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Abstract 

This work addresses a balancing problem approach whose objective is to minimizing the ergo-
nomic risk dispersion between the set of workstations of a mixed-model assembly line and the risk 
level of the workstation with the greatest hazard. A GRASP procedure is proposed to achieve these 
two challenges simultaneously. This new procedure is compared with two Mixed Integer Linear 
Programs, the MILP-1 that minimizes the maximum ergonomic risk of the assembly line, and the 
MILP-2 that minimizes the average deviation from ergonomic risks of the set of workstations of 
the line. The results from the case study linked with the automotive sector indicate that the pro-
posed GRASP is a very competitive and promising tool for further researches.  

Keywords: GRASP; Assembly line balancing; Ergonomic risk; Linear Area. 

1 Introduction 

Assembly Line Balancing Problems have been widely studied in scientific literature [1]. So much so 
that the problem has been categorized according to the restrictions imposed by line features [2]. This 
type of problems arises from dividing all tasks or operations that are necessary to assemble or disas-
semble among the set of workstations in series that make up the line. The assignment of tasks to work-
stations must satisfy line’s constraints and optimize some performance measure. For example, the 
simplest category of problems, which is named Simple Assembly Line Balancing Problem (SALBP) 
only considers cumulative constraints that are associated with the available work time at workstations 
(i.e. cycle time) and precedence constraints that are established by the order in which tasks should be 
implemented. Accordingly, the problems type SALBP focuses on optimizing the number of work-
stations, the cycle time, or both, according to the problem type.  

On the other hand, there are other families of problems that consider more attributes of the line 
when addressing the task assignment. One recent example is the family of problems known in the lit-
erature as the Time and Space Assembly Line Problems with Ergonomics (TSALBP_erg) [3]. 

The TSALBP_erg family focuses not only on balancing the line according with economic and 
managerial aspects such as the cycle time, the number of workstations and the spatial area required by 
workload of workstations, but also on the ergonomic aspect. This ergonomic balance of the line means 
assessing all elements that could give rise to an ergonomic risk for the operator; among them there are: 
the operator’s dimensions, the physical and mental conditions of operator, the required movements, 
the necessary tools, the required force, the processing time of task, the vibrations, the temperature, etc. 
As a result, the TSALBP_erg can be defined by the following three elements and their characteristics 
or attributes: 

1. The set of tasks needed to assembly or disassembly a product. The tasks, in turn, entails a set 
of attributes that must be also considered: 

a. The temporal attribute linked with the processing time of tasks or operations. 
b. The spatial attribute linked with the area that is necessary to carry out each task.  
c. The ergonomic attribute linked with the ergonomic risk level that each task involves. 

2. The set of workstations of the line, which can be finite or infinite.  
3. The set of sequencing constraints such as the precedence relationships between tasks, incom-
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patibility between tasks, and restrictions that may affect the workstations in regard with their 
assignable time, their available area, and their admissible risk.   

Like SALBP and TSALBP families [4], the TSALBP_erg family focuses on assigning all tasks to 
workstations in order to achieving the maximum efficiency regarding some of the considered attributes 
while all constraints imposed are fulfilled. Accordingly, this family of problems also comprises a set 
of problem types according to the optimization criteria.  

One of the first approaches consisted of introducing the ergonomic concept through a new con-
straint for limiting maximum and minimum ergonomic risks while the number of workstations, the 
cycle time or the spatial area were optimized [5]. Secondly, the ergonomic risk was incorporated into 
the problem through the objective function. In this case the objective problem was minimizing the 
maximum ergonomic risk associated with the workload of workstations [6]. After, a new mathematical 
model was proposed in order to reduce differences between workstations. Specifically, the new model 
minimized the average absolute deviation from the ergonomic risks of the set of workstations [7].  

In line with the previous researches [6],[7], this work presents a new non-exact procedure with the 
aim of ensuring that the assembly line involves the lowest possible level of risk for operators and the 
most balanced risk distribution among the set of workstations. Specifically, the proposed approach 
considers two hierarchized objectives: (1) the minimization of the maximum ergonomic risk of the 
assembly line; and (2) the minimization of the standard deviation from ergonomic risks of the line, 
which is contingent upon the first.  

