Trabajo Final de Grado

Grado en Ingeniería en Tecnologías Industriales

Diseño del sistema de refrigeración de un motor Rotax en un Formula Ashenkoff

MEMORIA

Autor: Javier Mir Ramón
Director: Emilio Hernández Chiva
Convocatòria: Junio 2017

Escola Tècnica Superior d’Enginyeria Industrial de Barcelona
Resumen

Los jóvenes pilotos empiezan su formación en el mundo del automovilismo aprendiendo a pilotar los llamados karts, para después pasar al siguiente nivel, los fórmulas. El salto de un tipo de vehículo a otro es muy grande y supone un gran cambio para los pilotos.

Es por esto que la empresa italiana Formula Ashenkoff, con sede en Barcelona, ha decidido poner en marcha un proyecto basado en la elaboración de un nuevo monoplaza para niños de entre 6 y 10 años, el Ashenkoff K100, facilitando así que los niños se acostumbren a los fórmula de una manera fácil, divertida y segura.

El Ashenkoff K100 no parte de cero, ya que existe otro fórmula para adolescentes y adultos, llamado Ashenkoff K600, que puede ser de utilidad a la hora del diseño.

Varios trabajos de diversos estudiantes de la ETSEIB buscarán diseñar y analizar las diferentes partes de este prototipo (soporte del motor, sistema de suspensión, transmisión, etc...), aunque este se focaliza en el sistema de refrigeración del motor, el cual Formula Ashenkoff ha decidido que sea un motor tipo Rotax.

El trabajo empieza explicando aspectos básicos como: las diferencias entre un kart y un formula, principios fundamentales sobre la Termodinámica y la Termotecnia (Transferencia de calor), funcionamiento de un sistema de refrigeración e información básica de un motor Rotax.

A continuación, se pasa al diseño de los radiadores empezando por una estimación del calor generado por el motor a disipar y realizando diversos cálculos para dimensionar un radiador capaz de disipar ese calor. Después, se realizan varias simulaciones para validar el correcto funcionamiento del diseño. Finalmente, con el sistema diseñado y validado, se muestra la integración paso por paso del sistema de refrigeración en el chasis del K100, ya elaborado en un trabajo académico anterior, proporcionando una vista detallada del resultado del conjunto.

También hay valoraciones económicas y ambientales, así como una planificación temporal seguida para la realización del proyecto.

El proyecto acaba con una valoración del trabajo realizado, contemplando aspectos de los otros trabajos hechos paralelamente a este y dando algunas ideas de cuáles son los siguientes pasos a seguir para llevar a cabo el proyecto del Ashenkoff K100.
Índice

RESUMEN ... 1
ÍNDICE ... 3
ÍNDICE DE TABLAS .. 5
ÍNDICE DE FIGURAS .. 5
GLOSARIO ... 8
PREFACIO .. 10
 Origen del proyecto .. 10
 Motivación .. 10
1. INTRODUCCIÓN ... 12
 1.1. Objetivos del proyecto ... 12
 1.2. Alcance del proyecto .. 12
 1.3. Requisitos de diseño ... 13
2. CONCEPTOS BÁSICOS .. 14
 2.1. Termodinámica .. 14
 2.1.1. Variables termodinámicas ... 14
 2.1.2. Concepto de calor ... 15
 2.1.3. Ciclos termodinámicos ... 16
 2.2. Termotécnia ... 17
 2.2.1. Conducción .. 17
 2.2.2. Convección .. 18
 2.2.3. Aletas o superfícies extendidas .. 21
 2.3. Simulaciones de transferencia de calor ... 25
 2.3.1. Programas de transferencia de calor .. 26
 2.3.2. Método matemático .. 27
 2.3.3. Preproceso .. 28
 2.3.4. Solución ... 29
 2.3.5. Postproceso ... 30
3. INTRODUCCIÓN A LOS SISTEMAS DE REFRIGERACIÓN .. 31
 3.1. Tipos de sistemas de refrigeración ... 31
 3.2. Funcionamiento de un sistema de refrigeración ... 32
 3.3. Elementos de un sistema de refrigeración .. 33
 3.3.1. Líquidos refrigerantes .. 34
 3.3.2. Bomba de agua ... 34
 3.3.3. Termostato ... 35
 3.3.4. Radiador .. 35
4. MOTOR ROTAX 125 MAX EVO ... 37
 4.1. Funcionamiento y características .. 37
 4.2. Refrigeración .. 39

5. DISEÑO DEL COOLING SYSTEM ... 41
 5.1. Pérdidas de calor .. 41
 5.2. Fijación de las temperaturas ... 42
 5.3. Área frontal disponible .. 43
 5.4. Dimensionado del radiador ... 44
 5.4.1. Propiedades de los fluidos .. 47
 5.4.2. Flujo de aire y área necesaria ... 47
 5.4.3. Dimensiones del panel .. 48
 5.4.4. Flujo de refrigerante .. 50
 5.4.5. Caudal que proporciona la bomba ... 50
 5.4.6. Cálculo de h_{aire} .. 50
 5.4.7. Cálculo de h_{ref} ... 52
 5.4.8. Cálculo del coeficiente global U_0 .. 53
 5.4.7. Modelo final .. 54

6. SIMULACIONES DEL COOLING SYSTEM .. 56
 6.1. Validación del radiador ... 56

7. INTEGRACIÓN EN EL K100 .. 63
 7.1. Aproximación del motor ... 63
 7.2. Diseño de los soportes ... 66
 7.3. Manguitos de refrigeración ... 70
 7.2. Modelo final .. 71

ASPECTOS ECONÓMICOS .. 73

PLANIFICACIÓN TEMPORAL .. 75

IMPACTO AMBIENTAL .. 76

CONCLUSIONES .. 77

AGRADECIMIENTOS .. 78

BIBLIOGRAFÍA .. 79
 Referencias bibliográficas ... 79
 Bibliografía complementaria .. 80

ANEXOS .. 81
 Anexo A: Planos del motor ... 81
 Anexo B: Planos del radiador .. 82
 Anexo C: Planos de los soportes del radiador ... 84
 Anexo D: Vistas del sistema de refrigeración integrado en el K100 86
Índice de tablas

Tabla 1: Calor específico de varias sustancias ... 16
Tabla 2: Coeficiente de convección para varios procesos .. 19
Tabla 3: Temperaturas de operación del motor ... 40
Tabla 4: Parámetros para el diseño del radiador .. 42
Tabla 5: Resultados del sistema de ecuaciones ... 54
Tabla 6: Costes de ingeniería ... 73
Tabla 7: Costes de materiales .. 74
Tabla 8: Costes de fabricación ... 75

Índice de figuras

Figura 1: kart, Formula 3 y Formula 1... 10
Figura 2: Formula Ashenkoff ... 11
Figura 3: Motor Rotax 125 Max Evo ... 13
Figura 4: Principio Cero de la Termodinámica... 15
Figura 5: Máquina térmica que sigue el ciclo de Carnot ... 16
Figura 6: Mecanismos de transferencia de calor .. 17
Figura 7: Ley de Fourier ... 18
Figura 8: Convección natural y forzada .. 18
Figura 9: Aletas disipadoras ... 21
Figura 10: Superficie sin aletas vs con aletas ... 22
Figura 11: Parámetros de una aleta .. 23
Figura 12: Calor disipado por una aleta ... 23
Figura 13: Aleta real vs Aleta ideal .. 24
Figura 14: Aletas de un radiador ... 25
Figura 15: Ejemplo de geometría en SolidWorks ... 26
Figura 16: Ejemplo de simulación en ANSYS ... 26
Figura 17: Espacio de trabajo Workbench ... 27
Figura 18: Ecuación resuelta en Steady State Thermal ... 27
Figura 19: Ejemplo de una pieza mallada... 28
Figura 20: Condiciones de contorno de convección y flujo de calor 29
Figura 21: Gráfico de las temperaturas de un disipador (Postproceso) 30
Figura 22: Gráfico de las superficies isotermas (Postproceso) .. 30
Figura 23: Radiador de un F1 vs radiador de un coche convencional 31
Figura 24: Ejemplo de refrigeración líquida ... 31
Figura 25: Ejemplo de refrigeración por aire.. 32
Figura 26: Esquema del sistema de refrigeración ... 33
Figura 27: Esquema de la bomba de agua ... 34
Figura 28: Esquema de funcionamiento del termostato ... 35
Figura 29: Esquema del radiador .. 36
Figura 30: Disposición de las aletas en el radiador... 36
Figura 31: Curvas de potencia de los modelos de Rotax ... 37
Figura 32: Punto de medida de la temperatura del refrigerante 38
Figura 33: Piezas de los radiadores de los modelos de Rotax 39
Figura 34: Conjunto radiador-motor ... 40
Figura 35: Calor generado por el motor .. 41
Figura 36: Carrocería del K100 .. 43
Figura 37: Área de la entrada de aire lateral del K100 ... 43
Figura 38: Área de la entrada de aire superior del K100 .. 44
Figura 39: Frontal del panel del radiador ... 44
Figura 40: Vista isométrica del radiador ... 45
Figura 41: Tubos del radiador ... 45
Figura 42: Aletas del radiador ... 46
Figura 43: Sección frontal del panel ... 46
Figura 44: Sección de los tubos (x desconocida) .. 46
Figura 45: Perfil de una aleta y áreas A2 y A3 ... 48
Figura 46: Dimensiones del panel .. 49
Figura 47: Perfil interior de una aleta ... 50
Figura 48: Sección del tubo ... 52
Figura 49: Sección de los tubos (x conocida) ... 55
Figura 50: Frontal del radiador diseñado .. 55
Figura 51: Trasera del radiador diseñado .. 56
Figura 52: Radiador entero ... 57
Figura 53: Parte del radiador que se va a simular .. 57
Figura 54: Geometría importada en ANSYS ... 58
Figura 55: Malla del modelo a simular .. 58
Figura 56: Convección en el interior del tubo ... 59
Figura 57: Convección con el aire exterior ... 59
Figura 58: Temperatura dentro del tubo ... 60
Figura 59: Temperatura en los extremos de las aletas ... 60
Figura 60: Distribución de temperaturas del modelo ... 60
Figura 61: Flujo de calor en diferentes partes del modelo ... 61
Figura 62: Calor disipado por el tubo .. 61
Figura 63: Calor disipado por las aletas .. 62
Figura 64: Chasis del K100 .. 63
Figura 65: Comprobación del espacio para el motor (Vista 1) ... 64
Figura 66: Comprobación del espacio para el motor (Vista 2) ... 64
Figura 67: Motor situado dentro del coche (Vista 1) ... 65
Figura 68: Motor situado dentro del coche (Vista 2) ... 65
Figura 69: Radiador sin conflictos con el chasis ... 66
Figura 70: Radiador sin conflictos con la carrocería ... 66
Figura 71: Medidas para la altura de los soportes base .. 67
Figura 72: Medidas para el ángulo de los soportes base ... 67
Figura 73: Soporte inferior final ... 68
Figura 74: Soportes inferiores en el radiador ... 68
Figura 75: Distancia chasis radiador ... 69
Figura 76: Soporte lateral final .. 69
Figura 77: Conjunto radiador-soportes ... 70
Figura 78: Recorrido de los maguitos de refrigeración ... 70
Figura 79: Lado izquierdo del sistema de refrigeración .. 71
Figura 80: Sistema de refrigeración final ... 71
Figura 81: K100 con sistema de refrigeración y sin carrocería ... 72
Figura 82: K100 con sistema de refrigeración y con carrocería .. 72
Figura 83: Diagrama de Gantt .. 75
Figura 84: Isométrica del motor simplificado ... 81
Figura 85: Planos del motor simplificado ... 81
Figura 86: Planos del alzado del radiador ... 82
Figura 87: Planos de la vista superior del radiador ... 83
Figura 88: Planos de los soportes inferiores ... 84
Figura 89: Planos de los soportes laterales ... 85
Figura 90: Vista superior del sistema de refrigeración .. 86
Figura 91: Vista frontal del sistema de refrigeración sin carrocería 86
Figura 92: Vista frontal del sistema de refrigeración con carrocería 87
Figura 93: Vista frontal del conjunto motor-radiadores-manguitos 87
Figura 94: Vista trasera del conjunto motor-radiadores-manguitos 88
Figura 95: Modelo final ... 88
Glosario

