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Abstract
The thesis topic is located in the domain of numerical simulation of laminar flames.

The principal aim of the presented research is the study of numerical techniques for the
multidimensional simulation of flames with low computational costs. Present work is
divided into three parts: First part is related to the development of a C++ simulation
code for 1D laminar premixed flames. In the second part, a new technique to account
for differential diffusion effects is proposed, which is based on tabulated chemistry
methods. The third part focuses on the analysis of partially premixed flames.

A dedicated one-dimensional flame code is discussed for the simulation of com-
plex/detailed chemistry and diffusion processes in premixed laminar flames. This code
is written in C++ and is able to use different diffusion models (Fickian, Hirschfelder
and Curtiss). The code yields accurate solutions of the major parameters as well as
pollutant formation, both in the flame zone as well as downstream in the post-flame
region. Results prove the accuracy of the code when compared to experimental data.

Following, a new technique is proposed to include differential diffusion effects into
flamelet models. This approach is developed in the context of tabulated chemistry
methods.The technique is based on correcting the progress-variable of flamelet models.
The main feature of the proposed technique is the use of only one progress variable
equation (1D manifold) without requiring a second parameter. This correction tech-
nique allows including detailed chemistry effects at low-cost in numerical simulation
of multidimensional flames. A series of simulations are carried out for various flames.
The results are excellently matched with full model solutions/detailed chemistry so-
lutions.

The flamelet solutions databases, namely premixed and non-premixed, are fur-
ther tested for partially premixed flames. This study is based on the investigation
of partially premixed flame using single mode flamelet database solutions. For the
verification of database solutions, finite rate chemistry simulations are also carried
out to solve partially premixed flames. 3D jet coflow simulations are performed for
three different level of premixing and results are compared with experimental data.
The results show good agreement along with capabilities and limitations of flamelet
databases solutions.
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1

Introduction

1.1 Motivation to study combustion

Combustion is one of the oldest branches of science. Indeed, from the very begin-
ning of human kind. From its early use, combustion was used as source of light and
heat. With the passage of time its applications evolved according to human neces-
sities. Nowadays, it is an emerging science due to the continuous increase of energy
demands in this high-tech world. How important combustion in this scenario is, may
be realized from the fact that 80 % of energy comes from combustion. If we further
classify the sources of combustion, then 80 % of world energy infrastructure produces
the energy by combustion of liquids, solids, and gaseous fossils. Other energy sources
belong to nuclear energy or renewable energies, which still account for less than 20
% of the total energy consumption [15]. If we suppress the role of combustion, the
whole society would probably clap tomorrow. In this perspective, combustion and its
control are essential to our existence on this planet. In fact, combustion has provided
substantial support for the world energy system. Still, there is plenty of room for
research and development in this field as the technology demands evolve and change
with the passage of time.

In spite of the considerable advantages that combustion has given to our quality of
life, it also has a dark face. There are a lot of challenges associated with conservation of
energy; the problem of global climate change and environmental concerns. The issue
related to combustion is environmental pollution. The major pollutants produced by
combustion are unburned and partially burned hydrocarbons, nitrogen oxides (NO
and NO2), carbon monoxide, sulfur oxides and particulate matter in various forms.
Primary pollution concerns relate to specific health hazards, smogs, acid rain, global
warming. Considering the importance of combustion in our society, we should be able
to use it without increasing emissions and without wasting fossil fuel.

Having briefly reviewed the advantages and disadvantages of combustion, in the
following, we have a look on the scientific background of combustion. The first steps
were taken in the experiments by Le Chatelier dating from 1883. In the late nine-
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2 Chapter 1. Introduction

teenth and early twentieth century, the theoretical study of combustion science was
introduced (Arrhenius 1883, Burke-Schumann 1928). Arrhenius proposed his empiri-
cal formulas for the temperature dependence of chemical reactions velocities. Burke-
Schumann presented their theoretical studies about the height and shape of the dif-
fusion flames. Nowadays, the theoretical study of combustion science is well founded,
at least for laminar gas-phase combustion process [9, 16, 17].

Regarding the side effect of combustion, deep scientific studies are very important
to control combustion. Nowadays much attention is being paid to efficiency, process
control, and pollution. This is investigated by scientists of all kinds of background:
chemists, mathematicians, physicists, and engineers. Much of the scientific research in
the field of combustion concerns the study of the detailed structure of the combustion.
It is believed that global aspects like efficiency, control, and pollution can be estimated
when the combustion process is understood on a molecular scale.

From a chemical point of view, combustion is associated with fast chemical reac-
tions that proceed with a large conversion of chemical energy to sensible heat. This
process consists of thousands of elementary consecutive, competitive, and opposing
steps, the so-called chain-reactions. Chemical kinetics describes these reactive sys-
tems. Thus, this theory has a fundamental importance in combustion science. In
sequences of chemical reactions, heat is released and the temperature raised. This
temperature increase is transferred to the surroundings by conduction, convection,
and radiation.

For example, this complex physical and chemical process are best understood by
analyzing in a burning candle. Heat transfer from the flame, by conduction and
radiation, forms a pool of the melted wax at the top of the candle. The melting
front moves steadily down the candle as the flame consumes the wax. The melted
wax ascends through the wick by capillary action and vaporizes from the heat of
the flame, which is transferred primarily by conduction. Then, a complex system
of reactions takes place, producing the hot gasses together with the surrounding air
that raises over the flame. The origin of the color of the dark-blue region at the base
shows the presence of the immediate product species from the excited CH radicals in
the reaction zone [18, 19]. In certain flames, like in candle’s flame, there is also an
important emission of yellow light. This light is emitted by soot, which are particles
of slightly hydro-generated carbon [20].

Flames can be classified into two major categories: premixed and diffusion flame.
Additionally, due to the nature of fluid flow, flames have two flow regimes namely,
laminar and turbulent. The candle flame is also a good example to explain these
classifications. In the candle flame, it can be distinguished two main regions, an inner
one containing a deficit of gases and an outer containing oxidizer gases. The chemical
reactions take place between both regions that are separated by a thin zone. It means
that chemical reaction appear as soon as fuel and oxidizer get in contact. In other
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words, the combustion is controlled by the rate of mixing. This flame structure is
defined as diffusion (or non-premixed) flames. For example, diesel engines or rocket
engines are typical cases of non-premixed combustion. On the other hand, when fuel
and oxidizer are mixed before reacting, it is known as premixed flames e.g. spark-
ignited gasoline engines or domestic kitchen burners, etc.

The second classification is based on the flow structure of the flames. It is differ-
entiated between laminar and turbulent flames, which is mainly controlled by input
fuel and oxidizer flow rates. Both types of flames are commonly used in industrial
applications.

1.2 Outline of the thesis

The thesis has been organized in four chapters. In the introduction, the mathemat-
ical formulation and models are adopted for the numerical study of laminar premixed
flames. In this chapter, the main parameters to describe combustion are introduced.
Reported models and theory is based on low-mach flow laminar cases.

Next, chapter two is focused on the development of a 1D numerical simulation
code. All the development procedure is described in detail, step by step. The valida-
tion and verification of a C++ code are also reported in the same chapter.

The third chapter is about a new proposed correction technique. This chapter con-
tains all the mathematical basis and explanation about the proposed technique. This
work is reported in the context of low-cost computational solutions of multidimen-
sional flame. For further verification of the correction technique, a multidimensional
flame solutions are presented at the end of the chapter.

The final chapter is concerned with partially premixed flames. A 3D coflow par-
tially premixed flame has studied using two flamelet databases. To check the capa-
bilities of both premixed and non-premixed databases various ranges of premixing
are studied. Finally, concluding remarks on results and limitation of databases are
detailed.

1.3 Reactive flows

Reactive flow can be described through a set of balance equations of continuum
mechanics such as mass, momentum, energy and species. All these equations are
associated with various controlling or primitive parameters e.g. the mass density ρ,
the velocity components ui, temperature T and species mass fraction Yk, etc. To begin
with, all key terms to describe a combustion process are presented in this chapter.

Combustion is an exothermic process. Thus, it is necessary to define all thermo-
dynamical and related quantities.
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1.3.1 Mixture composition description

First of all, species are characterized through their mass fractions Yk for k =
1, 2, ..., Ns, where Ns denote the number of species involved in the combustion process.
Mass and molar fractions are defined as

Yk =
mk

m
, Xk =

nk
n

(1.1)

where mk and nk are molar mass and number of moles of the kth species in a given
volume V . The total mass and number of moles of gas in the volume are m and n,
respectively. The mass density and molar weight of fluid contained in a homogeneous
control volume are given by

ρ =
m

V
, W =

m

n
. (1.2)

By definition, the summation over the total number of species Ns of molar and mass
fractions must be equal to unity

k∑
k=1

Xk = 1 ,

k∑
k=1

Yk = 1. (1.3)

Lastly, both mass and molar fractions are related through

mass fraction : Yk =
Wk

W
Xk (1.4)

mixture molar weight : W =

Ns∑
k=1

XkWk or
1

W
=

Ns∑
k=1

Yk
Wk

(1.5)

mole concentration : [Xk] = ρ
W

Wk
Yk. (1.6)

where Wk is the molar mass of species.

1.3.2 Thermo-chemistry

To thermally characterize the flow, the equation of state and the enthalpy are used

Equation of state
For an ideal gas, the equation of the state is

P0 = ρrT with r =
R

W
= ρTR

Ns∑
k=1

Yk
Wk

. (1.7)

where R=8.314 [J.K−1.mol−1] is ideal the gas constant.
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Species enthalpy
For reacting flows, there are multiple possibilities to represent the enthalpy, hk.

The enthalpy of species is defined with respect to a reference temperature T0

hk = hs,k +4h0
f,k (1.8)

where 4h0
f,k is the species standard enthalpy of formation at any reference tem-

perature T0 and hs,k the sensible enthalpy. T0 may be taken as 0 K, as done by
Reynolds and Perkins [1]. However, formation enthalpies at 0 K are difficult to ob-
tain. Commonly, T0 = 298.15K is used. The specific heat capacity at constant
pressure cp,k =

(
∂hk

∂T

)
p

is introduced to compute hs,k

hs,k =

∫ T

T0

cpk(T )dT. (1.9)

Therefore, sensible enthalpy hs,k is zero at T = T0 for all substances. Furthermore,
cp,k is related to the ideal gas constant through Mayer’s relation

cp,k = cv,k +
R

Wk
. (1.10)

where cv,k =
(
∂ek
∂T

)
v

is specific heat capacity at constant volume. The enthalpy of the
mixture of Ns species can be described as

h =

Ns∑
k=1

hkYk. (1.11)

Introducing Eq. (1.8) into the last equation, it can be rewritten as

h =

Ns∑
k=1

(
hs,k +4h0

f,k

)
=

Ns∑
k=1

(∫ T

T0

cp,k(T )dT +4h0
f,k

)
=

∫ T

T0

cp(T )dT +

Ns∑
k=1

4h0
f,k.

(1.12)

The specific heat capacity at constant pressure cp of mixture is composed of Ns species
is

cp =

Ns∑
k=1

cp,kYk. (1.13)
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1.3.3 Chemical Kinetics

Chemical kinetics is the study of chemical reactions. All chemical reactions, take
place at a definite rate and depend on the defined conditions of the system. Chemical
reactions appear as a rearrangement of atoms that are balanced in equations. A rate
of reaction may be expressed as the rate of decrease or increase of the concentration
of a reactants or product.

In general, any chemical reaction can be expressed as

ν
′

1M1 + ν
′

2M2 + ...+ ν
′

Ns
MNs

� ν
′′

1M1 + ν
′′

2M2 + ...+ ν
′′

Ns
MNs

or

Ns∑
k=1

ν
′

kMk �
Ns∑
k=1

ν
′′

kMk

(1.14)

where Ns is number of species and ν
′

and ν
′′

are stoichiometric coefficients of reac-
tants and products respectively. M is representation of species involved in chemical
reaction. A complete chemical mechanism may be composed of one to hundreds of
thousands of elementary chemical reactions. Furthermore, the same species may ap-
pear with different stoichiometric coefficients in different reactions. So that, a more
compact and more general notations for Eq. (1.14) can be used

Ns∑
k=1

ν
′

kjMk �
Ns∑
k=1

ν
′′

kjMk ; j = 1, 2, ...,M. (1.15)

where j denotes the reaction being considered and M is number of reactions involved
in chemical process. In any chemical process, mass conservation must be satisfied i.e.

Ns∑
k=1

ν
′

kjWk =

Ns∑
k=1

ν
′′

kjWk or

Ns∑
k=1

νkjWk = 0 ; j = 1, 2, ...,M (1.16)

where νkj = ν
′

kj − ν
′′

kj .
The rates of progress for each equation involved in the system are given by the

relation
ωkj = WkνkjRj .

where Rj is the rate of progress of kth species in jth reaction. It is proportional to
the product of concentrations of the reacting species

Rj = Kfj

Ns∏
k=1

[Xk]ν
′
kj −Krj

Ns∏
k=1

[Xk]ν
′′
kj . (1.17)
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where Kj is a constant of proportionality, which is called specific reaction rate coef-
ficient. Sub-indexes ’f’ and ’r’ denote forward and backward reactions,respectively.
Finally, the reaction rate ω̇k of kth species is evaluated as

ω̇k =

M∑
j=1

ωkj = Wk

M∑
j=1

νkjRj . (1.18)

Additionally, the sum of all chemical reaction rates of all species must satisfy mass
conservation

Ns∑
k=1

ω̇k = 0. (1.19)

There remains to evaluate the specific coefficients Kfj and Krj in Eq. (1.17),
which stand for forward and backward reactions constants. These coefficients are
key in combustion modeling to calculate the rate of progress. In 1883, Arrhenius [2]
established the theory, where only molecules that possess an energy greater than a
certain threshold energy will react, namely an activation energy E. Molecules acquire
the additional energy necessary from collisions induced by the thermal condition that
exists in a mixture. These high-energy activated molecules lead to products. The the-
ory of Arrhenius provides the temperature dependency of Kj ‘s. Arrhenius principle
can be expressed as

Kj = ZAB,jexp

(
−Eaj
RT

)
or Kj = ZAB,jexp

(
−Taj
T

)
. (1.20)

where ZAB is gas kinetic collision frequency in a reaction of species A and B. The

term ’exp
(
−Eaj

RT

)
’ is the Boltzmann factor, which represents the collision energy of

molecules which are greater than the activation energy Eaj . The gas kinetic collision
frequency may feature a temperature dependency [3].

ZAB,j = AjT
βj (1.21)

For the calculation of the progress rate for each species, the pre-exponential constant
Aj , the temperature exponent βj and activation energy Eaj are required. These
values are provided by chemical mechanisms. With the mathematical description
of the chemical reaction, a new question is posed: which species and reactions are
important? Which ones have to be the part of the chemical scheme or mechanism
for reacting flow applications? In fact, the answer is challenging. Therefore, a lot of
work has been done on creating chemical mechanisms. In reacting flow problems, the
solution always depends on the provided data of the chemical mechanisms. In the
literature, different kinds of detailed and reduced chemical mechanisms can be found.
For example, the GRI3.0 [4], Mueller [5] and Smooke [6] are very common and will
be used throughout this thesis.
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1.4 Combustion modelling

In this section, the set of transport equations to describe a chemically reacting
flow are presented. The well-known Navier-Stokes equations are used to describe the
combustion process. Due to the significant density changes, incompressible formula-
tions are unsuitable to describe the flow behavior. In the current study flow velocities
are much smaller than the speed of sound. Thus, a low Mach formulation is con-
sidered. As in the case of non-reacting flows, five unknowns are needed to solve the
concerned system (density, pressure and velocity) and additionally the temperature.
Furthermore, for reacting cases, the system have Ns more unknowns because the
fluid composition must be tracked. Consequently, more modeling and computational
efforts are required to solve such kind of systems.

1.4.1 Mass balance

Like in non-reacting flows, mass is not created nor destroyed. Thus the mass
conservation equation is

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (1.22)

where t represents time, ρ the fluid density and u the fluid velocity.

1.4.2 Momentum balance

Taking the momentum equation of the Navier-Stokes equations in their compress-
ible form, and following Lessani and Papalexandris [7] the low Mach momentum
equations are

∂ρuj
∂t

+
∂

∂xj
(ρuiuj) =

∂σi,j
∂xj

+ ρ

Ns∑
k=1

Ykfk,j (1.23)

where viscous and pressure tensors are combined into the σi,j tensor and fk,j the
volume force acting on species k. The former is composed of a pressure isotropic part
and viscous part, which can be further expanded as

σi,j = −Pδi,j + τi,j = −Pδi,j + µ
( ∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δi,j

)
(1.24)

where δi,j is the Kronecker delta. Dynamic viscosity µ and fluid density ρ are changed
due to the strong variations in temperature through the flame front. Consequently,
the local Reynolds number varies significantly.

1.4.3 Energy balance

Energy conservation can be expressed in multiple forms, i.e. expressed as a func-
tion of enthalpy or temperature. In the present study, a temperature equation is
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added into the set of equations to be solved.

ρcp
DT

Dt
= ω̇′T +

Dp

Dt
+

∂

∂xi

(
λ
∂T

∂xi

)
−
(
ρ

Ns∑
k=1

cp,kYkVk,i

) ∂T
∂xi︸ ︷︷ ︸

part of diffusion term

+ τi,j
∂ui
∂xj︸ ︷︷ ︸

viscous heating

+Q̇+ ρ

Ns∑
k=1

Ykfk,iVk,i︸ ︷︷ ︸
volume force

(1.25)

where ω̇′T = −
∑Ns

k=1 hkω̇k is the heat release, Q̇ is a heat source term (due to electric,
radiative, laser spark, etc.).