Besides, given the variety of resolution procedures for balancing problems, in this work we solve 
the problem with two different resolution approaches; the Mixed Integer Linear Programming (MILP), 
and a new Greedy Randomized Adaptive Search Procedure (GRASP). This type of algorithms [8] has 
been widely used in combinatorial optimization problems with diverse applications [9]. Indeed the 
proposed problem combines the necessary qualities for its use: first, because the line balancing in-
volves a sequence of decisions on the assignment of a set of tasks; and secondly, because it is a proce-
dure highly competitive in time against other metaheuristcs and other exact procedures, such as MILP. 

The remainder of the work is organized as follows. In the next section we outline the mathematical 
model for the problem. The proposed GRASP is described in Section 3. Section 4 assesses the two 
resolution procedures though a case study and, finally, we conclude in Section 5.  

2 Mathematical model: min R_SD(R) 

An assembly line is ergonomically comfortable whether it presents the lowest possible ergonomic risk 
at any of its workstations and the lesser difference between the ergonomic risk levels of workstations. 
Therefore, it is possible to obtain ergonomically comfortable line configurations by solving the assem-
bly line balancing problem in different ways.  

- Minimizing both objectives simultaneously. 
- Putting one objective second to the other. 
- Solving the problem mono-objective and determining the other objective after.  
Accordingly the second way, and taking as reference the previous work [10], a mathematical mod-

el to minimize firstly the maximum ergonomic risk of the line and secondly the ergonomic risk disper-
sion between workstations is presented. Specifically, the ergonomic risk dispersion is measured 
through the standard deviation, unlike [10] where the average absolute deviation was considered. The 
parameters, variables and the mathematical model formulation are the following:  
 

Parameters  
! Set of elemental tasks ! ! 1,… ! ! . 
! Set of workstations ! ! !! ! ! !   
Φ Set of ergonomic risk factors ! ! 1!… , Φ . 
!! Processing time of elemental task ! = 1! ! ! !  at normal activity. 
!! Linear area required by the elemental task ! ! = !! ! ! !  . 

!!!! Category of task !!! ! ! !! ! ! !  associated with the risk factor !! ! ! !! ! ! ! .  
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!!!! Ergonomic risk of task !! ! ! !!… ! !  associated with the risk factor !  ! = !! ! ! ! . 
Here: !!!! ! !! ! !!!!. 

!! Set of direct precedent tasks of task !  ! ! !! ! ! ! . 
! Cycle time. Standard time assigned to each station to process its workload !! .  
! Number of workstations, ! ! ! , that is known and fixed. 
! Available space or linear area assigned to each workstation. 

!!
!"# Average ergonomic risk present at each workstation regarding the risk factor ! ! !. That 

is: !!
!"# ! !

!
!!!!

!
!!! , !! ! !. 

 
Variables  

!!!! Binary variable equal to 1 if the elemental task !! ! ! !! ! ! !  is assigned to the work-
station !! ! ! !! ! ! ! , and to 0 otherwise. 

!! Maximum ergonomic risk for the risk factor !! ! ! !! ! ! ! . 
! !  Average maximum ergonomic risk associated with the set of factors Φ. 

!! Workload of station !. Set of tasks assigned to the station ! ! !! !! ! ! ! !! !!!! ! ! . 
!! !!  Ergonomic risk for the factor ! ! ! associated with the workload: !!! !! !! !

!!!!!!!! . 
  
min R_SD(R) Model: 

!"#! ! !! ! ! !! ! ! !" ! !! !  (1) 

Subject to: 

!!!!

!

!!!

! ! ! ! !! ! ! !  (2) 

!! ! !!!!

!

!!!

! ! ! ! !! ! ! !  (3) 

!! ! !!,!

!

!!!

! ! ! ! !! ! ! !  (4) 

!! !! ! !!!! ! !!!!

!

!!!

! ! ! ! !! ! ! ! ! ! ! !! ! ! ! !  (5) 

! !!!! − !!!!

!

!!!

! ! ! !! ! ! !: ! ! !! (6) 

! ! !!!!

!

!!!

! ! ! ! !! ! ! !  (7) 

!!!!

!

!!!

! 1 ! ! !! ! ! !  (8) 

!! !! ≥ ! ! ! !,… ! ! ! ! ! !! ! ! ! !  (9) 

!!!! ! !!!  ! ! !! ! ! ! ⋀ ! = !! ! ! !  (10) 

Where: 

! !  is the average from the maximum ergonomic risks associated with each one of ergonomic 
risk factors considered, !: 
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! ! !
!
!

!!

!

!!!

!
!
!

!"#
!!!

!! !!

!