CAD: Computer-Aided Design

m: masa
V: volumen
p: presión
F: fuerza
A: área

P_{abs}: presión absoluta
P_{rel}: presión relativa
P_{atm}: presión atmosférica
T: temperatura
Q: calor
Cp o c: calor específico

Q_h: Calor absorbido/cedido por el foco caliente
Q_c: Calor absorbido/cedido por el foco frío
W_{maq}: trabajo
q: potencia térmica

L: longitud
λ: coeficiente de conveción térmica
T_0: temperatura de la superficie
T_∞: temperatura del fluido
h: coeficiente de conveción

Q_{ref}: calor absorbido por el refrigerante
Q_{aire}: calor cedido al aire

\dot{m}: flujo másico
U_0: coeficiente global de transferencia de calor
A_0: superficie de aire que moja el radiador

\Delta T_{LMDT}: logaritmo de la diferencia de temperaturas
h_{ref}: coeficiente de conveción del refrigerante
h_{aire}: coeficiente de conveción del aire
Diseño del sistema de refrigeración de un motor Rotax

A$_{hc}$: área del fluido caliente
A$_{ff}$: área del fluido frío
R: resistencia de conducción
S: sección del flujo del fluido
P$_h$: perímetro hidráulico
Dh: diámetro hidráulico
ρ: densidad
μ: viscosidad dinámica
Pr: número de Prandtl
Re: número de Reynolds
Cf: coeficiente de fricción
Nu: número de Nusselt
e$_f$: eficiencia
v$_{máx}$: velocidad máxima
v$_{par máx}$: velocidad a par máximo
a$_{par máx}$: aceleración a par máximo
P: potencia
rpm: revoluciones por minuto
Q$_{bomb}$: caudal de la bomba
Prefacio

Origen del proyecto

La problemática actual comienza con el nacimiento de la competición de motor más exigente del mundo, la Fórmula 1. Dicha competición se basa en encontrar la forma de crear el coche más rápido, seguro y fiable mediante la competencia entre marcas e ingenieros. A priori el papel más importante lo juega el coche diseñado por la marca, pero al final, tanto esfuerzo no sirve de nada si el piloto no ha tenido una buena formación y no sabe desarrollar su labor de una forma correcta.

Como es evidente, la formación no empieza en la Fórmula 1, sino que hay que superar una gran cantidad de escalones. En primer lugar, se sitúan los karts, que son vehículos de baja potencia en los cuales los niños de temprana edad (3 años) pueden utilizar como toma de contacto con el mundo del motor. El siguiente paso se encuentra en un importante salto en la edad del piloto, la adolescencia (10 -18 años), cuando se pueden empezar a conducir coches tipo fórmula. Dentro de este tipo de coche encontramos un abanico muy grande de posibilidades: Formula 4 (a nivel nacional), Fórmula 3 y GP2 Series (a nivel continental), Fórmula E (con formulas eléctricos a nivel internacional) y la ya comentada Fórmula 1.

Dentro de la categoría de formulas encontramos distintas empresas privadas que se dedican a la creación de este tipo de coches, destinadas a la competición o al ocio (experiencias para pilotar un formula en circuito) y una de ellas es Ashenkoff, que ha decidido poner solución al gran salto en la edad entre pilotos de formula y kart.

Motivación

Formula Ashenkoff es una competición en España que anima a jóvenes pilotos de karts a probar coches tipo fórmula. La empresa fabrica 2 modelos para la competición, el K600 y e K1000, destinados a pilotos de más de 10 años, pero los managers de Ashenkoff quieren crear otro modelo para introducir en esta competición a niños menores de 10 años, los cuales solo pueden competir en carreras de karts, siendo esta la primera competición en el mundo con coches fórmula para jóvenes pilotos.
Ashenkoff busca la creación del nuevo formula Ashenkoff K100 para niños de entre 6 y 10 años, y nos ha pedido a algunos estudiantes de la ETSEIB que ayudemos a diseñar las diferentes partes de este formula. Aquí nace la motivación de este trabajo, diseñar y analizar el sistema de refrigeración que incorporará el motor del Ashenkoff K100.

El diseño del K100 será guiado en gran parte por los modelos que ya dispone Ashenkoff. Esto quiere decir que ya existe un sistema de refrigeración para el K600 y el K1000, pero es necesario rediseñar uno completamente nuevo, utilizando como ayuda los ya existentes.
1 Introducción

1.1 Objetivos del proyecto

El objetivo del proyecto es el diseño y análisis del sistema de refrigeración del motor para un monoplaza de tamaño reducido que puedan conducir niños de entre 6 y 10 años. Este modelo se llamará Fórmula Ashenkoff K100 y se debe diseñar con el objetivo de que cumpla los siguientes objetivos.

Los objetivos específicos son:

1. Minimizar las dimensiones del sistema de refrigeración, para que se pueda integrar con los demás diseños creados en un fórmula de pequeño tamaño.

2. Mantener el contacto con la empresa Formula Ashenkoff durante la elaboración de todo el proyecto, intercambiando información que ayude al éxito de las dos partes.

3. Garantizar una conducción segura y confortable.

4. Validar el diseño realizado mediante las correspondientes simulaciones.

5. Garantizar en todo momento que el motor esta a la temperatura que le permite mantener un régimen de trabajo ideal.

1.2 Alcance del proyecto

En el trabajo actual se buscará la forma de integrar el sistema de refrigeración en el K100, fijando todos los parámetros necesarios para su diseño, escogiendo como guía el sistema del K600. Gran parte del trabajo estará estrechamente relacionada con la aerodinámica de la carrocería, ya diseñada por un estudiante de cursos pasados, que es fundamental para conocer el caudal de aire disponible que incide sobre los radiadores y refrigerar el fluido que circula por dentro de estos.

También se realizarán varias simulaciones sobre el sistema diseñado para comprobar su correcto funcionamiento.

La tarea de buscar una posición y un soporte para el motor, hacer un estudio de la transmisión, hacer un estudio de la suspensión y realizar el diseño de las manguetas en la parte de la dirección del K100, será realizada por otros estudiantes guiados por el mismo tutor. Cada uno de estos trabajos se realiza de forma individual, pero es necesario mantener el contacto entre los estudiantes para una buena integración de los diferentes sistemas.
1.3 Requisitos de diseño

Ashenkoff pone a nuestra disposición toda la información relacionada con el diseño de sus monoplazas existentes para usarlo como una guía en la realización del proyecto. Esta información contiene: planos, hoja de características, archivos de CAD, etc…

También tenemos a nuestra disposición el CAD de la carrocería y el chasis diseñada por los estudiantes del año pasado, los cuales también dispusieron de los recursos de Ashenkoff.

Por último, Ashenkoff ya ha decidido que el motor que incorpore este formula K100 va a ser el ROTAX 125 MAX EVO. Este tipo de motores es muy utilizado en el mundo de los karts ya que son de pequeño tamaño y aportan la potencia necesaria para circular en un circuito de karts a altas velocidades para este tipo de vehículos.

[Image: Figura 3: Motor Rotax 125 Max Evo]
2 Conceptos básicos

A continuación, se explicarán conceptos de diversos campos explicados durante el transcurso del grado que están relacionados y ayudarán a entender este trabajo.

Los campos comentados serán: Termodinámica, Termotecnia y simulaciones sobre transferencia de calor. Los dos primeros están relacionados con el funcionamiento de un sistema de refrigeración y el tercero con las simulaciones que se realizarán.

2.1 Termodinámica

La termodinámica es la rama de la física que estudia la interacción entre el calor y otras manifestaciones de la energía.

Es importante entender este campo debido a que, en nuestro caso, el calor es un concepto elemental en el funcionamiento de un motor y el enfriamiento del mismo.

2.1.1 Variables termodinámicas

Las variables termodinámicas son las magnitudes que se emplean para describir el estado de un sistema termodinámico. Dependiendo del sistema que se estudie se pueden elegir unas variables u otras, pero aquí se explican las que suelen ser las más comunes: masa, volumen, presión y temperatura.

- **Masa (m):** La masa es la cantidad de sustancia que hay contenida dentro del sistema. En el SI se expresa en kilogramos (kg) o número de moles (mol).

- **Volumen (V):** Es el espacio tridimensional que ocupa la masa en el sistema. En el SI se expresa en m^3 pero también se utiliza en muchas ocasiones los litros (l).

- **Presión (p):** Es la fuerza por unidad de área aplicada sobre la superficie de un cuerpo y está definida de la siguiente forma:

\[
p = \frac{dF}{dA} n
\]

(Eq. 2.1)

Donde dF es el diferencial de fuerza, dA el diferencial de área y n el vector de la dirección donde se aplica la fuerza.

A veces la presión no se mide como presión absoluta, sino como la presión por encima de la presión atmosférica, se denomina presión relativa:

\[
P_{abs} = P_{atm} + P_{rel}
\]

(Eq. 2.2)

En el SI la presión se mide en pascales (Pa) pero también se usan atmosferas (atm) y bares (bar).

- **Temperatura (T):** En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, que es la energía asociada a los movimientos de las partículas del sistema. A más movimiento de partículas, más "caliente" y mayor temperatura.

La temperatura se elemental para ver las direcciones de flujo de calor dentro de un sistema. Se miden en Kelvin en el SI (K) pero también se usa comúnmente grados centígrados (°C).

2.1.2 Concepto de calor

El agente físico que da lugar a fenómenos tales como cambios de temperatura, dilataciones, cambios de estado, etc., recibe el nombre de calor.

Se define el calor (representado con la letra Q) como la energía neta transmitida entre dos sistemas cerrados con un límite común o entre un sistema cerrado y sus alrededores, como consecuencia de una diferencia de temperaturas.

La expresión que relaciona la cantidad de calor que intercambia una masa \(m \) de una cierta sustancia con la variación de temperatura \(\Delta T \) que experimenta es:

\[
Q = mc\Delta T \\
\text{(Eq. 2.3)}
\]

Donde \(c \) es el calor específico de la sustancia. El calor específico es la energía necesaria para elevar en 1 grado la temperatura de 1 kg de masa. A continuación, se muestra una
En lo que se refiere al sistema que se estudiará en este trabajo (motor-sistema de refrigeración-exterior), es evidente que habrá varias situaciones donde se produzca transferencia de calor debido a que existen elementos a diferentes temperaturas como por ejemplo: motor-líquido refrigerante o líquido refrigerante-aire exterior.

2.1.3 Ciclos termodinámicos

Los ciclos termodinámicos son procesos donde una máquina térmica intercambia trabajo con sus alrededores a la vez que intercambia calor con dos focos térmicos a temperaturas diferentes. El ciclo de Carnot es el más importante de los ciclos termodinámicos, donde la máquina absorbe una cantidad de calor del foco caliente \(Q_h \) para convertir una parte en trabajo \(W_{\text{máq}} \) y ceder el calor restante \(Q_l \) a un foco frío.

