pos
[1])]
n = MxV(GRM, (path [i][0] —origin_pos [0] ,path[i][1l] —origin_pos[1],0))
path[i] = n[0]4 origin_pos [0] ,n[1l]+ origin_pos [1]

pathGuide ()

while True:

'_'/’/ ”l ,”,l'//” II,/’/ /,/ 4 ’,’ ,/’ /] BEGIN EVEN"T‘ I\,”]ANAGH\/W I,’,’”/”/’,’ ,/,/l/l/,’,l”/ /] II,/,/ / 4 ’/,’/
for event in pygame.event.get ():
if event.type == pygame.QUIT:
ain
[k
\'L_;x'é'l
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571 sys.exit ()

572

573 elif event.type=VIDEORESIZE:

574 screen=pygame. display .set_mode (event.dict [ 'size ' | ,HWSURFACE|DOUBLEBUF | RESIZABLE)
575 bar.relocate ()

576

577 elif event.type = KEYDOWN:

578 key_down = pygame.key.name(event.key)
579

580 #Asignar valor binario True al vector binario de movimiento
581 if key_-down =— ’left ctrl’:

582 left_control = True

583 elif key_-down = ’r’:

584 reset = True

585 GRM = [[1,0,0],[0,1,0],[0,0,1]]

586 elif key_-down = ’escape’:

587 sys.exit ()

588

589 elif event.type — KEYUP:

590 key_up = pygame.key.name(event .key)
591

592 #Asignar valor binario False al vector binario de movimiento
593 if key_up = ’left ctrl’:

594 left_control = False

595 elif key_.down — ’'r’:

596 reset = False

597

598 elif event.type = MOUSEBUTTONDOWN:

599 B = pygame.mouse. get_pressed ()

600 mouseDown = pygame.mouse. get_pos ()

601 collision = False

602 if B[O]:

603 for i in buttons:

604 if i.rect.collidepoint (mouseDown) :
605 collision = True

606 if i.name = ’repeat ’:

607 if repeat:

608 i.image = 1i.imageNorm

609 i.action ()

610 else :

611 i.image = i.imagelnv

612 i.action ()

613 else:

614 i.image = i.imagelnv

615 i.action ()

616 for i in buttons2:

617 if i.rect.collidepoint (mouseDown) :



638

639

640

641

656
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660

661
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663
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collision = True
if track != i.track:
i.action ()
i.image = i.imagelnv
for j in buttons2:
if j!= 1i:
j.image = j.imageNorm
if bar.rect.collidepoint (mouseDown) :

bar.toggle ()

if event.button — 4:
scale+=20
shortenData ()
pathGuide ()
updateTracks ()

elif event.button — 5:
scale —=20
shortenData ()
pathGuide ()
updateTracks ()

elif event.type == MOUSEBUTTONUP:

origin2 = tuple(origin)
B = pygame.mouse. get_pressed ()
mouseUp = pygame.mouse. get_pos ()
if not B[O]:

collision = False

for i in buttons:

if i.name != ’repeat’:
i.image = 1i.imageNorm

if bar.active:

bar. toggle ()

HiH#H PROGRAM LOGIC ###HE
lenPshort = len (Pshort)—1

if time >= intervalxcount and count<lenPshort and not pause:

count += 1
theta = Pshort[count][2]
thetaMatrix = Rz(pi/2—theta)

Ppath += polygon (Pshort ,[[0,0,0]])
RWpath += polygon (RWshort,[[0,0,0]])
LWpath += polygon (LWshort,[[0,0,0]])

if count>=lenPshort and repeat:

count = 0
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665 time = 0

666 Ppath = []

667 RWpath = []

668 LWpath = []

669 graphTime = 0

670 dGraph.repaint ()

671 urGraph . repaint ()

672 ulGraph.repaint ()

673 theta = Pshort [count][2]
674 thetaMatrix = Rz(pi/2—theta)
675

676 if ax or ay or az or reset:
677 if ax:

678 Axt= ax

679 m = Rx(ax)

680 elif ay:

Ayt= ay

ot )

683 elif az:

684 Azt= az

685 m = Rz(az)

686 GRM = mxM (m,GRM)

687 m= [[1,0,0],[0,1,0],[0,0,1]]
688 pathGuide ()

689 updateTracks ()

690

691 if not collision and B[0]:

692 origin [0] = origin2[0]+ pygame.mouse. get_pos ()[0] —mouseDown [0]
693 origin [1] = origin2[1]+pygame.mouse. get_pos () [1] —mouseDown [1]
694