!!!

 (11) 

!" ! !! !  is the standard deviation from the set of ergonomic risks of the line considering both 
the workstations (!) and the risk factors of tasks (!):  

!" ! !! ! !
!

! ∙ Φ
∙ !! !! ! !!

!"# !
!

!!!

!

!!!

 (12) 

Objective function (1) expresses the minimization of ! !! !  function that responds to two hier-
archized criteria: the first, ! ! , that corresponds with the average from the maximum ergonomic 
risks by factors, and the second, !" ! !! ! , that is linked with the risk dispersion of the line and 
measures the standard deviation from the risks of workstations in regard with the risk factors. Con-
straints (2) force the assignment of all tasks. Constraints (3) and (4) impose the maximum limitation 
for the cycle time and the maximum linear area allowed by station. Constraints (5) determine the real 
ergonomic risk associated with the workload at each workstation. Constraints (6) correspond to the 
precedence task bindings. Constraints (7) and (8) limit the number of workstations and force that there 
is no empty workstation, respectively. Finally, constraints (9) and (10) necessitate that variables be 
non-negative and the assigned variables be binary. 

It should be noted that the formulated mathematical model couldn’t be solved by MILP without 
modifying the objective function, because it is not linear. Therefore, to solve the problem by MILP we 
will consider the third way, that is we will solve the problem mono-objective and determining the oth-
er objective after. 

3 GRASP for solving the min R_SD(R) problem 

Next a GRASP procedure is proposed for solving the above mathematical problem with a hierarchized 
objective function.  

GRASP is a multi-start metaheuristic algorithm ([8], [9]) with two phases: (1) the construction 
phase, where an initial solution is built through a non-deterministic Greedy procedure; and (2) the 
improvement phase in which a local optimum is sought in one or more neighborhoods of the solution 
obtained in the constructive phase. These two phases are consecutively applied until a stopping criteri-
on is satisfied. Finally, GRASP gives as a final solution the best solution found between all iterations. 

The first phase gives solutions that are acceptable regarding the objective function and representa-
tive of various regions from the exploration space. 

To ensure solution diversity, given a sequence of decisions linked with a partial solution, the possi-
ble alternatives are randomly selected among the restricted candidate list (!"#). This list may contain 
all possible alternatives or a set of them. In the last case, the set of alternatives is selected on the basis 
of the best values for a function (bound, index, etc.) that is in line with the overall objective of the 
problem. 

Specifically, the GRASP proposed in this paper is similar to [10]. However, here the main goal is 
to minimize the ergonomic risk of the critical workstation (station with greatest risk) and, subject to 
this first objective, the second goal is to minimize the standard deviation (SD) from the ergonomic 
risks of the assembly line. 

Therefore, the construction phase consists of building progressively a sequence of tasks ! ! !
!!!! ! ! ! !!!, according to a restricted candidate list, !"#, that is created from all possible task that can 
be incorporated into the sequence. Thus, at each stage associated with the position !!!! ! !! ! ! ! !! of 
the sequence!! ! , the !!"!!! list is made up for tasks that have not yet been incorporated into the 
! ! ! 1 ! !!!! ! ! ! !!!!! sequence, but whose precedent tasks have already been assigned to 
! ! ! ! . Once the !"#!!! list is built, it is ordered according the following hierarchical priority 
indices: 

! Pending linear area according to the assigned task, ! ! !"#(!!, and its followings tasks !!
! : 
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!!
!!! ! !! ! !!!!!!!!

!∈!!
∗

!! ! !"#!!! (13) 

! Pending ergonomic risk according to the assigned task, ! ! !"#!!!, and its followings tasks !!
∗ : 

!!
!!! ! !!!!

!!!

! !!!!
!!!!

!!∈!

!!!!!!! ∈ !"#(!! (14) 

After having calculated the indices (!!
!!!,!!

!

!!!), the !"#(!! list is ordered according to a descending 
order of the !!

!!! values or in descending order of the !!
!!! values in case of a tie. Subsequently, the list 

is reduced by the admission factor,!!!!The ! factor is defined as the percentage of tasks that are sorted 
among the best candidates; thus, the !"#(!! !! list is obtained for the selection process. 

The constructive phase makes sure that the final task sequence ! !  is consistent with precedent 
and succession constraints and it does not accumulate required linear area and the ergonomic risk at 
the end of the assembly line. 