![Figura 5: Máquina térmica que sigue el ciclo de Carnot](image-url)
Pero nuestro caso nos fijaremos en el ciclo de refrigeración, el cual aportando un trabajo al sistema (W) absorbe una cantidad de calor (Qc) del foco caliente (motor) y cede parte de este calor (Qh) al foco frío (ambiente).

Más adelante existe un apartado dedicado a los sistemas de refrigeración en motores donde se entrará más en detalle.

2.2 Termotecnia

La termotecnia es la rama de la física que estudia todos los procesos relacionados con la transferencia de calor.

Existen tres mecanismos de transferencia de calor: conducción, convección y radiación. En nuestro caso profundizaremos en la conducción y la convección que están presentes en las llamadas aletas o superficies extendidas, estas últimas se suelen colocar en los radiadores para disipar calor.

![Figura 6: Mecanismos de transferencia de calor](image)

2.2.1 Conducción

La conducción es el mecanismo por el cual hay una transferencia de calor por contacto entre 2 o más cuerpos, del más caliente al más frío. También se da la conducción dentro de un solo cuerpo (entre dos puntos con temperaturas diferentes).

La ley de Fourier, basada en observaciones experimentales, explica porque sucede el fenómeno de la conducción. Esta ley dice que si se aplica una diferencia de temperaturas ΔT en un cilindro de un material homogéneo e isótropo de sección A, longitud Δx, perfectamente aislado por su superficie lateral, entonces habrá una transferencia de potencia térmica q con sentido del extremo que está a una temperatura $T + \Delta T$ hacia el extremo que está a T y esta será igual a:
Donde λ [W/m°C] es la conductividad térmica del material y el signo menos se pone porque el signo de q_x [W] es siempre opuesto al signo de ΔT. De la (Eq. 2.4) se deduce que cuanto más conductor sea un material ($\lambda \uparrow$), más potencia térmica se transferirá.

\[q_x = \frac{\delta Q}{\Delta t} \approx -\lambda A \frac{\Delta T}{\Delta x} \]
(Eq. 2.4)

2.2.2 Convección

La convección es el mecanismo por el cual existe una transferencia de calor entre un sólido y un fluido y existen dos tipos: la natural y la forzada. En la convección natural no se interfiere en el sistema, provocando que la renovación de fluido sea más lenta y una disipación de calor menor, mientras que en la convección forzada se utilizan elementos mecánicos de impulsión del fluido (ventiladores o bombas) que favorecen la renovación del fluido en contacto con la superficie.

La ley que explica el fenómeno de la convección es la Ley de Enfriamiento de Newton, que comprobó que la potencia transferida entre un sólido y un fluido era proporcional a la superficie A expuesta y a la diferencia de temperaturas ($T_0 - T_\infty$) entre la superficie sólida y el fluido. A la constante de proporcionalidad se le llama coeficiente de convección y sus unidades son [W/m2C].
Donde h_c es el coeficiente de convección ya nombrado, T_0 es la temperatura en la superficie del sólido y T_{∞} es la temperatura del fluido.

El h_c en realidad no es una constante, ya que depende de la geometría, de la velocidad del fluido y de las propiedades del mismo en el entorno de la superficie.

La convección es el mecanismo de transferencia de calor que coge más importancia en nuestro caso, que tiene lugar entre el refrigerante y el aire que atraviesa el radiador, por eso a continuación, se explican varias fórmulas que se utilizarán para el dimensionado del radiador.

Se utilizará la ecuación básica ya nombrada (Eq. 2.3) para relacionar los caudales de aire y refrigerante que circulan con el calor transferido:

$$Q = \dot{m} \times Cp \times \Delta T$$

- Q es la cantidad de calor transferida en J/s o W
- \dot{m} es el caudal másico en kg/s
- Cp es el calor específico del fluido en J/kg °C
- ΔT es la diferencia de temperaturas °C

El calor cedido por el refrigerante a través del radiador es igual al calor recibido por el aire, es decir:
\[Q_{ref} = Q_{aire} \]
(Eq. 2.6)

Cuando la transferencia de calor se realiza en el radiador parece claro que las características de este influirán mucho:

\[Q = U_0 A_0 \Delta T_{LMDT} \]
(Eq. 2.7)

- \(U_0 \) es el coeficiente global de transferencia de calor del radiador en \(\text{W/m}^2\text{°C} \)
- \(A_0 \) es la superficie de aire en contacto con el radiador
- \(\Delta T_{LMDT} \) es el logaritmo de la diferencia media de temperaturas entre el refrigerante y el aire en \(\text{°C} \). Se calcula de la siguiente forma:

\[\Delta T_{LMDT} = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)} \]
(Eq. 2.8)

Donde \(\Delta T_1 \) es la diferencia de temperaturas de los 2 fluidos a la entrada del sistema y \(\Delta T_2 \) es la diferencia de temperaturas de los 2 fluidos a la salida del sistema, todo en \(\text{°C} \).

El coeficiente global de transferencia de calor es función de los coeficientes de convección y así como de la conducción que hay en el radiador y se calcula así:

\[U_0 = \frac{1}{\frac{1}{h_{ref}} + \frac{A_{fc}}{h_{aire} A_{ff}} + R} \]
(Eq. 2.9)

- \(h_{ref} \) es el coeficiente de convección del refrigerante en \(\text{W/m}^2\text{°C} \)
- \(h_{aire} \) es el coeficiente de convección del aire en \(\text{W/m}^2\text{°C} \)
- \(A_{fc} \) es la superficie interior del radiador en \(\text{m}^2 \)
- \(A_{ff} \) es la superficie exterior del radiador en \(\text{m}^2 \)
- \(R \) es la resistencia en conducción del radiador en \(\text{m}^2\text{°C/W} \)

Finalmente, se presenta el guion a seguir para calcular el coeficiente de convección \(h \) de un fluido:

1. Calcular las características geométricas de la sección que atraviesa el fluido:
 - \(S \): Sección del flujo del fluido
 - \(P_h \): Perímetro hidráulico, que se calcula como el perímetro que esta mojado por el fluido
 - \(D_h \): Diámetro hidráulico, que se calcula como \(D_h = \frac{4S}{P_h} \)

2. Determinar las propiedades del fluido a la temperatura media de este (la media entre la temperatura de entrada y de salida): \(C_p, \lambda, \rho, \mu, \text{Pr} \)
3. Calcular la ΔT_{LMDT}

4. Calcular el número de Reynolds como $Re = \frac{nuD_h}{\mu}$. Si Re<10000 el fluido está en régimen laminar y si Re>10000 está en turbulento.

5. Si el flujo es turbulento, calcular el coeficiente de fricción con la fórmula de Filolenko:

$$C_f = \frac{1}{(1,58 \ln(Re)-3,28)^2}$$

(Eq. 2.10)

6. Calcular el número de Nusselt. Cuando el flujo es laminar está tabulando y cuando es turbulento se calcula como:

$$Nu = \frac{C_f(Re-1000)Pr}{2+17,96C_f^{0.5}(Pr^{3/4}-1)}$$

(Eq. 2.11)

7. Calcular el coeficiente de convección h como:

$$h = \frac{Nu*\lambda}{D_h}$$

(Eq. 2.12)

En nuestro caso tendremos que calcular el coeficiente de convección tanto del refrigerante como del aire que incide en el radiador.

2.2.3 Aletas o superficies extendidas

Las llamadas aletas o superficies extendidas son elementos utilizados para disipar calor mediante conducción (por el interior de la misma) y convección (con el fluido que está en contacto).

![Figura 9: Aletas disipadoras](image-url)
El objetivo de las aletas es aumentar el área A de la (Eq. 5) en contacto con el fluido para aumentar la potencia térmica disipada. A continuación, vemos un ejemplo:

Si calculamos q para cada caso podemos observar que todos los parámetros son iguales (h_c, T_0, T_{∞}) en los 2 casos menos el área A, que gracias a las aletas es mayor en el segundo caso, lo que provoca un aumento de q.

Una aleta tiene varios parámetros geométricos que hay que explicar antes de profundizar en los cálculos:

- **Base**: Es el lugar geométrico donde se encuentra la base de todas las aletas y está a una temperatura igual a T_0.
- **Perímetro (P)**
- **Altura (L)**
- **Anchura (b)**
- **Grosor (2δ)**
- **Superficie primaria (A_0)**: La superficie primaria se calcula como el área de la base menos la sección de todas las aletas, es decir, el área donde hay convección con el fluido excluyendo la superficie de las aletas.
- **Superficie extendida (A_f)**: Es la superficie donde hay convección en las aletas, sin tener en cuenta la convección en la base.
- **Sección de la aleta (A)**: Es la sección interior de la aleta, donde hay transferencia de calor por conducción.
- **Número de aletas (n)**: Es la cantidad de aletas que descansan en la misma base.
- **Parámetro (m)**: Este parámetro depende de cada aleta y se calcula como:
Es importante entender las diferencias entre las distintas áreas nombradas para la completa compresión de los conceptos que se explicarán a continuación.

Existen 3 casos a la hora de estudiar una aleta:
- Aleta con extremo adiabático
- Aleta con temperatura de extremo conocido
- Aleta con convección en el extremo

A partir de ahora consideraremos que nos encontramos siempre en el último caso ya que es el más común en el mundo real.

La información más importante que sacamos de una aleta es el calor que esta puede disipar, siendo esta la potencia que atraviesa la aleta por su base, $q(0)$. La afirmación anterior es obvia si pensamos en el balance de energía de la aleta:

$$q(0) = q_{conv} + q(L)$$ \hspace{1cm} (Eq. 2.14)
En nuestro caso \(q(0) \) se calcula como:

\[
q(0) = \lambda A m (T_0 - T_\infty) \left[\tanh \left(mL \right) + \frac{h}{ml} \right] \\
\left[1 + \frac{h}{ml} \tanh \left(mL \right) \right]
\]

(Eq. 2.15)

Donde todos los parámetros que aparecen en la fórmula han sido comentados con anterioridad.

Retomar el ejemplo de la Figura 10 puede servir para introducir el último concepto de las aletas, la eficiencia. En el ejemplo anterior se calculó el calor disipado por convección utilizando la (Eq. 5) y suponiendo que todas las superficies estaban a la temperatura \(T_0 \), cuando en la realidad esto no es así. En el caso real la distribución de temperaturas de la aleta muestra que a medida que nos alejamos de la base, la temperatura es menor.

Figura 13: Aleta real vs Aleta ideal

Para tener en cuenta este fenómeno se utiliza la eficiencia \(e_f \) que actúa como un “factor corrector” a la hora de calcular la potencia disipada. Por lo tanto, la potencia disipada por el conjunto base+aletas y la eficiencia de una aleta se calculan de la siguiente forma:

\[
q = h_c (A_0 + e_f A_f) (T_0 - T_\infty)
\]

(Eq. 2.16)

\[
e_f = \frac{q(0)}{h_c (P L + A) (T_0 - T_\infty)}
\]

(Eq. 2.17)

Así se deduce que a la hora de calcular la potencia disipada por convección en aletas hay que
utilizar (Eq. 2.16) en lugar de (Eq. 2.5), que no es válida.

Se ha profundizado mucho en el tema de aletas porque son la base del funcionamiento del radiador, elemento importantísimo en cualquier sistema de refrigeración. En el radiador, el líquido refrigerante disipa el calor que ha absorbido en el motor hacia el aire exterior a través de aletas por el mecanismo de convección.

Figura 14: Aletas de un radiador

2.3 Simulaciones de transferencia de calor

Las simulaciones de transferencia de calor en estado estacionario (Steady State Thermal) son una herramienta de la termotecnia que utiliza métodos numéricos y algoritmos para resolver y analizar problemas en transferencia de calor. Hablar sobre esta herramienta ayudará a entender el motivo y los resultados de las distintas simulaciones realizadas a nuestro sistema de refrigeración.

