
Escola Tècnica Superior d’Enginyeria Industrial de Barcelona

Universitat Politècnica de Catalunya

Master’s Degree in Industrial Engineering

Sliding mode control of a

unicycle two type differential-drive

mobile robot following a path

Aŕıstides Barea Fernández

supervised by

Arnau Doria Cerezo

September, 2017

Abstract

This thesis only concerns the control design of a unicycle type differential-drive mobile robot following

a path, using the Sliding Mode Control techniques. In the first place, the kinematic and dynamical

models are found so that the mathematical analysis and the simulations can be performed. The model

happens to be non-linear and its control needs two ”state” variables of which only one can be measured.

A linear observer solves the unmeasured variable. Two different modalities of movement include forward

movement and backward movement. These modalities are substantially different due to the geometry of

the vehicle, but require slightly different control analysis. The Lyapunov theorem for non-linear stability

systems is applied in order to find the proper control action. Other details are simulated such us the sensor

characteristics and the motors non linearities. Specifically, the dynamics of the motors are simulated but

not implemented in the dynamical model. Future work could continue this thesis trying to design a control

policy that acts directly over the electric impulse rather than the velocities of the vehicle.

The verification of the proposed control action is conducted with the Matlab Simulink software. This

document includes diagrams and code so that the simulation model can be understood. In addition, a

python app has been developed helping to animate the simulations and the important graphs that can

proof the correct behaviour.

2 SUMMARY

Summary

1 INTRODUCTION 7

1.1 Topic . 7

1.2 Objectives . 7

1.3 Thesis scope . 8

2 STATE OF THE ART 9

2.1 Previous works . 9

2.2 Sliding mode introduction . 9

3 THE MODEL 12

3.1 Kinematic relation . 12

3.2 Dynamic model . 13

4 CONTROL DESIGN 16

4.1 Model adaptation . 16

4.1.1 Moving forward . 17

4.1.2 Moving backward . 19

4.2 Full state observer . 20

5 REALISTIC DETAILS 23

5.1 Motor Dynamics . 23

5.2 Sensor . 24

6 SIMULATION DIAGRAMS 26

6.1 Robot dynamics block . 26

6.2 DQdynamics block . 27

6.3 Sliding mode control block . 28

7 SIMULATIONS RESULTS 30

7.1 Methodology . 30

7.2 Forward movement with sensor emulator . 31

Sliding mode control of a robotic vehicle following a path 3

7.3 Backward movement with no sensor emulator . 34

7.4 Backward movement with sensor emulator . 36

7.5 Length effect in backward movement . 41

7.6 Solution summary . 43

8 PYGAME ANIMATIONS 44

8.1 Python possibilities . 44

8.2 Animator logics overview . 45

8.3 Conclusions . 47

9 BUDGET 48

10 CONCLUSIONS 49

BIBLIOGRAPHY 50

Appendix A Simulation results track 1 51

Appendix B Simulation results track 2 54

Appendix C Simulation results track 3 57

Appendix D Simulation results track 4 60

Appendix E Pygame code 63

4 LIST OF FIGURES

List of Figures

2.1 Sliding surface . 10

3.1 Vehicle caracterization, parameters and variables . 12

4.1 Phase portrait of θe dynamics . 19

4.2 Luenberg observer diagram . 22

5.1 Motor Dynamics diagram block . 24

5.2 Infrared sensor operation . 25

6.1 Complete Matlab simulation diagram . 26

6.2 Robot dynamics diagram . 27

6.3 DQdynamics block . 28

6.4 Sliding Mode Control simulink block . 28

7.1 Forward movement track 1 with sensor emulator . 31

7.2 Forward movement track 2 with sensor emulator . 32

7.3 Forward movement track 3 with sensor emulator . 32

7.4 Forward movement track 4 with sensor emulator . 33

7.5 Forward movement track 4 with sensor emulator . 33

7.6 Backward movement track 2 with no sensor emulator . 34

7.7 Backward movement track 3 with no sensor emulator . 35

7.8 Backward movement track 4 with no sensor emulator . 36

7.9 Backward movement track 1 with sensor emulator . 38

7.10 Backward movement track 2 with sensor emulator . 38

7.11 Backward movement track 2 with sensor emulator (starting position 2) 39

7.12 Backward movement track 3 with sensor emulator . 40

7.13 Backward movement track 4 with sensor emulator . 40

7.14 Backward movement track 4, modified vehicle length. 41

7.15 Backward movement track 2 with sensor emulator and length = 0,05 42

Sliding mode control of a robotic vehicle following a path 5

7.16 Backward movement track 3 with sensor emulator and length = 0,05 42

7.17 Backward movement track 4 with sensor emulator and length = 0,05 43

8.1 Pygame animation program diagram . 45

8.2 Pygame animation program . 46

A.1 Track 1.1 . 51

A.2 Track 1.2 . 51

A.3 Track 1.3 . 52

A.4 Track 1.4 . 52

A.5 Track 1.5 . 52

A.6 Track 1.6 . 53

A.7 Track 1.7 . 53

A.8 Track 1.8 . 53

B.1 Track 2.1 . 54

B.2 Track 2.2 . 54

B.3 Track 2.3 . 55

B.4 Track 2.4 . 55

B.5 Track 2.5 . 55

B.6 Track 2.6 . 56

B.7 Track 2.7 . 56

B.8 Track 2.8 . 56

C.1 Track 3.1 . 57

C.2 Track 3.2 . 57

C.3 Track 3.3 . 58

C.4 Track 3.4 . 58

C.5 Track 3.5 . 58

C.6 Track 3.6 . 59

C.7 Track 3.7 . 59

C.8 Track 3.8 . 59

D.1 Track 4.1 . 60

D.2 Track 4.2 . 60

D.3 Track 4.3 . 61

D.4 Track 4.4 . 61

D.5 Track 4.5 . 61

D.6 Track 4.6 . 62

D.7 Track 4.7 . 62

6 LIST OF FIGURES

D.8 Track 4.8 . 62

Sliding mode control of a robotic vehicle following a path 7

1 | INTRODUCTION

1.1 Topic

This thesis is a part of a bigger project focused on the investigation around autonomous vehicles and

intelligent management of circulation. It includes communication and coordination between vehicles. The

project is at a laboratory stage where the vehicles that are being controlled are replicas of themselves. The

typology of the vehicle can be described as a laboratory prototipe that follows a curve over the floor. It

has two motored wheels and one infrared sensor located at a certain distance from the center point of the

wheels axis. It is bound to follow a black trajectory painted over a white backround. The behaviour of the

vehicle as an individual part of the whole system is essential to eventually apply the proper management

policy for a group of vehicles. The individual behaviour could imply variation of velocity as well as forward

and backward movement. Of course, it has to be reliable. It has to make no mistakes, like losing the track,

for it is needed to avoid collisions and disorder.

1.2 Objectives

Framed within this topic, this thesis has the aim of designing a control policy based on sliding mode control

in order to control the laboratory vehicle in backward and forward movement. The control will be designed

over a non-linear system without trying to linearize it. There are other possible secondary objectives that

include:

• The addition of the variation of linear velocity in the control design.

• The implementation of the control design in the microcontroller of the laboratory vehicle.

• The modelation of the system so that the electric impulses that excite the motors became the two

control actions.

• Design of an app that helps to animate the simulations results.

8 CHAPTER 1. INTRODUCTION

1.3 Thesis scope

This thesis covers the parametrization, kinematic relations and dynamic model of the system formed by

the vehicle and the track. It includes all de mathematica demonstrations of every equation used to model

the system and its dynamics. It also covers the simulations with Matlab Simulink and data acquisition for

the purpose of analysing results and draw conclusions. All the block diagrams are explained in this thesis

as well as part of the equations used in the code. However, it does not cover the explanation of the code

itself.

The animator program designed with Python is a secondary objective. Therefore, the document only

provides an overview of its logics with no deeper analysis. The module used to make a graphic interface

is Pygame. It cannot be expected a tutorial document. The main purpose of this topic is to provide

conclusions about the Pygame usefullness in this ambit.

Sliding mode control of a robotic vehicle following a path 9

2 | STATE OF THE ART

The kind of laboratory vehicle that follows a path is something that exists nowadays in different areas.

Automated warehouse, robot competitions and even toys implement different control solutions. However,

every solution is adapted in different ways depending on the typology of the robot and its sensors and

actuators. The next sections aim to put the reader in the current situation offering an introduction to the

needed theory that will be used in this document.

2.1 Previous works

The precedent to this document3 covers, amongst other things, the modelation of the system and its

simplification. It also proposes basic control options.

The two wheels are two actuators that can make the vehicle move and redirect. This is a coupled system

due to the fact that the two control actions are not independent. The solution to this problematic is to

apply a change of variables so that the linear velocity and the direction change velocity become the two

control actions of the model. Hence, they become independent one from another. It provides the oportunity

of using only one of the control actions while the other remains constant. While the linear velocity is set

to a constant value, the velocity of the direction change is selected to be the control action. This way, the

system becomes single input multiple output (SIMO).

Two basic controllers are designed in order to test the vehicle in the real world once it has been built:

proportional and integral-proportional. The system is linearized in order to design both controllers. They

both work with no significant differences. However, they can only provide a forward movement with

asymptotic stability.

2.2 Sliding mode introduction

A variable structure system is composed of two or more continuous subsystems and a certain logic that

commutes between them. In the design of the variable structure system, the control action becomes a

discontinous function of the states. When the iteration from a subsystem to another occurs at a high

frecuency, it is called a sliding mode or regime. It offers some advantages like robustness in front of

uncertainty and perturbation, reduced order compensated dynamics and finite-time convergence, amongst

10 CHAPTER 2. STATE OF THE ART

others.

Let us consider the continuous system:

ẋ = f(x) + g(x)u

y = h(x)
(2.1)

where x is the states vector and u the control action. Defining the conmutation function s(x) with a

∇σ(x) 6= 0 for every state, then the set

σ = {x : s(x) = 0} (2.2)

defines an entity of conmutation that is called sliding surface. The control action u can be defined as a

function of the sign of the sliding surface σ.

u2 =

 u+ if σ(x) < 0

u− if σ(x) > 0
(2.3)

The control action u is a function of the states. The two possible actions u+ and u− cannot be equal and

they always satisfy u+ > u−.

σ(x) = 0

f + g u

f + g u

+

-

σ(x) < 0

σ(x) > 0

Δ σ(x)

Figure 2.1: The sign of σ is the logic that makes the control action conmute from one function to another

(u+ and u−). The system is commuting along the time while the states ensure the oscilation around σ = 0.

There is a sliding regime when the system gets to the surface σ and stays locally around it. It is important

that the vectorial fields of the two continuous subsystems (f + gu+ and f + gu−) target locally toward the

surface σ. Note that this kind of control provides a finit time approach.

Sliding mode control of a robotic vehicle following a path 11

The system, operating in the sliding mode, commutes ideally at an infinite frequency. That makes it

impossible to find an analitic solution of the state equation. Another way to obtain the dynamics of a

continuous system is to find the equivalent control. The equivalent control corresponds to the control

action solution that makes the system stay at the sliding surface when it gets there.

In order to find the proper control action that ensures the sliding mode, a necessary condition must be

secured. This condition recieves the name of transversality condition.

∂σ

∂x
g(x)¬0 (2.4)

A basic methodology can be used to design the sliding mode control:

• Select the sliding surface that provides the desired dynamics.

• Obtain the control law that surely will need a function sign of the sliding surface σ.

• Determine the sliding domain where the system will be stable.

• Analyze the stability of the ideal sliding dynamics.

12 CHAPTER 3. THE MODEL

3 | THE MODEL

3.1 Kinematic relation

In the real world, the system is basically made of two elements: the vehicle itself and the trajectory it

is going to follow. The vehicle has two motored wheels that can be controlled by the proper electric

impulse. The sensor is located at a defined distance from the middle point between the two wheels. A

third wheel gives mechanical stability to the chassis. In order to define and simulate any possible control

action, the system must be characterized. It is necessary to establish a virtual coordinate system and find

the kinematic model. The kinematic model gives us the relation between the velocity and the position of

the vehicle. Eventually, it will also be needed the relation between the vehicle position and the desired

position so that the dynamic model can be defined. But first we will start by defining the parameters and

variables as follows.

l

θ

Φ(q) Pq θq

P

Pm

d

y

x

Xm

Ym

Figure 3.1: Representation of the vehicle with the needed parameters and variables. l is the distance between

the sensor and the wheels axes. P is the position of the sensor, and the point that must be controlled. Pm

is the middle point between the wheels. Ym and Xm are local axes. θ is the angle of the vehicle in global

coordinates. d is the distance between P and Pm, it must tend to zero.

• Pm(x, y) is the middle point of the wheels axis.

Sliding mode control of a robotic vehicle following a path 13

• The axes Xm and Ym are useful to describe the orientation of the vehicle. Their origin is the point

Pm.

• P (x, y) is the point where the infrared sensor is located. This is the point that has to be over the

trajectory.

• Pq is the point in the trajectory where the point P is wanted to be. Pq is described as the intersection

point in the trajectory with a line that goes perpendicular to the direction of the vehicle and begins

in the point P .

• φ(q) is the name of the trajectory parametrized with its arc-length q. It is a vector that contains the

position of Pq expressed in global axes.

• θq(q) is the angle between the tangent of the trajectory φ(q) and the global axis X.

• The variable d is the distance from the point P to Pq.

The kinematic model considers the velocity of the change of direction of the vehicle θ̇, as well as the

velocity of the point Pm expressed in global axes (X,Y). The model is simplified using two new variables:

u1 and u2 (see equation 3.2). This two new variables represent the linear velocity of the vehicle (u1) and

its direction change velocity (u2). They allow us to control the vehicle by acting on the direction and linear

velocity independently.