1.4.4 Species balance

The transport equation for the kkh species is

∂ρYk
∂t

+
∂

∂xj
(ρujYk) = − ∂

∂xj
(ρVk,jYk) + ω̇k ; k = 1, 2, ..., Ns (1.26)

where Vk,j is the diffusion velocity of the kth species in jth direction, ω̇k is the chemical
reaction rate of kth species. Since the summation of Eq. (1.26) for the Ns species must
yield the continuity equation, the following identities must be satisfied to ensure mass
conservation [8]

Ns∑
k=1

Vk,jYk = 0 and

Ns∑
k=1

ω̇k = 0. (1.27)

According to Williams [9], the diffusion velocity Vk can be obtained by solving the
Maxwell’s equations without considering body forces and Soret effect.

∇Xp =

Ns∑
k=1

XpXk

Dp,k
(Vk − Vp) + (Yp −Xp)

∇P
P

; p = 1, 2, ..., Ns (1.28)

where Dp,k is the diffusion coefficient of species p toward species k. Solution of this
equation is complex and a highly expensive task. Hirschfelder and Curtiss [10] pro-
posed a model for the diffusion velocities, which is the best first-order approximation
to the exact solution of the system of Eqs. (1.28) [11, 12].

VkXk = −Dk∇Xk with Dk =
1− Yk∑
p 6=k

Xj

Dp,k

(1.29)
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where Dk is called the equivalent species diffusion coefficient into the mixture. How-
ever, this approximation does not satisfy mass conservation, as expressed by the left
expression in Eq. (1.27).

Ns∑
k=1

VkYk = −
Ns∑
k=1

Dk
Wk

W

∂Xk

∂xj
= −

Ns∑
k=1

Dk

W

∂

∂xj
(WYk) 6= 0 (1.30)

Thus, it is important to add a correction to ensure the conservation. The approach
reported by Coffee and Heimerl [13] is here adopted to enforce mass conservation,
where a correction diffusion velocity V cj is introduced and computed as

V cj =

Ns∑
k=1

Dk

W

∂

∂xj
(WYk) (1.31)

and leading to

Vk,jYk = −Dk
Wk

W

∂Xk

∂xj
+ V cj Yk. (1.32)

Using Eq. (1.32), Eq. (1.26) is rewritten as

∂ρYk
∂t

+
∂

∂xj
(ρ(uj + V cj )Yk) =

∂

∂xj

(ρDk

W

∂(WYk)

∂xj

)
+ ω̇k ; k = 1, 2, ..., Ns. (1.33)

The latter equation is sometimes simplified by assuming Dk = D and neglecting molar
mass gradients thus, becoming

∂ρYk
∂t

+
∂

∂xj
(ρujYk) =

∂

∂xj

(
ρD

∂Yk
∂xj

)
+ ω̇k (1.34)

which is usually referred as Fick’s approximation [14].
It should be borne in mind that in the mass transport equation, the Soret effect

has been neglected. The Soret effect is the diffusion of mass due to temperature
gradients. This term has been found to be significant for the mixture of liquids [8].
Hence, in the present study it is neglected.

1.4.5 Non-dimensional number

One of the most common dimensionless number used throughout the thesis is the
Lewis number. The Dk diffusion coefficients of species are often characterized in terms
of Lewis number defined by

Lek =

λ
ρcp

Dk
=

Heat Diffusion

Species Diffusion
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Lewis numbers of individual species are usually vary by small amounts in flame fronts.
Therefore, by fixing a constant Lewis number for each species (and setting a suitable
expression for the thermal conductivity) may be adequate for simplified analysis.
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2

Laminar premixed flame,
combustion modeling and
numerical simulations

Abstract. In the present chapter, a fundamental background of laminar premixed flames

is given and an appropriate flamelet model is described to model these flames. The develop-

ment of a C++ code for numerical simulation of 1-D laminar premixed flame is detailed. The

transport equation of mass, energy and species for reacting flows using non-uniform meshes

are presented. A finite difference scheme is employed to discretise the flamelet equations. A

special Gaussian function is explored for efficient mesh generation to capture the steep vari-

ation of temperature and species mass fractions. Because the resulting system of equations

is stiff, specific numerical methods are used. The damped Newton method is implemented

to solve the system of highly non-linear and stiff equations. Due to the large variation in

magnitude of the solutions temperature and species mass fraction, equations are changed

into reduced forms, in order to avoid scaling and numerical issues. The code takes into

account multiple solver parameters, to control and ensure the convergence of the solution.

Numerical simulation of 1D premixed flames is carried out successfully for methane/air, hy-

drogen/air and blended mixtures. Very good agreement is found between experimental and

other numerical simulation codes. The results demonstrate that the proposed methodology

is a robust and accurate tool for the numerical simulation of premixed flames.

13
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Chapter 2. Laminar premixed flame, combustion modeling and numerical

simulations

2.1 Introduction

The investigation of laminar flames is a fundamental problem and of major interest
in combustion science. It allows for detailed comparisons between theory, experiments,
and numerical modelling. Many practical combustors, such as internal combustion
engines rely on premixed flame propagation. Through detailed study of these flames,
fundamental insight can be gained of the combustion process. Fig. 2.1 illustrates a
typical premixed flat flame structure. In 1883, Mallard et al. [1] defined the temper-
ature distribution into two zones. The first zone is known as the preheating zone, or
pre-flame zone, where the unburned gas is heated up to ignition. The Second zone is
the reaction zone, where combustion takes place. In this region, heat release as well as
composition changes occur very quickly. This process does not stop until combustion
reaches equilibrium. At this stage the system achieves the adiabatic temperature and
henceforth remains constant.

Figure 2.1: Schematic diagram of one-dimensional premixed flame.

Numerical modelling is becoming an important, powerful and effective tool for the
design and analysis combustion systems. The modelling and analysis tools enhance
the design and analysis capabilities to integrate and upgrade these systems. The
numerical models can be used to characterize a combustion process, not only in terms
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of temperature and flow field, also in terms of formation of pollutant species, such as
nitrogen oxides (NOx), polycyclic aromatic hydrocarbons (PAHs), soot, etc.. These
emission of pollutants are required to help in the design of gas turbines, industrial
furnaces, internal combustion engines, industrial and domestic burners, etc.

The elementary case of a 1-D laminar propagating flame into a premixed gas
is a basic problem in combustion, both from a theoretical and a numerical point
of view. Numerical solution of laminar premixed flames is of interest because it
is one of the few configuration where a detailed comparison between experiments,
theory, and computation can be performed. It may be used to validate chemical
models as well. Laminar flames are viewed in many turbulent combustion models as
the elementary building blocks of turbulent flames. It is the first step toward more
complex configurations to establish the tools for design and analysis.

One of the fundamental parameters for the analysis of premixed combustion is the
laminar burning velocity, SL [2]. It is a key parameter in characterizing a combustible
mixture. It can be regarded as the rate with which the combustible mixture is being
consumed by a propagating laminar flame. Besides, the SL is used for the study of
the structure and stability of premixed flames, validation of reaction mechanism, and
the analysis of turbulent premixed combustion. Then, considering a 1D domain, if
the inlet velocity equals the laminar burning velocity of flame, the system achieves a
steady state. It can readily be seen that the laminar burning velocity is an eigenvalue
of the system. Thus, the problem is an eigenvalue problem.

There are many ways to solve for the laminar flame speed and flame structure.
However, it depends on the complexity of the chemistry model and transport descrip-
tion. Typically, chemical schemes involve from a few to hundreds of species with
one to thousands of reactions. Due to the complexity of this calculation, which in-
volves fluid dynamics, heat transfer and chemical reactions there is not an analytical
solution.

The earliest efforts to develop numerical tools for premixed combustion problems
was the shooting technique introduced by Hirschfelder [3]. However, this technique
was limited by the choice of chemical kinetics. Spalding [4] introduced the use of
implicit finite difference technique to obtain steady state solution of flames as the
asymptotic limit of a transient problem. Early works in premixed flame modelling
are summarized in the proceedings of a workshop by Peters and Warnatz [5]. Other
examples are the works of Wilde [6] and Kendall and Kelly [7] where they adopted
the steady state idea to approach the solution of premixed flame by finite difference
methods.

Nowadays, in the combustion field, a few codes can be found, e.g. PREMIX [8],
FlameMaster [9] and OpenSmoke [10], etc. that solve the basic characteristics of 1-D
flame. In this present work, a C++ code for numerical simulation of 1-D premixed
laminar flames is developed in order to gain deep insight in the target phenomenon.



16
Chapter 2. Laminar premixed flame, combustion modeling and numerical

simulations

It is fully capable of predicting all basic flame characteristics such as temperature and
species mass fraction profiles as well as flame burning velocity and flame thickness.
The transport equation of mass, energy and species for reacting flows are solved on
non-uniform meshes. Second order finite difference schemes are used to discretise
the flamelet equations. The equations involved in combustion systems are usually
highly stiff and coupled through a highly non-linear reaction rate term. A damped
Newton method is used to solve such kind of non-linear systems. To capture the
steep variation of species mass fractions as well as temperature, a concentrated mesh
is generated through Gaussian function. In this chapter, freely propagating adiabatic
flames with no heat losses are considered. Laminar premixed flames are solved using
different chemistry kinetic mechanisms. Finally, the validation and verification of the
C++ code is presented.

To this end, the current chapter is divided as follows. Next section presents the
conservation equations and associated boundary conditions. The third section de-
scribes in complete detail the numerical method. Furthermore, the scaling and change
of variable of the flamelet equations, the discretization technique, transformation and
mesh generation are also addressed in the same section. Fourth section is focused on
the results and discussions. The last section is related with conclusions.

2.2 Governing equations

A one-dimensional laminar adiabatic flame is considered. It is assumed that the
flame is propagating into a premixed mixture of fuel and oxidizer. Recalling the
non-steady state conservation equations, Eq. (1.22), Eq. (1.25) and Eq. (1.26) and
rewriting them in 1D (x-component).

• Mass Conservation
∂ρ
∂t + ∂ρu

∂x = 0 (2.1a)

• Species Conservation
∂ρYk

∂t + ∂(ρ(u+Vk)Yk)
∂x = ω̇k (2.1b)

• Energy Conservation
ρcp
(
∂T
∂t + u∂T∂x

)
= ω̇′T + ∂

∂x

(
λ∂T∂x

)
− ρ
(∑Ns

k=1 cp,kYkVk
)
∂T
∂x (2.1c)

where ω̇′T = −
∑M
k=1 hkω̇k is the heat release. hk, ω̇k, Vk, Yk denote species enthalpy,

chemical reaction rate, diffusion velocity and mass fraction, respectively. Furthermore,
T and u represent temperature, velocity and ρ, λ, cp denote the density, thermal con-
ductivity, and specific heat respectively. Regarding the momentum equation, it can
be shown [11] that for 1D case it collapses to

• Momentum Equation
∂p
∂x = −ρu∂u∂x = −ρuSL ∂u∂x
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The momentum equation may be solved neglecting viscous stresses to obtain the
dynamic pressure jump p(x) across the flame front. If the changes in the molecular
mass are neglected, then ρu

ρ = T
Tu

. One may estimate the pressure difference across a

propagating laminar premixed flame pb−pu ≈ ρuS2
L(1− Tb

Tu
), where subscript b and u

stand for burnt and unburnt respectively. It is remarkable here, that the momentum
equation is not needed any more. Due to small flame speed, there is small pressure
jump that can be calculated through the above defined expression.

Eqs. (2.1) describe a wave propagation from the burnt to fresh (unburnt) gases.
When the flame is settled, it propagates into the quiescent unburnt gases at a constant
speed SL. Hence, it is more advantageous to consider the conservation equation
written in an inertial frame of reference attached to the flame front. Thus, Eqs. (2.1)
may be rewritten in the flame frame of reference and expressed in its steady state
form

ṁ = const = ρuSL (2.2a)

ṁ
∂Yk
∂x

+
∂(ρVkYk)

∂x
= ω̇k (2.2b)

ṁ
∂T

∂x
=
ω̇′T
cp

+
1

cp

∂

∂x

(
λ
∂T

∂x

)
− ρ

cp

( Ns∑
k=1

cp,kYkVk

)
∂T

∂x
(2.2c)

In the above equations ṁ represents the mass flow rate, which is independent of
x. Eqs. (2.2) are complemented with the equation of state ρ = p0

RT . The set of
Eq. (2.2) is also known as flamelet equations. Their solution is a function of the
unburned temperature, the considered species and pressure (Tu, Y1, ..., YNs

, p0) where
Ns denotes the number of species.

The evaluation procedure to calculate the net chemical production rate ω̇k of each
species is important, Also, it is a computationally expensive task. Recalling Eq. (1.20),
the Arrhenius law to calculate the ω̇k, the values of the pre-exponent, temperature
exponent and activation energy are required. Secondly, the species diffusion model
is also a key element which is composed as Vk = Vk + V c. The ordinary diffusion
velocity Vk is here modelled by the Hirschfelder-Curtiss approximation Eq. (1.29)
[11]. V c is the correction velocity as given in Eq. (1.32) of introduction. Hence, the
species Eq. (2.2b) can be replaced with Eq. (1.33) as

ṁ
∂Yk
∂x

+
∂

∂x
(ρV cYk) =

∂

∂x

(ρDk

W

∂(WYk)

∂x

)
+ ω̇k. (2.3)

Still, because of expensive computational cost of the Hirschfelder and Curtiss approx-
imation, sometime the selection of Fick’s model Eq. (1.34) is worth considering. In
this chapter and the following, further insight is provided on the model effect.
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2.2.1 Boundary conditions

The conservation Eqs. (2.2) are associated with boundary value problems. For the
complete description of premixed flames, appropriate boundary conditions for species
and energy conservation equations are required. Specifically, the unknowns T (x)
and Yk(x) have to be set at the upstream and downstream boundaries. The energy
conservation equation is second order differential equation (DE) in T and requires two
boundary conditions. Upstream the value is known. Thus, a Dirichlet condition is
set. On the other hand, downstream the boundary is placed for away from the region
of interest. Thus, no significant changes occur near it.

T (x→ −∞) = Tu (2.4a)

dT

dx
(x→ +∞) = 0 (2.4b)

In general, the domain lies −∞ < x <∞ which is truncated by only few centimeters
for numerical solutions. Particularly, for premixed cases the length of domain size is
between 2 to 4 centimeters. In addition, comparative long domain (4 centimeters) is
required for rich cases.

The species conservation equation, Eq. (2.2b), is a first order ordinary differential
equation (ODE), in both Yk and u or SL. However, by substituting the constitutive
relation defined in Eq. (1.29), the species equation. Eq. (2.2b) becomes second or-
der in Yk. Thus, Yk’s have to be set at both upstream and downstream locations.
The boundary condition are analogous to those of the energy equation. Hence, the
boundary conditions are

Yk(x→ −∞) = Yk,u (2.5a)

dYk
dx

(x→ +∞) = 0 (2.5b)

2.3 Numerical methodology

An important step in the numerical solution starts from handling the partial dif-
ferential equation (PDE). First, the development of stable, consistent and accurate
algebraic replacement of PDE’s (or boundary value problems) is needed. This alge-
braic procedure must retain most of the global information of the original problem
and inherit its structure. Several methods can be used, such as finite volume method
(FVM), finite element method (FEM) and finite difference method (FDM). These
discretization schemes provide a means of replacing the PDE’s system with an alge-
braic one. In the present study, FDM is adopted because of its easiness in handling
one-dimensional problems and implementation.

In combustion problems, detailed kinetic mechanisms involve hundreds of species
and thousands of reaction. Thus, the number of coupled equations can become very
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large. Furthermore, the transport equations of species and energy are highly non-
linear because of the chemical reaction rate. The second difficulty is the characteristic
time scales of the chemical reactions. These time scales are associated with a kinetic
scheme and may differ by several orders of magnitude. In consequence, the system of
equations can be categorized as a stiff system.

In this situation, to solve the system of non-linear equations a well known modified
Newton method is employed. Before solving the system of non-linear equations, we
will have to rewrite the equations. First, the system is scaled by a change of variable.
Second, a transformation from the physical domain to a logical domain is performed.
These modifications are intended to handle the arising computational difficulties from
stiff systems of equations.

2.3.1 Scaling and change of variable

In combustion problems, the magnitude of the unknowns can be significantly dif-
ferent from one to the other. While the mass fraction of a species or sum of the mass
fraction of all species can never be greater than unity, the adiabatic temperature (de-
pends on fuel) is in order of 103. Furthermore, some species may lie in the range of
tenths while others are found in concentrations of part-per-million (ppm). Besides,
their variation across the flame front may be significantly different.

In general, a numerical solution of PDE’s evolves the discrete form of a system.
The solution of the discrete system is also based on scalar coefficients of discrete
equations (or matrix coefficients). The magnitude of coefficients depend on different
parameters (physical parameter, etc.) and spatial length (δx). While the compu-
tational domain is in order of 10−3 in premixed flames and close to the flame front
the mesh-size is further reduced to achieve better accuracy. In consequence, the so-
lution of a system becomes more complicated as compared to another non-reacting
flow problems. There are two causes: large variation in the magnitude of coefficients
and variation of the magnitude of expected solution (species and temperature). As
a result, the occurrence of numerical instabilities is very common in such systems.
Sometimes it becomes quite a big issue, and in consequence, a solution of the system
is not often found.

Scaling sometimes becomes an important issue in mathematical computations.
Computer stores floating-point numbers with limited precision. When performing
calculations, problems can arise because of this. Especially, if small and large values
are added, subtracted or divided from each other. In that case, the precision of the
small number is lost. As a result, it can affect the calculated values, that aren’t correct
any more. The numerical solution is typically an iterative process, where thousands
of floating calculations are done to find a solution. The chance of numerical instabili-
ties is consequently also quite big. However, scaling does not only improve numerical
stability, it also increases the performance as well [12]. Besides, scaling preserves the
structure of the system but modifies the coefficients. In other words, it improves the
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numerical characteristics of the system without altering the structure at all. Math-
ematically, solver convergence depends on the condition number of the matrix (or
system). Therefore, scaling the variables often reduces the condition number, thus
improving the convergence [13].