Anteriormente, los resultados como la distribución de temperaturas en un sólido se obtenían experimentalmente (laboratorios, termómetros, etc...). Los estudios basados en simulaciones se utilizaron sólo como complemento de las pruebas experimentales, pero gracias a los avances logrados son actualmente conclusiones bastante fiables. Se pueden extraer resultados con el software antes de pasar a la experimentación. Esta es una gran ventaja para la industria, que reduce los costos de experimentación y prototipos y ayuda a acelerar el proceso de diseño y la mejora del producto.
2.3.1 Programas de transferencia de calor

En este trabajo se usará el programa SolidWorks para crear las distintas geometrías, como los radiadores y sus soportes.

SolidWorks es un programa para el modelado en 3D. La versión usada para este proyecto es la de estudiantes, que está disponible para cualquier estudiante de ingeniería de la ETSEIB. Esta versión no es tan potente como la profesional, la cual tiene una licencia de precio elevado, pero para las geometrías que se usarán aquí es suficiente.

Las geometrías creadas en SolidWorks serán exportadas a ANSYS en formato IGES (.igs), programa dedicado a simulaciones en distintos ámbitos de la ingeniería. De este último software también se usará la versión de estudiantes, que es bastante potente y se puede obtener desde la propia web de ANSYS.

![Figura 15: Ejemplo de geometría en SolidWorks](image1.jpg)

Figura 15: Ejemplo de geometría en SolidWorks

![Figura 16: Ejemplo de simulación en ANSYS](image2.jpg)

Figura 16: Ejemplo de simulación en ANSYS

ANSYS también dispone de un espacio de trabajo llamado Workbench que relaciona cada programa del Steady State Thermal desde un mismo espacio de trabajo, es decir, desde Workbench podemos dirigirnos al programa para modificar la geometría, así como a los programas dedicados a definir las condiciones de contorno, al solver, etc...
2.3.2 Método matemático

ANSYS Steady State Thermal utiliza el método de los volúmenes finitos para buscar la solución del problema. En primer lugar, el dominio se discretiza en una serie de volúmenes de control para posteriormente resolver la ecuación de equilibrio térmico obtenida del principio de conservación de la energía.

\[
\rho c \left(\frac{\partial T}{\partial t} + \{v\}^T \{L\} T \right) + \{L\}^T \{q\} = \bar{q}
\]

Figura 18: Ecuación resuelta en Steady State Thermal

El programa encuentra las temperaturas nodales mediante la ecuación de la Figura 18 y utiliza estas temperaturas para obtener otros parámetros térmicos.

Los principales pasos que sigue *Steady State Thermal* son:

- **Preproceso:** Discretización del dominio y aplicación de las condiciones de contorno.
- **Solución:** Resolver el problema.
- **Postproceso:** Analizar los resultados de la solución.
2.3.3 Preproceso

El preproceso consiste en crear la geometría del estudio, el dominio de la geometría y la generación de una malla. También se especifican las condiciones de contorno del dominio definido.

Una malla es la división del dominio que se va a estudiar en pequeños trozos llamados elementos. Estos elementos están formados y conectados entre sí por nodos. El tamaño y la forma de estos elementos determinan la exactitud de los resultados obtenidos y también el tiempo de resolución.

Generar la Malla

Básicamente, este procedimiento consiste en dividir la geometría en pequeños elementos de un tamaño parecido para después resolver la ecuación nombrada anteriormente en cada uno de ellos. En algunas zonas se puede refinar la malla, es decir, hacer más elementos de lo normal cuando esta es conflictiva o los cálculos son complejos, por ejemplo, una esquina de 90°.

El refinamiento de una malla puede hacer que tengamos resultados más exactos, pero a la vez hará que la resolución del problema sea más lenta.

Los elementos pueden tomar diferentes formas: hexaédricos, tetraédricos, piramidales ... Se elegirá dependiendo de la forma geométrica y del número de nodos deseados.

![Figura 19: Ejemplo de una pieza mallada](image-url)
Aplicar las condiciones de contorno

Después de definir la malla, es necesario especificar características sobre el dominio. Se pueden fijar parámetros como: Convección en una superficie, temperatura, flujo de calor, generaciones internas, aislamientos perfectos, etc…

2.3.4 Solución

Steady State Thermal utiliza un método iterativo para realizar las simulaciones. El solver parte de unos valores iniciales (definidos por el usuario o por el propio programa) y a partir de ahí comienza a resolver la ecuación nombrada anteriormente en cada elemento, mientras va actualizando los valores obtenidos a cada iteración.

El usuario puede definir un número máximo de iteraciones para la simulación, si se elige esta opción el programa itera hasta la máxima iteración definida y los resultados son los valores de la última iteración.

Otra manera más eficiente de llegar a la solución es utilizando residuos. Los residuos son unos indicadores que informan de la variación de los valores incógnita de una iteración a otra. En este caso el programa realiza las iteraciones necesarias hasta que los residuos lleguen a un cierto valor, definido previamente por el usuario.

Cuanto más pequeños sean los residuos, más parecidos son los resultados entre 2 iteraciones consecutivas y por lo tanto, se puede considerar que ya no va a haber una gran variación en las próximas iteraciones.

Figura 20: Condiciones de contorno de convección y flujo de calor
2.3.5 Postproceso

El postproceso es la parte de la simulación donde se observan los resultados obtenidos. ANSYS Steady State Thermal ofrece un gran abanico de opciones para visualizar los resultados. Se pueden hacer gráficos y diagramas de la temperatura, flujos de calor, y muchos más parámetros.

También ofrece la posibilidad de graficar nuestros propios parámetros introduciendo la correspondiente expresión.

Figura 21: Gráfico de las temperaturas de un disipador (Postproceso)

Figura 22: Gráfico de las superficies isotermas (Postproceso)
3 Introducción a los sistemas de refrigeración

Entender el funcionamiento y los elementos principales de un sistema de refrigeración es fundamental para desarrollar la refrigeración del Rotax. A continuación, se explicarán las bases del sistema de refrigeración de un coche convencional. Las diferencias entre la refrigeración de un coche de calle con uno de competición son significativas, pero la base de su funcionamiento es la misma.

3.1 Tipos de sistemas de refrigeración

Existen principalmente 2 tipos de sistema de refrigeración: líquida y por aire.

La refrigeración líquida es la más utilizada en coches de todo tipo y consiste en un circuito cerrado donde circula un fluido (normalmente agua mezclada con otro compuesto) que se encarga de absorber y ceder calor de forma cíclica entre el motor y el ambiente. Este es el tipo de refrigeración que llevará el Rotax y el que se estudiará.

Figura 23: Radiador de un F1 vs radiador de un coche convencional

Figura 24: Ejemplo de refrigeración líquida
La refrigeración por aire es comúnmente utilizada en motocicletas. En este caso no actúa ningún fluido en el sistema, simplemente el motor cede el calor que genera por convección al aire por contacto directo. Normalmente se rodea de aletas el cilindro del motor para tener más superficie por donde transferir calor y así aumentar la potencia térmica transferida. Este tipo de refrigeración no interesa en este trabajo y no se volverá a comentar.

3.2 Funcionamiento de un sistema de refrigeración

El motor es el encargado de transformar la energía química que proporciona el combustible en energía mecánica mediante el proceso de combustión. En este proceso, se produce una explosión que empuja el pistón hacia abajo, haciendo girar el eje del motor y así, producir el trabajo necesario para mover el coche. Los gases calientes producidos por la explosión se expulsan del motor, pero una parte del calor generado en la combustión es absorbida por el motor, haciendo que este aumente su temperatura.

El objetivo principal del sistema de refrigeración es absorber ese calor restante para que el motor no se caliente y trabaje a una temperatura razonable.

Cuando se arranca el motor, comienza a girar la bomba de agua que bombea líquido refrigerante a través de los cilindros del motor. El flujo de líquido refrigerante circula alrededor de los cilindros, por la parte superior de los mismos y finalmente, se dirige hacia la salida que va al radiador. Durante esta circulación de fluido el refrigerante absorbe el calor restante generado por la combustión. El paso del líquido refrigerante hacia el radiador queda cortado por un termostato, que no deja fluir el refrigerante hasta que la temperatura de este supera la temperatura óptima de funcionamiento del motor.

Cuando se abre el termostato, el refrigerante circula hasta la parte superior del radiador. Debido a la alta temperatura del líquido, se pueden generar altas presiones y es necesaria una válvula
El fluido fluye hacia la parte baja del radiador, a la vez que cede calor al aire exterior que incide en el propio radiador. Para que se transfiera más calor del fluido al aire, se utiliza una gran cantidad de aletas para aumentar la superficie de contacto con el aire. También se coloca un ventilador para hacer que la renovación de aire sea más rápida y así se produzca convección forzada.

Una vez que el líquido refrigerante llega a la parte baja del radiador, este se ha enfriado debido al calor que ha cedido y se vuelve a introducir en el motor para volver a empezar el ciclo.

A veces se utiliza parte del líquido refrigerante caliente que sale del motor para calentar el habitáculo del coche con otro radiador. En el caso de un coche de competición como los formula Ashenkoff, no se dispone de sistema de calefacción, por lo tanto, no se profundizará más en esta parte del sistema de refrigeración.

3.3 Elementos de un sistema de refrigeración.

A continuación, se entrará en detalle en cada uno de los elementos explicados anteriormente.
3.3.1 Líquido refrigerante

Como líquido refrigerante se emplea generalmente agua por ser el líquido más estable y económico, pero tiene grandes inconvenientes, ya que, a temperaturas de ebullición, el agua es muy oxidante y ataca a las partes metálicas del motor. Por otra parte, y debido a la dureza de las aguas, precipita gran cantidad de sales calcáreas que pueden obstruir las canalizaciones y el radiador. Otro de los inconvenientes del agua es que a temperaturas por debajo de 0 °C se solidifica, aumentado de volumen, lo cual podría reventar los conductos por los que circula.

Para evitar estos inconvenientes del agua se emplean los anticongelantes, que son unos productos químicos preparados para mezclar con el agua de refrigeración de los motores y conseguir los siguientes fines:

- Disminuir el punto de congelación del líquido refrigerante, el cual, en proporciones adecuadas, hace descender el punto de congelación entre 5 y 35 °C.
- Aumentar la temperatura de ebullición del agua, para evitar pérdidas en los circuitos que trabajen por encima de los 100 °C.
- Evitar la corrosión de las partes metálicas por donde circula el agua.

El principal aditivo del anticongelante es el compuesto por glicerina o alcohol, el producto más utilizado es “etilenglicol”. El punto de congelación se determina según el porcentaje de este elemento.

3.3.2 Bomba de agua

La bomba de agua es el corazón del sistema de refrigeración y su misión es hacer que circule el fluido a través de todo el sistema.

Se halla instalada en el bloque del motor y es movida directamente por la polea del cigüeñal, a través de una transmisión por correa. Dicha bomba aspira el líquido del radiador y la hace circular por el interior del bloque y la culata para refrigerar los cilindros y la cámara de combustión. En el interior de la misma se mueve una turbina de aletas unida al árbol de mando de bomba.