ẋ = cos(θ)u1

ẏ = sin(θ)u1

θ̇ = −u2

(3.1)

 u1 = r
2(wl + wr)

u2 = r
2R (wl − wr)

(3.2)

Variables wr and wl are the angular velocity of the right and left wheels respectively. R is the distance

between the two wheels and r their radius.

3.2 Dynamic model

The process of defining the dynamical model starts with the question of which variables must be controlled.

Thus, in order to make the vehicle follow the trajectory, two conditions must be met:

• Pq = P or, what is the same, d = 0

• θ ' θq. We can suspect that the direction of the vehicle will approximate the direction of the tangent

of the trajectory. However, this is a secondary condition since we are only interested in making it

stable. Thus, the model found will give an answer to this relation.

14 CHAPTER 3. THE MODEL

In order to fulfill these conditions, the model must contemplate the dynamics of d and the relation between

θq and θ. Firstly, the coordinates of Pq are expressed in terms of θ and Pm, being R(θ) the rotation matrix

in the 2D space:

Pq = Pm +R(θ)

 l

d

 =

 φx(q)

φy(q)

The next step is the differentiation of the equation with respect to the time.

Ṗq = ˙Pm +R(θ)

 0

ḋ

+
∂R(θ)

∂θ
θ̇

 l

d

 = q̇

 ∂φx(q)
∂q

∂φy(q)
∂q

We continue as follows, replacing ˙Pm and θ̇ by the equations of the kinematic model (3.1). cos(θ)

sin(θ)

u1 +R(θ)

 0

ḋ

− ∂R(θ)

∂θ

 l

d

u2 = q̇

 ∂φx(q)
∂q

∂φx(q)
∂q

From now on, let us write ∂φx(q)

∂q as ∂φx and
∂φy(q)
∂q as ∂φy. Now it is possible to isolate ḋ. 0

ḋ

 = R−1(θ)

[∂φx

∂φy

 q̇ −

 cos(θ)

sin(θ)

u1 −
∂R(θ)

∂θ

 l

d

u2

]

Where:

R−1(θ) =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 ;
∂R(θ)

∂θ
=

 − sin(θ) − cos(θ)

cos(θ) − sin(θ)

Thus: 0

ḋ

 =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 ∂φx

∂σy

 q̇ −

 1

0

u1 −

 0 −1

1 0

 l

d

u2

Finally, we extract the resulting two equations from above:

ḋ = lu2 −

(
∂φx sin(θ)− ∂φ cos(θ)

)
q̇

q̇ = u1 − d · u2
∂φx cos(θ) + ∂φy sin(θ)

(3.3)

Note that ∂φx = cos(θq) and ∂φy = sin(θq). It is so because the trajectory φ(q) is parametrized with its

arclength q

φ(q) = [φx(q), φy(q)]

and we know the angle θq at every point of the trajectory. Consequently
ḋ = lu2 −

(
cos(θq) · sin(θ)− sin(θq) · cos(θ)

)
q̇

q̇ = u1 − d · u2
cos(θq) · cos(θ) + sin(θq) · sin(θ)

Using the trigonometric relation

cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

Sliding mode control of a robotic vehicle following a path 15

we get

ḋ = lu2 − q̇ · sin(θ − θq) (3.4)

q̇ =
u1 − d · u2
cos(θ − θq)

(3.5)

It is also necessary to model the dynamics of θ. In order to simplify it, we will create the variable θe = θ−θq:

θ̇e = θ̇ − θ̇q = θ̇ − ∂θq
∂q

q̇ (3.6)

Where
∂θq
∂q

is the curvature c = c(q) of the trajectory φ. Using the kinematic equation of θ (3.1) and

substituting (3.5) into (3.4) and (3.6) we obtain:
ḋ = lu2 − tan(θe)(u1 + d · u2)

q̇ = 1
cos(θe)

(u1 + d · u2)

θ̇e = −u2 − c
(u1 + d · u2)

cos(θe)

16 CHAPTER 4. CONTROL DESIGN

4 | CONTROL DESIGN

4.1 Model adaptation

We consider a new condition

q̇ = v

that makes the vehicle tend to go at a constant speed v. However, it does not mean that the vehicle will

have a constant speed nor it will be v. As seen in the first chapter, the variable q is the length traveled

along the path with which Pq is parametrized. Remember that Pq is the objective point where the vehicle

point P should be at every moment.

Pq =
(
φx(q), φy(q)

)
Its derivative q̇ is the speed of the objective point Pq. It seems intuitive that if the vehicle follows the path

thoroughly, its speed and q̇ will be equal. In other words, the speed of P will be equal to the speed of Pq.

If the curvature of the path is different from zero, the tangential speed will depend on which point of the

vehicle we choose (it will depend on the distance to the center of rotation). Thus, the tangential speed of

P (the sensor) will be differernt from u1 (which is the speed of Pm). Consequently, u1 may not be equal

to q̇ if the curvature is different from zero. Let us explain it with the proper equations. First, we assume

that the control action u1 ensures q̇ = v. We get the simplified model shown in the equation 4.1.

 ḋ = lu2 − v sin(θe)

θ̇e = −u2 − c(t)v
(4.1)

Considering a working point given by any d∗ and q̇∗ = v, the required control values u1 and u2 that ensure

ḋ = 0 can be found as follows (note that ḋ = 0 implies θ̇e = 0 if curvature c is constant). First we apply

the conditions of the working point to the dynamical model:

0 = lu∗2 − v sin(θ∗e) (4.2)

0 = −u∗2 − cv (4.3)

v =
1

cos(θ∗e)
(u∗1 + d∗ · u∗2) (4.4)

Isolating u∗2 from 4.3 and replacing it in the equations 4.2 and 4.4, we obtain

Sliding mode control of a robotic vehicle following a path 17

θ∗e = arcsin(−lc) (4.5)

u∗1 = v cos(θ∗e) + dcv (4.6)

Replacing the equation 4.5 in 4.6, we obtain

u∗1 = v cos(arcsin(−lc)) + dcv = v[cos(arcsin(−lc)) + dc]

An easy trigonometric relation tells us that cos(arcsin(−lc)) =
√

1− l2c2. It is explained as follows.

We apply cos(t) =
√

1− sin2(t):

cos(arcsin(−lc)) =

√
1− sin2(arcsin(−lc))

using an auxiliary variable a we conclude

sin2(arcsin(−lc)) = a

sin(arcsin(−lc)) =
√
a

−lc =
√
a

a = l2c2

Thus, the required control values u∗1 and u∗2, that ensure the working point, and the corresponding deviation

angle are

u∗1 = v(
√

1− l2c2 + cd∗) (4.7)

u∗2 = −cv (4.8)

θ∗e = arcsin(−cl) (4.9)

As a conclusion of equation 4.7, if the distance d is set to d∗ = 0, the control signal u∗1 only depends on

the distance l and the curvature c. The curvature c is not known. Therefore, we can only approximate it

assuming c = 0. Whether the distance l equals l = 0 or the path has curvature c = 0, the speed u1 of the

vehicle equals u1 = v. The equation 4.7 has the term l2c2 that entails the maximum curvature constraint

given by

cmax =
1

l
(4.10)

or

lmax =
1

cmax
(4.11)

4.1.1 Moving forward

The sliding mode control consists in making the vehicle go directly to the path and slide along it. We

know in advance that the control will be an on/off type. Then, according to the control objective d = 0,

we define the sliding surface

18 CHAPTER 4. CONTROL DESIGN

σ = d (4.12)

The sliding surface is the equation that will be controlled. The equivalent control is the control applied

when the vehicle is actually over the line. That means d = 0. In that moment, we want ḋ = 0 in order to

make it slide along surface. In other words, we want d to ramain in the value d = 0 while the vehicle is

moving. Then, the equivalent control can be found by making σ̇ = 0. Isolating u∗2 from the equation 4.1

when ḋ = 0 we obtain:

u∗2 =
v

l
sin(θe) (4.13)

The signal u2 equals u∗2 (equation 4.13) when σ̇ = ḋ = 0. When the vehicle is not in the objective situation,

it must tend to it. Thus, the Lyapunov theorem for non linear systems stability must be applied so that

the sliding surface becomes a stability point. The Lyapunov equation chosen (equation 4.14) responds to

the two first conditions of Lyapunov (4.15).

V =
1

2
σ2 (4.14)

The three conditions of Lyapunov are

V (0) = 0

V (σ 6= 0) > 0

V̇ < 0

(4.15)

The third condition gives us some freedom to find the necessary control action (equations 4.16 and 4.17).

V̇ =
∂V

∂σ
σ̇ = σ

(
lu2 − v sin(θe)

)
< 0 (4.16)

u2 = u∗2 −
ρ

l
sign(d) (4.17)

The control action (4.17) guarantees the third condition of Lyapunov (inequation 4.16). Thus, it guarantees

σ → 0 in a finite time. Considering a switching control action, the control policy can be defined such that

the control action has two possible values:

u2 =

 umax2 , if σ < 0

umin2 , if σ > 0

However, the remaining dynamics of θe is not necessary stable. Applying ḋ = 0 in the dynamical model

(4.1) we get the dynamics of θe as follows:

θ̇e = −v
l
(sin(θe) + cl)

To proof its stability we can use a phase portrait where the X axis is θe and the Y axis is θ̇e. Figure 4.1

shows that the system is stable between −π− θ∗e and π− θ∗e . The arrows indicate the tendency depending

Sliding mode control of a robotic vehicle following a path 19

on the sign of θe and θ̇e. Note that this is true as long as v > 0. In the case that v < 0, the arrows of the

diagram will be inversed and the equilibrium point θe will not be stable.

Figure 4.1: θ̇e is plotted as a function of θe. θe increases its value when θ̇e is positive. Likewise when θ̇e

is negative, θe decreases. This behaviour is shown with the arrows. The stability point is θ∗e for a region

limited by the interval [−π − θ∗e ,π − θ∗e].

4.1.2 Moving backward

As pointed out at the begining of this section, the system has local stability if v > 0 in θ∗e = arcsin(−c · l).

Otherwise, the system has no stability in that region. To make it stable for v < 0 the sliding surface must

contain the variable θe.

σ = d+ βθ̃e (4.18)

The new variable θ̃e is defined such that θe must be equal to θ∗e when d = 0 to make σ = 0:

θ̃e = θe − θ∗e (4.19)

The equivalent control is found by making σ̇ = 0

ḋ = −β ˙̃
θe (4.20)

Replacing the equation 4.20 by the dynamical model, we get

l · u2 − v · sin(θ̃e) = −β[−u2 − c · v] (4.21)

Isolating u2 we obtain the equivalent control:

20 CHAPTER 4. CONTROL DESIGN

u∗2 =
v

l − β
(sin(θ̃e) + βc) (4.22)

Once again, Lyapunov must be applied in order to find the control action u2 that makes the system locally

stable. The Lyapunov equation

V =
1

2
σ2 (4.23)

must have a negative derivative

V̇ = σσ̇ < 0 (4.24)

Derivating σ from (4.18)and replacing it in (4.24) we obtain

V̇ = σ[lu2 − v sin(θ̃e)− β(u2 + cv)] < 0 (4.25)

reorganizing the terms of the equations we get

V̇ = σ[u2(l − β)− v(sin(θ̃e) + βc)] < 0 (4.26)

Finally, the control action that makes V̇ < 0 is:

u2 = u∗2 −
ρ

l − β
sign(σ) (4.27)

The stability of θe can be proven by using the equivalent control (4.22) in the dynamical system

θ̇e = − v

l − β
(sin(θe) + cl) (4.28)

As seen in the Moving Forward section, a phase portrait can prove the local stability of θe. This time the

condition to make θ∗e locally stable is that v
l−β > 0. Thus, the term β can change its value in order to

change from a fordward movement to backward.

4.2 Full state observer

In order to properly apply the control action, the θ̃e should be known. However, it is not sensed and

it cannot be known. Consequently, if possible, it must be observed. To do that, the lineal observer of

Luenberger has been proposed. First of all, the dynamical model of the vehicle needs to be liniarized. The

general equation used for the linearization of multivariable systems at a specific equilibrium point is

f(x, u) ≈ f(x∗, u∗) +
∂f

∂xx=x∗
(x− x∗) +

∂f
∂uu=u∗

(u− u∗)

h(x, u) ≈ h(x∗, u∗) + ∂h
∂xx=x∗

(x− x∗) + ∂h
∂uu=u∗

(u− u∗)
(4.29)

In the equilibrium point we know that

Sliding mode control of a robotic vehicle following a path 21

f(x∗, u∗) = 0

h(x∗, u∗) = y∗

and defining the next new variable of state:

X = x− x∗

U = u− u∗

Y = y − y∗

The new system can be expressed as follows

Ẋ = ẋ ≈ ∂f
∂xx=x∗

X +
∂f

∂uu=u∗
U

Y = y − y∗ ≈ ∂h
∂xx=x∗

X +
∂f

∂uu=u∗
U

(4.30)

Hence, linearizing the dinamical model

 ḋ = lu2 − v sin(θe)

θ̇e = −u2 − c(t)v
(4.31)

we obtain ḋ

θ̇e

 =

 0 −v cos(θ∗e)

0 0

 d− d∗

θe − θ∗e

+

 l

−1

 (u2 − u∗2)

In order to know whether the system can be observed or not, we analyze the observability matrix6 when

the output y = d:

W0 =

 1 0

0 −v cos(θ∗e)

 (4.32)

The observability matrix (4.32) has full rank as long as θ∗e 6= ±π2 . This situation means that the vehicle is

going perpendicular to the path and has two possible the system is observable. However, the equilibrium

point θ∗e is not known. It depends on the curvature (see equation 4.9 of the Sliding Mode Control section).

