J2EE Instrumentation for software aging root caus
application component determination with AspectJ

Javier Alonso and Jordi Torres Josep LI. Berral Ricard Gavald
Barcelona Supercomputing Center Dept. of Software Dept. of Software
Dept. of Computer Architecture Dept. of Computer Architecture Technical University of Catalonia
Technical University of Catalonia ~ Technical University of Catalonia Barcelona, Spain
Barcelona, Spain Barcelona, Spain Email: gavalda@Ilsi.upc.edu
Email: [alonso, torres]j@ac.upc.edu Email: berral@ac.upc.edu

Abstract—Unplanned system outages have a negative impactnormally cause applications/systems hang or crash [6]d-Gra
on company revenues and image. While the last decades haveyal performance degradation could also accompany software
seen a lot of efforts from industry and academia to avoid them, aging phenomena. The software aging phenomena are often
they still happen and their impact is increasing. According . .
to many studies, one of the most important causes of theserelated to others, such us memory bloqtlnglleaks, untextedh
Outages is software aging. Software aging phenomena refersthreads, data. Corrupt|0n, Unreleased f|le'|OCkS and ONS8sITU
to the accumulation of errors, usually provoking resource con- For this reason, the applications have to deal with the
tention, during long running application executions, like web goftware aging problem in production stage, making sofwar
applications, which normally cause applications/systems hang or rejuvenation techniques [7] necessary. There are two basic

crash. Determining the software aging root cause failure, not ™ . A .
the resource or resources involved in, is a huge task due to the "€juvenation strategies: Time-based and proactive-bstsae-

growing day by day complexity of the systems. In this paper we gies. In Time-based strategies, rejuvenation is appligdiagly
present a monitoring framework based on Aspect Programming and at determined time intervals. In fact, time-basedegias

to monitor the resources used by every application component in gre widely used in real environments, such web servers [8],
runtime. Knowing the resources used by every component of the [9]

application we can determine which component or components . . .
are related to the software aging. Furthermore, we present a ~ On the other hand the proactive strategies system metrics
case study where we evaluate our approach to determine in a are continuously monitored and the rejuvenation action is
web application scenario which component/s are involved in the triggered when a crash or hang up of the system due to
software aging with promising results. the software aging is an evident provability. This approach
is a better technique, because if we can predict the crash and
apply rejuvenation actions only in these cases, we reduee th
Enterprise environments are rapidly changing, as new neeffinber of rejuvenation actions with respect to the timestlas
appear. In particular, availability of the information ale approach.
time and from everywhere is today a common requirement.The effectiveness of these proactive strategies is based
To achieve these new challenges demanded by the indusify the accuracy of the monitoring system used to collect
and society, new IT infrastructures have had to be createéfle system metrics. However, the monitoring systems mainly
Applications have to interact among themselves and with t@ellect system metrics understanding the applicatiortsak
environment to achieve these new goals, resulting in complgoxes, becoming impossible to know which is the root cause
IT infrastructures that need brilliant IT professionalstiwi of the software aging. They are based on knowing the re-
hard-to-obtain skills to manage them. However, the conityleXsource or resources involved in the software aging. For this
is achieving such a level that even the best administratms Geason, the main rejuvenation strategy is applying a reboot
hardly cope with it. or application restart. This approach has an important anpa
A recent studjshowed the average downtime or servicever the application availability. New techniques haverbee
degradation cost per hour for a typical enterprise is aroupgoposed to reduce the Mean Time to Recover (MTTR) like
US$125,000. Moreover, outages have a negative impact @iitro-rebooting [10]. Micro-rebooting reduces dramalliga
the company image that could affect profits indirectly. Futhe MTTR because they only reboot the faulty component. For
thermore, it is now well known that currently, computethis reason, determining the root cause component becomes
system outages are more often due to software faults, and egfical to apply these surgical techniques. However, ifwaant
hardware [1], [2]. Several studies [3], [4], [5] have shovikeat to determine which component/s are involved in the software
software aging phenomena is one of the sources of the unavaging we need a monitoring framework which allow us to
ability. Software aging phenomena refers to the accunurlatiknow how many resources are used by every component.
of errors, usually provoking resource contention, durioggl

running application executions, like web applications,jchih 1IDC #31513, July 2004

I. INTRODUCTION

In this paper we present a monitoring framework basexhd-to-end traces through the application server with taeam
on Aspect Oriented Programming (AOP) [11] to monitor thgoal to determine the more likely component cause of the
resources used by every application component. Our approdailures in the system. For this purpose, they use staistic
is focused, but not limited, on J2EE architectures, but #fees models. They find the components more related with faulty
idea could be moved to other languages like C++ [12]. Weansactions. The idea is collecting all components used by
have focused on J2EE infrastructures because they are #te regery request and the result of the request (failure or ss3ce
currently extended for web applications. This information is used to build a matrix to determine the

