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Abstract—Multiscale approaches that partition the system into an active site (where the electronic process under study occurs) and a
remaining region, the environment, have proven to be good strategies for the computation of electronic excitations in complex systems.
In this work the implementation of a polarizable QM/MM scheme for the computation of excited state gradients is presented and are
applied to a test case.

F

1 INTRODUCTION

In standard QM/MM models, the environment is de-
scribed in terms of fixed charges (or multipoles), that re-
main unchanged during the calculation. In our polarizable
QM/MM approach (QM/MMPol), on the other hand, po-
larizablities on the MM sites are included additionally (see
Fig. 1). Therefore the environment is allowed to respond to
the electron density of the QM subsystem or its changes
upon excitation by polarizing. The polarization of the envi-
ronment is represented in terms of classical dipoles, induced
by the QM electric field Fp. The dipoles are obtained by

Fp = (Dµ)p

where D is the MMPol matrix, that only depends on the
geometrical parameters of the MM sites and the atomic
polarizabilities.

The effective interaction energy between QM and MM
region of the system is given by:

Ees = Uesq + Uesn + Uese

Epol =
1

2

[
Upolen + Upolne + Upolee + Upolnn

]
Hereby is Uesi the electrostatic interaction energy between
MM charges and the potential by the other MM charges
(i = q), the nuclei (i = n) and the electron density (i = e).
Epol denotes the interaction energy between the induced
dipoles and the electric fields generated by charges, nuclei,
electrons and the other dipoles.

Fig. 1. Schematic representation of the polarizable QM/MM approach.

2 POLARIZABLE TDDFT/MM GRADIENTS

The energy derivative of a system represented by its wave-
function Ψ and its corresponding Hamiltonian H with re-
spect to a generic parameter λ can in general be written as:

Eλ =

〈
Ψ

∣∣∣∣∂H∂λ
∣∣∣∣Ψ〉+ 2

〈
∂Ψ

∂λ
|H|Ψ

〉
(1)

The first term is the so-called Hellmann Feynman force,
while the second term is the Pulay force. In the case of a
purely variational energy functional the Pulay force van-
ishes. This is also desirable in the case for non variational
energy functionals, as the computation of the molecular or-
bital response with respect to the perturbation is very costly.
A better ansatz is to introduce a so-called relaxed density
to account for the wavefunction response. This avoids the
computation of the perturbed basis.

In our approach for the analytic gradients of the po-
larizable TDDFT/MM approach, we use an ansatz that
was already applied by Furche and Ahlrichs [1] to pure
TDDFT and later expanded by Scalmani et al. [2] on TDDFT
gradients in combination with the polarizable continuum
model [3] (PCM). The starting point for this approach is a
fully variational Lagrangian L, defined as following:

L[X,Y,Ω,C,Z,W] = G[X,Y,Ω] +
∑
ia

ZiaFia

−
∑
pq,p≤q

Wpq(Spq − δpq)

The derivation of analytic gradients from L is straightfor-
ward and the resulting Z-Vector method is computational
advantageous with respect to others.

The equation for the analytic derivatives can be written
in a compact form, by expressing it in the AO basis:

Ωξ =
∑
µν

hξµνP
∆
µν +

∑
µν

SξµνWµν +
∑
µνκλ

〈µν|κλ〉ξΓµνκλ

+ωxc,ξ + ωMMPol,ξ

The exponent ξ denotes derivatives with respect to a general
variable. P∆ and Γ are the one- and two-particle den-
sity matrices. ωxc,ξ is the derivative of the DFT exchange-
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correlation energy and ωMMPol,ξ of the QM-MMPol interac-
tion energy. The exact expressions and a detailed discussion
can be found in the articles of Furche [1] and Scalmani [2]
for the case of pure DFT and DFT/PCM.

3 IMPLEMENTATION AND APPLICATION

3.1 Implementation
The analytic gradients are implemented in a local mod-
ified version of Gaussian 09 [4]. Analytical Forces for
QM and MM sites in excited state calculations at (TDA)-
TDDFT/TDHF level of theory for a polarizable embedding
are available within the ONIOM scheme. The implementa-
tion is an extension of the work of Caprasecca et al. [5], who
implemented the corresponding ground state QM/MMPol
gradients.