![DIAGRAMA INTERNO DE UNA BOMBA DE AGUA](image)

Figura 27: Esquema de la bomba de agua
3.3.3 Termostato

El termostato se utiliza para mantener la temperatura de funcionamiento del motor entre unos límites preestablecidos. Va situado frecuentemente en la boca de salida de la culata del motor. Cuando la temperatura del refrigerante es inferior a la deseada, el termostato cierra la válvula de paso impidiendo la salida hacia el radiador, con lo que la circulación se establece directamente desde la bomba, que al aspirar el agua caliente y mandarla al circuito interno del motor sin refrigerar, hace que el agua ya caliente alcance pronto mayor temperatura. Cuando el agua ha alcanzado la temperatura adecuada, el termostato abre la válvula dejando libre la circulación hacia el radiador, con lo cual se establece el funcionamiento normal del circuito de refrigeración.

![Esquema de funcionamiento del termostato](image)

Figura 28: Esquema de funcionamiento del termostato

3.3.4 Radiador

El radiador sirve para enfriar el refrigerante. El líquido se enfria por medio del aire que choca contra la superficie metálica del radiador. Está formado por dos depósitos, uno superior y otro inferior, aunque también pueden estar en los laterales.

Ambos están unidos entre sí por una serie de tubos finos rodeados por numerosas aletas disipadoras. Tanto los tubos y aletas como los paneles se fabrican en aleación ligera (actualmente sobre todo de aluminio o latón), facilitando, con su mayor conductibilidad térmica, la rápida evacuación de calor a la atmósfera.
El depósito superior lleva una boca de entrada que se comunica por medio de un manguito de silicona con la salida caliente de agua de la culata del motor. En el depósito inferior va instalada la boca de salida del agua refrigerante, unida por otro manguito de silicona a la entrada de la bomba.

La tapa del radiador tiene como función el cierre del tanque superior, y al mismo tiempo limita la presión de trabajo del circuito. En esta tapa se integra habitualmente la válvula de seguridad mencionada que permite la salida de refrigerante a partir de cierta presión para proteger el circuito y otra que permite la entrada de aire exterior evitando que se produzca el vacío en el circuito en caso de pérdidas evitando averías graves en ambos casos.

En la Figura 30 se muestran variantes de la disposición de las aletas en el radiador.
4 Motor Rotax 125 MAX EVO

A continuación, se entrará en detalle en el motor escogido por Formula Ashenkoff para el K100. Se comentarán características básicas como peso, dimensiones, potencia que aporta, etc… Posteriormente se hablará sobre el sistema de refrigeración que lleva este motor para encarar el diseño de adaptación a un coche tipo formula, ya que es un motor para karts.

4.1 Funcionamiento y características

En el Manual de Instalación encontramos las siguientes características generales del motor:

- 1 cilindro de 2 tiempos y un desplazamiento de 125 cm³
- Eje de equilibrio
- Encendido digital de batería
- Arrancado eléctrico
- Carburador deslizante
- Silenciador de admisión con filtro de aire integrado
- Sistema de escape deportivo con silenciador trasero

Los motores de la familia Rotax MAX evo son motores diseñados para karts de competición. Son escalables de manera que pueden montarse todos en el mismo chasis, y sustituyendo algunas piezas el modelo de menor potencia puede convertirse en el modelo superior. Las curvas de potencia de los distintos modelos son las siguientes.

![Performance graphs](image)

Figura 31: Curvas de potencia de los modelos de Rotax

Todos los modelos excepto el DD2 evo tienen una marcha y transmisión por cadena. Por lo tanto, el modelo elegible para nuestro caso (hay que evitar la incorporación de una caja de cambios) más potente es el 125 MAX evo, con una potencia máxima de 21 kW a 11.500 min⁻¹. La velocidad máxima de giro es de 14.000 min⁻¹. El máximo par es de 21 Nm a 9000 rpm.
En el TFM Diseño y caracterización de un monoplaza para niños de Joan Caballé se encuentran varios cálculos referidos a este motor en caso de estar instalado en el K100:

- \(v_{\text{máx}} \ (11,500 \text{ rpm}) = 32,7 \frac{m}{s} = 117,7 \text{ km/h} \)
- \(v_{\text{par máx}} \ (9000 \text{ rpm}) = 25,5 \frac{m}{s} = 91,8 \text{ km/h} \)
- \(a_{\text{par máx}} \ (9000 \text{ rpm}) = 3,1 \frac{m}{s^2} \)

En el TFM de Joan Caballé se utiliza la siguiente expresión para relacionar la velocidad de giro del motor con la velocidad del coche:

\[
v_{\text{coche}} = w_{\text{rueda}} \frac{1}{T} r_d = \frac{2\pi}{60} \text{rpm} \frac{1}{7,17} 0,194 \quad \text{(Eq. 4.1)}
\]

El cálculo de los parámetros \(i \) y \(r_d \) se detalla en el trabajo nombrado anteriormente. Saber la velocidad del coche nos ayudará a conocer la cantidad de aire que entrará por las entradas de aire para refrigerar el radiador.

Como observación, el Rotax 125 MAX EVO no lleva cuentarrevoluciones ni indicador de temperatura del refrigerante. Si queremos disponer de esta información hay que comprar instrumentación aparte.

Figura 32: Punto de medida de la temperatura del refrigerante

Debido a temas de confidencialidad a la hora de mostrar los planos del motor y para facilitar la geometría, se ha considerado el motor de forma cúbica con las medidas reales, pero entrando en detalle en la localización de los manguitos de entrada y salida del refrigerante que van hacia el radiador. Las localizaciones de estos 2 tubos son muy importantes a la hora de integrar el sistema de refrigeración en el vehículo. En esta aproximación no se tiene en cuenta el radiador que lleva el motor, ya que hay que rediseñar este elemento en su totalidad. Estos planos se muestran en el anexo A.
4.2 Refrigeración

En el Manual de Instalación encontramos las siguientes características sobre el sistema de refrigeración.

- Refrigeración líquida
- Flujo forzado por una bomba de agua integrada
- Termostato integrado

El circuito de refrigeración comienza con el viaje del refrigerante saliendo del radiador hasta la bomba de agua a través de la caja del cigüeñal. La bomba de agua es accionada por el cigüeñal a través del reductor y la bomba impulsa el refrigerante a través del cilindro y de la cabeza del cilindro de vuelta al radiador.

El manual también fija el líquido refrigerante, se tiene que usar una mezcla de agua pura y anticongelante etilenglicol. Para llenar en su totalidad el circuito refrigerante hay que introducir por la tapa el radiador una cantidad de 0,7 litros de refrigerante.

En lo que se refiere a la instalación del radiador, el fabricante recomienda instalar el radiador en una zona donde el aire impacte en su totalidad en toda la superficie del radiador. El fabricante también informa de que, con la localización estándar del radiador, no es necesaria ninguna ventilación del aire. En la Figura 33 se muestran todas las piezas del radiador.

Figura 33: Piezas de los radiadores de los modelos de Rotax
En la Figura 33 el radiador del Rotax 125 MAX EVO es el que aparece en la parte izquierda.

Hay varios aspectos que mostrar sobre los límites operativos del motor:

- El motor solo funciona al máximo rendimiento después de alcanzar la temperatura de funcionamiento.

- Trabajar en una temperatura por debajo de la mínima puede causar daños en el pistón.

- Trabajar en una temperatura por encima de la máxima también puede causar daños en el pistón.

- Si el motor no llega a la temperatura mínima por la baja temperatura del ambiente, la eficiencia de la refrigeración del radiador debe reducirse cubriendo el mismo con la aleta que lleva incorporada. Esto disminuirá la sección de aire que incide en el radiador.

- Las aletas de refrigeración deben limpiarse periódicamente para asegurar la máxima capacidad de enfriamiento.

A continuación, se muestra en la Tabla 3 las temperaturas de operación del motor.

<table>
<thead>
<tr>
<th>Temperaturas de operación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mínima [°C/°F]</td>
</tr>
<tr>
<td>Óptima [°C/°F]</td>
</tr>
<tr>
<td>Máxima [°C/°F]</td>
</tr>
</tbody>
</table>

Tabla 3: Temperaturas de operación del motor

Figura 34: Conjunto radiador-motor
5 Diseño del Cooling System

Como se ha visto en el apartado anterior, el motor ya lleva integrado gran parte de los elementos del sistema de refrigeración como la bomba de agua, el termostato y la fijación del líquido refrigerante a utilizar. También lleva un radiador integrado, pero es necesario rediseñarlo porque está pensado para utilizarse en un kart y en nuestro caso utilizaremos el motor en un fórmula.

En el caso de un fórmula, el motor está tapado por la carrocería, al contrario que en un kart que está en su totalidad al aire libre. Este hecho hace pensar a priori que el motor se calentará más en el caso del fórmula que en el kart.

También hay que tener en cuenta que un fórmula tiene entradas de aire hacia los radiadores a ambos lados del vehículo y colocar solo un radiador a un lado descompensaría el peso del coche, por lo tanto, en principio hay que considerar que habrá que colocar 2 radiadores en vez de uno.

5.1 Pérdidas de calor del motor

El diseño empieza por definir el tamaño del radiador de tal forma que consiga extraer las pérdidas en forma de calor del motor en cualquier situación de funcionamiento del vehículo.

Calcular precisamente el calor a disipar es el punto de partida del diseño de los radiadores y el porqué del sistema de refrigeración.

Si solo se dispone de la curva de potencia, una buena aproximación para calcular el calor generado por el motor es:

$$Q(\text{watt}) = 482,11 \times P(CV)$$ \hspace{1cm} (Eq. 5.1)

A partir de esta relación podemos encontrar el calor que genera el motor en función de la velocidad a la que va el coche:

![Figura 35: Calor generado por el motor](image-url)
En la Figura 35 solo se ha considerado que el motor se lleva como máximo al punto donde produce una potencia máxima, es decir, hasta 11.500 rpm.

Por lo tanto, viendo el gráfico anterior, es necesario diseñar unos radiadores que en total sean capaces de disipar como mínimo 13,93 kW. Teniendo en cuenta que habrá 2 radiadores, la metodología a seguir será dimensionar un radiador que pueda disipar la mitad de la potencia generada, es decir, **6,965 kW** y la otra mitad será disipada por el otro radiador, idéntico al diseñado y en una localización simétrica en el coche.

Ahora se tiene que determinar la temperatura del refrigerante entrando y saliendo del radiador, así como la temperatura del aire exterior al entrar y al salir del radiador.

5.2 Fijación de temperaturas

Cuando se arranca el motor, este comienza a aumentar su temperatura, a la vez que el refrigerante, que cuando alcanza una temperatura de 45ºC provoca que el termostato se abra dejando el paso hasta el radiador. Para facilitar los cálculos se considera que trabajamos en estado estacionario, es decir, con una temperatura de refrigerante igual a 65ºC, que es la óptima definida por el fabricante.

Para el diseño se considera también que se trabaja en un clima cálido, que es cuando más le cuesta al sistema enfriar el motor. La temperatura que se usará será de 35ºC. Se ha comprobado que cuando se circula en un clima cálido con un kart propulsado por el Rotax 125 MAX EVO, la temperatura de dicho motor ronda los 70-75ºC, con cierto margen a los 85ºC que fija como máximo el fabricante. Las temperaturas escogidas de ambos fluidos están en concordancia porque los grados que pierde el refrigerante son los mismos que gana el aire.

<table>
<thead>
<tr>
<th>Parámetros iniciales (un radiador)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad de calor a ceder al aire</td>
<td>6965 W</td>
</tr>
<tr>
<td>Temperatura de la entrada/salida del refrigerante al radiador</td>
<td>65ºC/60ºC</td>
</tr>
<tr>
<td>Temperatura del aire a la entrada/salida del radiador</td>
<td>35ºC/40ºC</td>
</tr>
</tbody>
</table>

Tabla 4: Parámetros para el diseño del radiador
5.3 Área frontal disponible

El diseño de la carrocería del K100 se realizó en el Trabajo Final de Grado de Albert Mateo Muñoz, *Design and aerodynamic analysis of a new Formula Ashenkoff car*.