To tackle the explained issues mass fractions and temperature are scaled. Fur-
thermore, they are recast in rescaled domain z. New variables are introduced such
as

yk =
Yk
Yr

; Yr ≥ max(Y1,Y2,...,YNs
) ⇒ 0 ≤ yk ≤ 1

θ =
T

Tr
; Tr ≥ Tadia ⇒ 0 ≤ θ ≤ 1

z = αx ; α ≥ 1

where Yr, Tr are the scaling reference values for species and temperature respectively.
Applying these changes, Eqs. (2.2) become

ṁ = const = ρuSL (2.6a)

ṁ(αYr)
∂yk
∂z

+ (αYr)
∂(ρVkyk)

∂z
= ω̇k (2.6b)

ṁ(αTr)
∂θ

∂z
=
ω̇′T
cp

+

(
α2Tr
cp

)
∂

∂z

(
λ
∂θ

∂z

)
−
(
ραYr
cp

)( Ns∑
k=1

cp,kykVk

)
∂θ

∂z
(2.6c)

It is important to note: both ω̇k and ω̇′T are function of unscaled variables that is Yk
and T . Hence ω̇k(Yk, T ) and ω̇′T (Yk, T ).

2.3.2 Transformation: physical to logical domain

In most combustion applications, non-uniform grids allow refining in regions of
interest, for example where strong gradients are expected. Specifically, when dealing
with stiff PDE’s, grid generation becomes important. In combustion problems, second
order discretization schemes for derivatives, are commonly used. However, the order of
accuracy of the discretization scheme degrades when non-uniform grids are employed.
This degradation also depends on grid expansion ratio. This effect can be easily
evidenced using Taylor series approximation for central difference formulation.

To preserve the order of accuracy of the scheme, we transform the non-uniform
physical space grid to a uniform logical space grid as shown in Fig. 2.2. The procedure
uses a non-uniform grid in physical-space which is related to a uniform grid in logical-
space. Then, the flamelet Eqs. (2.6) are rewritten in logical space and solved using
FDM. Finally, solution variables are converted from logical-space to physical-space.

To convert the uniform mesh in logical-space to the non-uniform mesh in physical-
space two steps are required. First, a transformation procedure from physical to
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Figure 2.2: A one dimensional grid.

logical space. Second, a function to concentrate the mesh in physical space. Regarding
the first step, consider a mesh with M number of grid points, the transformation from
logical space to physical space [a , b] is given by

x(ξ) = a+ c

∫ ξ

0

φ(y)dy ; ξ ∈ [0 , 1] (2.7)

where 4ξ = i
M , ξi = i4ξ, x(0) = a and x(1) = b which implies 1

c = 1
b−a

∫ 1

0
φ(y)dy.

The function φ(ξ) which depends on a logical space variable ξ ∈ [0 , 1], controls the
mesh spacing in physical-space and it must be continuous and differentiable function.
The actual function is defined in the next section. The transformation Jacobian is
calculated as J = dx(ξ)

dξ = cφ(ξ) = xξ. Then, 1st and 2nd derivatives of function f(x)
are defined as

fx =
df

dx
=
df

dξ

dξ

dx
=
fξ
xξ

=
fξ
J

fxx =
(fξ
J

)
ξ

1

J
.

Rewriting the flamelet equations, Eqs. (2.6) into logical ξ space, they become

ṁ = const = ρuSL (2.8a)

ṁ(αYr)
∂yk
∂ξ

+ (αYr)
∂(ρVkyk)

∂ξ
= Jω̇k (2.8b)

ṁ(αTr)
∂θ

∂ξ
=
Jω̇′T
cp

+

(
α2Tr
cp

)
∂

∂ξ

(
λ

J

∂θ

∂ξ

)
−
(
ραYr
cp

)( Ns∑
k=1

cp,kykVk

)
∂θ

∂ξ
(2.8c)

Final version of species Eq. (2.8b) can be recast using Hirschfelder and Curtiss ap-
proximation as according Eq. (2.3)

ṁ(αYr)
∂yk
∂ξ

+ (αYr)
∂

∂ξ
(ρV cyk) = (αYr)

∂

∂ξ

((ρDk

JW

)∂(Wyk)

∂ξ

)
+ Jω̇k. (2.9)
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2.3.3 Grid generation

The mesh is a discrete representation of the geometry or domain of the problem.
Computationally, the solution rate of convergence or accuracy and computational cost
depend on the mesh used to calculate the solution. In Sec. 2.3.2, the transformation
was established using a mesh function to generate a non-uniform grid in physical
space. The Gaussian function φ(ξ) is

φ(ξ) = a− b exp(−c|ξ − d|e) ; ξ ∈ [0 , 1]

The φ(ξ) function is continuous and differentiable in the domain [0, 1]. The controlling
parameters a, b, c, d and e

a : maximum grid size 4x in physical domain (typical value 1.0)

b : weight parameter (typical value 0.99)

c : number of points to be stretch around reference point (typical value 10)

d : reference point, around which mesh points are stretched (typical value 0.5)

e : stretching parameter (typical value 4.0 and can varies in between 0 and 8)

Of all parameters, d and e are the most important ones to handle mesh quality. In
some solvers, mesh adaptive strategies are used to refine the mesh in specific region of
interest. In the present work, we are taking a computationally advantageous approach
by using a special mesh generating function, which is simple and easy to implement.
In present simulations, we are solving for premixed flames in a fix reference frame and
attached to the flame. Then mesh resolution is controlled through the above function
by predefining a fix reference location according to fixed reference position.

2.3.4 Finite difference method

The final task before solving the problem is the discretization of the governing
Eqs. (2.8). The finite difference scheme is used to discretise the flamelet equations in
uniform (ξ − space) grid. A second order central 1 difference formulation is adopted
for convective as well as diffusive terms in both species and energy equations. By

1The central difference scheme requires a suitably fine grid for convergence. However, in case of
coarse meshes, this can be controlled using the mesh function φ(ξ) (see grid generation section).



2.3. Numerical methodology 23

discretising the ξ space into M uniform points, all mesh related terms are defined as

4ξ =
i

M
, ξi = i4ξ ; 0 ≤ i ≤Mx and Mx = M − 1

ξi+ 1
2

= (i+
1

2
)4ξ ; 0 ≤ i ≤Mx − 1

xi = x(ξi) ; 0 ≤ i ≤Mx

Ji = (xξ)i =
xi+1 − xi−1

24ξ
; 1 ≤ i ≤Mx − 1

Ji+ 1
2

= (xξ)i+ 1
2

=
xi+1 − xi
4ξ

; 0 ≤ i ≤Mx − 1.

The first derivative namely, the convection term, of the flamelet equations is approx-
imated as

fx =
fξ
J

=⇒
[ 1

J

dy

dξ

]
i

∼=
1

Ji

y(ξi+ 1
2
)− y(ξi− 1

2
)

4ξ

=
1

Ji

y(ξi+1)− y(ξi−1)

24ξ
where

y(ξi+ 1
2
) =

y(ξi+1) + y(ξi)

2
.

Similarly, the second derivative, namely the diffusion term, is

fxx =

(
fξ
J

)
ξ

1

J

resulting in,

fxx =
[ 1

J

d

dξ

((Γ

J

)dy
dξ

)]
i

=
[ 1

J

d

dξ

(
η
dy

dξ

)]
i

∼=
1

Ji

(
ηyξ
)
i+ 1

2

−
(
ηyξ
)
i− 1

2

4ξ

where Γ represents the diffusion coefficient. By setting Γ
J = η and

(
ηyξ
)
i+ 1

2

∼=
ηi+ 1

2

yi+1−yi
4ξ , the second derivative can be expressed as

[ 1

J

d

dξ

(
η
dy

dξ

)]
i

∼=
1

Ji

ηi+ 1
2

(
yi+1−yi
4ξ

)
− ηi− 1

2

(
yi−yi−1

4ξ

)
4ξ

=
1

Ji

[(ηi+ 1
2

4ξ2

)
yi+1 −

(ηi+ 1
2

+ ηi− 1
2

4ξ2

)
yi +

(ηi− 1
2

4ξ2

)
yi−1

]
.
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Comparatively, boundary conditions are easier to transform. Dirichlet conditions
are imposed as T0 = Tu and Yk = Yk,0 on the cold side (x → −∞) of the flame.
Neumann conditions are set on the hot boundary (x → ∞), which are recast into
ξ-space as[dYk

dx

]
N− 1

2

⇒
[(αYr

J

)dyk
dξ

]
N− 1

2

∼=
[αYr
J

]
N− 1

2

yk,N − yk,N−1

4ξ
= 0[ dθ

dx

]
N− 1

2

⇒
[(αTr

J

)dθ
dξ

]
N− 1

2

∼=
[αTr
J

]
N− 1

2

θN − θN−1

4ξ
= 0.

The transformation yields a second order approximation. It is important to note
that the above discrete set of boundary conditions are associated with the scaled
equations. The coefficients αYr

J and αTr

J in above equations are derived through
scaling and transformation procedures. Thus, it is important to take into account
these coefficients as then appear in the discrete equation and can’t be simplified.
For example, considering the some algebraic operations, the above equation can be
simplified as

yk,N − yk,N−1 = 0

and coefficients become 1 and −1. Mathematically, there is absolutely no difference.
However, numerically it has big scaling effect on computations and as a result solution
may suffer numerical instabilities.

2.3.5 Laminar burning velocity

To find the solution of Eqs. (2.8), two configurations can be considered: burner
stabilized flames and adiabatic freely propagating flames. Focusing on the case of
freely propagating flames ṁ (indirectly flame velocity) is an unknown and an eigen-
value of the system, which must be determined as part of solution [7]. Furthermore,
the mass flow rate is independent of the spatial coordinate, ṁ is a constant scalar for
any given flame mixture. Thus, this can be expressed as

dṁ

dx
= 0. (2.10)

Therefore, the addition of Eq. (2.10) to the flamelet equations Eqs. (2.2) would require
setting an extra boundary condition. However, the problem can also be solved if one
degree of freedom is removed from the system.

In premixed flames, the flame front moves towards the fresh gases with a speed
given by the SL. A problem that may arise, during the solution process is that
the flame may move too close to the boundaries of the computational domain and
be affected by the boundary condition. Furthermore, if the flame can traverse the
computational domain, mesh resolution must be fine enough throughout the domain,
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which is computationally expensive. To handle this situation, a reference frame at-
tached to the flame front is used. This is achieved by fixing the temperature at one
point. Therefore, the selection of this point must ensure that temperature and species
gradients nearly vanish at the cold boundary. Now, the only thing remaining, the un-
known ṁ. The energy equation is used at a fix location, to calculate the mass flow
rate. Using the energy equation Eq. (2.8c), ṁ can be found in the following way

ṁ =

Jω̇′T
cp

+
(
α2Tr

cp

)
∂
∂ξ

(
λ
J
∂θ
∂ξ

)
−
(
ραYr

cp

)(∑Ns

k=1 cp,kykVk

)
∂θ
∂ξ

(αTr)
∂θ
∂ξ

. (2.11)

The discrete form of Eq. (2.11) used is of second order and deduced from the en-
ergy equation, Eq. (2.8c). Being consistent with rest of the system formulation is
important. Otherwise, it can pose some numerical discrepancies. Then, the laminar
burning velocity or flow velocity can easily be calculated as

SL =
ṁ

ρu
(2.12a)

u(x) =
ṁ

ρ(x)
. (2.12b)

2.3.6 Initial estimation

Initial temperature in premixed flame cases is usually low and most reaction terms
at this temperature are almost zero. If this flow is started to compute from x = 0
(cold boundary) and updating all variables for increasing x, the mass fractions remain
constant. In general reaction rates of species rise very slowly so that the ignition point
is rejected to infinity. This is known as the cold boundary problem [14]. On other
hand, numerically this limitation can easily solved by introducing that an additional
condition must be imposed in the initial conditions: the flame must have been ignited.

To start numerical solution, the C++ code is equipped with an initial profile
function that generates an initial guess to solve a premixed case. The general trend
of this initial guess is shown in Fig. 2.3. For this estimation, the reaction zone is
presumed, in which the reactants change from unburned to burnt gases. To sketch
the initial guess, the initial mass fractions of fuel and oxidizer must be provided.
Optionally, the user can also sketch other important species profiles by providing their
mass fractions. The latter is important for some fuels specially in case of hydrogen.
The temperature profile can be initialized by providing the initial temperature and
estimated adiabatic temperature. It is remarkable here, that the temperature profile
should be ignited to start reactions the adiabatic temperature. Within the reaction
zone the initial profile function uses a linear interpolation between initial and final
values for both reactants and product. On cold and hot sides profiles are flat.
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Figure 2.3: Schematic behaviour of the solution of premixed flame.

2.3.7 Computational frame work

To solve the set of governing equations Eqs. (2.8), it is needed to replace the system
of differential equations with an algebraic one using FDM as defined in Sec. 2.3.4.
After this, the equation set Eqs. (2.8) can be recast into the following functional form

F(φφφ) =


ṁ(αTr)

∂θ
∂ξ − (α

2Tr

cp
) ∂∂ξ (λJ

∂θ
∂ξ ) + (ραYr

cp
)(
∑Ns

k=1 cpkykVk)∂θ∂ξ −
Jω̇′T
cp

ṁ(αYr)
∂y1
∂ξ + (αYr)

∂
∂ξ (ρV cy1)− (α2Yr)

∂
∂ξ (ρDk

JW
∂(Wy1)
∂ξ )− Jω̇1

...

ṁ(αYr)
∂yNs

∂ξ + (αYr)
∂
∂ξ (ρV cyNs

)− (α2Yr)
∂
∂ξ (ρDk

JW
∂(WyNs )

∂ξ )− Jω̇Ns


or equivalently by

F(φφφ) =



[
f(θ)

]T
[
f(y1)

]T
...[

f(yNs
)

]T


θ and y are discretised by M points. Thus, vector φφφ can be written as
φφφ = (θ1, θ2, ...θM , y(1,1), ..., y(1,M), ..., y(Ns,1), ..., y(Ns,M))

T and superscripts T stands
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for transpose of vector. Rewritingφφφ for simple notation such thatφφφ = (φ1, φ2, ..., φM)T

where M = (Ns + 1)M . The corresponding F vector is composed of residuals of the
energy and species equations. F is a non-linear function of φφφ. The goal is to find a
suitable φφφ that satisfies the residual equation F(φφφ) = 0.

The system of equations here discussed is stiff. These systems are usually very
sensitive to the initial guess. Furthermore, iterative methods for the solution of non-
linear system have a narrow region of convergence. For instance, the Newton-Raphson
method has quadratic rate of convergence, but the convergence to the desired solution
is not guaranteed unless the initial guess is sufficiently close to the solution. The
method may diverge, or converge to an unwanted (non-feasible) solution.

To get more flexibility for convergence, a Damped Newton Method (DNM) is
implemented. With this method, a damping parameter can be toggled to ensure
convergence. Damped Newton technique to solve residual equations for φφφ is adopted
in the following way, similar to the one described by Smooke et al. [15]:

φφφ(n+1) = φφφ(n) − λd
(
dF

dφφφ

)−1

φφφ(n)

F(φφφ(n)) = φφφ(n) − λdJ−1F(φφφ(n)) ; 0 ≤ λd ≤ 1

where λd is a damping parameter and
(
dF
dφφφ

)
φφφ(n) = J is the Jacobian of F(φφφ). Equiv-

alently this can be rewritten as

φφφ(n+1) = φφφ(n) − λd4φφφ(n) (2.13)

where
4φφφ(n) = J−1F(φφφ(n))

or expressed as a linear system

J4φφφ(n) = F(φφφ(n)) (2.14)

Newton’s method evolves Eq. (2.13) and the solution of the (n+ 1)th iteration is the
solution of the system of Eqs. (2.8) which satisfies F(φφφ) = 0. To solve Eqs. (2.13) for
φφφ, Jacobian matrix and linear solver are required.

Jacobian computation The structure of the Jacobian matrix is completely de-
termined by the discretization, which leads to a block tri-diagonal structure of the
matrix.

[
J
]

=


∂F(φ1)
∂φ1

∂F(φ1)
∂φ2

· · · ∂F(φ1)
∂yM

∂F(φ2)
∂φ1

∂F(φ2)
∂φ2

· · · ∂F(φ2)
∂yM

... · · ·
...

∂F(φM)
∂φ1

∂F(φM)
∂φ2

· · · ∂F(φM)
∂yM
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The size of J is ((Ns+1)M×(Ns+1)M), and if we suppose, for example, a single step
combustion problem (F + O → P ), then only two species and one energy equation
are involved. In this case, the size of Jacobian is (3M × 3M).

For the construction of the Jacobian, there are two options: one is a symbolic
(analytical) computation, and the other one is numerical. The symbolic computa-
tion of Jacobian is more accurate and computation-wise less expensive. However, it
is effort-full and complex because of the complex structure of the chemical reaction
terms. Furthermore, inclusion of further equations is not automatic. Instead a nu-
merical Jacobian evaluation is adopted. The numerical Jacobian is calculated by a
finite perturbation, as suggested by Curtiss [16]. Many researchers have proposed sev-
eral finite difference approximations of the Jacobian [17]. First order finite difference
approximation of the Jacobian is written as

[
ψψψ,φφφ; F

]
i,j

=
Fi(ψ1, · · · , ψj , · · · , φM)− Fi(ψ1, · · · , φj , · · · , φM)

ψj − φj
,

or equivalently expressed in compact notation

Ji,j = [φφφ+ δ,φφφ; F]i,j =
Fi(φφφ+ δj)− Fi(φφφ)

δ
(2.15)

where φφφ + δj = [φ1, φ2, · · · , φj−1, φj + δ, φj+1, · · · , φM] and δ is the numerical per-
turbation. Similarly, the second order finite difference approximation of the Jacobian
[17] can be expressed as

Ji,j =
Fi(φφφ+ δj)− Fi(φφφ− δj)

2δ
. (2.16)

The computational cost of Eq. (2.16) is higher compared to Eq. (2.15). Detailed
discussion about the order of approximation can be found in Appendix A.