From the ! !  sequence, the following stage consists of designing an assembly line configuration 
by imposing a fixed number of workstations, ! ≥ !. Indeed, given a number of workstations (!), the 
! !  sequence is divided in ! segments. These segments have the following properties: (i) they are 
compatible with the constraints (3) and (4), (ii) they are made up by adjacent tasks of the sequence, 
(iii) they are not empty, and (iv) they are disjoint between them and their union corresponds with the 
set of tasks, !. 

Given a feasible solution obtained in the constructive phase, the improvement phase of the GRASP 
relies on sequentially applying four descent algorithms on four neighborhoods, repeatedly until solu-
tion does not improve at none stage. Between two solutions compatible with the cycle time and the 
maximum available area (constraints (3) and (4)), the solution with lower average from maximum 
ergonomic risk will be considered the best, and, in case of tie, the solution with lower standard devia-
tion (SD) will be saved during iterations. In particular, the stages of the improvement phase of GRASP 
are the following: 
! Insertion_1: Insertion of a task from the station with the greatest ergonomic risk (critical work-

station) to any other station: the workstation with the greatest ergonomic risk inserts all its tasks, 
one by one, first into any previous station and second, into any next station. Obviously constraints 
(2)-(10) from the mathematical model must be satisfied and the average from maximum ergonomic 
risks must improve. In case of tie, the insertion will be consolidated if the standard deviation from 
the ergonomic risks is improved.  

! Insertion_2: Insertion of a task from any station to the station with the lowest ergonomic risk: the 
workstation with lowest ergonomic risk increases its workload with the last task from any previous 
station and/or the first task from any next station. The constraints (2)-(10) from the model must be 
satisfied and the improvement conditions to consolidate the insertion are identical to those from 
previous stage. 

! Exchange_1: Task exchange from the critical workstation to any other station: this stage consists of 
exchanging the tasks from the critical workstation, one by one, with the first task from the follow-
ing workstations and, after, the last task from previous stations. The exchange will be consolidated 
when the conditions from the above stages are fulfilled.  

! Exchange_2: Switch of tasks between workstations: the last step consists of exchanging tasks be-
tween two stations. Obviously, the exchanges will be consolidated in line with previous stages. 

4 Case study: Nissan-9Eng 

The computational experience is focused on analyzing the performance of the GRASP procedure pro-
posed in this work, GRASP-3, against the linear programming. This comparison is based on the solu-
tion quality and the CPU times.  

Because the mixed integer linear programming does not support hierarchical objective functions, 
the results given by the proposed GRASP will be compared with those obtained by two mono-
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objective mathematical models. Specifically, the exact procedures are the MILP-1 and the MILP-2 
whose objectives are minimizing the maximum ergonomic risk of the assembly line and minimizing 
the risk dispersion between workstations, respectively (see [10]).  

It should be noted that MILP-2 minimizes the absolute average deviation. Therefore, it will be nec-
essary to calculate the standard deviation once the model has been run.  

Like [3] and [10], the analysis lies with a case study from Nissan’s Plant in Barcelona: an assembly 
line where 9 types of engines that are grouped into three families (SUVs - Sport Utility Vehicle, Vans 
and Trucks) are assembled with a cycle time of 180 s.  

The assembly line features are the following:  

! Number of workstations: ! ! !! !! ! !"! !"! !"! !!! !"! !"! !" . 
! Number of elemental tasks: ! ! !"#!!! ! !! ! ! ,140). 
! Cycle time: ! ! !"#!!!  
! Available linear area by workstation: ! ! !! !! !" !!"#"$% 
! Number of risk factors: ! =1 ! ! !  
! Number of demand plans: ! ! !! !! ! ! . 
! Daily demand: ! ! !! ! !"#!!"#$"!%! !! = ! .  

The computational features are the following:  

! MILP-1: min ! max! model (see [7],[10]). (i) Objective function that minimizes the average from 
maximum ergonomic risks of workstations of the assembly line in accordance with the risk factors 
and without considering the risk dispersion between stations; (ii) mathematical model compiled and 
run on a Mac Pro (Intel Xeon, 3.0 GHz CPU and 2 GB RAM Windows- XP) using the CPLEX 
solver v11.0; (iii) maximum CPU time available to run each demand plan equal to 7200 s; (iv) 21 
executions: 7 possible values for ! (19,…,25) and 3 for ! (4, 5, 10) ; (v) use of the previous solu-
tion for an available area ! and for a number of workstations ! ! ! as initial solution given a spa-
tial area, !, and a number of workstations, !.  