De este diseño obtenemos el área frontal dedicada a la refrigeración de un radiador que es de 0,040792 m2.

![Figura 36: Carrocería del K100](image)

Figura 36: Carrocería del K100

Figura 37: Área de la entrada de aire lateral del K100

![Figura 37: Área de la entrada de aire lateral del K100](image)
La carrocería también dispone de una entrada para refrigerar directamente el motor encima de la cabeza del piloto y esta tiene un área de 0,015227 m².

En el diseño del radiador solo consideraremos el área de la Figura 37.

5.4 Dimensionado del radiador

Ahora hay que calcular las características y dimensiones que debería tener el radiador para la velocidad alcanzada cuando se genera el máximo calor de 32,58 m/s (117,3 km/h).

La metodología utilizada es utilizar un modelo de radiador ya existente, pero dimensionar la altura, la anchura y el grosor del mismo utilizando los parámetros y fórmulas definidas hasta ahora, para que sea capaz de disipar 6965 W.
El modelo tiene un conjunto de 19 tubos por donde circula en refrigerante de forma horizontal y 20 espacios donde irán colocadas las aletas. El objetivo es encontrar un radiador con una altura bastante mayor que la anchura, ya que el espacio en el coche es muy limitado.
A continuación, se muestran las cotas de los tubos y las aletas, que ya están fijadas y serán las mismas durante todos los cálculos.

Se puede observar que hay una cota no definida en los planos de los tubos. Esta cota define el grosor del radiador y será una incógnita dejándose indicada hasta definir completamente el radiador en el último apartado.
5.4.1 Propiedades de los fluidos

Trefi: Temperatura del refrigerante a la entrada del radiador = 65°C
Treff: Temperatura del refrigerante a la salida del radiador = 60°C

Propiedades físicas del refrigerante a 62,5°C (se utiliza una mezcla de 50% de agua y 50% de etilenglicol):
- Calor específico (Ce): 3297,63 J/kg °C
- Densidad (ρ): 1053,25 kg/m³
- Viscosidad dinámica (μ): 0,003367 Pa s
- Conductividad (λ): 0,43 W/m °C
- Prandtl (Pr): 25,82

Tairei: Temperatura del aire a la entrada del radiador = 35°C
Tairef: Temperatura del aire a la salida del radiador = 40°C

Propiedades físicas del aire a 37,5°C:
- Calor específico (Ce): 1004 J/kg °C
- Densidad (ρ): 1,136 kg/m³
- Viscosidad dinámica (μ): 1,913*10⁻⁵ Pa s
- Conductividad (λ): 0,027 W/m °C
- Prandtl (Pr): 0,718

5.4.2 Flujo de aire y área necesaria

De los balances de energía de los intercambiadores de calor obtenemos las siguientes ecuaciones:

\[
\dot{Q}_{ref} = \dot{m}_{ref} C_{ref} (T_{reff} - T_{refi}) = \dot{m}_{aire} C_{aire} (T_{airef} - T_{airei}) \]
(Eq. 5.2)

\[
\dot{m}_{aire} = \frac{q_{ref}}{C_{aire}(T_{airef} - T_{airei})} = \frac{6965}{1004(40 - 35)} = 1,3875 \text{ kg/s} \]
(Eq. 5.3)

Área necesaria para obtener el flujo de aire requerido:

\[
\dot{m}_{aire} = v_{aire}\rho_{aire} A_{tot} \]
(Eq. 5.4)

- \(A_{tot} \) es el área frontal del radiador en contacto con el aire necesaria para obtener \(\dot{m}_{aire} \)
- \(v_{aire} \) es la velocidad del aire y en nuestro caso es 32,58 m/s (117,3 km/h)
- \(\rho_{aire} \) es la densidad del aire
48 Memoria

- \dot{m}_{aire} es el flujo másico de aire que atraviesa el radiador

Obtenemos:

$$A_{tot} = \frac{\dot{m}_{\text{aire}}}{v_{\text{aire}Paire}} = \frac{1,3875}{32,58+1,136} = 0,0375 \text{ m}^2 < 0,040792 \text{ m}^2 \quad \text{(Eq. 5.5)}$$

Se confirma que con la entrada de aire que hay en la carrocería obtenemos el caudal de aire necesario.

5.4.3 Dimensiones del panel

Como se ha calculado anteriormente, el área frontal de radiación necesaria es 0,0375 m². Esta es el área por la cual circula el aire a través del panel, es decir, el espacio libre que dejan los tubos entre sí quitándole la sección de las aletas.

Ahora se calcula el área que tiene que proporcionar cada recinto (separación entre tubos y donde van las aletas). El número de recintos es 20 porque hay 19 tubos.

$$A_1 = \text{área de una fila de aletas}$$

$$A_1 = \frac{0,0375}{20} = 0,001875 \text{ m}^2 \quad \text{(Eq. 5.6)}$$

Figura 45: Perfil de una aleta y áreas A2 y A3
Para cada aleta circula un aire de:

\[A_2 = \frac{3 \cdot 15.75}{2} = 2.363 \times 10^{-5} \text{ m}^2 \]
(Eq. 5.7)

\[A_3 = 4 \cdot A_2 = 9.45 \times 10^{-5} \text{ m}^2 \]
(Eq. 5.8)

Entonces el número de aletas que se necesitan en un recinto son:

\[\frac{A_1}{A_3} = \frac{0.001875}{9.45 \times 10^{-5}} = 19.84 \approx 20 \text{ aletas} \]
(Eq. 5.9)

Una vez tenemos el número de aletas por recinto podemos calcular la base y la altura del radiador:

Anchura = nº aletas * anchura aleta = 20 * 6 = 120 mm
(Eq. 5.10)

Altura = (altura recinto * nº recintos) + (altura tubos * nº tubos) = (16 * 20) + (4 * 19) = 396 mm
(Eq. 5.11)

Por lo tanto, el panel tendrá que tener unas dimensiones de 396*120 mm.

Figura 46: Dimensiones del panel
5.4.4 Flujo de refrigerante

Volvemos a utilizar la (Eq. 5.2) para calcular en este caso el caudal de refrigerante que atraviesa los tubos:

\[
\dot{Q}_{ref} = \dot{m}_{ref} C_{ref} (T_{ref} - T_{refi})
\]

\[
\dot{m}_{ref} = \frac{\dot{Q}_{ref}}{C_{ref}(T_{ref} - T_{refi})} = \frac{6965}{3297.63(65 - 60)} = 0.4224 \text{ kg/s}
\]

(Eq. 5.12)

5.4.5 Caudal que proporciona la bomba

El caudal que debe proporcionar la bomba es:

\[
Q_{bomb} = \frac{\dot{m}_{ref}}{\rho_{ref}} = \frac{0.4224}{1053.25} = 0.0004 \text{ m}^3/\text{s}
\]

(Eq. 5.13)

5.4.6 Cálculo de h_{aire}

Utilizando el guion explicado en el apartado 2.2.2 de este trabajo, pasamos a calcular el coeficiente de convección del aire que entra en el coche:

Diámetro hidráulico y número de Reynolds

Figura 47: Perfil interior de una aleta
S = A_3 = 9,45 \times 10^{-5} \, m^2

\begin{align*}
P_h &= \pi \times 0,001 + \pi \times 0,00125 + 0,0135 \times 2 + 0,006 = 0,04 \, m \\
D_h &= \frac{4S}{P_h} = \frac{4 \times 9,45 \times 10^{-5}}{0,04} = 9,45 \times 10^{-3} \, m \\
(\text{Eq. 5.14})
\end{align*}

\begin{align*}
Re &= \frac{\rho u D_h}{\mu} = \frac{1,136 \times 32,58 \times 9,45 \times 10^{-3}}{1,913 \times 10^{-5}} = 18283 > 10000 \\
(\text{Eq. 5.15})
\end{align*}

Se puede comprobar que el flujo es turbulento

Coeficiente de fricción y número de Nusselt

Como nos encontramos en el caso de flujo turbulento primero hay que calcular el coeficiente de fricción de la siguiente forma:

\begin{align*}
C_f &= \frac{1}{(1,58 \ln(Re) - 3,28)^2} = \frac{1}{(1,58 \ln(18283) - 3,28)^2} = 6,69 \times 10^{-3} \\
(\text{Eq. 5.16})
\end{align*}

A continuación, calculamos el número de Nusselt con la (Eq. 2.11):

\begin{align*}
Nu &= \frac{C_f(Re - 1000)Pr}{2 + 17,96C_f^{0,5}(Pr^{3/2} - 1)} = \frac{6,69 \times 10^{-3}(18283 - 1000)0,718}{2 + 17,96(6,69 \times 10^{-3})^{0,5}(0,718^{3/2} - 1)} = 48,58 \\
(\text{Eq. 5.17})
\end{align*}

Cálculo de \(h_{aire} \)

Finalmente, calculamos el coeficiente de convección el aire como:

\begin{align*}
\bar{h}_{a} &= \frac{Nu \lambda}{D_h} = \frac{48,58 \times 0,027}{9,45 \times 10^{-3}} = 138,8 \, \frac{W}{m^2 \cdot ^\circ C} \\
(\text{Eq. 5.18})
\end{align*}
5.4.7 Cálculo de h_{ref}

A partir de ahora se dejarán las fórmulas indicadas en función de la cota desconocida x hasta el cálculo del calor disipado. En ese punto se fijará el calor que queramos disipar por el radiador y resolviendo todas las ecuaciones encontraremos la cota x, que está relacionada con el grosor de radiador de la siguiente manera:

$$x = L_{aletas} - 4 \ [mm]$$

(Eq. 5.19)

La longitud de las aletas es igual al grosor del radiador.

Diámetro hidráulico y número de Reynolds

Figura 48: Sección del tubo

$$S = (\pi \times 1,75^2 + x \times 3,5) \times 10^{-6} \ [m^2]$$

$$P_h = (2\pi \times 1,75 + 2x) \times 10^{-3} \ [m]$$

$$D_h = \frac{4S}{P_h}$$

(Eq. 5.20)

Para calcular el número de Reynolds, en primer lugar, hay que calcular la velocidad del refrigerante en los tubos:

$$v_{ref} = \frac{m_{ref}}{\rho S n^2 tubos} = \frac{0,4224}{1053,25\pi(\pi \times 1,75^2 + x \times 3,5) \times 10^{-6} \times 19}$$

(Eq. 5.21)

En este caso el número de Reynolds depende de x y no se puede saber si el flujo es laminar o turbulento. Debido a que el flujo de refrigerante es muy pequeño, se supone que la velocidad también debería serlo, por lo tanto, se considerará que el flujo es laminar y cuando obtengamos los resultados de todas estas ecuaciones se comprobará que la hipótesis es correcta.

En el caso de un flujo laminar interno, el número de Nusselt está tabulado y para una sección...
como la nuestra (prácticamente una sección rectangular) es igual a 5,36.