In general, the Jacobian evaluation is a machine-intensive task. Therefore, it is
not a good idea to re-evaluate the Jacobian at each iteration. We employ a remedy to
improve the computations. The Damped Newton methodology is implemented along
with a frozen Jacobian approach namely, multi-step methods [18–21]. These methods
are computationally less expensive and the best candidate to use as the iterative solver
for the solution of the system of Eqs. (2.8). A multi-step damped Newton iterative
method with frozen Jacobian is shown in Algorithm 1.
Regarding the accuracy of the method, when λd = 1 and δδδ = β F(φφφ0) for any given
non-zero scalar β, the order of convergence of multi-step method becomes p + 1.

Furthermore, if the values of all used damping parameters λ
(n)
d 6= 1 or δδδ 6= β F(φφφ0)

then the multi-step method has linear convergence.
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Algorithm 1 Multi-step damped Newton method with frozen Jacobian

1: while
‖φφφnew−φφφold‖

2

‖φφφold‖2
≥ ε do

2: φφφ(n) = initial guess;
3: J (n) =

[
φφφ(n) + δ,φφφ; F

]
4: J (n)4φφφ(n) = F(φφφ(n)) . Solved using iterative/direct methods

5: φφφ(n+1) = φφφ(n) − λ(n)
d 4φφφ(n)

6: f = n; freezing the index.
7: for i=2:p do . Frozen Jocobian loop for p iterations
8: J (f)4φφφ(i) = F(φφφ(i)) . Solved using iterative/direct methods

9: φφφ(i+1) = φφφ(i) − λ(n)
d 4φφφ(i)

10: n+ +; iterations
11: end for
12: end while

Linear solver In the linear solver part, there are also two options: use an iterative
or a direct solver to solve Eq. (2.14). For the moderately large system of linear equa-
tions, a LU factorization of Jacobian J may be viable option. This factorization can
be utilized in the multi-step part repeatedly; that makes the solver efficient computa-
tionally. On the other hand, the use of iterative solvers (for instance GMRES, SOR)
could provide a reasonable approximation of the system of linear equations. Since
a damped Newton frozen Jacobian multi-step iterative method is used, and which
has linear order of convergence, the exact solution of the system of linear equation
Eq. (2.14) is not strictly required. Hence a reasonable approximation of the solution
of the system of linear equations also serves as a remedy for the treatment of the
stiff system of nonlinear equations. In other words, solutions not being exact at each
intermediate step represents a certain level of damping.

In the case of combustion a good initial guess is very important. It is observed
from our numerical experimentation, that the blend of direct and iterative methods is
a good method for the solution of the system of Eqs. (2.8). It is advisable to start the
multi-step method with iterative solver to approximate the solution for some initial
iterations without freezing the Jacobian. After the solution becomes stable, the use
of direct solvers such as LU factorization is recommendable for fast convergence.

2.4 Results and discussions

In the following, numerical simulations of one-dimensional laminar adiabatic freely
propagation flames are carried out with C++ code using several chemical mechanisms
GRI3.0, Smooke and Mueller mechanisms. The GRI3.0 mechanism [22] is a detailed
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mechanism and consists of 53 species and 325 chemical reactions. The Smooke mecha-
nism [23] is a reduced mechanism for CH4 and contains 14 species and 46 chemical re-
actions. The Mueller mechanism [24] is also a reduced mechanism for H2 and consists
of 9 species and 21 chemical reactions. The GRI3.0 has bean validated by experimen-
tal data for methane, ethane, carbon monoxide and hydrogen fuels. The GRI mecha-
nisms have been used in different studies and shown to accurately represent chemical
kinetics [25–28]. On the other hand, Smooke and Mueller’s mechanisms are specifi-
cally designed for methane/air and hydrogen/air mixture, respectively. These reduced
mechanisms have been studied for methane/air and hydrogen/air flames [24, 29, 30].

In the present calculations the computational domain is 2 cm long and kept the
same for all fuel mixtures cases. Typically total number of grid points is 101. The
mesh is generated using the mesh function, as described in Sec. 2.3.3, and it is con-
centrated at the middle of the domain. All calculations of CH4 and H2 are performed
with regular air (21% O2 and 79% N2) at atmospheric pressure. Initial temperature
varies from case to case.

2.4.1 Methane/air

CH4/air flame simulations are performed with an initial temperature of 300 K. For
this mixture many experimental measurements are available. Therefore, comparison
is made with a few of them. Additionally, the current results are compared with
reported simulation results of others authors. Fig. 2.4 shows the comparison between
numerically calculated and experimentally evaluated laminar burning velocities. The
data is represented as a function of CH4/air mixture equivalence ratios. The presented
results are compared with literature data [11, 26, 30–38], where measurements were
carried out using different experimental methods.

Additionally, in Table 2.1 the laminar burning velocities SL presented in Fig. 2.4
for stoichiometric mixture in chronological order are shown. The experimental data
shows a small degree of scatter, corresponding to different measurement methods.
The simulation results of present work are presented in Fig. 2.4 using Hirschfelder
and Curtiss diffusion model [11]. For a stoichiometric mixture, the calculated laminar
burning velocity is 37.7 cm/s, which is within a bound of the measure of disperse
about the mean of the experimental data, that is 37.14±1.45 cm/s. The relative
error of the calculated burning velocity to the mean experimental value is 1.5 %. For
further verification of the present results comparison with existing simulation codes
namely, PREMIX [11] and Cosilab [38] is also performed. Fig. 2.4 shows excellent
agreement with the experimental results. Furthermore, good agreement with other
computational software is found as shown in Fig. 2.4 and Fig. 2.5. The latter figure
presents the adiabatic temperature as a function of equivalence ratio. A very good
match with Cosilab simulation results [38] is found. The maximum temperature is
around the stoichiometric mixture, as is expected.

The typical flame structure is presented in Fig. 2.6, Fig. 2.7. These figures depict
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Figure 2.4: Calculated laminar burning velocity of CH4/air mixtures. Compari-
son with experimental data from literature. Symbols represent experimental data;
lines represent simulation results (using GRI3.0 chemical mechanism). PREMIX
simulation results are taken from [11] and Cosilab-simulation from [38]

the species mass fractions and temperature distribution along the computational do-
main. It can be seen from Fig. 2.6 and Fig. 2.7, that in the preheat zone the unburned
gas is heated up to the ignition temperature. After this, the main combustion process
takes place and the heat release occurs. This zone is marked by the rapid increase in
temperature and concentration of the main radicals H, O, OH as shown in Fig. 2.7.
Additionally, these minor species play an important role in highly diffusive mixtures
for instance hydrogen/air flame. Still, as Fig. 2.7 shows, these species appear in the
reaction zone and are consumed shortly after. These radicals recombine after the
active oxidation process is completed, and contribute to the temperature increase
until they reach their equilibrium [39]. Further on, because of the assumption of an
adiabatic system, the temperature of the burnt gases remains constant to the end of
the domain.
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Table 2.1: CH4/air laminar flame speed (cm/s). Experimental results for φ = 1.0
from literature, in chronological order.

Year Author Reference Technique SL(cm/s)
1991 Smooke et al. [31] Plug burner 38.5
1993 Law et al. [32] Counterflow 40.5
1994 Van Maaren et al. [33] Flat flame 37.0
1998 Vagelopoulous et al. [34] Counterflow 36.7
2000 Gu et al. [35] Closed vessel 36.8
2002 Rozenchan et al. [36] Closed vessel 36.6
2004 Bosschaart et al. [30] Flat flame 35.7
2005 Halter et al. [26] Closed vessel 34.9
2007 Coppens et al. [37] Flat flame 37.5
2013 Boushaki et al. [38] Burner 37.2
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Figure 2.5: Calculated adiabatic temperature of CH4/air mixtures, comparison
with simulation results of Cosilab [38].

2.4.2 Hydrogen/air

H2/air flame simulations are carried out at an initial temperature of 298 K. This
temperature initialization is taken in order to validate the available data from the
literature. Table 2.2 presents the available data, together with the experimental tech-
nique used, for the stoichiometric mixture fraction in chronological order. Laminar
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Figure 2.6: Calculated mass fractions of major species of CH4/air flame for sto-
ichiometric mixtures. Legend multiplier represents the increase of the concerned
entity for better presentation.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0  0.25  0.5  0.75  1  1.25  1.5  1.75  2
 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

S
p

e
c

ie
s

 M
a

s
s

 F
ra

c
ti

o
n

T
e

m
p

e
ra

tu
re

(K
)

X(cm)

OH15*HO2

2*O
3*H

T

Figure 2.7: Calculated mass fractions of minor species of CH4/air flame for sto-
ichiometric mixtures. Legend multiplier represents the increase of the concerned
entity for better presentation.



34
Chapter 2. Laminar premixed flame, combustion modeling and numerical

simulations

burning velocities for different equivalence ratios are shown in Fig. 2.8. Present re-
sults are compared against literature data [40–48]. The experimental measurements
are associated with different measurement methods e.g. burner, bomb, and particle
tracking velocimetry (PTV) methods. Simulation results are obtained using Mueller
and GRI3.0 chemical mechanisms. Comparison is also made against results from the
PREMIX code [8].
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Figure 2.8: Calculated laminar burning velocity of H2/air mixtures, comparison
with experimental data from literature using different configurations. Symbols
represent experimental data lines represent simulation results (using GRI3.0 and
Mueller chemical mechanisms). PREMIX-simulation results taken from [38]

Current results show very good agreements with experimental data with either
chemical mechanism. The calculated adiabatic temperature, 2369 K, is excellently
matched with Erjiang work [49], which was found to be 2364 K for a stoichiometric
mixture. The calculated laminar burning velocity for the stoichiometric mixture is
251.0 and 251.8 cm/s using GRI3.0 and Mueller mechanisms, respectively. These
results are within a bound of the measure of disperse about the mean of the experi-
mental data that is 256.5±22.2 cm/s and relative percentage error with respect to the
experimental mean value is 1.8%. In other words, this variation is within experimental
uncertainty because of the different experimental techniques reported. Fig. 2.8 shows
that the overall behaviour of numerical results are well matched with experimental
data. Specially, those from burner and PTV techniques, which have less stretch effects
than other techniques. In the case of the bomb technique, the flame is 3D. In this
technique stretch effects are more significant. Thus, results are more deviated from
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Table 2.2: H2/air laminar flame speed (cm/s). Experimental results for φ = 1.0
in literature, in chronological order. PTV stands for particle tracking velocimetry.

Year Author Reference Technique SL(cm/s)
1972 Gunther et al. [40] Burner 279.5
1983 Liu et al. [41] Burner 252.1
1985 Wu et al. [42] Burner 228.1
2003 IIbas et al. [43] Bomb 284.5
2010 Jhon et al. [44] PTV 238.4

the rest. In the current numerical calculations, it is assumed the flame has no stretch
effect (1D case). Additionally, the deviation of numerical results between Muller and
GRI3.0 is due to detailed and reduced mechanisms, which is commonly mentioned in
literature [50].

A detailed flame structure is presented in Fig. 2.9 and Fig. 2.10. In these figures,
the species mass fractions are shown along the computational domain for a stoichio-
metric mixture. It can be seen that minor species exist only in a small fraction of
domain. Additionally, their dynamics is much faster than the major species, thus
accounting for the stiffness of the system. The laminar burning velocities and distri-
bution of mass fractions can be observed to be significantly different than the CH4/air
flame because of the high mass and thermal diffusivity of the hydrogen. The max-
imum laminar burning velocity is found in between equivalence ratios of 1.7 to 1.8.

2.4.3 Blended mixture

In this section flames burning blended fuel mixtures are analysed. Blended fuel
mixtures are mixtures of CH4 and H2. Five different cases are studied by increas-
ingly adding hydrogen fuel into methane/air mixture. The volumetric percentage of
hydrogen in fuel blends XH2 is defined as

XH2 =
VH2

VCH4
+ VH2

where VCH4 and VH2 are the volume fraction of methane and hydrogen in the fuel
mixture respectively. The chemical reaction for the stoichiometric CH4/air and H2/air
is

CH4 + 2(O2 + 3.762N2)→ CO2 + 2H2O + 2× 3.762N2

H2 + 0.5(O2 + 3.762N2)→ H2O + 0.5× 3.762N2.
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Figure 2.9: Calculated mass fractions of major species of H2/air flame for sto-
ichiometric mixtures. Legend multiplier represents the increase of the concerned
entity for better presentation.
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Combining both reactions, the chemical reaction for a blended mixture is

(1−XH2
)CH4 +XH2

H2 +

(
2

φ
(1−XH2

) +
XH2

2φ

)
(O2 + 3.762N2)

→ (1−XH2
)CO2 + (2−XH2

)H2O +

(
3.76

2φ
(4− 3XH2

)

)
N2

where φ is fuel/oxidizer equivalence ratio as defined in Chapter 1.
The effect of hydrogen addition on laminar velocity is studied at 300 K and atmo-

spheric pressure. The chemical kinetic mechanism GRI3.0 [22] is used. The hydrogen
content in the fuel, represented by α, is varied from 0% to 30%. The comparison
of experimental and calculated results are shown in Fig. 2.11 and Fig. 2.12. Results
show that the laminar burning velocity increases linearly with increasing hydrogen
content. Present results are in very good agreement and consistent with experimental
results from the literature. Furthermore, the linearity of SL with hydrogen fraction
is found for all equivalence ratios which is not presented here. The same behavior is
reported by several authors [27, 38, 51].
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Figure 2.11: Laminar burning velocity versus the percentage of H2 in the fuel for
φ = 1.0 mixture using GRI3.0 chemical mechanism. Comparison with experimental
results from the literature.
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Figure 2.12: Laminar burning velocity versus the percentage of H2 in the fuel for
φ = 1.2 mixture using GRI3.0 chemical mechanism. Comparison with experimental
results from the literature.

2.4.4 Effect of Lewis number in transport models

In the previous sections, a non-fix and non-unity Lewis number, Lek, is used to-
gether with a complex transport model in Eq. (2.9), namely the Hirschfelder and
Curtiss diffusion model [11]. The use of Lek 6= 1 is a more realistic assumption. How-
ever, the assumption Lek = 1 is commonly used for theoretical treatments because it
leads to an easier treatment of the equations. This simplification poses that mixture
mass and thermal diffusivity behaved in the same way during a combustion process.
Mostly, this Lek = 1 assumption is made to simplify the calculations.

To evidence the effect of the Lek = 1 assumption, results for a CH4/air and
H2/air flames are presented. For the CH4/air flame, the unity Lewis assumption
does not have a notable effect on the species structure. Species mass fractions and
temperature distributions are almost indistinguishable. However, as Fig. 2.13 shows,
the flame propagation speed is prominently different when Lek 6= 1 are considered.
Consequently, these differences affect the flame topology in terms of flame position
and extinction limit.

For H2/air flame, the case is studied for a lean mixture, φ = 0.8. Minor species are
presented in Fig. 2.14, showing a notable different behaviour between Lek = 1 and
Lek 6= 1. H2O2 and HO2 species play an important role in the preheat zone, especially
for hydrogen flames. Thus, flame dynamics are significantly affected. For instance,
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Figure 2.13: CH4/air premixed flame laminar burning velocity for φ = 1.0 mixture
using GRI3.0 chemical mechanism. Both cases are solved considering Hirschfelder
and Curtiss diffusion model.

the flame burning velocity is also affected with transport coefficients assumption: with
non-unity Lewis it is 185 cm/s and with unity Lewis it is 138 cm/s. Present results
are consistent and within less than 1% error compared to results of Gicquel et al. [52].

2.4.5 Conclusions

In this chapter, we have described the development of a C++ code and established
a numerical platform for the simulation of laminar premixed flames under steady state
condition. The code has been applied to simulate several flames using various chemical
schemes. Excellent agreement with published numerical and experimental data has
been found. The developed platform has been shown to be robust and accurate for
laminar premixed flames. The main features of code are summarized as follows:

i- The platform was based on structured mesh and explored a new mesh function
to meet the mesh requirement for the flame solution in a simple and efficient
way.

ii- The algorithm solves the flame in logical space on a uniform mesh, and re-
sults showed the accuracy of code which proved the choice of transformation
technique.

iii- Scaling and change of variable techniques increased the robustness of the code
to achieve convergence.
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iv- A multi-step damped Newton method is used to efficiently solve the linear sys-
tem of equations.
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Appendix A

This appendix is devoted to mathematically prove the order of accuracy of the
Jacobian formulation, which is defined using divided difference. Assume that F(·) has,
at least, four continuous derivatives on D(⊂ Rm). The divided difference operator of
F(·) on Rm is a mapping

[·, ·; F] : D ×D ⊂ Rm ×Rm → L(Rm) ,

where L(Rm) is the space of linear operators defined over Rm and it is defined as

[φφφ+ δδδ,φφφ; F] =

1∫
0

F′(φφφ+ t δδδ)dt , ∀(φφφ,δδδ) ∈ Rm ×Rm . (2.17)

The Taylor series expansion of F′(·) around φφφ gives

[φφφ+ δδδ,φφφ; F] = F′(φφφ) + 1/2 F′′(φφφ)δδδ + 1/6 F′′′(φφφ)δδδ2 +O
(
δδδ3
)
. (2.18)

We have two finite difference approximation of (2.17)

[ψψψ,φφφ; F]
(1)
i,j =

Fi(ψ1 · · · , ψj , · · · , φn)− Fi(ψ1, · · · , φj , · · · , φn)

ψj − φj
,

[ψψψ,φφφ; F]
(2)
i,j =

(
Fi(ψ1, · · · , ψj , · · · , φn)− Fi(ψ1, · · · , φj , · · · , φn) (2.19)

+ Fi(φ1, · · · , φj , · · · , ψn)− Fi(φ1, · · · , ψj , · · · , ψn)

)/
(2(ψj − φj)).