! MILP-2: !"# !!"!! model (see [7], [10]. (i) objective function addressed to equally allocate the 
risk between all workstations by minimizing the average absolute deviations from risks of work-
stations and without considering the maximum risk minimization; (ii) mathematical model com-
piled and run on a Mac Pro (Intel Xeon, 3.0 GHz CPU and 2 GB RAM Windows- XP) using the 
CPLEX solver v11.0; (iii) maximum CPU time available to run each demand plan equal to 7200 s; 
(iv) 21 executions: 7 possible values for ! (19,…,25) and 3 for ! (4, 5, 10) ; (v) use of the previ-
ous solution for an available area ! and for a number of workstations ! − 1 as initial solution giv-
en an area, !, and ! workstations. 

! GRASP-3: GRASP procedure aimed at minimizing hierarchically the maximum ergonomic risk for 
the line and the risk dispersion between workstations, through the standard deviation; (i) procedure 
run on an iMac (Intel Core i7 2.93 GHz, 8 GB de RAM); (ii) 10000 iterations per execution as 
maximum (iii) three possible values for the admission factor ! ! !!"! 66%, 100%  (63 execu-
tions: 7 values for !, 3 values for ! and 3 possible values for !); (iv) average CPU time per execu-
tion used by the two GRASP phases equal to 315.53 s. 

Table 1 shows best results in regard with the average maximum ergonomic risk, ! !  from MILP-
1, MILP-2 and GRASP-3, for the 21 data sets of the problem, ! ! !; the winner algorithm for each 
data set is also highlighted; and the unity gains of GRASP-3 against MILP-1 (!!3!"1), GRASP-3 
against MILP-2 (!!!!"!) and MILP-1 against MILP-2 (!!!!"!), which are determined as follows 
(13): 

!!"!! ! !
! ! !! ! − ! ! ! !

!"# ! ! !! ! ! ! Φ ! !
 

!! ! !! !! ! !"#$% ! !! !"#$ ! ! ! !!! ! !"#$ ! !! !"#$ ! !  
(13) 

From Table 1 we can conclude the following points about the average from the maximum ergo-
nomic risk of the assembly line: 

! No procedure guaranties optimal solutions. 
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! No procedure gives solution for assembly lines with 19 and 20 workstations and an available area 
of 4 meters.  

! MILP-1 does not give solution when the assembly line has 19 and 20 workstations and 5 meters 
either. 

! MILP-1 is the winner in regard with the number of best solutions, with 13 successes above all 21 
instances. MILP-2 is in the second position with 10 victories and finally GRASP-3 with 7 success-
es.  

! MILP-1 is also the winner procedure in regard with the unity gain, provided the instances without 
solutions (19/5 and 20/5) are not considered. The overall average unity gain of MILP-1 against 
GRASP-3 is by 2.1% and by 5%, approximately, against MILP-2. Under this criterion, MILP-2 is 
the procedure with the worst results. Indeed MILP-2 is overtaken by GRASP-3 with an overall av-
erage unity gain of 3.5%.   

! MILP-1 wins in 7 data sets, loses in 3 and ties in 7 instances by comparing its results with those 
given by MILP-2. Specifically, MILP-1 improves solutions from MILP-2 by 14.2% but, when it 
loses, solutions become worse by 5.1%, respectively, in terms of average unity gain. 

! GRASP-3 wins MILP-2 in 8 instances, loses 7 times and ties in 4 data sets, considering the 19 cas-
es in which MILP-2 gives solution. The average gain of GRASP-3 against MILP-2 is 11% and the 
average loss is 3%.  

! Comparing MILP-1 with GRASP-3, the first one wins in 10 data sets, loses in 3 and ties in 7 in-
stances. However the unity gains of one procedure against the other one are balanced: 4.9% when 
MILP-1 wins and 4.4% when GRASP-3 is the winner.  

! MILP-1 and MILP-2 use 7200 s per data set (CPU limit), while GRASP-3 needed 315.53 s on av-
erage to solve each instance.   
 