Buscamos la ecuación que calcula el coeficiente de convección del refrigerante:

\[h_{ref} = \frac{N\mu \lambda}{D_h} = \frac{5,36 \times 0,43}{D_h} \]
(Eq. 5.22)

5.4.8 Cálculo del coeficiente global \(U_0 \)

Para calcular el coeficiente \(U_0 \) es necesario recordar la fórmula (Eq. 2.9) y calcular las áreas de contacto con el refrigerante (\(A_{fc} \)) y con el aire (\(A_{ff} \)) que siguen dependiendo de la cota \(x \):

\[A_{fc} = P \times L_{tub} \times n^9tubos = (2\pi \times 1,75 + 2 \times x) \times 10^{-3} \times 0,12 \times 19 \]
(Eq. 5.23)

\[A_{ff} = P \times L_{aleta} \times n^9recintos \times n^5aletas \times 2 = 0,04 \times L_{aleta} \times 10^{-3} \times 20 \times 20 \times 2 \]
(Eq. 5.24)

El número 2 multiplicando se utiliza para tener en cuenta la superficie interior y exterior de la aleta (la aleta es tan fina que son prácticamente iguales).
\[U_0 = \frac{1}{\frac{1}{h_{ref}} + \frac{A_{fc}}{\lambda_{alu}} + e} \]
(Eq. 5.25)

- \(e \) es el grosor del tubo y vale 0,00025 m
- \(\lambda_{alu} \) es la conductividad del aluminio (material del radiador) y vale 205 W/m °C

5.4.9 Modelo final

Llegados a este punto, utilizamos la (Eq. 2.7) para fijar el calor que queremos disipar, en nuestro caso es 6965 W:

\[q_{diss} = U_0 A_{ff} \Delta T_{LM} = 6965 \text{ W} \]
(Eq. 5.26)

Donde \(\Delta T_{LM} \) se calcula como:

\[\Delta T_1 = T_{ref} - T_{aire} = 65 - 35 = 30 \]
\[\Delta T_2 = T_{ref} - T_{aire} = 60 - 40 = 20 \]
\[\Delta T_{LM} = \frac{\Delta T_1 - \Delta T_2}{\ln(\frac{\Delta T_1}{\Delta T_2})} = \frac{30 - 20}{\ln(\frac{30}{20})} = 24,66 \text{ °C} \]
(Eq. 5.27)

A continuación, se introducen las ecuaciones 5.19, 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26 en un solver de la calculadora HP 50g y al resolver las ecuaciones se obtienen los siguientes resultados:

<table>
<thead>
<tr>
<th>RESULTADOS DEL SISTEMA DE ECUACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_h)</td>
</tr>
<tr>
<td>(v_{ref})</td>
</tr>
<tr>
<td>(Re)</td>
</tr>
<tr>
<td>(h_{ref})</td>
</tr>
<tr>
<td>(A_{fc})</td>
</tr>
<tr>
<td>(A_{ff})</td>
</tr>
<tr>
<td>(U_0)</td>
</tr>
<tr>
<td>(x)</td>
</tr>
<tr>
<td>(L_{aleta})</td>
</tr>
</tbody>
</table>

Tabla 5: Resultados del sistema de ecuaciones
No se ha considerado ningún coeficiente de seguridad en los cálculos (se diseña para disipar 6965 W exactos) porque en ningún momento se ha tenido en cuenta la entrada de aire que está encima de la cabeza del piloto que también enfriá el motor por contacto directo. Este hecho se considera suficiente para tener en cuenta como factor de seguridad.

Ahora ya sabemos el valor de la cota x y de la profundidad de las aletas, por lo tanto, el modelo del radiador ya está completamente dimensionado. También damos por buena la hipótesis de que el refrigerante tiene un flujo laminar, ya que el número de Reynolds es igual a 369,7 y es menor que 10000.

La sección del tubo final queda como:

![Figura 49: Sección de los tubos (x conocida)](image)

Finalmente, se han añadido las partes laterales del radiador donde se encuentran las entradas de las manguetas por donde circula el refrigerante.

![Figura 50: Frontal del radiador diseñado](image)
Los planos de dicho radiador se encuentran en el Anexo B.

6 Simulaciones del Cooling System

Una vez dimensionado el radiador se puede pasar a realizar las correspondientes simulaciones con el objetivo de validar los cálculos realizados.

Como se comentó al principio del trabajo, se realizará una simulación en estado estacionario con el programa ANSYS Steady State Thermal. Los resultados que se esperan obtener son el calor disipado por el radiador y la distribución de temperaturas de una parte del radiador.

6.1. Validación del radiador

Partiendo del radiador diseñado en el apartado anterior, se quiere confirmar que es capaz de disipar los 6965 W para los que está diseñado.

Debido a la compleja geometría del radiador (el número de aletas es bastante elevado) se ha decidido estudiar un tubo de refrigerante junto a dos filas de aletas del radiador, para facilitar los cálculos y reducir las largas esperas de resolución en caso de simularse el radiador entero.
Por lo tanto, también hay que recalcular el calor a disipar por el dominio simulado, que será igual a:

\[
Q_{tubo} = \frac{Q_{radiator}}{\text{nº de tubos}} = \frac{6965}{19} = 366,6 \, W
\]
(Eq. 6.1)

Figura 52: Radiador entero

Figura 53: Parte del radiador que se va a simular
Una vez creada la geometría en SolidWorks, se guarda en el formato .igs, para posteriormente ser importada desde el espacio de trabajo Workbench.

Cuando ya se ha importado la geometría el siguiente paso es generar una malla que se adecue a los resultados que queremos tener, pero sin complicar los cálculos en exceso.

Se ha escogido una malla con una longitud máxima de elemento de 10 mm y en el apartado de estadísticas se puede observar que hay un total de 24794 nodos, por debajo de los 32000 a los que está limitada la versión académica de ANSYS.

Una vez creada la malla, ya se puede pasar a fijar las condiciones de contorno.
En primer lugar, se define la convección que se produce en el interior del tubo, con un coeficiente de convección del refrigerante \(h_{\text{ref}} = 356.7 \text{ W/m}^2\text{°C} \) y una temperatura ambiente igual a 62.5 °C, que es la media entre la temperatura a la que entra y sale el refrigerante del tubo.

![Figura 56: Convección en el interior del tubo](image1)

La siguiente condición es la convección del modelo con el aire. Se escogen las superficies exteriores y se define un coeficiente de convección igual a \(h_{\text{aire}} = 138.8 \text{ W/m}^2\text{°C} \) y una temperatura de 37.5 °C, que es la media entre las temperaturas de entrada y salida del radiador.

![Figura 57: Convección con el aire del exterior](image2)

Para tener en cuenta el fluido que circula por dentro del tubo, se ha definido una temperatura en la cara interior del tubo igual a 62.5 °C. También se considera que los extremos de las aletas están a esta temperatura porque, aunque no aparezca en la geometría, en contacto con los extremos hay otros tubos por donde circula refrigerante que se encuentran a esta temperatura.
Llegados a este punto ya están todas las condiciones de contorno definidas y solo falta resolver el problema para obtener los resultados que deseamos.

Tras la resolución, podemos observar la distribución de las temperaturas de nuestro modelo, que queda de la siguiente forma:
La temperatura máxima que se da es de 63,357 ºC, que resulta bastante lógica porque la máxima temperatura definida es de 62,5 ºC y se encuentra en el tubo, que es por donde circula el refrigerante a esta temperatura (el error de 1 ºC puede deberse a la malla). La temperatura mínima es de 56,71 ºC, que se encuentra entre los 62,5 ºC del refrigerante y los 37,5 ºC del aire exterior.

A continuación, observamos el flujo de calor de la pieza en W/m²:

![Figura 61: Flujo de calor en diferentes partes del modelo](image1)

Es lógico encontrar las zonas con mayor flujo de calor en las zonas de mayor temperatura, cerca del tubo y en los extremos de las aletas. Esto sucede porque la diferencia de temperaturas de esas zonas con la temperatura del aire exterior es mayor que en zonas como la parte intermedia de las aletas y a mayor diferencia de temperaturas, mayor transferencia de potencia térmica.

Por último, observemos el calor disipado por la pieza que nos proporciona el programa:

![Figura 62: Calor disipado por el tubo](image2)
Obtenemos que el tubo disipa 30,3 W y el conjunto de las aletas 308 W, esto hace un total de 338,3 W, relativamente cerca de los 366,6 W que esperábamos.

$$\varepsilon_{relativo} = \frac{|Valor\ obtenido - Valor\ exacto|}{Valor\ exacto} \times 100 = \frac{338.3 - 366.6}{366.6} \times 100 = 7,72\% \quad (Eq.\ 6.2)$$

El error relativo entre los 2 valores es igual a un 7,72 %. Este error puede ser debido a factores como el refinamiento de la malla, que seguramente se vería reducido con un mallado con más elementos y con refinamiento en zonas conflictivas, como la unión de las aletas con el tubo. El error también puede ser debido a las distintas aproximaciones realizadas, como escoger las temperaturas medias de los fluidos o fijar la temperatura de los extremos de las aletas. Está claro que los resultados de la simulación se podrían mejorar, sin embargo, un error del 7,72 % es muy aceptable en una simulación de este tipo y se puede considerar que el modelo queda validado con las simulaciones realizadas.
7 Integración en el K100

Con el diseño finalizado y validado, el próximo objetivo es integrarlo en el chasis del K100, ya diseñado por Joan Caballé en su Trabajo Final de Máster Diseño y caracterización de un monoplaza para niños. En este apartado se mostrarán varias vistas mostrando el sistema de refrigeración instalado en el coche, así como el diseño de varias piezas necesarias para la integración del mismo.

Al concluir este apartado se dará por finalizado el proyecto.

7.1 Aproximación del motor

Como se puede observar en la Figura 63, el motor tampoco aparece integrado en el chasis. De esta labor se encarga otro estudiante en su Trabajo Final de Máster, en el cual se diseña con detalle el soporte y la posición exacta del motor. En este trabajo no se entrará en detalle en la posición exacta del motor, pero es necesario hacerse una idea aproximada de su situación en el coche, ya que en el nacen las salidas y entradas de líquido refrigerante.

Cogiendo las medidas del modelo simplificado del motor comentado en el apartado 4.1 Funcionamiento y características de este trabajo, se ha comprobado que hay espacio suficiente en el chasis y el motor no choca con ningún elemento.

Figura 64: Chasis del K100
Tras la comprobación, podemos confirmar que el motor cabe perfectamente en el espacio dedicado a ello y que queda suficiente espacio para la inserción de los maguitos que conducen el líquido refrigerante. El manguito por donde sale el refrigerante caliente se encuentra en la parte superior, mientras que el manguito por donde entra el motor el refrigerante enfriado se encuentra en la parte frontal del motor, justo detrás de donde se sienta el piloto.
A continuación, se muestra el motor aproximado dentro del coche:

Figura 67: Motor situado del coche (Vista 1)

Figura 68: Motor situado del coche (Vista 2)

Con el motor situado, el próximo objetivo es escoger la localización de los radiadores y diseñar los elementos que los mantendrán fijados al coche.
7.2 Diseño de los soportes

Con el lugar del motor establecido, el siguiente paso es encontrar la forma de fijar los radiadores al coche sin que estos choquen contra ningún elemento de la carrocería o el chasis.

En el CAD del K100 se ha introducido como parte del ensamblaje el radiador diseñado y modelado en 3D. En la Figura 68 se puede ver como no choca contra el chasis y en la Figura 69 comprobamos que no hay conflictos con el chasis.

![Figura 68: Radiador sin conflictos con el chasis](image1)

![Figura 70: Radiador sin conflictos con la carrocería](image2)

Al saber la localización del radiador que no da problemas, el siguiente paso es aclarar las medidas que ayudarán a diseñar los soportes que lo fijarán al coche.
En primer lugar, se diseñarán los soportes de la parte inferior, es decir, unos soportes que irán fijados en el fondo plano del monoplaza mediante soldadura, y por el otro lado fijados a la parte baja del radiador con tornillos para facilitar la sustitución del radiador en caso de desperfecto o rotura.

En las figuras 70 y 71 se muestran algunas medidas necesarias para la obtención de estos soportes.