Considering a curvature c = 0, we can say that θ∗e = 0. Then, the observer is as follows: ˙̂
d

˙̂
θe

 =

 0 −v cos(θ∗e)

0 0

 d̂

θ̂e

+

 l

−1

u2 +

 L1

L2

 (d− d̂)

It yields the following state matrix: −L1 −v

−L2 0

With eigenvalues

λ =
−L1 ±

√
L2
1 + 4vL2

2

22 CHAPTER 4. CONTROL DESIGN

Then, the observer must comply two conditions to be stable: L2
1 + 4vL2 < 0

L1 > 0

Figure 4.2 shows the observer diagram in Matlab Simulink. The block A is the state matrix of the linearized

system. The block L is the feedback matrix

Figure 4.2: Luenberger observer designed to return the estimation of θe (thetahat). The gain A is the

matrix that multiply the variables d̂ and θ̂e. The gain B is the matrix that multiplies the control action u2.

L is the gain of the error d− d̂.

Sliding mode control of a robotic vehicle following a path 23

5 | REALISTIC DETAILS

5.1 Motor Dynamics

As seen in the first section, the two variables u1 and u2 are defined in relation to the speed of the wheels: u1 = r
2(wl + wr)

u2 = r
2R (wl − wr)

The motors of the wheels have their own dynamics that have not been contemplated so far. In fact, the

designed control described in the previous section acts directly on the speed. In the real world, that is

impossible. The microcontroller sends an electrical signal (that must be amplified) that stimulates the DC

motors inducing the corresponding variation of angular velocity. The electrical signal is not analogycal

but a PWM type. The PWM consist in sending pulses with the same voltage and frequency but different

prolongation in time. This is a common techic used in controlling DC motors that takes advantage of the

rotor inertia. The ”duty cycle” of the PWM determines the percentage of time that the signal is in high

voltage compared with the cycle period. The cycle period is the time of a whole cycle between two pulses.

A non linear relation between the duty cycle and the angular velocity can be found as an equation in a

stationary state. However, there will be a delay until the motor achieves the velocity that corresponds to a

determined duty cycle. Let us say that the real velocity (V r) of the motor can be expressed as a function

of the duty cycle in a stationary situation.

V r = f(dutycycle) (5.1)

Let us say that the duty cycle can be defined as a function of the desired velocity (V d).

DutyCycle = f(V d) (5.2)

Then, the real velocity would be a linear function of the desired velocity. In fact, they are the same.

The delay between the specification of the desired velocity and the moment when the motor achives that

velocity, can be modeled by a first order transfer function as follows.

1

τs+ 1
(5.3)

24 CHAPTER 5. REALISTIC DETAILS

The time constant τ is the time that the motor needs to reach the 63% of the velocity goal. In this case,

the constant of both motors is set to τ = 0, 01s. This dynamic is not considered neither in the model nor

in the control action design. Consequently, the sliding mode control, defined in the previous section, might

fail. In order to prove the robustness of the sliding mode control before this new situation, a new block

has been added to the simulink diagram. This block emulates the dynamics of the motors by changing the

behaviour of the action u2.

Figure 5.1: The motor dynamics block emulates the behaviour of the motors by changing the control action.

Figure 5.1 shows that the control actions u1 and u2 are changed in order to emulate the behaviour when

the control actions are not the velocities but the electrical impulses.

5.2 Sensor

The sensor uses two light intensity inputs to calculate the relative position of the path. When the path

gets closer to one spot, that spot receives more black than the other. It indicates that the variable d is not

zero. A specific algorithm can be performed to translate these intensity inputs in a determined distance.

However, this algorithm is not discussed in this document. Figure 5.2 is a sketch that shows the behaviour

of the sensor according to the distance d. When the sensor gets far enough from the trajectory, it cannot

be known whether the path is at the left or the right of the sensor point (P). The control design does

not take into account the sensor limitation. Therefore, due to the little margin of the sensor, the control

design could fail if the vehicle gets far enough.

Sliding mode control of a robotic vehicle following a path 25

Figure 5.2: Sketch of the sensor behaviour. The images A, B, C and D show four example situations where

the two spots of the sensor recieve different light intensity. The input of the sensor depends on the position

of the path between the two spots.

The Simulink diagram includes the block Sensor in order to emulate the limitation of the sensor. However,

in this case the value of d equals zero when exceeds the interval [dmin, dmax].

d = d ∗ (d < dmax) ∗ (d > dmin)

The terms (d < dmax) and (d > dmax) equal zero when they are false. Despite th

26 CHAPTER 6. SIMULATION DIAGRAMS

6 | SIMULATION DIAGRAMS

This chapter aims to explain how the matlab simulink model works. Figure 6.1 gives us an overview of the

simulation diagram. Some of the blocks contained in the diagram have already been explained in previous

chapters. Thus, they are not covered in this chapter.

Figure 6.1: Overview of the matlab diagram.

6.1 Robot dynamics block

The Robot Dynamics block integrates the kinematic model (equation 6.1) and uses trigonometry relations

to completely define the position of the vehicle (it calculates the position of the wheels, the point P and

Pm). The integration of u2 gives θ. With θ and u1, it is possible to find the values of x and y (that are the

coordinates of the point Pm) by integrating them. Once the point Pm is known, the position of the wheels

and the point P can be easily found with trigonometry.

Sliding mode control of a robotic vehicle following a path 27

ẋ = cos(θ)u1

ẏ = sin(θ)u1

θ̇ = −u2

(6.1)

Figure 6.2: The robot dynamics diagram contains three blocks. The Pm-dyn calculates de coordinates of

the point Pm by integating u1 and u2 using the kinematic model. The other two blocks use trigonometry to

calculate the position of the wheels and the point P from the calculated point Pm.

6.2 DQdynamics block

The DQdynamics block (figure 6.3) uses a script that calculates the derivatives of d and q by using the

equations of the dynamical model (equations 6.2). Section 3.2 covers the demonstration of the dynamical

model.

ḋ = lu2 −

(
∂φx sin(θ)− ∂φ cos(θ)

)
q̇

q̇ = u1 − d · u2
∂φx cos(θ) + ∂φy sin(θ)

(6.2)

Different tracks or trajectories (φ), expressed in the 2D space coordinates
(
φx(q), φy(q)

)
, have different ∂φx

and ∂φy (remember that ∂φx and ∂φy are the abreviation for ∂φx

∂q and
∂φy

∂q). The shape of the track (or

trajectory) is defined by setting those partial derivatives into the model with the script already mentioned.

As an example, the partial derivatives of the trajectory with a semicircle shape and radius A are

∂φx = A sin(q)

∂φy = A cos(q)

After the calculation of the partial derivatives of the trajectory, the values of ḋ and q̇ can be found with

the dynamical model equations (equations 6.2) and the values of u1 and u2.

28 CHAPTER 6. SIMULATION DIAGRAMS

Figure 6.3: The DQdynamics block calculates the current values of d, q and θ by integrating the dynamical

model and setting the parameters of the trajectory. The QDdyn script calculates the derivatives ḋ and q̇

that will be integrated.

To sum up, as shown shown in figure 6.3, and for each iteration:

• The values of q, d and θ are found by integrating q̇, ḋ and u2 respectively.

• The values of q̇ and ḋ are calculated in the the script QDdyn with the equations of the dynamical

model and setting the proper partial derivatives of the path.

6.3 Sliding mode control block

The control design has been explained in previous chapters, as well as the observer needed. Therefore, this

section only explains its modelation in Matlab Simulink. It is recomended to previously read the chapter

Control design.

Figure 6.4: The SMC block simulates the sliding mode control applyied in discrete time. Gain4: β. Gain1:

equivalent control.

As shown in figure 6.4, a zero-order hold must be included so that the controller works in discrete time.

The frequency of the holder has been set to 5 ·10−4 in order to adjust to a microcontroller frequency. When

Sliding mode control of a robotic vehicle following a path 29

the velocity of the vehicle is set to positive the vehicle goes forward. In that case, the paramter β of the

control action is set to zero. In the case that the velocity is negative, which means that the vehicle goes

backwards, the paramter β will need to be modified depending on the characteristics of the vehicle and

the path. A relay is added to work as the function sign(σ). The behaviour of the relay is as follows: −1 if σ < −0, 001

1 if σ > 0, 001

30 CHAPTER 7. SIMULATIONS RESULTS

7 | SIMULATIONS RESULTS

7.1 Methodology

The simulation tests consist in four different tracks (or trajectories) and two directions for each one: for-

ward and backward. The different tracks are parametrized as follows.

Track 1: linear trajectory

φ(q) =
(
q, 0
)

Track 2: linear trajectory with sudden deviation

φ(q) =
(
q,m(q − qr)(q > qr)

)
Track 3: circular trajectory

φ(q) =
(
D −D cos(q), D sin(q)

)
Track 4: sinusoidal trajectory

φ(q) =
(
q,A sin(2πq)

)
The term (q > qr) of the second track equals 0 when false and 1 when true. The term qr is the value of q

when the deviation starts. In the third track, the term D is the diametre of the circle. The parameters set

in the simulations are also important:

• The perpendicular length from the wheels axis to the sensor l.

• The distance from each wheel to the middle point of the axis R.

• The radius of the wheels r.

• The parameter beta, used in the calculation of the control action u2.

In order to extract conclusions from the simulations, different conditions must be applied regardless of the

size of the real vehicle that we could prove at the laboratory. The following sections show some of the

different conditions that have been simulated.

Sliding mode control of a robotic vehicle following a path 31

7.2 Forward movement with sensor emulator

Figures 7.1, 7.2, 7.3 and 7.4 show the trajectory followed by the vehicle in forward movement. Despite the

oscilations, the control design works properly in forward movement.

The next parameters have been applied: l = 0, 05, R = 0, 05, r = 0, 02 and beta = 2, 5l. The three black

spots represent the wheels, the sensor (point P) and the middle point between the wheels (point Pm)

in their starting position. The red (green, blue) line is the path that makes the left wheel (right wheel,

sensor).

Figure 7.1: Forward movement of the vehicle over a linear trajectory. The sensor emulator is activated.

32 CHAPTER 7. SIMULATIONS RESULTS

Figure 7.2: Forward movement of the vehicle over a linear trajectory with an spontaneous change of direc-

tion. The sensor emulator is activated.

Figure 7.3: Forward movement of the vehicle over a circular trajectory. The sensor emulator is activated.

Sliding mode control of a robotic vehicle following a path 33

Figure 7.4: Forward movement of the vehicle over a sinusoidal trajectory. The sensor emulator is activated.

Figure 7.5: Forward movement of the vehicle over a sinusoidal trajectory. The sensor emulator is activated.

34 CHAPTER 7. SIMULATIONS RESULTS

7.3 Backward movement with no sensor emulator

If the sensor emulator was activated the simulation results wouldn’t tell us how the vehicle would behave

in the cases that it gets out of the path. The behaviour of the vehicle can be completely seen if the sensor

emulator is erased from the simulation. This way, the vehicle knows exactly its perpendicular distance to

the path (d) with no restrictions.

Figure 7.6 show two situations where the distance d is too big to be sensed properly. The two situations

correspond to a reorientation of the vehicle due to the lack of information about the future curvature.

Figure 7.6: The vehicle follows the path. It indicates the stability of the control. However, the deviation

d is to high in the points where the vehicle has to redirect itself. The next parameters have been applied:

l = 0, 05, R = 0, 05, r = 0, 02 and beta = 2, 5l. The three black spots represent the wheels, the sensor

(point P) and the middle point between the wheels (point Pm) in their starting position. The red (green,

blue) line is the path that makes the left wheel (right wheel, sensor).

Figure 7.7 shows how the vehicle follows the circular path with a constant deviation d 6= 0. A possible

explanation to that behaviour is that the curvature of the circle is bigger than the maximum. However,

this theory has been disregarded because the maximum curvature equals cmax = 20 while the curvature of

this circle equals c = 1/2.

In the forward movement, the sensor knows the path before the wheels get to it. In the backward movement,

on the other hand, the wheels preceed the sensor. This makes the sensor lose contact with the track when

the wheels turn to change the direction. It explains the behaviour of figure 7.7 where a constant curvature

makes the vehicle have a constant deviation d from the track. In other words, the vehicle is constantly

Sliding mode control of a robotic vehicle following a path 35

reorientating itself and, therefore, losing contact with the track permanently.

Figure 7.7: Backward movement of the vehicle over a circular trajectory. The sensor emulator is not

activated. Therefore, the vehicle can follow the trajectory with a remarkable and constant deviation d. The

next parameters have been applied: l = 0, 05, R = 0, 05, r = 0, 02 and beta = 2, 5l. The three black spots

represent the wheels, the sensor (point P) and the middle point between the wheels (point Pm) in their

starting position. The red (green, blue) line is the path that makes the left wheel (right wheel, sensor).

Figure 7.8 shows the sinusoidal trajectory when the vehicle moves backwards. Note that the vehicle tends

to follow the maximum curvature but it can only describe a pseudo circle around it. In conclusion, the

sliding mode control designed for backward movement is stable. However, it does not behave properly due

to the curvature or the starting position. We can easily say by looking at figures 7.6, 7.7 and 7.8 that it

has a non acceptable deviation from the objective trajectory. A possible solution is to increase the gain

of the control action u2. That could be achieved by modifying the parameter β. Its important to remark

that the complexity of the dynamics make it impossible to determine the parameters of the controller by

specifying any properties of the compensated dynamics.

36 CHAPTER 7. SIMULATIONS RESULTS

Figure 7.8: Backward movement of the vehicle over a sinusoidal trajectory. The sensor emulator is turned

off. The vehicle cannot follow the trajectory when the curvature is too high. The maximum curvature that

the vehicle can theoretically follow is cmax = 20 while the maximum curvature of the trajectory is c = 19, 73.