695 if activeGraph:

696 #Update graphs

697 while T[graphTime] < intervalxcount:

698 posl = (T[graphTime],d[graphTime])

699 pos2 = (T[graphTime+1],d[graphTime+1])
700 dGraph. graphPaint (posl , pos2)

701 posl = (T[graphTime] ,ur[graphTime])

702 pos2 = (T[graphTime+1],ur [graphTime+1])
703 urGraph . graphPaint (posl , pos2)

704 posl = (T[graphTime], ul [graphTime])

705 pos2 = (T[graphTime+1],ul [graphTime+1])
706 ulGraph . graphPaint (posl , pos2)

707 graphTime+=1

709 #Update bar
710 bar . update ()
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screen. fill (color)

overScreen. fill ((20,20,20))

#Draw blue base (base)
base = []

for i
i =
b =
b =

in

[[-0.1,-0.6,0],[1.1,—-0.6,0],[1.1,0.6,0],[—0.1,0.6,0]]:

SxV(scale , 1)

MxV(GRM, i )

b[0]+ origin_pos [0], b[l]4+ origin_pos [1]
base += [b]

pygame .draw . polygon (overScreen ,(170,190,230) ,base)

#Draw path guide (path)

for i

in

path:

pygame.draw . lines (overScreen ,(0,0,0) ,False ,path,1)

#Draw paths of P, RW and LW (Ppath, RWpath, LWpath)
if len (Ppath)>1:

pygame.draw . lines (overScreen ,(250,0,0) ,False ,Ppath,1)

pygame.draw . lines (overScreen ,(0,250,0) ,False ,RWpath,1)

pygame.draw . lines (overScreen ,(0,0,250) ,False ,LWpath,1)

#Draw wheels on the scene

if count<=lenPshort :

pygame .draw . polygon (overScreen ,(0,250,0) ,polygon (RWshort, whPoints)) #right wheel

pygame .draw . polygon (overScreen,(0,0,250) ,polygon (LWshort , whPoints)) #left wheel

#Calculate the printing order of each chassis polygon

chassisPoints = {}

priority

for i

in

= I

range (len (chPoints)):

polypoly = polygon2(Pshort ,chPoints[i])

a =

for

0
i

in range (len(polypoly)):

at=polypoly [j][2]
a/=len (polypoly)

priority+=la]

chassisPoints [a]=polygon (Pshort ,chPoints[i])

priority .sort ()

priority2 = []

for i in range(len(priority)):

priority2+=[priority [i]4+abs(min(priority))]

#Draw chassis on the screen

if count<=lenPshort :

for

i

in range(len(chPoints)):
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759 pcolor = abs(priority2[i])/abs(max(priority2))

760 pygame .draw . polygon (overScreen ,( pcolor*255,10,10) ,chassisPoints [priority [i]])
761 pygame.draw. polygon (overScreen ,(0,0,0) ,chassisPoints [ priority[i]],1)

762

763 #Blit overScreen on the screen

764 screen . blit (overScreen ,origin)

767 #Draw graphPanel

768 screen. blit (graphPanel ,(int (screen.get_size () [0]*viewerWindow) ,0))

770 if activeGraph:
771 #Draw dGraph

772 screen . blit (dGraph.image ,dGraph. pos)
773 #Draw urGraph

774 screen . blit (urGraph .image , urGraph. pos)
775 #Draw ulGraph

776 screen . blit (ulGraph.image ,ulGraph. pos)

77 #Draw thGraph
778 #screen . blit (thGraph.image ,thGraph.pos)

780 #Draw bar

781 screen . blit (bar.image, bar.pos)

783 #Draw buttons on the interface

784 for i in buttons:

785 screen . blit (i.image,i.pos)

786 for i in buttons2:

787 screen . blit (i.image,i.pos)

788

789 #Pause if necessary and advance iteration

790 fps2 = fpsTime. get_fps ()

791 if not pause and count<lenPshort :
792 try: time += 1/fps2#1/fps

793 except: time += 1/fps

794

795 #Draw text on screen

796 text = font.render(’fps: ’+str(round(fps2,1)),0,(255,255,255))

797 screen. blit (text ,(205,0))

798 text = font.render(’Time: ’+str(round(time,1))+’ s’,0,(0,0,0))

799 text = font.render (’Time: ’+str (round(Tshort[count],1))+’ s’,0,(255,255,255))
800 screen . blit (text ,(305,0))

802 #frame flip
803 fpsTime. tick (fps)
804 pygame . display . flip ()