3.2 Application
We applied the model to study the intercalation of
the doubly protonated fluorescent stain 4’,6-diamidino-2-
phenylindole (DAPI, shown in Fig. 2) within two pairs
of CG DNA bases. DAPI is a commonly used fluorescent
marker that can interact with DNA both by minor groove
binding and intercalation. In this test study we will only
focus on the latter. The initial structure of the system

Fig. 2. Structure of the doubly protonated 4’,6-diamidino-2-phenylindole
(DAPI).

was taken from the article of Biancardi et al. [6] and the
conformer 1 of the intercalated structures was used. Both
ground state (GS) and excited state (ES) geometry opti-
mizations were performed and the QM method of choice
was DFT/TDA-TDDFT. To assess the effect of polarization
on the optimized structures, three different models were
introduced: (i) a full-QM model, where both DAPI and
DNA are treated at QM level (f-QM); (ii) a non polarizable
QM/MM model, where the DAPI is treated at QM level and
the DNA is treated at MM level; (iii) a polarizable QM/MM
model (QM/MMPol), where the DNA is now represented
as a polarizable environment. Computations of the isolated
DAPI molecule were performed (g-QM), additionally. In all
calculations the DFT functional m06-2X and the 6-31G(d)
basis set was used for the DAPI molecule, while 6-31G was
used on the DNA in the f-QM calculations. The excited
state of interest is the lowest state localized on the DAPI
molecule, characterized by a HOMO-LUMO transition in
the g-QM model. This state corresponds to the first excited
state in the QM/MM and QM/MMPol approaches and the
third for f-QM, as two charge transfer state appear at lower
energy.

To assess the structural changes induced by the environ-
ment on ground and excited state geometries, as well as the
structural rearrangement upon excitation, eleven internal

bonds (marked in red in Fig. 2) were chosen. From these
it is possible to define the bond length alternation (BLA),
which is often used as a measure of conjugation. The bond
difference between GS and ES calculations are shown in
Fig. 3. It is evident from the alternating pattern of the first
8 bond length that, upon excitation, the single (double)
bonds tend to become shorter (longer), with an increase
in conjugation as consequence. The comparison between
different models for the inclusion of the environment do
not show significant differences. In several cases, however,
the optimization carried out with the newly implemented
QM/MMPol model is closer to the more expensive f-QM
optimizations than the other models. This seems to point out
that the inclusion of the polarisation is particularly useful in
describing accurately the environment response to electron
density redistribution.

Fig. 3. Difference in bond length of eleven internal bonds and the
corresponding BLA in the DAPI molecule (marked in Fig. 2) between
ES and GS optimized structures at different levels of theory.

ACKNOWLEDGMENTS

Financial support of the ITN-EJD-TCCM PhD Fellowship
as part of the Marie Sklodowska-Curie Actions is greatly
acknowledged.

REFERENCES

[1] F. Furche, R. Ahlrichs: ”Adiabatic time-dependent density functional
methods for excited state properties”, J. Chem. Phys. 2002, 117, 7433;
Erratum J. Chem. Phys. 2004, 121, 12772.

[2] G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, V.
Barone: ”Excited States in the Gas Phase and in Solution. Theory and
Application of a Time-Dependent DFT Polarizable Continuum Model”, J.
Chem. Phys. 2006, 124, 094107.

[3] J. Tomasi, B. Mennucci and R. Cammi: ”Quantum Mechanical Con-
tinuum Solvation Models”, Chem. Rev. 2005, 105, 2999.

[4] M. J. Frisch et al.: Gaussian 09, Gaussian Inc. Wallingford CT 2009.
[5] S. Caprasecca, S. Jurinovich, L. Viani, C. Curutchet, B. Mennucci:

”Geometry Optimization in Polarizable QM/MM Models: The Induced
Dipole Formulation”, J. Chem. Theory Comput. 2014 , 10, 1588.

[6] A. Biancardi, T. Biver, F. Secco and B. Mennucci: ”An investigation
of the photophysical properties of minor groove bound and intercalated
DAPI through quantum-mechanical and spectroscopy tools”, Phys. Chem.
Chem. Phys. 2013, 15, 4596.

[7] J. Wang, P. Cieplak, J. Li, T. Hou, R. Luo, Y. Duan: ”Development of
Polarizable Models for Molecular Mechanical Calculations I: Parameteri-
zation of Atomic Polarizability” J. Phys. Chem. B 2011, 115, 3091.

[8] M. Caricato, B. Mennucci, J. Tomasi, F. Ingrosso, R. Cammi, S. Corni,
G. Scalmani: ”Formation and relaxation of excited states in solution: A
new time dependent polarizable continuum model based on time dependent
density functional theory” J. Chem. Phys. 2006, 124, 124520.

4th BSC Severo Ochoa Doctoral Symposium

92



3

Maximilian F.S.J. Menger Bachelor (2013) and Master degree (2015)
in Chemistry from the Ruprecht-Karls University Heidelberg with a
dissertation on ultrafast electrondynamics in phenylalanine, under the
supervision of PD Alexander Kuleff. Currently, he works as a PhD
student within the EJD-ITN-TCCM Marie Skłodowska-Curie actions in
the groups of Prof. Benedetta Mennucci (University of Pisa) and Prof.
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