The application of Taylor series gives

1∫
0

DjFi(φφφ+ t δδδ)dt =DjFi(φφφ) + 1/2

m∑
k=1

DkjFi(φφφ)δk

+ 1/6

m∑
k,l=1

DkljFi(φφφ)δkδl +O
(
δδδ3
)
, (2.20)

where Dj is the partial derivative with respect to jth coordinate. By using (2.19) and
(2.20), we obtain
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[ψψψ,φφφ; F]
(1)
i,j = DjFi(φφφ) +

j−1∑
k=1

DkjFi(φφφ)δk + 1/2DjjFi(φφφ)δj +O
(
δδδ2
)

[ψψψ,φφφ; F]
(2)
i,j = DjFi(φφφ) + 1/2

m∑
k=1

DkjFi(φφφ)δk + 1/4

j∑
k, l = 1
k + l < 2j

DkljFi(φφφ)δkδl

+ 1/6DjjjFi(φφφ)δ2
j + 1/4

m∑
k, l = j
k + l > 2j

DkljFi(φφφ)δkδl +O
(
δδδ3
)
. (2.21)

By using (Eq. (2.20)) and (Eq. (2.21)), we have

1∫
0

DjFi(φφφ+ t δδδ)dt− [ψψψ,φφφ; F]
(1)
i,j = O (δδδ)

1∫
0

DjFi(φφφ+ t δδδ)dt− [ψψψ,φφφ; F]
(2)
i,j = O

(
δδδ2
)
.

(2.22)
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3

Correction technique and
inclusion of differential
diffusion

Abstract. The present work is concerned with developing a tabulated chemistry method to

capture differential diffusion effects for practical combustion systems. To take into account

differential diffusion effects several approaches use at least 2 or 3-dimensional manifolds. In

the present work, a new approach is proposed where a correction to the source term of the

progress-variable equation is introduced. The method is developed in the context of the

flamelet prolongation of ILDM (FPI) framework. The main feature of this new approach is

the use of only one progress-variable equation (1D manifold). This correction technique en-

ables incorporating the complex transport model to the flamelet database. The correction to

the source term of the flamelet progress-variable model is made by evaluating the difference

between the species equation with unity and non-unity Lewis number. To analyse the perfor-

mance of the model, one-dimensional freely propagating adiabatic laminar premixed flames,

and a two-dimensional adiabatic burner stabilized flame cases are considered. The one-

dimensional cases use two different mixtures: CH4/air and H2/air. The burner stabilized

simulations are performed for a CH4/air mixture. Additionally, the correction technique

is tested for both lean and rich mixture cases. Solutions using the flamelet database are

presented with and without correction of the flamelet progress-variable model. Excellent

agreement is found between the database with the proposed source term correction and the

detailed chemistry solutions.

49
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3.1 Introduction

Reactive flow simulations of practical combustion systems, e.g. engines, furnaces,
gas turbines, etc., require the accurate prediction of chemical features like heat release,
ignition delay time, flame structure and pollutant formation, etc. Chemical mecha-
nisms are usually designed to accurately model all flame characteristics. A detailed
chemical mechanism for hydrocarbon fuels may consists of thousands of species and
hundreds or thousands of chemical reactions. To characterise any thermochemical
multi-component system, mixture composition and two state variables are needed.
Hence, the system has Ns + 2 degrees of freedom, being Ns the number of species.
For instance, if pressure and temperature are chosen as state variables, then the state
vector is an ensemble of state spaces (P, T, Y1, Y2, ..., YNs). However, it is not feasi-
ble nowadays to directly simulate the aforementioned system using detailed chemical
schemes. Hence, techniques to reduce the computational requirements enable the
simulation of these combustion systems with reasonable computational costs.

One approach to reduce the computational cost of chemical reactions has been
the reduction of chemical schemes [1, 2], while trying to retain the main features of
the complete mechanism. These schemes are mostly based on partial equilibrium and
steady state assumptions for specific reactions and or species. In general, these kind of
mechanisms give good results. However, their application domain is quite limited, as
several suppositions are required to simplify the mechanism and thus, limiting them
to given ranges of equivalence ratio, temperature or pressure.

In 1992, Mass and Pope [3] introduced the Intrinsic Low-Dimensional Manifold
(ILDM), a new approach to address these difficulties to reduce chemical kinetic
schemes. ILDM is based on a mathematical analysis of the chemical process, and
therefore, independent of the topology of the flame. By using this method, it is pos-
sible to tabulate chemistry and consequently perform numerical computation with
reduced computational costs [4–6].

The classical ILDM provides very good results at the high temperature limit close
to equilibrium. However, in cold zones, for low temperatures, it is not able to produce
correct results when the manifold is described by a small number of coordinates [7].
Besides, the tabulated manifold mostly corresponds to constant atomic mass fractions
of the elements present in the chemical system. However, in actual flames the element
mass fractions locally vary along the flame front, which is associated with differential
diffusion. In general, differential diffusion drives the local equivalence ratio along the
flame front. Particularly, this effect is more strong for hydrogen flames. This effect
can be taken into account by using an additional coordinate in composition space.
However, the result is a higher-dimensional manifold, which in turn increases the
computational storage requirements.

To solve this deficiency, a new version of the classical ILDM method was proposed
by Gicquel et al. [7]. It enables the solution of combustion phenomena associated
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with fast time-scales. The method is known as Flamelet Prolongation of ILDM (FPI).
It carries the basic tabulation idea of ILDM, but takes into account differential dif-
fusion modelling. The FPI method deals with differential diffusion by using at least
a two-dimensional manifold. This technique consists of an ILDM method in the high
temperature range and one-dimensional flame calculations for the low temperature
zone instead of the single linear prolongation, as originally proposed in the ILDM.
One coordinate is used in state space to describe the mass fractions and a second
one for the element mass fractions, thus taking into account differential diffusion.
This implementation of the detailed transport progress-variable model for tabulation
is complex and computationally expensive. The reason is that this two-dimensional
manifold involves storing in and retrieving from the chemical database the transport
coefficients of all species. A similar approach was introduced by Oijen and de Goey
[8], denoted as Flamelet Generated Manifolds (FGM), but using a different manifold.
This approach also gives a good approximation for the major flame characteristics.
However, in terms of flame speed and minor species, the flame calculation might still
be far from the detailed chemistry and transport model results [7]. For instance, this
is the case of large differential diffusivities such as in hydrogen flames. Besides, in
that work the enthalpy was introduced as an extra coordinate in order to account
for heat losses. Later, Oijen and de Goey [9] also presented a similar method and
suggested of using a 1D manifold for the case of unity Lewis number and 2D manifold
for non-unity Lewis number cases.

Both FPI and FGM methods provide a basis to replace the detailed chemistry
calculation by a chemistry database. Later, to accommodate differential diffusion
phenomena, many researchers proposed several extensions. Regele et al. [10] pro-
posed a progress-variable model along with a level-set approach and resolved the
local changes of the flame front. Mercier et al. [11] explore these effects through the
tabulation of complex transport models and detailed chemistry. Doost et al. [12] cap-
tures local composition changes due to differential diffusion by using a 3D manifold
and introduces all three transport models, controlling variable equations, in the form
of Schmidt numbers. Swart et al. [13] and Donini et al. [14] use similar approaches
with the exception of the manifold dimension. Both used a fixed non-unity Lewis
number and a progress-variable approach. In the progress-variable model the diffu-
sion term is split into two parts (for constant D and variable Dk). A new diffusion
coefficient is introduced and calculated in a preprocessing stage and then stored in the
look-up table. Donini et al. [14] extended the work of Swart et al. [13] by including
the enthalpy in the manifold coordinate. Therefore, in this case, the one-dimensional
manifold is not sufficient to capture differential diffusion effects. Furthermore, in order
to improve numerical predictions, one additional control variable has to be included
in order to compute the local composition of element mass fraction.

In this paper, and in the context of FPI framework, a new approach to include
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differential diffusion effects is presented. The main objective of the present work is
the development of a simple and efficient progress-variable model to handle non-unity
Lewis number effects by using a 1D manifold. The method is based on correcting the
source term of the reaction progress-variable equation. This correction is calculated
during the construction of look-up table. The present technique enables the inclusion
of differential diffusion in a straightforward way in the flame calculation, without
increasing the manifold dimension. In the present work, this technique is studied
using one-dimensional laminar adiabatic premixed freely propagating flames, as well
as a 2D adiabatic burner stabilized flame.

The outline of this paper is as follows. In the second section, the flamelet model
for detailed chemistry is presented. Additionally, the flamelet/progress-variable model
for tabulated chemistry is briefly detailed. Following, the FPI database technique and
the selection of progress-variable is briefly discussed. It is explained how the manifold
can be constructed using the solution of flamelet equations. The development of
a relation to correct the source term of the unity Lewis Fickian progress-variable
transport equation by taking into account complex transport model is presented.
Results of 1D numerical computations are presented in section three. This section is
divided in two parts, detailing the results of a methane/air and a hydrogen/air flames,
respectively. The fourth section is focused on the coupling of the flamelet model with
a corrected source term in the context of a two-dimensional flame. Simulation results
of a 2D adiabatic burner stabilized methane/air flame are presented. Conclusions are
drawn in the final section.

3.2 Flamelet model

Combustion is a multi-disciplinary phenomena, encompassing fluid dynamics, heat
transfer, and chemical kinetics. Thus, the set of equations involved are the Navier-
Stokes equations and the energy and species transport equations:

∂ρ

∂t
+

∂

∂xj

(
ρuj
)

= 0 (3.1a)

∂ρui
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+
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∂xj

)
∂T

∂xj
. (3.1d)

where density, viscosity, thermal conductivity and specific heat of mixture are denoted
by ρ, µ, λ, cp, respectively. Sub-index k denotes a species’ property. In the momentum
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Eq. (3.1b), uj is the fluid velocity component, τij = µ
(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
the

viscous stress and p the pressure. Additionally, terms ω̇k and ω̇′T =
∑
k ω̇khk denote

the chemical reaction rate of species and heat release respectively. Enthalpy is denoted
by h. In the above equations, species diffusion is described through the Hirschfelder
and Curtiss diffusion model, with Dk being the species’ diffusivity into the mixture;
V cj represents the correction velocity to ensure mass conservation [15], and W the
mean molecular mass of the mixture.

The primary focus of the present analysis are laminar premixed flames, specifically
deflagration ones, where pressure is constant. For a one-dimensional adiabatic steady
laminar freely propagating premixed flame, the above equations, can be restated in
the flame reference frame, which yields:

ṁ = const = ρuSL (3.2a)

ṁ
∂Yk
∂x

+
∂(ρV cYk)
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+ ω̇k (3.2b)
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where ρu represents the fresh gases density and SL is the laminar flame velocity, which
depends on ambient conditions. The system of equations can be solved, along with
appropriate boundary conditions for the mass flow rate ṁ, mass fractions Yk of all
species and temperature T . However, in freely propagating flames ṁ is an eigenvalue
and must be calculated as part of the flame solution [16]. Therefore, one degree of
freedom has to be removed from the system. This is achieved by fixing the reference
frame position with respect to the flame. The mass flow ṁ can then be found by
specifying the temperature at one point and consequently Eq. (3.2c) can be rewritten
as follows:

ṁ =

ω̇′T
cp

+ 1
cp

∂
∂x

(
λ∂T∂x

)
− ρ

cp

(∑Ns

k=1 cp,kYkVk

)
∂T
∂x

∂T
∂x

. (2d)

3.2.1 Flamelet database approach

Tabulation techniques consist of building a database where the flame structure
is stored. For premixed cases, a common approach is to use one-dimensional flame
solutions to represent the thermochemical data as a function of one coordinate, namely
a progress-variable Yc. This database can be extended to handle different equivalence
ratios by adding a further coordinate, the mixture fraction Z. The coordinates or
controlling parameters Yc and Z represent the progress of reaction and fuel/oxidizer
ratio, or equivalence ratio, respectively. Such a database, associated with (Yc, Z), has
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been commonly denoted as FPI database [17]. The purpose of defining Z for the
premixed case is just to handle different equivalence ratios within a single database,
which is associated with different flamelets. In present study, the mixture fraction Z
for purely premixed flames is a fixed number.

Laminar flamelets evaluated at a given ambient pressure P0, and fresh gases tem-
perature, T0. The FPI database parameters are: (i) Yc expressed as a linear com-
bination of the species mass fractions discretised by l points; (ii) Z, the equivalence
ratio or mixture fraction in case of diffusion flame, discretised by m points. Thus,
the look-up table consists of N discretised info such that N = l ×m and all number
corresponding species or reaction rates or thermodynamic properties are stored Ns.
According to all information the size of look-up table must be Ns ×N .

In the construction of the look-up table, the selection of Yc needs careful attention.
Yc is usually defined as a linear combination of species mass fraction of major species
[17, 18]

Yc =

N∑
k=1

akYk (3.3)

where ak ∈ R denotes a coefficient for the kth species and N number of species used
in the progress-variable definition. The ak values must ensure a unique representation
of all flamelet solutions.

It is observed that from lean mixture up to stoichiometric mixtures, specifically
CO2 and H2O species, for CH4/air and H2/air respectively, provide a unique rep-
resentation of thermochemical data. However, on the rich side, it can not retained
uniqueness for all thermochemical data. Therefore, a linear combination of more than
one species can be used. For example, the sum of carbon dioxide YCO2

and carbon
monoxide YCO mass fractions are found to be well adapted for CH4/air. To track
all thermochemical data, it is mandatory to define a one-to-one correspondence be-
tween Yc and all relevant entities of the database. If the progress-variable violates
this condition, then Yc cannot represent the flame solution. Figure 3.1 shows a unique
representation of laminar premixed flame projection on (Yc, T ) plane for the different
range of CH4/air mixture. conditions at the unburnt side, and Neumann at burnt
side.

Progress-variable model
Having defined a database containing the flame structure as described in Sec. 3.2.1,

premixed flames can be computed by solving the Navier-Stokes equations, Eq. (3.1a)
and Eq. (3.1b) together with a transport equation for Yc:

∂ρYc
∂t

+
∂

∂xj

(
ρujYc

)
=

∂

∂xj

(
ρD

∂Yc
∂xj

)
+ ω̇c (3.4)



3.2. Flamelet model 55

 300

 500

 700

 900

 1100

 1300

 1500

 1700

 1900

 2100

 2300

 0  0.03  0.06  0.09  0.12  0.15

T
em

p
er

a
tu

re
(K

)

YCO2+YCO

Φ=0.4

Φ=0.5

Φ=0.6

Φ=0.7

Φ=0.8

Φ=0.9

Φ=1.0 Φ=1.1

Φ=1.2

Φ=1.3

Φ=1.4

Φ=1.5

Φ=1.6
Φ=1.7

Φ=1.8
Φ=1.9

Figure 3.1: Projection of a 2-dimensional FPI onto (CO2 + CO, T ) plane for
methane/air stoichiometric mixture using unity Lewis number. GRI3.0 chemical
mechanism is used at T0 = 300K and atmospheric pressure.

where D = λ
ρcp

and ω̇c are the progress-variable diffusivity and reaction rate, re-

spectively. The former equation implies the assumption of a unity Lewis number
(Lek = 1), as it is detailed afterwards in Sec. 3.2.2. The progress-variable Yc is a
reactive scalar. When normalised, a zero value represents the fresh gasses and a unity
value the burnt gasses. Its solution can be regarded as a tracker of progress of the
chemical reactions through the database, namely the flamelet solutions. Therefore,
its definition depends on the considered fuel. For one-dimensional adiabatic steady
laminar freely propagating premixed flames, Eq. (3.4) becomes

ṁ
∂Yc
∂x

=
∂

∂x

(
ρD

∂Yc
∂x

)
+ ω̇c (3.5)

However, to fully capture the flame structure, the combustion model should also
be able to represent all flame dynamics. Therefore, it is important to capture the
Lewis number variation of the flame. For example, Fig. 3.2 shows that the Lewis
number plays a dominant role in the flame propagation speed for the case of CH4/air
adiabatic propagating flame.
Furthermore, the unity Lewis assumption also affects the structure of the flame in
general. Additionally, this hypothesis ensures that element mass fractions along the
flame are kept constant. For non-unity cases, the atomic mass fraction of elements
may locally change, meaning that the local equivalence ratio changes along the flame
front due to differential diffusion. Thus, the consideration of differential diffusion



56 Chapter 3. Correction technique and inclusion of differential diffusion

 5

 10

 15

 20

 25

 30

 35

 40

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3

F
la

m
e

 V
e

lo
c

it
y

(c
m

/s
)

Equivalence Ratio, Φ

DC(Le ≠ 1)
DC(Le = 1)

Figure 3.2: CH4/air premixed flame laminar burning velocity using GRI3.0. DC
denotes detailed chemistry solution. In brackets the unity or non-unity Lewis num-
ber assumption.

effects is very important for practical combustion systems [19].

3.2.2 Source term correction

Many researchers have proposed different techniques to include differential diffu-
sion effects in a tabulated chemistry framework [12–14]. In general, by adding an
additional parameter, that is, by using 2 or 3-dimensional manifolds. In this work, a
one-dimensional manifold with a correction to the source term of a flamelet progress-
variable model is proposed. With this approach, prediction of the differential diffusion
effects only requires one progress-variable parameter. In general, the progress-variable
equation, Eq. (3.5), can be directly obtained from Eq. (3.2b) when the assumption
of the unity Lewis number (D = Dk for all species) is made. However, it is not able
to express the solution for non-unity Lewis number, the complex transport case, as
further evidenced by the results shown in Sec. 3.3.

To proceed with the analysis, first it is shown how the flamelet equations and the
progress-variable transport equation are related and how complex transport fits in.
Recalling the species flamelet Eq. (3.2b) and rewriting them considering unity and
non-unity Lewis number,

ṁ
∂Yk
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=
∂

∂x

(
ρD
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)
+ ω̇k (3.6a)
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In these equations the velocity correction has not been considered for the sake of sim-
plicity. Beginning with the Fickian diffusion case with unity Lewis number, Eq. (3.5)
can be derived from flamelet Eq. (3.6a) as ∂

∂x is a linear operator and, by definition, the

reaction progress-variable can be expressed as ∂
∂x

(∑N
k=1 akYk

)
=
∑N
k=1

(
∂
∂xakYk

)
.