The next parameters have been applied: l = 0, 05, R = 0, 05, r = 0, 02 and beta = 2, 5l. The three black

spots represent the wheels, the sensor (point P) and the middle point between the wheels (point Pm) in their

starting position. The red (green, blue) line is the path that makes the left wheel (right wheel, sensor).

7.4 Backward movement with sensor emulator

In this set of simulations, the next parameters have been applied: l = 0, 05, R = 0, 05, r = 0, 02 and

beta = 2, 5l. The sensor is set to fail when its deviation from the line exceeds the interval

−0.005 < d < +0.005

Therefore, any possible deviation shown in the graphics is smaller than the maximum allowed.

Figures 7.9, 7.10, 7.11, 7.12 and 7.13 show the backward movement of the vehicle when the sensor emulator

is activated. Note that only the linear trajectory (figure 7.9) works properly. The curvature is set to c = 0

in the model simulations because it is an unknown parameter.

Figure 7.10 is similar to figure 7.9 with the addition of a sudden change of deviation. In this case, it should

follow the trajectory until the deviation is met. However, the failure is at the begining (see figure 7.10).

The possible explanation to this behaviour is that, when the vehicle turns to follow the linear trajectory,

the sensor gets too far from the trajectory. Figure 7.11 shows the same trajectory as figure 7.10 with a

different starting position. With the new starting position, it works fine until the deviation is met. The

Sliding mode control of a robotic vehicle following a path 37

extreme curvature of the deviation might be the issue this time. The maximum curvature is a concept

explained in the Sliding Mode Control section of the Control Design chapter. It applies not only for the

forward movement but also for the backward movement. Therefore, the same rule that makes the control

work in the forward movement (figure 7.2) should not be a problem in the backward movement (figure

7.11).

Figure 7.12 shows that the control fails when going backwards in the circular trajectory. It has already been

mentioned in the previous section. Figure 7.12 demonstrates that the sensor emulator works as expected.

Figure 7.13 corresponds to the fourth track, the sinusoidal track. It shows how the vehicle follows the

trajectory as the curvature increases until a determined point is reached. As it has already been said, the

maximum curvature equals cmax = 20 when l = 0, 05. The curvature of the sinusoidal trajectory can be

calculated by derivating the angle of a tangential line of the curve. Remember that the parametrized curve

is

φ(q) =
(
q,A sin(2πq)

)
Then, the slope of a tangential line is

∂φy
∂q

=
∂A sin(2πq)

∂q
= A2π cos(2πq)

and the angle with respect to the X axis is

θq = arctan
(
A2π cos(2πq)

)
The cruvature is the derivative of θq

∂θq
∂q

= − 19.7392 sin(2πq)

9.8696 cos2(2πq) + 1

The variable q equals q = 1/4 when the curvature of the curve is maximum. In that position the curvature

equals c = 19, 7392. The length l is chanched to l = 0.005 in order to increase the difference between the

maximum curvature of the curve and the maximum curvature allowed (cmax = 200 for l = 0.005). Figure

7.14 shows the result of a length ten times smaller. Comparing figures 7.13 and 7.14 it can be seen that the

vehicle takes longer to lose control in the case with l = 0.005 than the case with l = 0.05. Still, it does not

behave properly. To sum up, the maximum curvature concept explained in the Sliding mode control section

is not enough to explain the backward movement failures. It only covers the curvature that geometrically

or physically could the vehicle follow.

38 CHAPTER 7. SIMULATIONS RESULTS

Figure 7.9: Backward movement of the vehicle with sensor emulator. The next parameters have been

applied: l = 0, 05, R = 0, 05, r = 0, 02 and beta = 2, 5l. The three black spots represent the wheels, the

sensor (point P) and the middle point between the wheels (point Pm) in their starting position. The red

(green, blue) line is the path that makes the left wheel (right wheel, sensor).

Figure 7.10: Backward movement of the vehicle over linear track with spontaneous change of direction.

The control fails from the beginning due to the starting position. When the vehicle turns to change the

direction, the sensor gets out of the path and loses control. The next parameters have been applied: l = 0, 05,

R = 0, 05, r = 0, 02 and beta = 2, 5l. The three black spots represent the wheels, the sensor (point P) and

the middle point between the wheels (point Pm) in their starting position. The red (green, blue) line is the

path that makes the left wheel (right wheel, sensor).

Sliding mode control of a robotic vehicle following a path 39

Figure 7.11: Backward movement of the vehicle over a linear track with spontaneous change of direction.

The control fails when the deviation of the path is met. The failure is not due to the discontinuity of the

path, nor the starting position. The failure comes when the vehicle turns to follow the new direction and

the sensor gets out of the path, losing control. The next parameters have been applied: l = 0, 05, R = 0, 05,

r = 0, 02 and beta = 2, 5l. The three black spots represent the wheels, the sensor (point P) and the middle

point between the wheels (point Pm) in their starting position. The red (green, blue) line is the path that

makes the left wheel (right wheel, sensor).

40 CHAPTER 7. SIMULATIONS RESULTS

Figure 7.12: Backward movement of the vehicle over a circular trajectory. The vehicle fails from the

beginning in the starting position. The next parameters have been applied: l = 0, 05, R = 0, 05, r = 0, 02

and beta = 2, 5l. The three black spots represent the wheels, the sensor (point P) and the middle point

between the wheels (point Pm) in their starting position. The red (green, blue) line is the path that makes

the left wheel (right wheel, sensor).

Figure 7.13: Forward movement of the vehicle over a sinusoidal trajectory. The vehicle follows the trajectory

until a determined point is reached where the curvature is too high. The next parameters have been applied:

l = 0, 05, R = 0, 05, r = 0, 02 and beta = 2, 5l. The three black spots represent the wheels, the sensor

(point P) and the middle point between the wheels (point Pm) in their starting position. The red (green,

blue) line is the path that makes the left wheel (right wheel, sensor).

Sliding mode control of a robotic vehicle following a path 41

Figure 7.14: Backward movement of the vehicle over a sinusoidal trajectory with sensor emulator activated.

The length has been modified to increase the theoretical maximum curvature ten times over the maximum

curvature of the path. However, the vehicle loses track. The next parameters have been applied: l = 0, 005,

R = 0, 05, r = 0, 02 and beta = 2, 5l. The three black spots represent the wheels, the sensor (point P) and

the middle point between the wheels (point Pm) in their starting position. The red (green, blue) line is the

path that makes the left wheel (right wheel, sensor).

7.5 Length effect in backward movement

The sensor emulator has been activated and the next parameters have been set in this section:

• l = 0, 005

• β = 1, 5l

The paramter β is used in the control action gain. The proper value of the gain is found by trial and error

due to the complexity of the model.

u2 = u∗2 −
ρ

l − β
sign(σ)

Figures 7.15, 7.16 and 7.17 show a proper behaviour in backward movement for the parameters applied.

However, the length l = 0, 005 is ten times smaller than the real one at the laboratory.

42 CHAPTER 7. SIMULATIONS RESULTS

Figure 7.15: Backward movement of the vehicle following a linear trajectory with spontaneous change of

direction. The vehicle length l has been set to l = 0, 005 and the sensor emulator is activated. The vehicle

follows the path correctly. The next parameters have been applied: l = 0, 005, R = 0, 05, r = 0, 02 and

beta = 2, 5l. The three black spots represent the wheels, the sensor (point P) and the middle point between

the wheels (point Pm) in their starting position. The red (green, blue) line is the path that makes the left

wheel (right wheel, sensor).

Figure 7.16: Backward movement of the vehicle following a circular trajectory with spontaneous change of

direction. The vehicle length l has been set to l = 0, 005 and the sensor emulator is activated. The vehicle

follows the path correctly. The next parameters have been applied: l = 0, 005, R = 0, 005, r = 0, 02 and

beta = 2, 5l. The three black spots represent the wheels, the sensor (point P) and the middle point between

the wheels (point Pm) in their starting position. The red (green, blue) line is the path that makes the left

wheel (right wheel, sensor).

Sliding mode control of a robotic vehicle following a path 43

Figure 7.17: Backward movement of the vehicle following a sinusoidal trajectory with spontaneous change

of direction. The vehicle length l has been set to l = 0, 005 and the sensor emulator is activated. The

vehicle follows the path correctly. The next parameters have been applied: l = 0, 005, R = 0, 05, r = 0, 02

and beta = 2, 5l. The three black spots represent the wheels, the sensor (point P) and the middle point

between the wheels (point Pm) in their starting position. The red (green, blue) line is the path that makes

the left wheel (right wheel, sensor).

7.6 Solution summary

As seen in the previous section, the control is stable but does not behave as it is wanted to. The forward

movement works properly but not the backward movement. In this last case, the location of the sensor is

important as well as the term
ρ

l − β that multiplies the sign function of the sliding surface.

u2 = u∗2 −
ρ

l − β
sign(σ)

In the backward movement, the main problem is that the wheels are located ahead while the sensor goes

on the tail. It makes the sensor lose contact with the path when the vehicle turns to follow a determined

curvature. As long as the path or the future curvature cannot be predicted, the vehicle cannot move

backwards with the sensor too far from the middle point of the wheels (P). It is likely to work for a

determined configuration where the mentioned parameters are set properly. However, the next step should

be a careful test in the laboratory to confirm it.

44 CHAPTER 8. PYGAME ANIMATIONS

8 | PYGAME ANIMATIONS

The aim of this chapter is to provide conclusions of the experience of programming a tracking animator

with Python and its module Pygame. This is an alternative to the animation tools of Matlab. It has been

proven that the matlab animations are too slow to be attractive and the language is less powerful than

Python. The next section gives some explanations of the program logics with no description of the code

itself.

8.1 Python possibilities

Among the whole programming languages and aplications that may be useful to create a graphical user

interface (GUI), python is one of the most powerful as a consequence of being open source and a high level

interpreter. Lots of modules provide the tools to create GUI applications, and graph ploting, as well as

math packages and image treatment and creation. Some of the most common GUI libraries that could

help are Tkinter, PyQt, wxPython and PyGTK. However, the Pygame module is another option that has

not been designed to create GUIs, but to create 2D games.

The final program must be described before any choice can be made.

• It has to be illustrative. It needs to show the vehicle following the trajectory and the tracks left by

the points of interest (Pm,P and left and right wheels).

• The graphics of the vehicle could include, if possible, 3D space and textures. Some other tools like

the possibility of zooming a region of the animation could be interesting.

• The program must have the possibility to import data from the matlab simulation tests and plot an

animation. Therefore, the animation should be able to be paused, reinitiate or reproduced in a loop.

These functionalities might include buttons and text inputs.

• At the same time, some graph parameters like the evolution of the distance d or the angular speed

of the wheels should be shown.

With the requirements given, the chosen library is Pygame. With the understanding that a 2D game

engine can provide as well any GUI options. Although the tools that provides might be at a lower level of

programming than the other GUI libraries.

Sliding mode control of a robotic vehicle following a path 45

8.2 Animator logics overview

The first thing to do is to export the data from the Matlab simulation tests. A way of doing it is with a

”.txt” file:

1 save (’PM. txt ’ , ’Pm’ , ’−a s c i i ’)

This example is repeated for all the variables needed. Once the data is saved in a directory in different

text files, it must be readed and saved into a global variable in the Python environment. The length of

the arrays that contain the data is around 55 thousand positions. That amount of data is too heavy to

be ploted one by one in Pygame. Hence, the data must be reduced. Two functions have been written

to load data and make it shorter: loadData() and shortenData(). Figure 8.1 shows the list of events in

blue, at the left and the main actions, mostly buttons, that characterize the program. The shortened data

arrays contain data that is separated in time by a same period. For example, position one is separated

0,05 seconds from position 2, and position 2 is separated 0,05 seconds from position three, and so on.

Figure 8.1: Basic diagram of the behaviour of the program in front of the possible events (blue blocks). The

track event is triggered when any of the four buttons are pressed. They are used to change from one kind

of track to another. The variable count is the index that decides what position on the data arrays has to be

ploted at the current iteration of the program.

The function guideLine() draws the path guide that must be followed by the vehicle. It creates the data

from scratch with the parameters applied in the Matlab Simulations. All of the points created by this

function are connected with lines giving the aspect of a curve. Except for the guide line, which is ploted

in black (8.2), every other plot is being painted step by step, depending on the time of simulation. In

other words, each iteration of the Pygame clock, does not make the whole plot repaint again. To do this,

different alpha (transparent) images have been created. It is over these images that the plots are painted.

The images hold the plots when the screen is reinitiated at every iteration. However, if the zoom event is

46 CHAPTER 8. PYGAME ANIMATIONS

applied, all the plots have to be repainted from the beginning to be scaled according to the zoom. It takes

a little delay almost imperceptible, but enough to slower the program if repeated each iteration. To repaint

the plots, two functions have been written: repaintTracks() and repaintGraphs(). The first one repaints

the plot of the tracks and the vehicle on the left (figure 8.2). The second one is explained ahead.

The most important global variable is the one that decides which line of the data arrays has to be ploted

at the current iteration of the program. The name for that variable is count. This variable is an integer

that increases each iteration by one unless the buttons pause and initiate are activated. The maximum

value of the variable count is the length of the arrays that contain the shortened data. When the button

initiate is pressed (see figure 8.1) all the plots have to be erased so that the plots start over.

As shown in figure 8.2, there is a bar that divides the vehicle tracks region on the left from the graphs

region on the right. The movement event of this bar recieves the name dividingBar in figure 8.1. The

width of the left and the right parts of the interface are modified by dragging this bar to the left or the

right.

Figure 8.2: Animator program made with Python and its Pygame module.

One of the main problematics was the time control. In other words, how the time of the animation is

controlled. Pygame gives the possibility to set the frames per second. Like in the cinema, the minimum

would be 24 frames per second (FPS). If we know how many iterations of the program occur in one second,

we also know the period. Thus, a variable can control the time in every iteration from the beginning by

making the summatory of the period of every iteration.