Figura 71: Medidas para la altura de los soportes base

Figura 72: Medidas para el ángulo de los soportes base
Con SolidWorks se han diseñado los nombrados soportes y se han elaborado los planos de los mismos, que se encuentran en el Anexo C.

Con un soporte a cada lado el radiador queda fijado al fondo plano, como se ve en la Figura 73.

A continuación, se ha buscado la distancia entre el radiador y el chasis con la herramienta Medir para saber la dimensión máxima que tiene que tener el soporte lateral. Esta distancia, como se ve en la Figura 74, es de 15,15 mm.
Tras encontrar esta distancia se han modelado los soportes laterales, que al igual que los soportes inferiores, la parte coincidente con el chasis irá soldada y la parte del radiador irá atornillada.

Al igual que con los soportes inferiores, los planos de los laterales se encuentran también en el Anexo C.

Poniendo un soporte en la parte alta y otro en la parte baja del lateral del radiador este queda inmóvil en el K100.

Además, hay que comentar que el hecho de que el radiador este inclinado ayuda a disminuir la fuerza de resistencia al avance que genera el aire a altas velocidades.
Todos los soportes son de acero inoxidable, que es un material muy resistente.

7.3 Manguitos de refrigeración

Por último, solo falta diseñar el recorrido de los manguitos de refrigeración. El manguito por donde sale el refrigerante caliente del motor y entra en el radiador se encuentra en la parte superior del mismo y tiene un diámetro de 23 mm. El manguito por donde sale el refrigerante enfriado del radiador y entra al motor está en la parte inferior y tiene un diámetro de 18 mm.
Los manguitos suelen ser comúnmente de silicona y van fijados a las entradas del radiador con bridas.

7.4 Modelo final

Tras definir el radiador del lado derecho, se ha hecho una simetría del radiador y de sus soportes en el lado izquierdo, aunque ha sido necesario rediseñar el camino de los manguitos.

![Figura 79: Lado izquierdo del sistema de refrigeración](image)

En este caso ha sido necesario rediseñar el manguito superior con el fin de evitar el choque con la entrada al depósito de combustible.

Llegados a este punto, la integración de los radiadores en el K100 se da por finalizada.

![Figura 80: Sistema de refrigeración final](image)
Figura 81: K100 con sistema de refrigeración y sin carrocería

Figura 82: K100 con sistema de refrigeración y con carrocería
Aspectos económicos

En este apartado aparece una estimación de los costes de ingeniería del proyecto, del coste de las materias primas que se han de usar para el sistema de refrigeración y los costes de fabricación.

Costes de ingeniería

Son los costes necesarios para la realización del proyecto:

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Horas</th>
<th>€/hora</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Licencia SolidWorks</td>
<td>-</td>
<td>-</td>
<td>4000</td>
</tr>
<tr>
<td>Licencia ANSYS</td>
<td>-</td>
<td>-</td>
<td>5000</td>
</tr>
<tr>
<td>Ordenador</td>
<td>-</td>
<td>-</td>
<td>700</td>
</tr>
<tr>
<td>Obtención de documentación</td>
<td>35</td>
<td>10</td>
<td>350</td>
</tr>
<tr>
<td>Realización de los cálculos</td>
<td>90</td>
<td>20</td>
<td>1800</td>
</tr>
<tr>
<td>Realización de las simulaciones</td>
<td>75</td>
<td>20</td>
<td>1500</td>
</tr>
<tr>
<td>Diseño en CAD</td>
<td>70</td>
<td>20</td>
<td>1400</td>
</tr>
<tr>
<td>Elaboración de los planos</td>
<td>10</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Redactar la memoria</td>
<td>80</td>
<td>10</td>
<td>800</td>
</tr>
<tr>
<td>Gastos varios (desplazamientos, papelería, etc…)</td>
<td>-</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>15800</td>
</tr>
</tbody>
</table>

Tabla 6: Costes de ingeniería
Costes de materiales

Son los costes de los materiales para fabricar el sistema de refrigeración:

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Material</th>
<th>Peso (kg)</th>
<th>Unidades</th>
<th>€/kg</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubos finos</td>
<td>Aluminio</td>
<td>0,00585</td>
<td>38</td>
<td>1,8</td>
<td>0,4</td>
</tr>
<tr>
<td>Aletas</td>
<td>Aluminio</td>
<td>0,0007876</td>
<td>800</td>
<td>1,8</td>
<td>1,14</td>
</tr>
<tr>
<td>Laterales del radiador</td>
<td>Aluminio</td>
<td>0,24375</td>
<td>4</td>
<td>1,8</td>
<td>1,76</td>
</tr>
<tr>
<td>Soporte inferior</td>
<td>Acero inoxidable</td>
<td>0,0205</td>
<td>4</td>
<td>4</td>
<td>0,33</td>
</tr>
<tr>
<td>Soporte lateral</td>
<td>Acero inoxidable</td>
<td>0,020652</td>
<td>4</td>
<td>4</td>
<td>0,33</td>
</tr>
<tr>
<td>Manguitos</td>
<td>Silicona</td>
<td>0,13225</td>
<td>4</td>
<td>8,26</td>
<td>1,1</td>
</tr>
<tr>
<td>Tornillería</td>
<td>Acero inoxidable</td>
<td>0,007</td>
<td>32</td>
<td>4</td>
<td>0,9</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,96</td>
</tr>
</tbody>
</table>

Tabla 7: Costes de materiales

El precio de la materia prima del sistema de refrigeración es muy reducido, lo que hará aumentar este precio, son los costes de fabricación.

Costes de fabricación

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Horas</th>
<th>€/horas</th>
<th>Coste (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparación de las máquinas</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Corte de los tubos</td>
<td>0,5</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Corte de las aletas</td>
<td>0,75</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Elaboración de los laterales</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Diseño del sistema de refrigeración de un motor Rotax

<table>
<thead>
<tr>
<th>Montaje de los radiadores</th>
<th>0,5</th>
<th>20</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldar los soportes al chasis</td>
<td>0,5</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>Atornillar los radiadores a los soportes</td>
<td>0,25</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Instalación de los manguitos</td>
<td>0,75</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>Rellenar el circuito de refrigerante</td>
<td>0,1</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL: 107

Tabla 8: Costes de fabricación

Por lo tanto, el coste total del sistema de refrigeración es de 112,96 €.

Planificación temporal

En este apartado se muestra la planificación del tiempo seguida durante la elaboración del trabajo.

Figura 83: Diagrama de Gantt
Impacto ambiental

En este trabajo, el elemento principal que produce un impacto considerable sobre el medio ambiente es el etilenglicol, el líquido refrigerante.

Es un líquido transparente, incoloro, ligeramente espeso, con un leve sabor dulce y altamente tóxico. Tiene un importante efecto sobre el medio ambiente, ya que participa directamente en la destrucción de la capa de ozono y favorece el efecto invernadero, por eso es necesario intentar no verter fluido en superficies como el asfalto o el agua. Siempre que se pueda hay que intentar reciclar esta sustancia cuando se cambie periódicamente el líquido del sistema de refrigeración.

Además, es necesario tener precaución a la hora de trabajar este compuesto, ya que es muy perjudicial para la salud. Ingerir etilenglicol puede causar ceguera, nauseas o afectar al sistema nervioso y en grandes cantidades puede causar la muerte.

Realizar un sistema de refrigeración por aire habría tenido un impacto sobre el medio ambiente prácticamente nulo, pero la necesidad de un coche de competición hace obligado el uso de refrigeración líquida.
Conclusiones

Se puede decir que el proyecto ha llegado a su fin con éxito, cumpliendo la mayoría de los objetivos propuestos. Se han tenido que tomar decisiones importantes, como la de reaprovechar todo el sistema de refrigeración incluido en el ROTAX 125 MAX EVO y rediseñar completamente la parte de los radiadores para adaptarla al vehículo que se está diseñando. También ha habido cambios de rumbo, ya que en un principio se decidió basarse en el sistema de refrigeración del K600 y escalarlo al nuevo K100, pero la idea de utilizar el motor de un kart no permitió llevarla a cabo, haciendo más práctico el rediseño.

Se confirma que el sistema disipa el calor necesario, ya que su diseño parte de ese dato y, además, ha sido validado con simulaciones que dan resultados muy satisfactorios. El diseño se ha realizado en el caso de unas condiciones con un ambiente cálido, de unos 35°C y con el motor girando al máximo de revoluciones, que es cuando genera más calor. Se podría haber tenido en cuenta más situaciones, como la situación en que el motor gira a pocas vueltas y el coche va a velocidad reducida, donde entra poco caudal del aire y el calor cedido es menor, pero la utilización de la entrada de aire superior de la carrocería como coeficiente de seguridad, permite pensar que los radiadores cumplirán su función en cualquier situación.

En lo que se refiere a las simulaciones, distan un poco de la realidad, pero se ha realizado las justificaciones necesarias de estas diferencias, nombrando aspectos relacionados con el refinamiento de la malla y las aproximaciones realizadas.

A la hora de la integración en el coche se ha medido con detalle que no exista ningún conflicto geométrico, a la vez que se han hecho aproximaciones como la posición del motor, que tienen que ser revisadas en otros trabajos académicos para el funcionamiento óptimo del conjunto.

El proyecto ha sabido trabajar desde la base de otros trabajos ya finalizados utilizando diseños como el chasis y la carrocería, a la vez que añade más información a la hora crear el K100. El trabajo realizado deja libertad a futuros proyectos para rediseñar partes del coche sin que afecte al sistema de refrigeración, que es una parte bastante independiente del resto.

La hoja de ruta a seguir a partir de ahora, es la de cuadrar los diseños realizados en los trabajos paralelos a este, donde se definen aspectos importantes como la localización del motor, que en este proyecto se ha revisado sin detalle. Cuando todas estas partes estén integradas entre ellas perfectamente, se le podrá mostrar a Ashenkoff el trabajo realizado y podrán ponerse en marcha con la elaboración del K100, esta innovadora idea que ayudará a los niños a adaptar su conducción a los formulas de forma rápida, sencilla y segura.
Agradecimientos

Me gustaría agradecer a Emilio Hernández, tutor de este proyecto, el darme la oportunidad de realizar un Trabajo Final de Grado relacionado con la automoción y su disposición a la hora de guiar este trabajo, así como su esfuerzo en hacer de puente entre las empresas Ashenkoff y Rotax y los estudiantes de la ETSEIB. Quiero agradecer también a estas empresas su información aportada, que ha sido de gran utilidad a la hora de hacer este trabajo. Por último, también quiero agradecer a Joan Caballé y a Albert Mateo sus trabajos realizados sobre el K100 que han facilitado la integración del mío en este prototipo.

A mis amigos y familiares que me han apoyado durante todo este tiempo.
Bibliografía

Referencias bibliográficas

Bibliografía complementaria

Anexos

Anexo A: Planos del motor simplificado

Figura 84: Isométrica del motor simplificado

Figura 85: Planos del motor simplificado
Anexo B: Planos del radiador

Figura 86: Planos del alzado del radiador
Figura 87: Planos de la vista superior del radiador
Anexo C: Planos de los soportes del radiador

Figura 88: Planos de los soportes inferiores
Figura 89: Planos de los soportes laterales
Anexo D: Vistas del sistema de refrigeración integrado en el K100

Figura 90: Vista superior del sistema de refrigeración

Figura 91: Vista frontal del sistema de refrigeración sin carrocería
Figura 92: Vista frontal del sistema de refrigeración con carrocería

Figura 93: Vista frontal del conjunto motor-radiadores-manguitos
Figura 94: Vista trasera del conjunto motor-radiadores-manguitos

Figura 95: Modelo final