Therefore, addition of the N flamelet Eqs. (3.6a) results in the unity Lewis Yc trans-
port equation, in which it has been taken ak = 1 for the sake of simplicity and without
loss of generality,

ṁ
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since Yc =
∑N
k=1 Yk and ω̇c =

∑N
k=1 ω̇k. Hence, for the unity Lewis assumption, the

progress-variable equation, when solved along with mass and momentum equations,
correctly represents the flamelet solutions. In case of non-unity Lewis number, the
above equation does not satisfy the flamelet complex transport equation. Proceeding
as previously, but now considering Eq. (3.6b), the resulting equation is
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(3.8)

where D 6= Dk. Then, the aim is to modify Eq. (3.5) to represent the dynamics
described by Eq. (3.8), which include complex transport coefficients. In other words,
it is intended to use a database based on flamelet solutions evaluated with complex
transport, but using Eq. (3.5) for Yc with a modified source term S′ (defined below)
instead of ω̇c. The modified source term is evaluated by relating (3.5) and (3.8). For
convenience, tags are introduced for the terms of both equations to ease the algebraic
operations. Defining

A = ṁ
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S = ω̇c

Eq. (3.8), can then be rewritten as follows
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A = B + S (3.9)

where S represents its source term. Therefore, the modified source term S′ can be
found writing the progress-variable transport equation including differential diffusion
as

A = B′ +B + S −B′ =⇒ S′ = B + S −B′ =⇒ A = B′ + S′

where B′ represents the diffusion term when Lek = 1, i.e. B′ = ∂
∂x

(
ρD ∂Yc
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)
. The S′

the source term can then be evaluated from the above expression as
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or equivalently by
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)
. (3.10b)

This correction is performed after having solved the flamelet equations with differen-
tial diffusion Eq. (3.2). Hence, once the solution of a flamelet has been computed,
the corrected source term S′ is evaluated and stored into the look-up table instead of
ω̇c. Therefore, this source term includes both chemical reaction rates and differential
diffusion effects. With this approach differential diffusion effects are accounted for by
Yc while only using a one parameter tabulation and retaining the unity Lewis number
assumption for the definition of the progress-variable diffusivity.

3.3 Numerical results : 1D cases

In this section, numerical results for 1D steady adiabatic laminar premixed flames
are presented. Specifically, two freely adiabatic propagating flames are considered:
CH4/air and H2/air. All 1D computations are performed for equivalence ratios
φ = 0.7, 1.0, 2.0 at T0 = 300K and atmospheric pressure. Furthermore in both cases,
the GRI3.0 chemical mechanism is used [20], which involves Ns = 53 species and 325
reactions. In all cases, solutions using detailed chemistry are obtained, namely solving
Eq. (3.2). The set of flamelet Eqs. (3.2) are solved using an in-house one-dimensional
C++ code. It is a dedicated 1D numerical simulation code to solve laminar premixed
flame using detailed chemical schemes. The C++ code is based on finite difference
formulation. Discretization used is of second order. The 1D flamelet equations are
solved by using a modified Newton damped method.

Flamelet look-up tables are built by taking the detailed chemistry solutions and
using Yc as coordinate. Two look-up tables are generated for comparison: one taking
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into account the source correction term, Eq. (3.10b), to the progress-variable Eq. (3.5),
and without correcting the source term. Then, using the databases, 1D laminar flames
are computed by solving Eq. (3.5). In the case of tabulated/database chemistry
solution, the unknowns of the system are ṁ and Yc. Eq. (3.2a) and Eq. (3.5) are
solved together and ṁ can be found by reducing one degree of freedom from the
system.

ṁ =
∂
∂x (ρD ∂Yc

∂x ) + ω̇c
∂Yc

∂x

(3.11)

The ṁ equation is solved at the specific node where the flame reference is fixed.
In the following, two abbreviations are introduced to ease the discussion: wSC and

woSC denote a flamelet model with and without source correction, respectively. Fur-
thermore, DC stands for detailed chemistry, that is, solving Eq. (3.2). Four different
cases are studied for the two considered flames and described as

(a) Detailed chemistry with unity Lek: DC(Lek= 1)
(b) Detailed chemistry with non-unity Lek: DC(Lek 6=1)
(c) Non-unity Le tabulated/database chemistry with source correction: TC(wSC)
(d) Non-unity Le tabulated/database chemistry without source correction: TC(woSC)

All cases are solved using the same mesh. The length of the domain is 4cm. However,
for better presentation of the results, plots are presented using a shorter domain.
It is important to note here the difference between cases (c) and (d): the progress-
variable model is the same, i.e, they are build using DC solutions with non-unity Lek.
However, the databases differ only by the source term of the Eq. (3.5): ω̇c or S′.

3.3.1 Methane/air

Three different equivalence ratios of CH4/air are studied. Results are presented
in Fig. 3.3, Fig. 3.4 and Fig. 3.5. For this fuel, differences between detailed chemistry
solutions with unity and non-unity Lewis number are marginal, specifically concerning
the flame structure. However, the flame propagation speed is prominently different
as shown in Figure 3.2 as well as in the Table 3.1 for particular cases.
Furthermore, because of differential diffusion effects, the differences are most notice-
able for rich mixtures. Specifically, for an equivalence ratio of φ = 2.0, results of both
Le = 1 and also database woSC show the limits of the model. This indicates that the
unity Lewis number assumption in both DC and database case woSC do not describe
the flame characteristics correctly, particularly on the rich side.
However, there is an excellent agreement between the DC case with Lek 6= 1 and the
database case wSC. Major species such as CO2 and H2O are adequately reproduced.
Additionally, minor species, such as HCO and OH, are also well represented, which
are not shown here for the sake of brevity. It follows that the database wSC correctly
captures the structure of the flame as well as the flame propagation speed.
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Table 3.1: CH4/air laminar flame speed (cm/s). Experimental results for φ =0.7
and 1.0 correspond to Park et al. [21] and for φ =2.0 to Erjiang et al. [22], which
are retrieved by curve fitting.

φ SL SL SL SL SL
DC(Le = 1) DC(Lek 6=1) TC(wSC) TC(woSC) Exp.

0.7 19.16 19.35 19.36 22.63 19.48
1.0 29.49 37.70 37.76 44.01 37.40
2.0 3.22 3.65 3.66 4.36 4.02

3.3.2 Hydrogen/air

An H2/air flame is also studied for the same equivalence ratios. In this case,
results for a minor species HO2 are also shown. This species is important because it
plays a significant role in the preheating zone of hydrogen flames [7].

Table 3.2: H2/air flame speed(m/s). The experimental results are retrieved by
curve fitting from Liu and MacFarlane [23].

φ SL SL SL SL SL
DC(Le = 1) DC(Lek 6=1) TC(wSC) TC(woSC) Exp.

0.7 1.19 1.42 1.43 1.46 1.41
1.0 1.66 2.53 2.57 40.80 2.52
2.0 1.85 3.25 3.29 54.24 3.46

Flame propagating speeds for all cases are presented in the Table 3.2. For this case,
the unity Lewis number assumption results in laminar flame speeds markedly different
from reported experimental values. Inclusion of differential diffusion effects results in
flames with correct values. Regarding the flamelet computations, the database woSC
produces incorrect flame speeds, specially for rich mixture cases. Besides, for the
detailed chemistry case with unity Lewis number, the propagation speed is found to
be lower compared to the non-unity DC and database wSC cases.

Additionally, as Fig. 3.6, Fig. 3.7 and Fig. 3.8 show, inclusion of differential diffu-
sion effects result in significant changes in the flame structure. For instance, in flames
as the one here considered, HO2 is a radical with stiff kinetics. Correct computation of
its kinetics is very important at low temperatures, because this species is formed and
destroyed in the preheating zone [7], as can be seen in Fig. 3.6, Fig. 3.7 and Fig. 3.8.
For this species, the maximum relative differences between Lek = 1 and Lek 6= 1
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Figure 3.3: 1D flame solutions of CH4/air mixture φ = 0.7. Simulation domain
ranges between 0 and 4 cm. Shown is a subset.

cases, found at the peak value of the curve, are 33%, 37% and 33% corresponding to
φ=0.7, 1.0 and 2.0, respectively.

Regarding the results obtained using the database approach, the flamelet database
woSC is unable to predict the propagation speed as well as the structure of the flame,
specially for rich mixtures. On the other hand, as it can be seen in the figures, there
is a very good agreement between the DC(Lek 6= 1) and database wSC solutions.
This agreement is found not only for the temperature and major species, but also for
radicals such as OH and H2O2, here not presented. Consequently, the database wSC
calculations correctly captures the flame structure as well as the flame propagation
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Figure 3.4: 1D flame solutions of CH4/air mixture φ = 1.0. Simulation domain
ranges between 0 and 4 cm. Shown is a subset.

speed. This comparison between detailed chemistry Lek 6= 1 and database with
correction shows that the 1D manifold can accurately capture all features of one-
dimensional flames.

3.4 2D case: Slot-burner

3.4.1 Case definition

In order to further analyse the behaviour of the flamelet correction technique,
numerical simulations of a 2-dimensional slot-burner is performed. Its geometry is
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Figure 3.5: 1D flame solutions of CH4/air mixture φ = 2.0. Simulation domain
ranges between 0 and 4 cm. Shown is a subset.

shown in Fig. 3.9. The case geometry corresponds to the one studied by Somers and
de Goey [24]. The slot-burner is 4 mm wide, while the chamber is 12 mm wide. In
the present study, all chamber walls are considered adiabatic. Furthermore, radiation
heat losses are neglected. Inflow velocity profile is parabolic with a peak value of 1.1
m/s. In this section, all computations are performed for half-domain, because of the
symmetry of the domain.

Inflow gases are a mixture of CH4 and air. Fresh gases mixture is at T0 = 300K and
atmospheric pressure. Chemical kinetics are modelled using the Smooke mechanism
[25], which consists of 15 species and 46 reactions. This chemical mechanism is used
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Figure 3.6: 1D flame solutions of H2/air mixture φ = 0.7. Simulation domain
ranges between 0 and 4 cm. Shown is a subset.

for both detailed chemistry and tabulated chemistry simulations.
Numerical computations are carried out using the general purpose unstructured

and parallel object-oriented Computational Fluid Dynamics (CFD) code TermoFluids
[26]. A finite-volume approach is used to solve the different transport equations.
Temporal integration is performed using a 2nd order predictor-corrector scheme [27].
A symmetry-preserving scheme [28] is used to discretise the convective terms in the
momentum equations. For the scalar equations, a QUICK scheme is used [27]. A
second order central difference scheme is used to construct the discrete diffusive term
for all transported quantities.
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Figure 3.7: 1D flame solutions of H2/air mixture φ = 1.0. Simulation domain
ranges between 0 and 4 cm. Shown is a subset.

The equations are solved on a body-fitted mesh, with a minimum size of ∆x = 0.05
mm and maximum size ∆x = 0.28 mm. Simulations were run on different meshes to
achieve mesh independent solutions. Reported results correspond to the finest mesh,
which consists of approximately 14700 cells. A high mesh resolution is used in the
area near the flame front to correctly capture the flame front structure. With this
mesh, the flame front was represented by five control volumes. Comparatively, the
rest of the domain features a lower mesh density.

In this section, the slot-burner is studied using detailed chemistry (DC) and tab-
ulated chemistry (TC). For the latter case, both corrected and uncorrected databases
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Figure 3.8: 1D flame solutions of H2/air mixture φ = 2.0. Simulation domain
ranges between 0 and 4 cm. Shown is a subset.

are considered. Additionally, Lewis number effects are discussed. All cases are run on
the same mesh and initial conditions for both detailed and tabulated chemistry. The
flamelet database for this test simulation is generated by computing unstretched 1D
adiabatic freely propagating flames, with differential diffusion effects included. How-
ever, it is important to note that the 2D slot-burner configuration affects the flame
topology due to stretch and curvature effects [8]. Nonetheless, under appropriate
conditions, the influence of these two effects can be minimised.



3.4. 2D case: Slot-burner 67

12 mm

10 mm

1 mm

1 mm

3 mm

A
d

ia
b

a
ti

c
w

a
ll

A
d

ia
b

a
tic

w
a

l l

Outlet

Intlet

S
ym
m
et
ry
li
n
e

y

x

Figure 3.9: Slot-burner configuration for CH4/air premixed flame.

3.4.2 Numerical results for stoichiometric mixture

Considering a stoichiometric mixture, results using DC(Lek 6= 1) and TC(wSC)
are presented in Fig. 3.10. In the former, the temperature distribution as well as rel-
evant mass fractions, specifically H2O, CO and HCO are shown. As can be observed,
the flame height is represented rather well by the TC(wSC) approach comparative to
DC(Lek 6= 1). Still, two main differences can be observed between them. First, the
flame peak position, defined by the position of the maximum temperature gradient in
the axial direction, is slightly under-predicted by the TC computations. The relative
difference in flame height between TC(wSC) and DC(Lek 6= 1) is approximately 1.3
%, being the former shorter. Nonetheless, without the source correction, differences
between DC(Lek 6= 1) and TC(woSC) are much more pronounced, as depicted in
Fig. 3.12, where results for the database without correction case are shown.
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Figure 3.10: Colour-level representation of temperature and mass fractions of
H2O, CO and HCO for φ=1.0. In each figure, results on the left side (indicated with
letter A) correspond to TC(wSC) and on the right side (letter B) to DC(Lek 6= 1).

Sectional profiles of temperature and mass fractions are shown in Fig. 3.11. As can
be observed in Fig. 3.11b, CO2 presents a deviation at the tip of the flame due to the
different heights of the flame fronts, which is mainly caused by stretch, which presents
its maximum value at the tip. The calculated deviations between DC(Lek 6= 1) and
TC(wSC) are approximately 1 %, 11 %, 9 % and 9 % for temperature, CO, CO2
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Figure 3.11: Section profiles of temperature and mass fractions of CO, CO2 and
H2O along x-axis at two different axial positions (y = 3 mm and y = 5 mm); for
mixture φ=1.0. TC computations are performed with wSC.

Figure 3.12: Comparison of temperature between TC(woSC) and DC(Lek 6= 1)
for mixture φ=1.0 (see caption of Fig. 3.10 for further detail).

and H2O, respectively. Furthermore, it is observed that the temperature for the TC
case reaches a maximum, namely the adiabatic flame temperature, different than the
one predicted by the DC case. This difference is attributed to flame stretch, which is
not accounted for in the construction of the flamelet database. Thus, adiabatic flame
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temperatures of TC and DC are different. Further discussion in relation to this point
is given afterwards.

Second, the shape of the flame front is slightly different. Furthermore, as evidenced
by the HCO mass fraction, the flame structure obtained using the database approach
is not exactly the same as with the detailed chemistry computations. Considering the
TC case, chemical reactions are uniformly distributed along the flame front, from the
flame base up to the flame peak. However, for the DC, chemical reactions are located
close to the flame peak, whereas close to the flame base chemical reactions are not as
significant, as depicted by the value lower HCO mass fraction in that region.

The differences observed between DC(Lek 6= 1) and TC(wSC) are mainly at-
tributed to stretch effects. Hence, simulations considering Lek = 1 for stoichiometric
mixture and Lek 6= 1 for lean mixture are presented in the next section in order to
evidence this.

3.4.3 Flame stretch and Lewis number

In this section, the cause of slightly different flame height and flame front shape in
the former case is investigated. For this, same stoichiometric mixture case is studied.
However, a unity Lewis number assumption is made to compute the solution.

It is well known that deviations from 1D flow in premixed flames, such as flame
curvature and non-uniform flow along the flame, might lead to local variations in
flame temperature and mass burning rate. Stretching changes the burning rate and
hydrodynamics of the flame. Still, the flame front dependence on stretching is not the
only cause. Buckmaster [29] presents a critical assessment of flame stretch. There, it
is concluded that the burning velocity does not only depend on the flame stretch but
also on the Lewis number of the flame. Further, this statement is also confirmed by
Law et al. [30], who states that flame stretch can only influence the flame response
in combination with preferential diffusion effects.

To assess the later statement, DC and TC simulations using unity Lewis number
have been computed. Results are presented in Fig. 3.13. In this case temperature
and three different species are shown (H2O, CO, HCO). This comparison shows that
the main characteristics of the flame between TC and DC match very well. For ex-
ample flame front position, the magnitude of species and temperature are reproduced
excellently.

To show further details, two sectional profiles of temperature, CO2, H2O and CO
are presented in Figure 3.14. These profiles are taken at 4 mm and 6 mm along the
flame direction (y-axis). The profiles show an excellent agreement between detailed
chemistry and tabulated chemistry solutions. At the 6 mm sectional profile, only the
temperature slightly deviates (less than 1%), which may be due to numerical errors
that are related to the database interpolations. These results show that the database
created with a Fickian diffusion model with unity Lewis number assumption correctly
captures all major flame characteristics of a flame with unity Lewis number. This
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Figure 3.13: Colour-level representation of temperature and mass fractions of
H2O, CO and HCO with unity Lewis assumption (see caption of Fig. 3.10 for
further detail).

solution is in accordance with the findings of Law et al. [30, 31], that is, the unity
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Lewis number flame is unaffected by stretch. In the same vein, Oijen and de Goey
[9] presented 1D manifold solutions computed with unity Le number for the case of
counter-flow flames, and showed good agreement between detailed chemistry compu-
tations and simulations using a flamelet database. Therefore, in present results, this is
a somewhat validation of Oijen and de Goey work, however with a new configuration
(adiabatic slot-burner flame).
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Figure 3.14: Section profiles of temperature and mass fractions of CO, CO2 and
H2O along x-axis at two different axial positions (y = 4 mm and y = 6 mm); for
mixture φ=1.0.

Overall, considering the above presented and 1D simulation results, shown in
Sec. 3.3, it can be concluded that the differences observed in the results of Sec. 3.4.2
are caused by stretch. Furthermore, the results using DC(Lek 6= 1) in Fig. 3.10 show
that the flame front is slightly uplifted with respect to the TC(wSC) cases. This
implies that the burning velocity in the DC is lower than in the TC cases, which in
turn translates into lower temperatures for the former one, as also detailed by Law et
al. [30, 31].