1 #we ask what i s the FPS in the cur rent i t e r a t i o n

2 fp s2 = fpsTime . g e t f p s ()

3 # i f the program i s not paused , and i t has not reached the end o f the t rack (l enPshort)

4 # update the time va r i ab l e

Sliding mode control of a robotic vehicle following a path 47

5 i f not pause and count<l enPshort :

6 t ry : time += 1/ fps2#1/ fp s

7 except : time += 1/ fp s

Once the time is known, we need to find in the data arrays which one corresponds to that time so that it

can be ploted on time. When the data arrays were made shorter, the array that contains the clock of the

Matlab simulations was also made shorter. They were made shorter and equidistant in time. That is, any

position of the array from the next one have the same time interval. Thus, we can control the varible int

variable count comparing it with the float variable time as follows.

1 # I f the animation i s not paused nor i t has reached the end ,

2 # and the f l o a t v a r i ab l e ” time” i s b i gge r than the i n t e r v a l

3 # mul t i p l i e d by the ” count” var i ab l e , i n c r e a s e the ” count”

4 # va r i ab l e by one .

5 i f time >= in t e r v a l ∗ count and count<l enPshort and not pause :

6 count += 1

This code makes the animation be consequent with the real time and the behaviour in the Matlab simulation

tests.

8.3 Conclusions

Despite that the Pygame library provides basic tools with which complex programs can be created, there

is a lack that makes it less atractive. The fact that the functions that should provide anti-aliasing painting

do not work properly. Thus, all the lines and text shown in figure 8.2 have aliasing. In the graphics

environment, the aliasing is a problem that apears when the pixels are too big to plot a line without

appearing rough to our eye. There are algorithms that change the color of the painting depending on

which pixel of a line is going to be painted, but Pygame does not include them.

On the other hand, the freedom that offers Pygame could be of good used to experienced users. As shown

in the previous chapter, every specification has been accomplished. However, the buttons and text input

could be solved easily with other GUI libraries. A good combination of a GUI library and Math libraries

might be the best solution. Thus, the final recomendation is to explore other libraries in case that an

application of this kind is needed.

48 CHAPTER 9. BUDGET

9 | BUDGET

The creation of this document and all the time spent in regarding its creation has taken 300 hours of a

superior engineer. A cost per hour of 45 e/h corresponds to a total cost of:

Cost = 300h · 45
e

h
= 13500 e

Sliding mode control of a robotic vehicle following a path 49

10 | CONCLUSIONS

The sliding mode control makes the control robust in front of uncertainty. It works perfectly when the

vehicle moves forward. However, it does not behave properly when the vehicle moves backwards. Different

tests prove that the behaviour depends on the control action gain and the geometry of the vehicle. As a

definitive conclusion, it must be said that the current sensor implemented in the laboratory vehicle is not

enough to provide a proper backward movement. A possible solution is to make the distance from the

middle point of the wheels axes to the sensor smaller. Still, that situation works only in the simulation

but could not work in the real world where the system is yet more complex than its modelation.

Other solutions could be implemented. For example the usage of one more sensor: one backwards and

another forwards. The sensor has a thin area of work and that is a handicap. The best option might be to

implement a sensor with a bigger range of work or a camera. However, the implementation of a camera,

despite being quite more interesting, is far more complicated. It implies image processing and, maybe, a

more powerful microcontroller.

Regarding to the Python program, the Pygame module for Python is not the best option to create the

kind of programs that require data plotting and graphic user interface. That is so because of the lack of a

anti-aliasing solution to any shapes and text painted. On the other hand, the flexibility that provides the

language and its library (Pygame) can be of good use for an experienced user.

50 BIBLIOGRAPHY

Bibliography

[1] Q.Zhang, L. Lapierre, and X. Xiang. Distributed control of coordinated path tracking for networked

nonholonomic mobile vehicles. IEEE Trans. on Insutrial Informatics, 9(1):472-484, 2013.

[2] F. Garelli. Sistemas de estructura variable. Aplicación al control con restricciones. Departamento de

Electrotecnia Facultad de Ingenieŕıa Universidad Nacional de La Plata, 35-52, 2007.

[3] I. Prats-Martinho. Control design and implementation for a line tracker vehicle, TFG. Universitat

politécnica de Catalunya, 2016.

[4] P. Morin, C. Samson. Motion control of wheeled mobile robots. In B. Siliciano and O Khatib, editors,

Handbooks of Robotics, 779-826. Springer, 2008.

[5] A. Doria-Cerezo, D. Biel, V. Repecho. Sliding mode control of a unicycle type differential-drive mobile

robot following a path, tech report. 2017

[6] K. Ogata. Ingenieŕıa de control moderna. 682-688, 751-778. Prentice Hall, Pearson. 2010

Sliding mode control of a robotic vehicle following a path 51

A | Simulation results track 1

Figure A.1: l = 0, 005, sensor emulator off, forward movement.

Figure A.2: l = 0, 005, sensor emulator on, backward movement, β = 1, 5l.

52 APPENDIX A. SIMULATION RESULTS TRACK 1

Figure A.3: l = 0, 005, sensor emulator off, backward movement, β = 2, 5l

Figure A.4: l = 0, 005, sensor emulator on, backward movement, β = 2, 5l.

Figure A.5: l = 0, 05, sensor emulator off, forward movement.

Sliding mode control of a robotic vehicle following a path 53

Figure A.6: l = 0, 05, sensor emulator on, forward movement.

Figure A.7: l = 0, 05, sensor emulator off, backward movement, β = 2, 5l.

Figure A.8: l = 0, 05, sensor emulator on, backward movement, β = 2, 5l.

54 APPENDIX B. SIMULATION RESULTS TRACK 2

B | Simulation results track 2

Figure B.1: l = 0, 005, sensor emulator off, forward movement.

Figure B.2: l = 0, 005, sensor emulator on, backward movement, β = 1, 5l.

Sliding mode control of a robotic vehicle following a path 55

Figure B.3: l = 0, 005, sensor emulator off, backward movement, β = 2, 5l

Figure B.4: l = 0, 005, sensor emulator on, backward movement, β = 2, 5l.

Figure B.5: l = 0, 05, sensor emulator off, forward movement.

56 APPENDIX B. SIMULATION RESULTS TRACK 2

Figure B.6: l = 0, 05, sensor emulator on, forward movement.

Figure B.7: l = 0, 05, sensor emulator off, backward movement, β = 2, 5l.

Figure B.8: l = 0, 05, sensor emulator on, backward movement, β = 2, 5l.

Sliding mode control of a robotic vehicle following a path 57

C | Simulation results track 3

Figure C.1: l = 0, 005, sensor emulator off, forward movement.

Figure C.2: l = 0, 005, sensor emulator on, backward movement, β = 1, 5l.

58 APPENDIX C. SIMULATION RESULTS TRACK 3

Figure C.3: l = 0, 005, sensor emulator off, backward movement, β = 2, 5l

Figure C.4: l = 0, 005, sensor emulator on, backward movement, β = 2, 5l.

Figure C.5: l = 0, 05, sensor emulator off, forward movement.

Sliding mode control of a robotic vehicle following a path 59

Figure C.6: l = 0, 05, sensor emulator on, forward movement.

Figure C.7: l = 0, 05, sensor emulator off, backward movement, β = 2, 5l.

Figure C.8: l = 0, 05, sensor emulator on, backward movement, β = 2, 5l.

60 APPENDIX D. SIMULATION RESULTS TRACK 4

D | Simulation results track 4

Figure D.1: l = 0, 005, sensor emulator off, forward movement.

Figure D.2: l = 0, 005, sensor emulator on, backward movement, β = 1, 5l.

Sliding mode control of a robotic vehicle following a path 61

Figure D.3: l = 0, 005, sensor emulator off, backward movement, β = 2, 5l

Figure D.4: l = 0, 005, sensor emulator on, backward movement, β = 2, 5l.

Figure D.5: l = 0, 05, sensor emulator off, forward movement.

62 APPENDIX D. SIMULATION RESULTS TRACK 4

Figure D.6: l = 0, 05, sensor emulator on, forward movement.

Figure D.7: l = 0, 05, sensor emulator off, backward movement, β = 2, 5l.

Figure D.8: l = 0, 05, sensor emulator on, backward movement, β = 2, 5l.

Sliding mode control of a robotic vehicle following a path 63

E | Pygame code

1 import pygame , sys , random , math

2 from pygame . l o c a l s import ∗

3 from math import ∗

4 import pygame . gfxdraw

5

6 import os

7 os . env i ron [’SDL VIDEO WINDOW POS ’] = ”%d,%d” % (100 ,100)

8

9 s i z e = [1000 , 800]

10 pygame . i n i t ()

11 fpsTime = pygame . time . Clock ()

12 f p s = 60

13 f ont = pygame . f ont . SysFont (”tahoma” ,15)

14 f o n t L i t t l e = pygame . f ont . SysFont (”tahoma” ,10)

15 pygame . d i sp l ay . s e t c ap t i o n (’ Animation ’)

16 s c r e en = pygame . d i sp l ay . set mode (s i z e ,HWSURFACE|DOUBLEBUF|RESIZABLE)

17 overScreen = pygame . Sur face ((2000 ,2000) , pygame .SRCALPHA, 32)

18 overScreen = overScreen . conver t a lpha ()

19 c o l o r = 255 ,255 ,255

20

21

22 ##### SIMULATION PARAMETERS #####

23 t rack = 4

24 A = 0.5

25 R = 0.05

26 l = 0 .05

27 r = 0 .02

28

29 Tmax = 0

30 dMax = 0

31 urMax = 0

32 ulMax = 0

33

34 ##### SPRITES CLASSES ########

35 c l a s s graph (pygame . s p r i t e . Sp r i t e) :

36 de f i n i t (s e l f , xname , yname , type) :

64 APPENDIX E. PYGAME CODE

37 g l oba l viewerWindow , Ngraphs

38 s e l f . s c a l e = 1

39 s e l f . xname = xname

40 s e l f . yname = yname

41 s e l f . width = in t (s c r e en . g e t s i z e () [0]∗(1− viewerWindow))

42 s e l f . he ight = in t ((s c r e en . g e t s i z e () [1]−60) /Ngraphs)

43 s e l f . image = pygame . Sur face ((s e l f . width−10, s e l f . he ight))

44 s e l f . imageAxis = pygame . Sur face ((s e l f . width−10, s e l f . he ight) , pygame .SRCALPHA, 32)

45 s e l f . c o l o r = (0 , 0 , 0)

46 s e l f . axesColor = (255 ,255 ,255)

47 s e l f . image . f i l l (s e l f . c o l o r)

48 s e l f . vgap = 20 #p i x e l s

49 s e l f . hgap = 50 #p i x e l s

50 s e l f . l e f tMarg in = 20

51 s e l f . r ightMargin = 5

52 s e l f . upMargin = 10

53 s e l f . downMargin = 10

54 s e l f . ax i sMarg inLef t = 37

55 s e l f . axisMarginRight = 10

56 s e l f . axisMarginUp = 40

57 s e l f . axisMarginDown = 30

58 s e l f . type = type

59 i f type == ’d ’ :

60 s e l f . pos = in t (s c r e en . g e t s i z e () [0] ∗ viewerWindow)+5, s e l f . upMargin

61 e l i f type == ’ ur ’ :

62 s e l f . pos = in t (s c r e en . g e t s i z e () [0] ∗ viewerWindow)+5, s e l f . upMargin + s e l f . he ight

63 e l i f type == ’ u l ’ :

64 s e l f . pos = in t (s c r e en . g e t s i z e () [0] ∗ viewerWindow)+5, s e l f . upMargin + 2∗ s e l f . he ight

65 e l i f type == ’ th ’ :

66 s e l f . pos = in t (s c r e en . g e t s i z e () [0] ∗ viewerWindow)+5, s e l f . upMargin + 3∗ s e l f . he ight

67

68 de f axes (s e l f) :

69 g l oba l Tmax, dMax , urMax , ulMax

70 #Paint ho r i z on t a l l i n e o f the ax i s

71 pygame . draw . l i n e (s e l f . imageAxis , s e l f . axesColor , (s e l f . ax isMarginLeft , s e l f . he ight /2) , (

s e l f . width−s e l f . axisMarginRight , s e l f . he ight /2))

72 #Paint v e r t i c a l l i n e o f the ax i s

73 pygame . draw . l i n e (s e l f . imageAxis , s e l f . axesColor , (s e l f . ax isMarginLeft , s e l f . axisMarginUp)

, (s e l f . ax isMarginLeft , s e l f . he ight−s e l f . axisMarginDown))

74 #Paint ho r i z on t a l marks on the ax i s

75 xLength = (s e l f . width−s e l f . ax isMarginLeft−s e l f . axisMarginRight) / s e l f . hgap

76 n = Tmax/xLength

77 f o r i in range (i n t (xLength)) :

78 pygame . draw . l i n e (s e l f . imageAxis , s e l f . axesColor , (s e l f . ax i sMarg inLef t+(i +1)∗ s e l f . hgap ,

s e l f . he ight /2−2) , (s e l f . ax i sMarg inLef t+(i +1)∗ s e l f . hgap , s e l f . he ight /2+2))

79 t ex t = f o n t L i t t l e . render (s t r (round (n∗(i +1) ,1)) , 0 , (255 ,255 ,255))

80 s e l f . imageAxis . b l i t (text , (s e l f . ax i sMarg inLef t+(i +1)∗ s e l f . hgap , s e l f . he ight /2+3))

Sliding mode control of a robotic vehicle following a path 65

81 #Paint v e r t i c a l marks on the ax i s

82 yLength = in t ((s e l f . he ight/2− s e l f . axisMarginUp) / s e l f . vgap)