! ! ! ! ! : Average from maximum risk  !!"!! ! : Gain !!!"#$%$!!!   
!!! MILP-1 MILP-2 GRASP-3 !!!!"! !!!!"! !!!!"! ! ! ! !"##$% 
19/4 - - - - - - - - 
19/5 - 440 405 - 0.09  - 405 G3 

19/10 350 360 350 0.00  0.03  0.03  350 M1-G3 
20/4 - - - - - - - - 
20/5 - 390 345 - 0.13  - 345 G3 

20/10 315 315 330 -0.05  -0.05  0.00  315 M1-M2 
21/4 375 450 435 -0.16  0.03  0.20  375 M1 
21/5 310 320 320 -0.03  0.00  0.03  310 M1 

21/10 300 300 310 -0.03  -0.03  0.00  300 M1-M2 
22/4 330 420 345 -0.05  0.22  0.27  330 M1 
22/5 300 300 300 0.00  0.00  0.00  300 All 

22/10 285 285 295 -0.04  -0.04  0.00  285 M1-M2 
23/4 310 375 320 -0.03  0.17  0.21  310 M1 
23/5 280 275 285 -0.02  -0.04  -0.02  275 M2 

23/10 275 275 280 -0.02  -0.02  0.00  275 M1-M2 
24/4 280 345 300 -0.07  0.15  0.23  280 M1 
24/5 280 265 270 0.04  -0.02  -0.06  265 M2 

24/10 270 270 270 0.00  0.00  0.00  270 All 
25/4 280 285 270 0.04  0.06  0.02  270 G3 
25/5 275 255 260 0.06  -0.02  -0.08  255 M2 

25/10 255 255 255 0.00  0.00  0.00  255 All 
!"#$%&# - - - -0.021  0.035  0.049  - - 

Table 1:, ! !  value for each data set, ! ! !, in accordance with the different pro-
cedures (MILP-1, MILP-2, GRASP-3)!. Unity gain between pairs of procedures 
(!!!!"!! !!!!"!! !!1!"!), best solution for ! ! !,  and winner algorithm.  

On the other hand, in order to measure the dispersion between stations, the standard deviation from 
the ergonomic risk, !" ! !! ! , is used. Besides, the relative standard deviation (!!") is also used 
to compare the quality of solutions given by a pair of procedures; that is: 
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!"#!!"!!
! ) !

!" ! !! ! !! !

!!
!"# !

!
!" ! !! ! ! !

!!
!"# !

 

!! ! !! !! ! !"#$% ! !! !"#$ ! ! ! !!! ! !"#$ ! !! !"#$ ! !  

(14) 

In accordance with the risk dispersion values (Table 2), we can state the following: 

! No procedure guaranties optimal solutions. 
! No procedure gives solution for instances with 19 or 20 workstations and 4 meters.  
! MILP-1 does not also give solution for data sets with less than 21 workstations and 5 meters as 

maximum linear area.  
! MILP-2 is the winner procedure in terms of best !"# value. Indeed, considering all data set, 

MILP-2 achieves 16 best solutions, GRASP-3 achieves two ones (instances 22/4 and 25/4) and 
MILP-1 obtains only one best solution (instance 21/4).  

! MILP-2 also wins in terms of average gain of !"#. The overall average gain of MILP-2 against 
GRASP-3 and MILP-1 is 2.6% and 4.8%, respectively. On the other hand, MILP-1 is the loser, 
since its results are improved by GRASP-3 by 2.0%.  

! MILP-2 improves results given by MILP-1 in 16 instances. Indeed, !"# average gain when MILP-
1 wins MILP-2 is only by 0.2%, however when MILP-2 wins MILP-1 the average gain is 5.1%.   

! GRAP-3 obtains 11 best solutions and 6 worst solutions against MILP-1, considering only 17 data 
sets. GRASP-3 improves solutions given by MILP-1 by an average gain of 4.8%, while MILP-1 
improves results from GRASP-3 by 2.9%, when it gives better solutions than GRASP-3.  

! On the other hand, GRASP-3 gets worse solution than MILP-2 in 17 instances and wins in 2 cases. 
However, the !"# average gain are not so relevant: 2.9% when MILP-2 wins GRASP-3 and 0.2 in 
the opposite case.  

! Again, it should be noted that MILP-1 and MILP-2 requires 7200 s per data set, while GRASP-3 
only requires 315.53 s on average.  

 
! ! ! !" ! !! !   !"#!!"!! ! !: Gain !!!"#$%$!!!   
!!! MILP-1 MILP-2 GRASP-3 !!