3.4.4 Numerical results for lean mixture

In order to minimise the effect of flame stretch on the flame, and thus not having
to increase the size of the manifold, inflow velocities are reduced for the following case
of study. Furthermore, in the following a leaner flame (φ = 0.7) is considered.

The maximum flow velocity of the fresh gases is set to 0.2m/s, instead of the
calculated 1D propagating speed of an unstretched adiabatic laminar premixed flame.
A slightly higher velocity is used in the simulations in order to avoid flame flashback
because of the multi-dimensional geometry, which affects the flame dynamics.
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Regarding the latter, the equivalence ratio is also reduced to further decrease the
stretch effects. In this sense, Bechtold and Matalon [32] presented a correlation of
Markstein number, namely flame stretch, versus equivalence ratios of several fuels,
among them CH4/air, which is in accordance to the experimental findings of Dowdy
et. al. [33] and Aung et. al. [34]. Based on these findings, it can be stated that
since a stoichiometric flame results in higher temperatures, it leads to a higher flow
expansion. Consequently, through this higher flow expansion a higher stretch effect
will be present. Therefore, in the following the equivalence ratio is decreased in
order to decrease the flow expansion and consequently, the stretch. Besides, if the
equivalence ratio were increased, since the adiabatic temperature would decrease, the
same effect would be achieved. For the sake of brevity, only results for a lean case are
presented.

In this case, numerical simulation results are also obtained by using both databases,
wSC and woSC. Comparing the results between DC(Lek 6= 1) and TC(wSC) are
shown in Fig. 3.15. Shown are temperature, H2O, CO and HCO mass fractions.
As it can be seen, there is excellent agreement between both results, indicating the
suitability of the proposed technique.
A detail view of the calculations is shown in Fig. 3.16. It can be observed a good
match between TC(wSC) and the DC(Lek 6= 1) solutions. The maximum difference
found, among all variables of this case, is 3.5% for the CO mass fraction.

For the case of DC(Lek 6= 1) versus TC(woSC), only the temperature colour-plot
is shown in Fig. 3.17. Again, the database without the correction, and built using
flamelets with differential diffusion, shows a deviation from the detailed chemistry
calculations, indicating its inability to reproduce the complex transport phenomena.
However, simulation results that are based on the proposed correction technique cor-
rectly reproduce both major and minor species. Hence, with a 1D manifold, differen-
tial diffusion effects are correctly accounted for.

3.5 Conclusions

A novel approach to include differential diffusion effects into flamelet models using
chemistry stored in a database has been proposed. Specifically, the work has been
carried out in the context of the Flame Prolongation of ILDM (FPI).

The proposed model has been first validated for 1D laminar adiabatic premixed
propagating flames. Comparison of detailed chemistry solutions DC(Lek 6= 1) and
corrected database solutions TC(wSC), shows an excellent agreement. On the basis
of the presented results for the CH4/air and H2/air flames, it can be concluded that
consistency between flamelet solutions included into the flamelet database and the
transport equation used for Yc is an important issue. It has been shown that flamelet
database created using flamelet solutions including differential diffusion is not cor-
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Figure 3.15: Colour-level representation of temperature and mass fractions of
H2O, CO and HCO for mixture φ=0.7 (see caption of Fig. 3.10 for further detail).

rectly represented by a Yc transport equation with a unity Lewis number, namely the
database without source correction (woSC). Results show a deviation compared to
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Figure 3.16: Section profiles of temperature and mass fractions of CO, CO2 and
H2O along x-axis at two different axial positions (y = 2 mm and y = 3 mm); for
mixture φ=0.7. TC computations are performed with wSC.

Figure 3.17: Comparison of temperature between TC(woSC) and DC(Lek 6= 1)
for mixture φ=0.7 (see caption of Fig. 3.10 for further detail).

the reference solutions, namely the detailed chemistry DC, and the evaluated ones
from the database. Hence, the database TC(woSC) is not able to correctly capture
the flame front structure as well as its position. However, in the case of a complex
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transport model and database with source correction TC(wSC), the results are excel-
lently matched. Thus, the proposed method is able to account for differential diffusion
effects without increasing the size of the flamelet manifold.

Following, a 2D premixed adiabatic burner stabilized flame is studied. Flamelet
databases for this case were built using 1D unstretched flames. The primary goal is to
present the effectiveness of the correction technique to integrate differential diffusion
effects in a multidimensional case in a flamelet modelling context, specifically in the
context of a FPI framework. In general, good agreement is found between detailed
chemistry computations and the proposed approach. Nonetheless, stretch effects were
also present. However, once minimised, the source term correction approach shows
a good performance. Results using the source term correction are found to be in
good agreement with detailed chemistry solutions, which evidenced the capabilities
of the technique. It ensures that only one progress-variable is sufficient to include
differential diffusion effects in database cases.

Although not directly addressed, besides accuracy, a further consideration to be
taken into account for the present approach is computational efficiency. Because dif-
ferential diffusion effects are directly incorporated to the progress-variable transport
equation, no additional parameter nor transport equation need to be solved. Fur-
thermore, the size of the database is not increased with respect to the unity Lewis
number case. Thus, memory usage is also not increased.

As a final note, although the present work is focused on premixed flames, the
correction approach can be easily extended to non-premixed cases.
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4

Analysis of partially premixed
flames using flamelet models

Abstract. The present chapter is devoted to the study of partially premixed flames

using flamelet models. The ability of premixed and non-premixed models are studied as

single mode solutions for multi-regime flames. To check the capability and critical aspects

of the flamelet database different types of flames are analyzed. To support the discussion of

flamelet databases, finite rate chemistry solutions and classical diffusion flamelets approaches

are also considered for all cases. A series of 3D jet coflow simulations are performed for

mixture equivalence ratios of φ = ∞, φ = 6.16 and φ = 3.08. Results obtained using

flamelet databases, classical flamelet diffusion database and finite rate chemistry approaches

are compared with experimental data. The results show good agreement in general with

the experimental data and evidence the capabilities and limitation of each flamelet database

approach as single mode solution of partially premixed flames.

81
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4.1 Introduction

In the last decades, most studies reported in the literature have been concerned
with experimental and numerical analysis of premixed and non-premixed flames. More
recently, there has been increasing interest in the area of partially premixed combus-
tion due to the wide range of their application, as in house-hold and industrial heating
systems [1, 2]. The terminology of partially premixed flames (PPFs) or multi-regime
flames indicates that in a flame some regions at some instants are burning like a pre-
mixed flame, while some other, or the same, regions at some instants are burning like
a non-premixed flame. A PPF is a flame where in the fuel stream a mixture of fuel
and oxidizer is present. Additionally, further oxidizer is available to provide for the
complete combustion. One example of partial premixing is the base region of a lifted
jet flame [3–8]. PPFs are present in many combustion applications: Bunsen burners,
furnaces, gas- turbine combustors, gas-fired domestic appliances, internal combustion
engines, etc.

The common use of PPFs in combustion applications, most of them under turbu-
lent regimes, has motivated the interest scientific community in their mathematical
modelling and numerical solution. A large variety of approaches exists to tackle
their modeling. Among them, different combustion models are based on the laminar
flamelet concept. This concept of flamelet-type combustion [7, 9–11] make particu-
larly strict assumptions about how mixing processes and chemistry interact. On the
one hand, mathematical models that rely on the non-premixed flamelet equations
[12, 13] are strictly valid only in the non-premixed combustion regime. In this regime
fuel and oxidizer enter reaction zones from different directions or streams. On the
other hand, premixed modelling is required when fuel and oxidizer enter the reaction
zone in a fully mixed state. Combustion models based on the premixed flamelet equa-
tions [14–16] are strictly valid only in premixed combustion regimes. In many reactive
flows, the assumption of a single burning regime is valid and a traditional flamelet
implementation may describe combustion accurately [9, 12]. In other flows, however,
combustion occurs in multiple or mixed regimes in which a single regime assumption
no longer holds. To study these kind of combustion flows in the context of mixed
regimes, traditional models must be extended beyond single regime implementations.

Still, it is of interest to analyse the capacity of the single-regime flamelets in
representing mixed-mode regimes. To this end, a jet flame is considered burning in
different modes: from a pure diffusion flame to a premixed mode. The aim is to
understand what are the capabilities and limitations of the single-mode flamelets.
The traditional approach for locating the regime is the flame index [18-20]. In these
approaches, the flame index is constructed by examining the alignment of gradients
of fuel and oxidizer. A modified version of this approach to extend its applicability
has also been addressed [5]. In a recent work of Domingo et al. [7], flame regime is
defined using the flamelet transformations and by considering the relative magnitude
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of a series of Damköhler numbers describing different physical processes. Through
the aforementioned indicators, it is possible to identify which regions of the flame are
burning in which mode and characterize the need for using multi-regime flamelets.

The object of this study is to use of computations of 3D partially premixed coflow
flames to assess the features of PPFs and explore all characteristics of PPFs by finite
chemistry and flamelet approach. Two particular questions motivate the study. First,
study of PPFs using premixed and non-premixed flamelet databases and comparison
with the finite rate chemistry solutions (detailed chemistry). Second, highlight the
capabilities and shortcomings of single mode flame databases for solution of multi-
regimes flame.

The outline of this chapter is as follows. The configuration of the geometry and
case definition are provided in the second section. Section three covers the math-
ematical models, namely detailed chemistry and flamelet approaches. In the same
section, the detail of tabulation technique and definition of the progress variable are
also explained. Numerical simulations of all cases including results and discussions
are provided in section four. Conclusions are drawn in the final section.

4.2 Case definition

The studied flame is a laminar CH4/air flame in a coflow with a burner configura-
tion as defined by Bennet et al. [2]. This flame has been analysed by many researchers
experimentally and numerically [2, 17–20]. Furthermore, this flame configuration has
been studied for different burning conditions, ranging from a pure diffusion case to
almost premixed cases.

In the present work three flames are computationally simulated by considering
different levels of premixing of the primary inlet. The first one represents a non-
premixed flame, with an equivalence ratio of φ = ∞. The other two are partially
premixed with equivalence ratios φ = 6.16 and φ = 3.08. Equivalence ratios, inlet flow
rates, and stoichiometric mixture fraction conditions are listed in Table 4.1. Primary
air is oxygen-enriched (25% O2 by volume) and secondary air is regular (20.9 % O2).
Methane and primary air flow rates in the inner jet are given by the three entries in
the QCH4

and Qair columns, respectively. Flow rates in the outer jet are defined in
the last row of Table 4.1. At the first column of the table labels for each case are
introduced to identify studied configuration.

The geometry of the case is described in Fig. 4.1. Fuel mixed with primary air
flows from an un-cooled circular tube of inner radius, ri = 5.55 mm, with a wall
thickness of wi = 0.8 mm. Air is injected from the annular region between this tube
and a concentric ro = 47.6 mm inner radius brass cylinder. The outer tube thickness is
wo = 3.4 mm. The axial boundaries are at z=0 and z=200 mm. For the formulation
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Table 4.1: Flame parameters for computations

QCH4
Qair Vz

φ (cm3/min) (cm3/min) (cm/s) YCH4
YO YN2

Inner jet
NPMF ∞ 330 0 5.67 1.0 0.0 0.0
PPF6 6.16 330 420 12.89 0.30226 0.19627 0.50147
PPF3 3.08 330 840 20.11 0.17803 0.23121 0.59076

Outer jet
All 0 44000 10.48 0.0 0.232 0.768

of boundary conditions, the latter can be considered infinitely far from the flame.
Neumann boundary conditions are applied at vertical walls and exit of burner. The
inlets boundary conditions are defined in Sec. 4.4.1.

4.3 Mathematical models

4.3.1 Finite rate chemistry models

A three dimensional detailed model based on the full analysis of transport equa-
tions in physical space is used [21, 27]. For this study combustion process is described
by the Navier-Stokes equations for low Mach number flows namely, continuity, and
momentum along with species and energy equations. All the equations have already
been described in Chapter 1, specifically Eqs. (1.22), (1.23), (1.33), (1.25).

4.3.2 Flamelet models

Two types of flamelet models are studied in this chapter. One of them is de-
scribed the premixed combustion phenomenon. The second one is associated with
non-premixed flames.

Diffusion flame The species and energy equations can be expressed in a flame
reference space, where based on an asymptotic analysis, tangential gradients in com-
parison to normal terms are neglected. The mathematical model can be expressed as
follows, considering a Fickian diffusion assumption for further detail on the derivation
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Figure 4.1: Schematic diagram of coflow burner.

refer to Ventosa-Molina [21]
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where Yk, ẇk, hk, cp,k and Lek are the species mass fraction, reaction rate, enthalpy,
heat capacity and Lewis number. T , ρ, LeZ and κ denote the temperature, mixture
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density, mixture fraction Lewis number, thermal conductivity. q̇R represents radiative

heat losses. χZ = 2DZ

(
∂Z
∂xi

∂Z
∂xi

)
is the scalar dissipation rate and DZ is the mixture

diffusivity. In flamelet Eq. (4.1), χ is the scalar dissipation rate, which introduces
flow effects into flamelet space, and is defined as

χ = 2Dz(∇Z.∇Z) (4.2)

where Dz is the diffusion coefficient of the mixture fraction equation. To solve the
diffusion flamelet equations in a preprocessing stage a functional form for χ as a
function has to be prescribed [21]

χ(Z) = a∞
f(Z)

f(Zst)
(4.3)

where a∞ is the nominal strain rate in counter flow configuration,

f(Z) =
Φ

π
e(−2[erf−1(2Z)]2)

and erf−1 is the inverse of complementary error function. Φ is a coefficient for variable
density effects.

Solution to flamelet equations Eqs. (4.1) can be represented in the Tst−χst plane,
depicting the S-shaped curve, as show in Fig. 4.2 for a methane/air flame.
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Figure 4.2: S-shaped curve for a methane/air flame.

Premixed flame The equations describing a premixed flame in a flamelet reference
can be expressed as
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ṁ = const = ρuSL (4.4a)
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V cj represents the correction velocity and W the mean molecular mass of the mixture.
SL is the laminar flame velocity and ṁ is the mass flow rate. For more detail refer to
Chapter 2.

In the context of tabulation techniques, the mixture fraction definition adopted
for partially premixed methane/air flames is as described [21]
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(4.5b)

where YF,1 is the fuel mass fraction at the fuel boundary and YO,2 is the oxidizer mass
fraction at the oxidizer boundary and s is the mass stoichiometric coefficient. Further
term ZC , ZH and ZH can be defined as
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Ns∑
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)
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(WO
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)
YK

where ak,p’s are the number of atoms of p ∈ {C,H,O} in species k. The equivalence
ratio of the mixture is defined as φ = s(YF /YO). Furthermore, the equivalence ratio
of the premixed flame is conveniently expressed in terms of a mixture fraction Z using
Eq. (4.5). The mixture fraction Z is defined to be unity in the pure fuel stream and
zero in pure air stream.

4.3.3 Chemistry tabulation

The basis of chemistry tabulation technique has been mainly presented and defined
in Chapter 3. It consists of relating all flame quantities (species mass fraction, temper-
ature, source terms, etc.) to a set of parameters. In this chapter two look-up labels
are used, a diffusion database build using diffusion flamelets (DF) and a database
constructed using premixed flamelets (PM). In order to construct these databases,
the set of 1D solutions are stored as function of (Yc, Z) coordinates.
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In the construction of the look-up table, the selection of Yc needs careful attention.
Yc is usually defined as a linear combination of species mass fractions of the major
species [22, 23]

Yc =

N∑
k=1

akYk (4.7)

where ak ∈ R denotes a coefficient for the kth species and N number of species used
in the progress-variable definition. The ak values must ensure a unique representation
of all flamelet solutions. For both databases CO2, CO, H2O and H2 species are used
in definition of progress variable with ak = 1 such that

Yc = YCO2
+ YCO + YH2O + YH2

. (4.8)

As PM and DF databases consist of one-dimensional laminar flames, that are
computed for a Z ranging from the lean ZL = 0.0 to the rich ZR = 1. However, for
premixed databases, solutions range from a lean to a rich flammability limit. For
example, for the combustion of pure methane with air, the lean flammability limit is
φ = 0.4, which corresponds to Z=0.022. The rich flammability limit for this case is
φ = 2.4, corresponding to Z=0.122. In other-words, premixed database is based on
flames that lie 0.022 ≤ Z ≤ 0.122. To complete the database, two further flamelet
solutions are added: Z=0.0 and Z=1.0, which are extinct solutions. On other hand,
the non-premixed naturally spans from Z=0.0 to Z=1.0. Both databases use 100 grid
points for each parameter.

To utilize these databases during the CFD simulations, transport equations for Z
and Yc are solved together with continuity and momentum equations:
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where D = λ
ρcp

and ω̇c are the progress-variable diffusivity and reaction rate, respec-

tively. The latter terms are found in the look-up table in terms of Yc and Z. The
former equations implies the assumption of a unity Lewis number (Lek = 1), as it is
detailed in Chapter 3.

4.4 Numerical simulations

In order to analyse the behaviour of the flamelet databases or flamelet progress
variable (FPV) solutions, numerical simulations of a 3-dimensional circular-coflow
burner is performed. Its geometry is shown in Fig. 4.1. The case geometry corresponds
to the one studied by Bennet et al. [2].
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Inflow gases are a mixture of CH4 and air. Fresh gases are at T0 = 300K and
atmospheric pressure. Plug flow profiles are used for both inflow inlets using the
velocity of Table 4.1. Two chemical mechanisms, namely Smooke [24] and GRI3.0
[25], are considered. The Smooke mechanism is a reduced chemical mechanism, which
consists of 15 species and 46 reactions. GRI3.0 is detailed chemical mechanism and
involves Ns = 53 species and 325 reactions.

Numerical computations are carried out using the general purpose unstructured
and parallel object-oriented Computational Fluid Dynamics (CFD) code TermoFluids
[26]. A finite-volume approach is used to solve the different transport equations.
Temporal integration is performed using a 2nd order predictor-corrector scheme [27].
A symmetry-preserving scheme [28] is used to discretise the convective terms in the
momentum equations. For the scalar equations, a upwind scheme is used. A second
order central difference scheme is used to construct the discrete diffusive term for all
transported quantities.