83 n = dMax/yLength

84 f o r i in range (yLength) :

85 pygame . draw . l i n e (s e l f . imageAxis , s e l f . axesColor , (s e l f . ax isMarginLeft −2, s e l f . he ight/2−

s e l f . vgap−i ∗ s e l f . vgap) , (s e l f . ax i sMarg inLef t+2, s e l f . he ight/2− s e l f . vgap−i ∗ s e l f . vgap))

86 t ex t = f o n t L i t t l e . render (s t r (round (n∗100∗(i +1) ,1)) , 0 , (255 ,255 ,255))

87 s e l f . imageAxis . b l i t (text , (s e l f . ax isMarginLeft −25, s e l f . he ight/2− s e l f . vgap−i ∗ s e l f . vgap

−11))

88 f o r i in range (i n t ((s e l f . he ight/2− s e l f . axisMarginDown) / s e l f . vgap)) :

89 pygame . draw . l i n e (s e l f . imageAxis , s e l f . axesColor , (s e l f . ax isMarginLeft −2, s e l f . he ight/2+

s e l f . vgap+i ∗ s e l f . vgap) , (s e l f . ax i sMarg inLef t+2, s e l f . he ight/2+ s e l f . vgap+i ∗ s e l f . vgap))

90 t ex t = f o n t L i t t l e . render (s t r (round(−n∗100∗(i +1) ,1)) , 0 , (255 ,255 ,255))

91 s e l f . imageAxis . b l i t (text , (s e l f . ax isMarginLeft −29, s e l f . he ight/2+ s e l f . vgap+i ∗ s e l f . vgap

))

92 #Paint name o f the v e r t i c a l ax i s

93 t ex t = font . render (s e l f . xname ,0 , (200 , 150 , 100))

94 s e l f . imageAxis . b l i t (text , (1 0 , 2))

95 #Paint name o f the ho r i z on t a l ax i s

96 t ex t = font . render (s e l f . yname ,0 , (255 , 150 , 100))

97 s e l f . imageAxis . b l i t (text , (s e l f . width /2 , s e l f . he ight−s e l f . axisMarginDown))

98 #Bl i t alpha axes image on the graph image

99 s e l f . b l i tAxes ()

100

101 de f b l i tAxes (s e l f) :

102 s e l f . image . b l i t (s e l f . imageAxis , (0 , 0))

103

104 de f r e l o c a t e (s e l f) :

105 g l oba l viewerWindow

106 i f s e l f . type == ’d ’ :

107 s e l f . pos = in t (s c r e en . g e t s i z e () [0] ∗ viewerWindow)+s e l f . l e f tMarg in , s e l f . upMargin

108 e l i f s e l f . type == ’ ur ’ :

109 s e l f . pos = in t (s c r e en . g e t s i z e () [0] ∗ viewerWindow)+s e l f . l e f tMarg in , s e l f . upMargin +

s e l f . he ight + 5

110 e l i f s e l f . type == ’ u l ’ :

111 s e l f . pos = in t (s c r e en . g e t s i z e () [0] ∗ viewerWindow)+s e l f . l e f tMarg in , s e l f . upMargin +

2∗ s e l f . he ight + 5∗2

112 e l i f s e l f . type == ’ th ’ :

113 s e l f . pos = in t (s c r e en . g e t s i z e () [0] ∗ viewerWindow)+s e l f . l e f tMarg in , s e l f . upMargin +

3∗ s e l f . he ight + 5∗3

114

115 de f r e s i z e (s e l f) :

116 g l oba l viewerWindow

117 s e l f . width = sc r e en . g e t s i z e () [0]

118 s e l f . width ∗=(1−viewerWindow)

119 s e l f . width −= s e l f . l e f tMarg in + s e l f . r ightMargin

120 s e l f . he ight = (sc r e en . g e t s i z e () [1]− s e l f . upMargin) /Ngraphs−s e l f . downMargin

66 APPENDIX E. PYGAME CODE

121 s e l f . image = pygame . Sur face ((s e l f . width , s e l f . he ight))

122 s e l f . image . f i l l (s e l f . c o l o r)

123 s e l f . imageAxis = pygame . Sur face ((s e l f . width−10, s e l f . he ight) , pygame .SRCALPHA, 32)

124 s e l f . axes ()

125

126 de f graphPaint (s e l f , pos1 , pos2) :

127 g l oba l dMax , urMax , ulMax

128

129 i f s e l f . type == ’d ’ :

130 MAX = dMax

131 c o l o r = (255 ,0 , 0)

132 e l i f s e l f . type == ’ ur ’ :

133 MAX = urMax

134 c o l o r = (100 ,200 ,0)

135 e l i f s e l f . type == ’ u l ’ :

136 MAX = ulMax

137 c o l o r = (110 ,50 ,250)

138

139 pos1 = l i s t (pos1)

140 pos2 = l i s t (pos2)

141 pos1 [0] = s e l f . ax i sMarg inLef t+pos1 [0] /Tmax∗(s e l f . width−s e l f . ax isMarginLeft−s e l f .

axisMarginRight)

142 pos1 [1] = pos1 [1] /MAX∗ ((s e l f . he ight−s e l f . axisMarginUp−s e l f . axisMarginDown) /2)

143 pos2 [0] = s e l f . ax i sMarg inLef t+pos2 [0] /Tmax∗(s e l f . width−s e l f . ax isMarginLeft−s e l f .

axisMarginRight)

144 pos2 [1] = pos2 [1] /MAX∗ ((s e l f . he ight−s e l f . axisMarginUp−s e l f . axisMarginDown) /2)

145 i f i n t (pos1 [0]) != in t (pos2 [0]) or i n t (pos1 [1]) != in t (pos2 [1]) :

146 pygame . draw . l i n e (s e l f . image , co lo r , (pos1 [0] , i n t ((s e l f . he ight−s e l f . axisMarginUp−s e l f .

axisMarginDown) /2)+s e l f . axisMarginUp−pos1 [1]) , (pos2 [0] , i n t ((s e l f . he ight−s e l f .

axisMarginUp−s e l f . axisMarginDown) /2)+s e l f . axisMarginUp−pos2 [1]) , 1)

147 #s e l f . b l i tAxes ()

148 de f r epa in t (s e l f) :

149 g l oba l graphTime

150 graphTime = 0

151 s e l f . r e s i z e ()

152 s e l f . r e l o c a t e ()

153 s e l f . axes ()

154

155 c l a s s d iv id ingBar (pygame . s p r i t e . Sp r i t e) :

156 de f i n i t (s e l f) :

157 g l oba l viewerWindow

158 s e l f . he ight = sc r e en . g e t s i z e () [1]+50

159 s e l f . width = 4

160 s e l f . image = pygame . Sur face ((s e l f . width , s e l f . he ight))

161 s e l f . image . f i l l ((100 ,100 ,100))

162 pygame . draw . l i n e (s e l f . image , (200 , 200 , 200) , (0 , 0) , (0 , s e l f . he ight) , 1)

163 pygame . draw . l i n e (s e l f . image , (200 , 200 , 200) , (s e l f . width , 0) , (s e l f . width , s e l f . he ight) , 1)

Sliding mode control of a robotic vehicle following a path 67

164 s e l f . pos = sc r e en . g e t s i z e () [0] ∗ viewerWindow−s e l f . width , 0

165 s e l f . r e c t = pygame . Rect ((s e l f . pos [0] , s e l f . pos [1]) , (s e l f . width , s e l f . he ight))

166 s e l f . a c t i v e = False

167

168 de f r e l o c a t e (s e l f) :

169 g l oba l viewerWindow , dGraph , urGraph , ulGraph , graphPanel#, thGraph

170 i f s e l f . a c t i v e :

171 viewerWindow = pygame . mouse . ge t pos () [0] / s c r e en . g e t s i z e () [0]

172 s e l f . pos = [s c r e en . g e t s i z e () [0] ∗ viewerWindow−4, 0]

173 s e l f . r e c t = pygame . Rect ((s e l f . pos [0] , s e l f . pos [1]) , (s e l f . width , s e l f . he ight))

174 dGraph . r epa in t ()

175 urGraph . r epa in t ()

176 ulGraph . r epa in t ()

177 #thGraph . r epa in t ()

178 graphPanel = pygame . Sur face ((s c r e en . g e t s i z e () [0]∗(1− viewerWindow) , s c r e en . g e t s i z e ()

[1]))

179 graphPanel . f i l l (graphPanelColor)

180

181 de f t ogg l e (s e l f) :

182 g l oba l activeGraph

183 i f s e l f . a c t i v e :

184 s e l f . a c t i v e = False

185 activeGraph = True

186 e l s e :

187 s e l f . a c t i v e = True

188 activeGraph = False

189

190 de f update (s e l f) :

191 i f s e l f . a c t i v e :

192 s e l f . r e l o c a t e ()

193 pos = pygame . mouse . ge t pos ()

194 i f s e l f . r e c t . c o l l i d e p o i n t (pos) :

195 pygame . mouse . s e t c u r s o r (s i z e , hotspot ,∗ cur so r)

196 e l s e :

197 i f B [0] == 0 :

198 pygame . mouse . s e t c u r s o r (∗pygame . cu r s o r s . arrow)

199

200 c l a s s button (pygame . s p r i t e . Sp r i t e) :

201 de f i n i t (s e l f , name , pos) :

202 s e l f . imageNorm = pygame . image . load (’ s k i n s / ’+name+’ . png ’)

203 s e l f . image = s e l f . imageNorm

204 s e l f . imageInv = pygame . image . load (’ s k i n s / ’+name+’ inv ’+’ . png ’)

205 i f name == ’ pause ’ :

206 s e l f . imagePlay = pygame . image . load (’ s k i n s / play . png ’)

207 s e l f . imagePlayInv = pygame . image . load (’ s k i n s / p l ay inv . png ’)

208 s e l f . imagePause = s e l f . imageNorm

209 s e l f . imagePauseInv = s e l f . imageInv

68 APPENDIX E. PYGAME CODE

210 i f name == ’ forward ’ :

211 s e l f . imageBackward = pygame . image . load (’ s k i n s /backward . png ’)

212 s e l f . imageBackwardInv = pygame . image . load (’ s k i n s /backward inv . png ’)

213 s e l f . imageForward = s e l f . imageNorm

214 s e l f . imageForwardInv = s e l f . imageInv

215 s e l f . pos = pos

216 s e l f . r e c t = s e l f . image . g e t r e c t ()

217 s e l f . r e c t [0] = pos [0]

218 s e l f . r e c t [1] = pos [1]

219 s e l f . name = name

220 i f name [: −1] == ’ t rack ’ :

221 g l oba l t rack

222 s e l f . t rack = in t (s e l f . name [−1])

223 i f t rack == s e l f . t rack :

224 s e l f . image = s e l f . imageInv

225 de f r e s t a r t (s e l f) :

226 g l oba l count , repeat , pause , time , Pshort , thetaMatrix , track , Ppath , RWpath , LWpath ,

graphTime , dGraph , urGraph , ulGraph , t e s t #, thGraph

227 Ppath = []

228 RWpath = []

229 LWpath = []

230 t rack = s e l f . t rack

231 loadData ()

232 loadGraphData ()

233 pathGuide ()

234 graphTime = 0

235 dGraph . r epa in t ()

236 ulGraph . r epa in t ()

237 urGraph . r epa in t ()

238 #thGraph . r epa in t ()

239 de f ac t i on (s e l f) :

240 g l oba l count , repeat , pause , time , Pshort , thetaMatrix , track , Ppath , RWpath , LWpath ,

graphTime , dGraph , urGraph , ulGraph , t e s t #, thGraph

241 i f s e l f . name == ’ repeat ’ :

242 i f r epeat == True :

243 r epeat = False

244 e l s e :

245 r epeat = True

246 e l i f s e l f . name == ’ pause ’ :

247 i f not pause :

248 pause = True

249 s e l f . imageNorm = s e l f . imagePlay

250 s e l f . imageInv = s e l f . imagePlayInv

251 e l s e :

252 pause = False

253 s e l f . imageNorm = s e l f . imagePause

254 s e l f . imageInv = s e l f . imagePauseInv

Sliding mode control of a robotic vehicle following a path 69

255 e l i f s e l f . name == ’ forward ’ :

256 Ppath = []

257 RWpath = []

258 LWpath = []

259 graphTime = 0

260 dGraph . r epa in t ()

261 urGraph . r epa in t ()

262 ulGraph . r epa in t ()

263 #thGraph . r epa in t ()

264 count = 0

265 time = 0

266 theta = −Pshort [count] [2]

267 thetaMatr ix = Rz(p i/2+theta)

268 i f t e s t == 2 :

269 t e s t = 1 #moving forward

270 s e l f . imageNorm = s e l f . imageForward

271 s e l f . imageInv = s e l f . imageForwardInv

272 loadData ()

273 loadGraphData ()

274 e l s e :

275 t e s t = 2 #moving backwards

276 s e l f . imageNorm = s e l f . imageBackward

277 s e l f . imageInv = s e l f . imageBackwardInv

278 loadData ()

279 loadGraphData ()

280

281 e l i f s e l f . name == ’ p l a y I n i t ’ :

282 Ppath = []

283 RWpath = []

284 LWpath = []

285 graphTime = 0

286 dGraph . r epa in t ()

287 urGraph . r epa in t ()

288 ulGraph . r epa in t ()

289 #thGraph . r epa in t ()

290 count = 0

291 time = 0

292 theta = −Pshort [count] [2]

293 thetaMatr ix = Rz(p i/2+theta)

294

295 e l i f s e l f . name == ’ track1 ’ or s e l f . name == ’ track2 ’ or s e l f . name == ’ track3 ’ or s e l f .

name == ’ track4 ’ :