!"# !!!"! !!!"! !!!"! !" ! ! !"##$% 
19/4 - - - 323.4 - - - - - 
19/5 - 49.40 55.94 323.4 - -0.02  - 49.40 M2 

19/10 32.35 18.07 32.31 323.4 0.00  -0.04  -0.04  18.07 M2 
20/4 - - - 307.3 - - - - - 
20/5 - 34.25 38.52 307.3 - -0.01  - 34.25 M2 

20/10 10.06 8.28 25.31 307.3 -0.05  -0.06  -0.01  8.28 M2 
21/4 73.47 73.97 82.98 292.6 -0.03  -0.03  0.00  73.47 M1 
21/5 22.35 19.54 32.87 292.6 -0.04  -0.05  -0.01  19.54 M2 

21/10 7.56 5.01 14.21 292.6 -0.02  -0.03  -0.01  5.01 M2 
22/4 61.14 60.13 59.37 279.3 0.01  0.00  -0.00  59.37 G3 
22/5 35.75 10.05 23.30 279.3 0.04  -0.05  -0.09  10.05 M2 

22/10 6.65 4.03 15.35 279.3 -0.03  -0.04  -0.01  4.03 M2 
23/4 47.08 43.36 47.68 267.2 -0.00  -0.02  -0.01  43.36 M2 
23/5 18.73 4.88 16.44 267.2 0.01  -0.04  -0.05  4.88 M2 

23/10 9.95 3.71 7.45 267.2 0.01  -0.01  -0.02  3.71 M2 
24/4 41.46 33.93 34.70 256.0 0.03  -0.00  -0.03  33.93 M2 
24/5 41.67 3.95 14.65 256.0 0.11  -0.04  -0.15  3.95 M2 

24/10 23.65 3.95 5.27 256.0 0.07  -0.01  -0.08  3.95 M2 
25/4 53.59 26.86 26.74 245.8 0.11  0.00  -0.11  26.74 G3 
25/5 42.15 5.35 14.85 245.8 0.11  -0.04  -0.15  5.35 M2 

25/10 13.46 4.56 6.20 245.8 0.03  -0.01  -0.04  4.56 M2 
!"#$%&#     0.02  -0.03  -0.05   - 

Table 2: !" ! !! !  values per procedure and instance ! ! ! (MILP-1, MILP-2, 
GRASP-3)!. !"# differences between pairs of procedures 

(!"#!!!!"!! !!!"!! !!!"!!), best solution !" ! ! and winner algorithm.  
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5 Conclusions 

We have proposed, in this work, a GRASP procedure for solving a mixed-model assembly line prob-
lem. The studied approach is focused on minimizing both the maximum ergonomic risk of the assem-
bly line and the standard deviation from risk of workstations. 

The procedure designed for the problem, GRASP-3, has been compared with two different prob-
lem approaches: MILP-1 and MILP-2, which were solved by mixed integer linear programming. Both 
reference models, MILP-1 and MILP-2, although having different mono-objective function have al-
lowed us to assess the performance of the GRASP-3 against to an exact procedure, such as the linear 
programming.  

Therefore, the three procedures have been compared through a case study linked with an assembly 
line from the Nissan’s engine plant in Barcelona. Specifically, the computational experience has been 
to obtain different line configurations in accordance with different values for the number of work-
stations and the maximum available area. This variety in the line’s attributes has allowed us to assess 
the procedures’ quality in regard with two metrics: (1) the maximum ergonomic risk from each line 
configuration, and (2) the standard deviation from the different risk levels between stations.  

Results show, as expected, that MILP-1 is the best procedure in regard with the maximum ergo-
nomic risk of the line. GRASP-3 is in second position and finally MILP-2 is the procedure that gets a 
higher degree of risk in a greater number of line configurations.  

On the other hand, MILP-2 wins other procedures regarding the standard deviation from ergonom-
ic risk of workstations. GRASP-3 is again in the second position and MILP-1 is the procedure that 
offers worst results.  

However, GRASP-3 is very competitive although not winning in maximum risk and standard de-
viation either, in average terms. Indeed, the results differ only by 2.1% on average from the best re-
sults for the maximum ergonomic risk (MILP-1) and, by 2.6% from the best results for the standard 
deviation (MILP-2). In addition, GRASP-3 is clearly the most competitive procedure regarding the 
CPU time, using 315.53 seconds against the 7200 seconds used by the linear programming.  

In future works, we will attempt to formulate new models and procedures with the aim at minimiz-
ing the range of ergonomic risk and maximizing the productivity of assembly lines with restrictions on 
both the maximum ergonomic risk and linear area. 
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