Mesh The computational domain is discretised using a cylindrical structured grid.
Several zones with the different grid densities are defined to capture the flame front.
The density of grid nodes is increased near to the inner tube exit where the flow
of methane is higher. Away from it the density of mesh is gradually decreased.
To ascertain that mesh independent results were obtained, simulations were run on
the three meshes. The finest had three times the number of control volumes of the
coarsest one. Specifically, it consists of 2.5×105 control volumes. Fig. 4.3 depicts the
convergence of the temperature field as the mesh is refined. Note that the difference
between the numerical and experimental results is due to the former not incorporating
radiation effects. Tests correspond to a diffusion flame configuration. Simulations
were run using a flamelet model with a diffusion database (DF). All further simulations
have been run on the finest mesh.

4.4.1 Effect of the boundary conditions

In this section, two inflow boundary condition are considered for the scalar quan-
tities of the fuel stream, namely Z and Yc:

• Dirichlet φy=0 = φB (4.10a)

• Transport (ρvφ)B = (ρvφ− ρD ∂φ
∂y )y=0 (4.10b)

where ’B’ denotes the value of the scalar upstream the fuel inlet and ’y=0’ denotes the
computational domain boundary. Three different combinations have been tested and
results are presented in Fig. 4.4. BocoD results are associated with Dirichlet boundary
conditions for both Yc and Z. BocoC results are obtained considering Eq. (4.10) for
Yc and Eq. (4.10a) for Z. For BocoF results, the Eq. (4.10a) for Yc and Eq. (4.10) for
Z are used.



90 Chapter 4. Analysis of partially premixed flames using flamelet models

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0  10  20  30  40  50  60  70

T
e
m
p
e
r
a
tu
r
e
(K

)

Y(mm)

Grid-1X
Grid-2X
Grid-3X

Exp

 1900

 1950

 2000

 2050

 2100

 50  60

(a) (b)

Figure 4.3: Effect of grid refinement and Temperature color-levels. Simulations
were performed at three grid refinement levels. In this figure, all results belong to
NPMF case. Color-level figure is truncated.

Analysing the results in physical space two main aspects are of relevance:

- with ’BocoD’ and ’BocoF’ the flame is shifted downstream. The best match is
achieved when using ’BocoC’ set of boundary conditions. Note that radiation
is not being considered. Hence, peak temperature value is over-predicted.

- Considering the O2 profiles, near the inlet the profiles position is the same
regardless of the boundary condition used. However, with ’BocoD’ and ’BocoF’
more O2 has been consumed than with ’BocoC’. Downstream this results in
’BocoD’ and ’BocoF’ showing less agreement with the experimental data.

Then, if the profiles distributions are presented in non-dimensional space, where the
peak temperature position is used as a reference, it can be seen that the profiles,
in general, collapse to a single curve. Nonetheless, in physical space there are the
reported differences. Hence, for the rest of the simulations the ’BocoC’ set of boundary
conditions are used.

4.4.2 Flame burning modes

Partially premixed flames can be regarded as a combination of premixed and non-
premixed burning modes. Before proceeding to the simulation results, it is interesting
to identify and visualize the burning regimes to support the results discussion. The
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Figure 4.4: Solution dependencies on boundary conditions. Simulations were
performed for NPMF case using a diffusion database (DF)

concept of the flame index was first introduced by Yamashita et al. [3] to analyse
the jet diffusion flame stability. The burning index is determined by the alignment of
fuel and oxidizer gradients. On the one hand, if both fuel and oxidizer come from the
same stream, then burning mode is premixed. On the other hand, if the two of them
enter the reaction zone from opposite sides, then it is non-premixed. This burning
index can be calculated as follows

α =
∇YF .∇YO
|∇YF .∇YO|

. (4.11)
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The value of flame index α = 1 indicates a premixed burning mode and in the case of
α = −1 it represents the non-premixed. Fig. 4.5 shows the burning mode regions with
different colours (red shows the premixed and blue represents non-premixed mode).
These results are obtained by post-processing finite rate chemistry results. It can be
seen that in case of NPMF, near the inlet the burning mode corresponds to diffusion,
because of pure fuel intake. Oppositely, for the PPF3 case, a premixed mode is found
near the inlet, as the oxidiser is also present in the fuel stream.

NPMF PPF3

Figure 4.5: Burning mode identification using finite rate chemistry simulation
solutions. Red color represents the premixed mode and blue color shows non-
premixed mode. Presented contour lines of heat release are taken at 5×105 [ W

m3 ].
Figures are truncated for best representation.

4.4.3 Flamelet modelling

Simulations results are classified into three cases, namely non-premixed flame
(NPMF), partially premixed at φ=6.16 (PPF6) and partially premixed at φ=3.08
(PPF3). These cases are numerically studied using flamelet databases containing



4.4. Numerical simulations 93

flamelet solutions computed using the GRI3.0 chemical mechanism. Besides FPV
solutions, finite rate (FR) chemistry simulations have also been performed using the
Smooke chemical mechanism for all three cases.

Diffusion flamelet databases: full vs classical Fig. 4.6 depicts the comparison
between diffusion database analysis of NPMF case. Two different simulations results
are shown in Fig. 4.6. One is considering the classical approach (DF-C) and the other
one using full set of diffusion flamelets. The diffusion flamelet database (DF) consists
of three set of solutions which are represented in the S-shaped curve, see Fig. 4.2,:
the ones which belong to the upper stable branch, the middle ones which correspond
to the unstable branch and the bottom ones, corresponding to extinguished flamelets.
Typically, considering only the stable branch solutions database is referred as the
classical flamelet approach. Results are plotted in Fig. 4.6 in non-dimensional and
dimensional space. Both approaches show the same trend as the experimental re-
sults. However, concerning the flame structure near the burner inlet, the full flamelet
database solutions better capture the flame. Fig. 4.7 shows the flame is slightly up-
lifted from the base in case of experimental results. This similar behaviour can be
seen in the FPV full database case. On the other hand the classical approach is
not able to capture this intermediate states as the classical database only includes
fully burning solutions. Still, the classical flamelet shows a significant agreement with
the experimental data at the centerline and close to the fuel inlet, as can be seen in
Fig. 4.6.

Concerning the partially premixed cases, the behaviour of both diffusion databases
approaches is found to be similar. Temperature contour-levels are presented in Fig. 4.8
for the partially premixed case of φ = 3.08. In the current study, the flame height
is an important parameter for the comparison of numerically computed and experi-
mentally measured results. Computed flame heights for all three cases are presented
in Table 4.2. As the level of partial premixing is increased the smaller the amount
of secondary oxygen that must diffuse inward to create a stoichiometric mixture and
thus, the shorter the axial distance required for this necessary diffusion occurs [2]. In
other words, it means that the flame height is reduced with increasing levels of the
premixing. The computed results follow this trend as well.

Observing the results of the Table 4.2 it can be noticed that the classical flamelet
consistently results in shorter flames than the full diffusion one. The reason for this is
that the classical flamelet only includes fully burning flamelets, while the full database
also contains flamelets at intermediate states.

Premixed and diffusion databases comparison In the following, numerical results
obtained using the PM and DF databases are composed. Computed flame heights are
presented in Table 4.3. It can be seen that flame heights in case of FPV modelling
are quite better than the FR case. Specifically, FR solutions under-predict the flame
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Figure 4.6: Temperature profile along axial axes (Y) of burner for NPMF. Left
figure represents profiles as function of non-dimensional position ( Y

HT
). Right figure

shows in dimensional Y axes.

Table 4.2: Comparison of flame height using full and classical approaches

HT (mm)
φ Full Classical Exp.
∞ 66 54 57
6.16 48 41 49
3.08 42 38 42

height for partially premixed flames. Comparing DF and PM results, it can be seen
that PM database consistently results in shorter flame lengths.

Table 4.3: Comparison of flame height using FR, DF and PM approaches

HT (mm)
φ DF PM FR Exp.
∞ 66 56 60 57
6.16 48 44 42 49
3.08 42 40.8 32 42

Focusing on the comparison between modelling the cases using either a diffusion
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Figure 4.7: Contour-level representation of temperature for NPMF. Figure (A)
shows reference solution [2], figure (B) belongs to full FPV and figure (C) associates
with classical approach. Figures are truncated for best representation.

database or a premixed database, results along the axial axis for the three consid-
ered cases are presented in Fig. 4.9, Fig. 4.10 and Fig. 4.11, respectively. For a more
detailed analysis of the flame structure, four major species CH4, O2, CO2 and H2O
mole fraction profiles are presented. Concerning the FR solution, simulation results
are overall in good agreement for all three cases. Still, differences can be observed
when compared to the experimental results, which are attributed to the use of a
reduced chemical mechanism. FR solutions as φ is decreased result in a poor agree-
ment in the temperature profiles. FR main species are in general in good agreement,
specially for CO2. However, O2 and H2O show larger deviations.

Comparing the DF and PM results for the case of NPMF, as depicted in Fig. 4.9,
it is observed that the DF results follow the same trends as the experimental results.
However, the PM solution over-predict the temperature. Still, this does not come
a surprise, as in this particular case, a non-premixed case is simulated using pre-
mixed flamelets. On the other hand, for partially premixed flames both DF and PM
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Figure 4.8: Contour-level representation of temperature for PPF3. Figure (A)
belongs to full FPV and figure (B) associates with classical approach. Figures are
truncated for best representation.

databases are fairly successful in reproducing the experimental results. Regarding the
PM database as φ decreases, increase in premixing level, agreement with experimental
data is increased. DF shows very good agreement for NPMF case. DF also shows
good agreement for PPF6 and PPF3 regarding the temperature. However, species
profiles show decreased agreement as φ decreases.

From the numerical analysis of the discussed flames, three main effects are ob-
served. First, the maximum temperature of the flame is increased as increase in
premixing. A similar trend is reported by other researchers [1, 2, 20]. It is observed
that it is due to increasing strength of the inner flame front, leading to increased heat
release near the axial axis. This behaviour is seen using both approaches as presented
in Fig. 4.12.

Second, trend of partially premixed flame can be seen in the temperature profiles,
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Figure 4.9: Temperature and mole fraction profile of CH4, O2, CO2 and H2O
for NPMF. All profiles are presented as function of non-dimensional position ( Y

HT
)

except last one. Last right hand figure is presented temperature along Y axes.
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Figure 4.10: Temperature and mole fraction profile of CH4, O2, CO2 and H2O
for PPF6. All profiles are presented as function of non-dimensional position ( Y
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except last one. Last right hand figure is presented temperature along Y axes.



4.4. Numerical simulations 99

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0  0.2  0.4  0.6  0.8  1  1.2

T
em

p
er

a
tu

re
(K

)

Y/HT

FR
PM
DF

DF-C
Exp

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0  10  20  30  40  50  60  70  80
T

em
p

er
a
tu

re
(K

)

Axial axes Y(mm)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.2  0.4  0.6  0.8  1  1.2

C
H

4
 m

o
le

 f
ra

ct
io

n

Y/HT

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.2  0.4  0.6  0.8  1  1.2

O
2
 m

o
le

 f
ra

ct
io

n

Y/HT

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.2  0.4  0.6  0.8  1  1.2

C
O

2
 m

o
le

 f
ra

ct
io

n

Y/HT

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  0.2  0.4  0.6  0.8  1  1.2

H
2
O

 m
o
le

 f
ra

ct
io

n

Y/HT

Figure 4.11: Temperature and mole fraction profile of CH4, O2, CO2 and H2O
for PPF3. All profiles are presented as function of non-dimensional position ( Y
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NPMF PPF3

Figure 4.12: Colour-level representation of reaction rate of progress variables.
Minimum and maximum ranging (0-160)[ kg

m3.s
]. Presented contour lines of reaction

rate are taken at 2 [ kg
m3.s

]. Figure (A) belongs to DF database and figure (B)
associates with PM database. Figures are truncated for best representation.

which are presented in Fig. 4.13. There is a bump which appears due to the heat
release in the inner flame front. This behaviour does not appear for NPMF. The
strength of this bump in temperature is started when premixing increasing.

Third effect, at the region close to the fuel inlet, Y<15mm, the reduction in
axial temperature is well predicted by the current simulations, and according to the
experimental data shown in Fig. 4.13, except for the PM-NPMF one.

4.5 Conclusions

This study attempts to address a partially premixed flame in the context of
flamelet modelling using single regime databases. A 3D jet coflow application has
been studied. Finite rate chemistry and flamelet database approaches have been used
for a partially premixed flame. Specifically, the work has been carried out to check ca-
pabilities of premixed and non-premixed flamelet databases methodologies as a single
regime flamelet model.

On the basis of the current study, it shows the possibility to solve the multi-
regime flames using single mode tabulated chemistry databases. Finite chemistry
solution provides good estimations for diffusion flame. Lower agreement is found in
the present simulations as the level of premixing is increased. This is attributed to
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Figure 4.13: Temperature profile along axial axes.

the use of a reduced chemical mechanism. The use of detailed chemical scheme would
be interesting for better estimation in case of partially premixed flames.

The classical diffusion database approach overall shows good agreement. However,
it is not able to capture the characteristics of the flame base specially in the case of the
full diffusion case. In the case of partially premixed flame, it provides good results.
This approach can be used for the intermediate range of premixing.

Diffusion database resulted in good temperature as well as major species distri-
butions when diffusion flame is studied. Premixed diffusion database performs well
near high premixing region. Results also highlight the deviations between the experi-
mental results when DF and PM databases are used near high premixing or low-level
premixing limits, respectively.

As a final note, it has been shown the ability of single regime flamelets to solve
partially premixed flames. Although they perform better in their corresponding mix-
ing regions of applicability, they provide accurate-enough results away from them.
Hence, diffusion databases are better suited for low-levels of premixing and premixed
databases are better suited for higher ones.
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Conclusions

This thesis is a continuation of the research work carried out on combustion mod-
elling during the last years at CTTC (heat and mass transfer technological center). At
CTTC, our group already established the numerical platform for detailed chemistry
simulation of laminar flames. These codes are being used for the design and analy-
sis of industrial equipment systems and the understanding of and modelling of more
complex flows. Furthermore, a framework for the alternative solutions of detailed
chemistry solution, the flamelet model techniques, was also developed for diffusion
flames. In the current study, has been developed a framework to provide the flamelet
solution of premixed flames.

The thesis is organized in four chapters. In chapter 1, the mathematical funda-
mentals on reacting flows are posed. The formulations described all associated terms
concerning reacting flows. The low-Mach Navier-Stokes equations are detailed along
with the related detailed molecular fluxes formulations.

Chapter 2 addressed fundamental concepts of premixed flames, their structure,
and numerical solution strategies. The main contribution of this thesis are described
in Chapter 3 which is based on chapter 2. In this chapter, all work is related with the
development of the numerical framework to solve one-dimensional laminar premixed
flames. Two new ideas are implemented in numerical solution to solve the highly
nonlinear stiff system of flamelet models: grid generation using a Gaussian function
and the transformation of physical space into logical space. The numerical framework
provides very good performance when using these two strategies. Results are excel-
lently matched with experimental data as well as with existing numerical data of the
scientific literature.

Chapter 3 accounts for one of the most relevant topics in flamelet solution tech-
niques. In flamelet models, chemistry is precomputed and stored into a database. This
chapter was based on the idea to include differential diffusion effects into flamelet mod-
els without increasing the computational cost. In this approach, chemistry is based on
a database which associated with 1D flamelet solutions. To incorporate differential
diffusion effect for flame solution require at least two flamelet equations which are
associated with a database. In this context, many researchers proposed at least 2D
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manifold (number of flamelet equations). In the current study, we introduce a new
correction technique which provides a flame solution using only a 1D manifold. This
technique is a new addition to flamelet solution techniques. 2D premixed adiabatic
burner stabilized flame is studied with correction technique. Results of simulation are
found in excellent agreement with the finite rate chemistry solutions, which evidence
the worth of new technique.

Chapter 4 consist of the analysis of partially premixed flames. The study of par-
tially premixed flames was conducted using the premixed and non-premixed databases.
A 3D jet coflow case was studied. The main idea is to explore partially premixed
flames using single mode flamelet databases. Besides the flamelet database solution,
the partially premixed flame is also studied using classical flamelet database and finite
rate chemistry approach. Three flames with different premixing equivalence ratios are
studied. For finite chemistry solution the Smooke chemical scheme is used and for
rest simulations Gri3.0. In this study, it is observed that the finite chemistry solution
provide good agreements. However, it suffers disagreement for partially premixed
flames. Differences are attributed to the use of a reduced chemical mechanism.

Regarding the premixed and non-premixed databases, it is observed that premixed
database performs well near high mixing region, but lacks on lower premixing region.
Particularly, in the case of diffusion flame, it is not able to capture the flame structure
as well as temperature. On the other hand, the non-premixed database performs well
for the diffusion case and lower mixing region but have discrepancies near high mixing
region. Thus, it is concluded, as an option to solve partially premixed flame using
single mode database, if the mixing is near to lower side then non-premixed flamelet
database option is good otherwise on higher mixing side premixed one.

The main objective of the thesis is considered to have been achieved. Numerical
infrastructure for premixed flame using the flamelet concept has been developed.
Numerical experiences in the modelling of the flamelet technique have been acquired
through the development of this thesis.

Future Work

As future work in laminar flame, and as a direct continuation of the research
work presented in this thesis. Two main aspects are foreseen. First, a new pro-
posed correction technique is based on databases which are consist of 1D unstretched
flame solutions. Flame stretch and curvature effects play an important role in multi-
dimensional flames, because they have a large influence on the mass burning rate. In
next step, we will have to include the stretch effects into flamelet model to take into
account multi-dimensional effects.

Second, as multi-regime flame is studied in this thesis using the single burning
mode databases. In near future, we will address partially premixed flames using both
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premixed and non-premixed databases by detecting the burning mode index.
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