296 s e l f . r e s t a r t ()

297

298 ##### MATH FUNCTIONS NEEDED ######

299 #SCALAR PRODUCT

300 de f SxV(s , v) :

70 APPENDIX E. PYGAME CODE

301 v2 = []

302 f o r i in range (l en (v)) :

303 v2+=[s ∗v [i]]

304 r e turn (v2)

305

306 #ROTATION FUNCTIONS

307 de f Rx(a) :

308 Rx = [[1 , 0 , 0] , [0 , cos (a) ,− s i n (a)] , [0 , s i n (a) , cos (a)]]

309 r e turn (Rx)

310 de f Ry(a) :

311 Ry = [[cos (a) ,0 ,− s i n (a)] , [0 , 1 , 0] , [s i n (a) ,0 , cos (a)]]

312 r e turn (Ry)

313 de f Rz(a) :

314 Rz = [[cos (a) ,− s i n (a) , 0] , [s i n (a) , cos (a) , 0] , [0 , 0 , 1]]

315 r e turn (Rz)

316

317 #MULTIPLICATION of ROTATION−MATRIX and a VECTOR

318 de f MxV(M, v) :

319 v2 = [0 , 0 , 0]

320 v2 [0] = M[0] [0] ∗ v [0] + M[0] [1] ∗ v [1] + M[0] [2] ∗ v [2]

321 v2 [1] = M[1] [0] ∗ v [0] + M[1] [1] ∗ v [1] + M[1] [2] ∗ v [2]

322 v2 [2] = M[2] [0] ∗ v [0] + M[2] [1] ∗ v [1] + M[2] [2] ∗ v [2]

323 r e turn (v2)

324

325 #MATRIX MULTIPLICATION

326 de f mxM(m1,m2) :

327 M = [[0 , 0 , 0] , [0 , 0 , 0] , [0 , 0 , 0]]

328 f o r i in [0 , 1 , 2] :

329 f o r j in [0 , 1 , 2] :

330 M[i] [j] = m1[i] [0] ∗m2 [0] [j] + m1[i] [1] ∗m2 [1] [j] + m1[i] [2] ∗m2 [2] [j]

331 r e turn (M)

332

333 #WHEEL POINTS: c a l c u l a t e s a l l the ve r t exe s o f a polygon r e sp e c t to a g ene r i c path

334 de f polygon (path , po in t s) :

335 g l oba l theta , count

336 c = []

337 f o r i in range (l en (po in t s)) :

338 c+=[(MxV(thetaMatrix , SxV(sca l e , po in t s [i])) [0]+ path [count] [0] ,MxV(thetaMatrix , SxV(s ca l e

, po in t s [i])) [1]+ path [count] [1] ,MxV(thetaMatrix , SxV(sca l e , po in t s [i])) [2]+ path [count

] [2])]

339 n = MxV(GRM, (c [i] [0] − o r i g i n p o s [0] , c [i] [1] − o r i g i n p o s [1] , c [i] [2]))

340 c [i] = n [0]+ o r i g i n p o s [0] , n [1]+ o r i g i n p o s [1]

341 r e turn (c)

342

343 de f polygon2 (path , po in t s) :

344 g l oba l theta , count

345 c = []

Sliding mode control of a robotic vehicle following a path 71

346 f o r i in range (l en (po in t s)) :

347 c+=[(MxV(thetaMatrix , SxV(sca l e , po in t s [i])) [0]+ path [count] [0] ,MxV(thetaMatrix , SxV(s ca l e

, po in t s [i])) [1]+ path [count] [1] ,MxV(thetaMatrix , SxV(sca l e , po in t s [i])) [2]+ path [count

] [2])]

348 n = MxV(GRM, (c [i] [0] − o r i g i n p o s [0] , c [i] [1] − o r i g i n p o s [1] , c [i] [2]))

349 c [i] = n [0] , n [1] , n [2]

350 r e turn (c)

351

352 #UPDATE FOLLOWING TRACKS OF WHEELS AND POINT P

353 de f updateTracks () :

354 g l oba l Ppath , RWpath , LWpath , count

355 Ppath = []

356 RWpath = []

357 LWpath = []

358 count dump = count

359 count = 0

360 f o r i in range (count dump) :

361 Ppath += polygon (Pshort , [[0 , 0 , 0]])

362 RWpath += polygon (RWshort , [[0 , 0 , 0]])

363 LWpath += polygon (LWshort , [[0 , 0 , 0]])

364 count+=1

365 count = count dump

366

367

368 ##### PROGRAM VARIABLES & PARAMETERS#####

369 wasd = [False , False , False , Fa l se] #Moving up , l e f t , down and/or r i g h t

370 o r i g i n p o s = [900 , 9 00] #Orig in disp lacement

371 o r i g i n = [−700 ,−700]

372 o r i g i n 2 = tup l e (o r i g i n)

373 s c a l e = 200 #s c a l e o f image : 1u = 500px

374 time = 0 #Measure o f time from ” frames per second”

375 i n t e r v a l = 0 .02 #Period between po s i t i o n s

376 count = 0 #Pos i t i on i t e r a t i o n

377 r e s e t = 0

378 path = []

379 Pshort = []

380 RWshort = []

381 LWshort = []

382 t e s t = 1 # 1 : forward movement 2 : backward movement

383

384 Ngraphs = 3

385 viewerWindow = 0.5

386 graphPanel = pygame . Sur face ((s c r e en . g e t s i z e () [0] ∗ viewerWindow , s c r e en . g e t s i z e () [1]))

387 graphPanelColor = (20 ,20 ,70)

388 graphPanel . f i l l (graphPanelColor)

389 graphCount = 0

390

72 APPENDIX E. PYGAME CODE

391

392 dGraph = graph (’d [m] x0 ,01 ’ , ’ t [s] ’ , ’ d ’)

393 dGraph . axes ()

394 urGraph = graph (’w[rad/ s] r i g h t wheel ’ , ’ t [s] ’ , ’ ur ’)

395 urGraph . axes ()

396 ulGraph = graph (’w[rad/ s] l e f t wheel ’ , ’ t [s] ’ , ’ u l ’)

397 ulGraph . axes ()

398 graphTime = 0

399 activeGraph = True

400

401 bar = div id ingBar ()

402

403 theta = 0

404 thetaMatr ix = [[1 , 0 , 0] , [0 , 1 , 0] , [0 , 0 , 1]]

405

406

407 h1 = 0

408 h2 = 0.015

409 chPoints =[]

410 chPoints += [[[0 , 0 , h2] , [R/4 ,0 , h2] , [R/2 , l /5 , h2] , [R/2 , l , h2] , [−R/2 , l , h2] , [−R/2 , l /5 , h2] , [−R

/4 ,0 , h2]]] #ch a s s i s po in t s with r e sp e c t to po int p

411

412

413 whPoints = [[− r /4 , r , 0] , [r /4 , r , 0] , [r /4,− r , 0] , [− r /4,− r , 0]] #wheels po in t s with r e sp e c t to

the wheel c en t r e

414

415 Ppath = []

416 RWpath = []

417 LWpath = []

418 d = []

419 ul = []

420 ur = []

421

422 cur so r = pygame . cu r s o r s . compi le (pygame . cu r s o r s . s i z e r x s t r i n g s , b lack=’ . ’ , white=’X ’)

423 s i z e = len (pygame . cu r s o r s . s i z e r x s t r i n g s [0]) , l en (pygame . cu r s o r s . s i z e r x s t r i n g s)

424 hotspot = (6 , 6)

425

426 buttons = [button (’ p l a y I n i t ’ , (1 , 1)) , button (’ pause ’ , (51 , 1)) , button (’ r epeat ’ , (101 , 1)) ,

button (’ forward ’ , (151 , 1))]

427 buttons2 = []

428 f o r i in [1 , 2 , 3 , 4] :

429 buttons2 += [button (’ t rack ’+s t r (i) ,(151+50∗ i , 2 0))]

430 c o l l i s i o n = False

431 B = [0 , 0 , 0]

432

433 pause = False

434 r epeat = False

Sliding mode control of a robotic vehicle following a path 73

435

436 GRM = [[1 , 0 , 0] , [0 , 1 , 0] , [0 , 0 , 1]] #Global Rotation Matrix

437 ax = 0

438 ay = 0

439 az = 0

440 Ax = 0

441 Ay = 0

442 Az = 0

443

444 ##### LOAD DATA ######

445 # P lo c a t i o n l i s t o f the v eh i c l e f o r each i t e r a t i o n

446 de f loadData () :

447 g l oba l Pshort , RWshort , LWshort , i n t e r va l , count , time , track , T, P, RW, LW, Tmax, t e s t

448 time = 0

449 count = 0

450 P = []

451 T = []

452 RW = []

453 LW = []

454 f i l e 1 = open (’P ’+s t r (t rack)+’ ’+s t r (t e s t)+’ . txt ’ , ’ r ’)

455 f i l e 2 = open (’T ’+s t r (t rack)+’ ’+s t r (t e s t)+’ . txt ’ , ’ r ’)

456 f i l e 3 = open (’RW’+s t r (t rack)+’ ’+s t r (t e s t)+’ . txt ’ , ’ r ’)

457 f i l e 4 = open (’LW’+s t r (t rack)+’ ’+s t r (t e s t)+’ . txt ’ , ’ r ’)

458 l i n e 1 = f i l e 1 . r e ad l i n e ()

459 l i n e 2 = f i l e 2 . r e ad l i n e ()

460 l i n e 3 = f i l e 3 . r e ad l i n e ()

461 l i n e 4 = f i l e 4 . r e ad l i n e ()

462 whi le l i n e 1 != ’ ’ :

463 l i n e 1 = s t r . s p l i t (l i n e 1)

464 l i n e 2 = s t r . s p l i t (l i n e 2)

465 l i n e 3 = s t r . s p l i t (l i n e 3)

466 l i n e 4 = s t r . s p l i t (l i n e 4)

467 l i n e 1 [0] = f l o a t (l i n e 1 [0])

468 l i n e 1 [1] = f l o a t (l i n e 1 [1])

469 l i n e 1 [2] = f l o a t (l i n e 1 [2])

470 l i n e 3 [0] = f l o a t (l i n e 3 [0])

471 l i n e 3 [1] = f l o a t (l i n e 3 [1])

472 l i n e 3 [2] = f l o a t (l i n e 3 [2])

473 l i n e 4 [0] = f l o a t (l i n e 4 [0])

474 l i n e 4 [1] = f l o a t (l i n e 4 [1])

475 l i n e 4 [2] = f l o a t (l i n e 4 [2])

476 P += [l i n e 1]

477 T += [f l o a t (l i n e 2 [0])]

478 RW += [l i n e 3]

479 LW += [l i n e 4]

480 l i n e 1 = f i l e 1 . r e ad l i n e ()

481 l i n e 2 = f i l e 2 . r e ad l i n e ()

74 APPENDIX E. PYGAME CODE

482 l i n e 3 = f i l e 3 . r e ad l i n e ()

483 l i n e 4 = f i l e 4 . r e ad l i n e ()

484 shortenData ()

485 Tmax = max(T)

486

487 de f shortenData () :

488 g l oba l P, Pshort , RW, RWshort , LW, LWshort , T, Tshort

489 # SHORTENED PATHS:

490 # Short and f i x ed i n t e r v a l between po s i t i o n s in P l i s t and RW l i s t

491 Pshort = []

492 RWshort = []

493 LWshort = []

494 QDsimsshort = []

495 Tshort = []

496 t = 0

497 f o r i in range (l en (P)) :

498 i f T[i] >= t :

499 Pshort += [(P[i] [0] ∗ s c a l e + o r i g i n p o s [0] , −P[i] [1] ∗ s c a l e + o r i g i n p o s [1] , P [i] [2])]

500 RWshort += [(i n t (RW[i] [0] ∗ s c a l e) + o r i g i n p o s [0] , i n t (−RW[i] [1] ∗ s c a l e) + o r i g i n p o s

[1] , RW[i] [2])]

501 LWshort += [(i n t (LW[i] [0] ∗ s c a l e) + o r i g i n p o s [0] , i n t (−LW[i] [1] ∗ s c a l e) + o r i g i n p o s

[1] , LW[i] [2])]

502 QDsimsshort += [(i n t (LW[i] [0] ∗ s c a l e) + o r i g i n p o s [0] , i n t (−LW[i] [1] ∗ s c a l e) +

o r i g i n p o s [1] , LW[i] [2])]

503 Tshort += [T[i]]

504 t += i n t e r v a l

505

506 de f loadGraphData () :

507 g l oba l d , ul , ur , dMax , urMax , ulMax , t e s t

508 d = []

509 ul = []

510 ur = []

511 f i l e 1 = open (’d ’+s t r (t rack)+’ ’+s t r (t e s t)+’ . txt ’ , ’ r ’)

512 f i l e 2 = open (’ ur ’+s t r (t rack)+’ ’+s t r (t e s t)+’ . txt ’ , ’ r ’)

513 f i l e 3 = open (’ u l ’+s t r (t rack)+’ ’+s t r (t e s t)+’ . txt ’ , ’ r ’)

514 l i n e 1 = f i l e 1 . r e ad l i n e ()

515 l i n e 2 = f i l e 1 . r e ad l i n e ()

516 l i n e 3 = f i l e 1 . r e ad l i n e ()

517 whi le l i n e 1 != ’ ’ :

518 l i n e 1 = s t r . s p l i t (l i n e 1)

519 l i n e 2 = s t r . s p l i t (l i n e 2)

520 l i n e 3 = s t r . s p l i t (l i n e 3)

521 l i n e 1 [0] = f l o a t (l i n e 1 [0])

522 l i n e 2 [0] = f l o a t (l i n e 2 [0])

523 l i n e 3 [0] = f l o a t (l i n e 3 [0])

524 d+=l i n e 1

525 ur+=l i n e 2

Sliding mode control of a robotic vehicle following a path 75

526 ul+=l i n e 3

527 l i n e 1 = f i l e 1 . r e ad l i n e ()

528 l i n e 2 = f i l e 2 . r e ad l i n e ()

529 l i n e 3 = f i l e 3 . r e ad l i n e ()

530 dMax = max(abs (max(d)) , abs (min (d)))

531 urMax = max(abs (max(ur)) , abs (min (ur)))

532 ulMax = max(abs (max(u l)) , abs (min (u l)))

533

534

535 loadData ()

536 loadGraphData ()

537

538 ##### CREATE BLACK PATH LINE #####

539 #Creates a l i s t with the ob j e c t i v e po in t s to f o l l ow .

540 #And draws the po int onto pathImage

541 de f pathGuide () :

542 g l oba l path , A, t rack

543 path = []

544 i f t rack == 2 :

545 m = 0

546 qr = 1/2

547 j = 0

548 f o r i in range (101) :

549 i f i >= qr ∗100 and j==0:

550 m = 1/3

551 j = i

552 path += [(i n t (i /100∗ s c a l e)+o r i g i n p o s [0] , i n t (−m∗(i−j) /100∗ s c a l e+o r i g i n p o s [1]))]

553 n = MxV(GRM, (path [i] [0] − o r i g i n p o s [0] , path [i] [1] − o r i g i n p o s [1] , 0))

554 path [i] = n [0]+ o r i g i n p o s [0] , n [1]+ o r i g i n p o s [1]

555 e l i f t rack == 3 :

556 f o r i in range (180) :

557 path += [(i n t (0 . 5∗ (cos (i ∗ pi /180) ∗ s c a l e+s c a l e))+o r i g i n p o s [0] , i n t (0.5∗(− s i n (i ∗ pi /180)

∗ s c a l e))+o r i g i n p o s [1])]

558 n = MxV(GRM, (path [i] [0] − o r i g i n p o s [0] , path [i] [1] − o r i g i n p o s [1] , 0))

559 path [i] = n [0]+ o r i g i n p o s [0] , n [1]+ o r i g i n p o s [1]

560 e l i f t rack == 4 :

561 f o r i in range (101) :

562 path += [(i n t (i /100∗ s c a l e)+o r i g i n p o s [0] ,− i n t (A∗ s i n (2∗ pi ∗ i /100) ∗ s c a l e)+o r i g i n p o s

[1])]

563 n = MxV(GRM, (path [i] [0] − o r i g i n p o s [0] , path [i] [1] − o r i g i n p o s [1] , 0))

564 path [i] = n [0]+ o r i g i n p o s [0] , n [1]+ o r i g i n p o s [1]

565 pathGuide ()

566

567 whi le True :

568 ############### BEGIN EVENT MANAGEMENT###############

569 f o r event in pygame . event . get () :

570 i f event . type == pygame .QUIT:

76 APPENDIX E. PYGAME CODE

571 sys . e x i t ()

572

573 e l i f event . type==VIDEORESIZE:

574 s c r e en=pygame . d i sp l ay . set mode (event . d i c t [’ s i z e ’] ,HWSURFACE|DOUBLEBUF|RESIZABLE)

575 bar . r e l o c a t e ()

576

577 e l i f event . type == KEYDOWN:

578 key down = pygame . key . name(event . key)

579

580 #Asignar va l o r b i na r i o True a l vec to r b i na r i o de movimiento

581 i f key down == ’ l e f t c t r l ’ :

582 l e f t c o n t r o l = True

583 e l i f key down == ’ r ’ :

584 r e s e t = True

585 GRM = [[1 , 0 , 0] , [0 , 1 , 0] , [0 , 0 , 1]]

586 e l i f key down == ’ escape ’ :

587 sys . e x i t ()

588

589 e l i f event . type == KEYUP:

590 key up = pygame . key . name(event . key)

591

592 #Asignar va l o r b i na r i o Fa l se a l vec to r b i na r i o de movimiento

593 i f key up == ’ l e f t c t r l ’ :

594 l e f t c o n t r o l = False

595 e l i f key down == ’ r ’ :

596 r e s e t = Fal se

597

598 e l i f event . type == MOUSEBUTTONDOWN:

599 B = pygame . mouse . g e t p r e s s ed ()

600 mouseDown = pygame . mouse . ge t pos ()

601 c o l l i s i o n = False

602 i f B [0] :

603 f o r i in buttons :

604 i f i . r e c t . c o l l i d e p o i n t (mouseDown) :

605 c o l l i s i o n = True

606 i f i . name == ’ repeat ’ :

607 i f r epeat :

608 i . image = i . imageNorm

609 i . a c t i on ()

610 e l s e :

611 i . image = i . imageInv

612 i . a c t i on ()

613 e l s e :

614 i . image = i . imageInv

615 i . a c t i on ()

616 f o r i in buttons2 :

617 i f i . r e c t . c o l l i d e p o i n t (mouseDown) :

Sliding mode control of a robotic vehicle following a path 77

618 c o l l i s i o n = True

619 i f t rack != i . t rack :

620 i . a c t i on ()

621 i . image = i . imageInv

622 f o r j in buttons2 :

623 i f j != i :

624 j . image = j . imageNorm

625 i f bar . r e c t . c o l l i d e p o i n t (mouseDown) :

626 bar . t o gg l e ()

627

628 i f event . button == 4 :

629 s c a l e+=20

630 shortenData ()

631 pathGuide ()

632 updateTracks ()

633 e l i f event . button == 5 :

634 s ca l e −=20

635 shortenData ()

636 pathGuide ()

637 updateTracks ()

638

639 e l i f event . type == MOUSEBUTTONUP:

640 o r i g i n 2 = tup l e (o r i g i n)

641 B = pygame . mouse . g e t p r e s s ed ()

642 mouseUp = pygame . mouse . g e t pos ()

643 i f not B [0] :

644 c o l l i s i o n = False

645 f o r i in buttons :

646 i f i . name != ’ repeat ’ :

647 i . image = i . imageNorm

648 i f bar . a c t i v e :

649 bar . t o gg l e ()

650

651

652 ###### PROGRAM LOGIC #####

653 l enPshort = len (Pshort)−1

654 i f time >= in t e r v a l ∗ count and count<l enPshort and not pause :

655 count += 1

656 theta = Pshort [count] [2]

657 thetaMatr ix = Rz(p i/2− theta)

658

659 Ppath += polygon (Pshort , [[0 , 0 , 0]])

660 RWpath += polygon (RWshort , [[0 , 0 , 0]])

661 LWpath += polygon (LWshort , [[0 , 0 , 0]])

662

663 i f count>=lenPshort and repeat :

664 count = 0

78 APPENDIX E. PYGAME CODE

665 time = 0

666 Ppath = []

667 RWpath = []

668 LWpath = []

669 graphTime = 0

670 dGraph . r epa in t ()

671 urGraph . r epa in t ()

672 ulGraph . r epa in t ()

673 theta = Pshort [count] [2]

674 thetaMatr ix = Rz(p i/2− theta)

675

676 i f ax or ay or az or r e s e t :

677 i f ax :

678 Ax+= ax

679 m = Rx(ax)

680 e l i f ay :

681 Ay+= ay

682 m = Ry(ay)

683 e l i f az :

684 Az+= az

685 m = Rz(az)

686 GRM = mxM(m,GRM)

687 m = [[1 , 0 , 0] , [0 , 1 , 0] , [0 , 0 , 1]]

688 pathGuide ()

689 updateTracks ()

690

691 i f not c o l l i s i o n and B [0] :

692 o r i g i n [0] = o r i g i n 2 [0]+pygame . mouse . ge t pos () [0]−mouseDown [0]

693 o r i g i n [1] = o r i g i n 2 [1]+pygame . mouse . ge t pos () [1]−mouseDown [1]

694

695 i f act iveGraph :

696 #Update graphs

697 whi le T[graphTime] < i n t e r v a l ∗ count :

698 pos1 = (T[graphTime] , d [graphTime])

699 pos2 = (T[graphTime+1] ,d [graphTime+1])

700 dGraph . graphPaint (pos1 , pos2)

701 pos1 = (T[graphTime] , ur [graphTime])

702 pos2 = (T[graphTime+1] , ur [graphTime+1])

703 urGraph . graphPaint (pos1 , pos2)

704 pos1 = (T[graphTime] , u l [graphTime])

705 pos2 = (T[graphTime+1] , u l [graphTime+1])

706 ulGraph . graphPaint (pos1 , pos2)

707 graphTime+=1

708

709 #Update bar

710 bar . update ()

711

Sliding mode control of a robotic vehicle following a path 79

712 ############### SCREEN FILLING #####################

713 s c r e en . f i l l (c o l o r)

714 overScreen . f i l l ((20 , 20 , 20))

715

716 #Draw blue base (base)

717 base = []

718 f o r i in [[− 0 . 1 , − 0 . 6 , 0] , [1 . 1 , − 0 . 6 , 0] , [1 . 1 , 0 . 6 , 0] , [− 0 . 1 , 0 . 6 , 0]] :

719 i = SxV(sca l e , i)

720 b = MxV(GRM, i)

721 b = b [0]+ o r i g i n p o s [0] , b [1]+ o r i g i n p o s [1]

722 base += [b]

723 pygame . draw . polygon (overScreen , (170 , 190 , 230) , base)

724

725 #Draw path guide (path)

726 f o r i in path :

727 pygame . draw . l i n e s (overScreen , (0 , 0 , 0) , False , path , 1)

728

729 #Draw paths o f P, RW and LW (Ppath , RWpath , LWpath)

730 i f l en (Ppath)>1:

731 pygame . draw . l i n e s (overScreen , (2 5 0 , 0 , 0) , False , Ppath , 1)

732 pygame . draw . l i n e s (overScreen , (0 , 2 5 0 , 0) , False ,RWpath, 1)

733 pygame . draw . l i n e s (overScreen , (0 , 0 , 2 5 0) , False , LWpath , 1)

734

735 #Draw wheels on the scene

736 i f count<=lenPshort :

737 pygame . draw . polygon (overScreen , (0 , 2 5 0 , 0) , polygon (RWshort , whPoints)) #r i gh t wheel

738 pygame . draw . polygon (overScreen , (0 , 0 , 2 5 0) , polygon (LWshort , whPoints)) #l e f t wheel

739

740 #Calcu la te the p r i n t i n g order o f each c h a s s i s polygon

741 cha s s i sPo i n t s = {}

742 p r i o r i t y = []

743 f o r i in range (l en (chPoints)) :

744 polypo ly = polygon2 (Pshort , chPoints [i])

745 a = 0

746 f o r j in range (l en (po lypo ly)) :

747 a+=polypo ly [j] [2]

748 a/=len (po lypo ly)

749 p r i o r i t y+=[a]

750 cha s s i sPo i n t s [a]=polygon (Pshort , chPoints [i])

751 p r i o r i t y . s o r t ()

752 p r i o r i t y 2 = []

753 f o r i in range (l en (p r i o r i t y)) :

754 p r i o r i t y 2+=[p r i o r i t y [i]+abs (min (p r i o r i t y))]

755

756 #Draw cha s s i s on the s c r e en

757 i f count<=lenPshort :

758 f o r i in range (l en (chPoints)) :

80 APPENDIX E. PYGAME CODE

759 pco lo r = abs (p r i o r i t y 2 [i]) /abs (max(p r i o r i t y 2))

760 pygame . draw . polygon (overScreen , (pco l o r ∗255 ,10 ,10) , c ha s s i sPo i n t s [p r i o r i t y [i]])

761 pygame . draw . polygon (overScreen , (0 , 0 , 0) , c ha s s i sPo i n t s [p r i o r i t y [i]] , 1)

762

763 #Bl i t overScreen on the s c r e en

764 s c r e en . b l i t (overScreen , o r i g i n)

765

766

767 #Draw graphPanel

768 s c r e en . b l i t (graphPanel , (i n t (s c r e en . g e t s i z e () [0] ∗ viewerWindow) ,0))

769

770 i f act iveGraph :

771 #Draw dGraph

772 s c r e en . b l i t (dGraph . image , dGraph . pos)

773 #Draw urGraph

774 s c r e en . b l i t (urGraph . image , urGraph . pos)

775 #Draw ulGraph

776 s c r e en . b l i t (ulGraph . image , ulGraph . pos)

777 #Draw thGraph

778 #screen . b l i t (thGraph . image , thGraph . pos)

779

780 #Draw bar

781 s c r e en . b l i t (bar . image , bar . pos)

782

783 #Draw buttons on the i n t e r f a c e

784 f o r i in buttons :

785 s c r e en . b l i t (i . image , i . pos)

786 f o r i in buttons2 :

787 s c r e en . b l i t (i . image , i . pos)

788

789 #Pause i f nece s sa ry and advance i t e r a t i o n

790 fp s2 = fpsTime . g e t f p s ()

791 i f not pause and count<l enPshort :

792 t ry : time += 1/ fps2#1/ fp s

793 except : time += 1/ fp s

794

795 #Draw text on sc r e en

796 t ex t = font . render (’ f p s : ’+s t r (round (fps2 , 1)) , 0 , (255 ,255 ,255))

797 s c r e en . b l i t (text , (2 0 5 , 0))

798 t ex t = font . render (’Time : ’+s t r (round (time , 1))+’ s ’ , 0 , (0 , 0 , 0))

799 t ex t = font . render (’Time : ’+s t r (round (Tshort [count] , 1))+’ s ’ , 0 , (255 ,255 ,255))

800 s c r e en . b l i t (text , (3 0 5 , 0))

801

802 #frame f l i p

803 fpsTime . t i c k (fp s)

804 pygame . d i sp l ay . f l i p ()