Our approach is based on the idea to offer a monitorimilty component or components. Their approach is quite sim
solution without need to modify the application or web applilar to own approach, however they cannot deal with software
cation server (WAS) source code. In fact, thanks to AOP it aging phenomena because they cannot know the resources
possible to inject our solution to J2EE architectures irtima. used by every component. Moreover, the Pinpoint solution
Furthermore, our solution adds a very limited overhead ef tihas other important limitation: the coupled componentswvéf
original application, allowing us to know, with great détai components are used always together (very common in J2EE
the resources used by every component. The idea is to use #pplications) in failure transactions, the Pinpoint framg
framework to establish which component or set of componernttstermines both components with the same probability to be
are consuming more resources to build a resource-comportet root cause failure. However, our approach is ready to
consumption map to help developers and administrators deal with this situation, understanding every component as
determine the software aging root cause failure. Moreauar, independent one.
proposal could be used in development and testing apglitati On the other hand, The Magpie system [17] collects re-
lifecycle phases to detect misbehaviors, anomalies or i hsource consumption by each component to model with high
to optimize the resource usage by the application. Fineléy, accuracy the system behavior, even of distributed ones. The
present a case study where we show how our framework woMagpie approach is the most similar to ours to determine
to decide on where is a memory leak injected in a J2EE w#ie root cause failure; however, the difference is that vee ar
application like TPC-W [13]. working at application level and Magpie works at operating

The rest of the paper is organized as follows: Section ¥stem level. Also, the Magpie needs to modify the operating
presents the related work. Section 3 describes our frankewsystem architecture and our solution is completely inddpen
and the technologies used to develop it; Section 4 preseats of the source code increasing the flexibility and adaptgbili
experimental case study; and, finally, Section 5 concludes ©f our solution.
paper. The use of Aspect Oriented programming to monitor the
applications is hardly an explored solution. Currentlg thost
mature solution in this area could be Glassbhox [18] which

Traditionally, the monitoring tools have been focused ooffers a fine-grain monitoring tool. This approach is foalise
collecting a set of external data from the system like pemainly on execution time of every component allowing to
formance, memory consumption, response time, threads us#stect a big set of failures, however, it is not creating a
etc. All of them, understanding the applications or WAS aglationship between the application components and the re
black boxes. As an example, we find several commercial ansburces available or used. It is needed to determine the root
free solutions like Ganglia [14] or Nagios [15]. Both theseause failure of software aging phenomena. Other inteigsti
systems allow detecting failures in our systems when tl@proach is TOSKANA [19]. it provides an AOP solution for
failure happens. The detection is based on rules defined Kernel functions but again it is focused on other metricsemor
the human system administrators following their expemencthan aging-metrics related.

However, the effectiveness of these solutions is limitduesE For all of this, it is needed to include monitoring systems
tools detect failures but they cannot determine where ttar erwhich can collect external and internal data from complex
is. The administrator could find the resource or resourcegstems at runtime to determine the resources used by every
involved with the software aging phenomena thanks to thesemponent as well as to be able to integrate itself in the
tools, but s/he cannot apply or fix the problem because sAstem without re-engineering the application or obtaia th
cannot know where the error is. source code. It is also necessary that these monitoringragst

In the last years, the new developed applications hasiee adaptable and flexible to allow activation or monitoring
introduced tracing code with the objective to help the Systelevel change (from application overview to component omeve
Administrator to determine where the error is when the failumethod level or vice versa) at runtime.
happens. However, this approach only offers a post-mortem
analysis of the root-cause failure. Moreover, these smigtare
not portable to other applications because they are dezdlop Before presenting the monitoring architecture proposed we
ad-hoc and they require a re-engineering work in order tpiadaeed to present the technologies used to build our approach:
applications to obtain tracing features. Aspect Oriented Programming (AOP) and Java Management

Concerning root cause determination, several approacledensions (JMX)[20]. Although it is out of scope of this
have also been reported. The Pinpoint project [16] collegisper to present in detail both technologies, it is necgssar

II. RELATED WORK

IIl. M ONITORING FRAMEWORK

to introduce a brief description of them to make clearer tiEhe AC has two advices: before and after the application
solution presented in this paper. component execution. The idea is to measure every resource
before and after a component is used. In this way, we can

A. Used Technology know how much resource has been used by the component. If

1) Aspect Oriented Programming: The AOP paradigm al- the component has a resource consumption bug, the resource
lows to isolate the main business logic of the applicati@mfr available after the execution will be lower than before. To
secondary functions like logs or authentication. This giga achieve this, the AC communicates (using MBeanServer) to
increases the modularity, allowing to separate concepesis the JMX Monitoring Agents to know the resource status when
ically cross-cutting concerngspects is the name of the main is demanded. Currently, our architecture is based on adinit
concept of the AOP technology. The aspects are composedsey of Monitoring Agents by every resource under monitaring
two elements:Advices and Join Points. The advices are the We have decoupled the JMX Monitoring Agents to the AC
code that is executed when the aspect is invoked: The advftteanks to JMX technology) to increase the adaptability and
has access to the class, methods and/or fields of the modiggibility of the solution. Currently, if a Monitoring Agen
which the advice invokes. The Join Point is the definition tis modified or changed, we don’t need to change the AC at
indicate when the advice will be invoked. We can see the Jaitl. The MBeanServer capabilities allow the AC to discover
Point like a trigger: when the condition is true the Adviceew or updated JMX Monitoring Agents. The AC Proxy
is invoked. For this technology’s implementation, we havias the task to create a communication channel between the
chosen AspectJ [21] because it is a well-known widely us&dC and the JMX Manager Agent. This channel allows the
and mature technology. In addition, this technology offers IMX Manager Agent interacts with the AC. From asking
simple and powerful definition of Aspects like Java class, smme information like how many requests have used by the
the learning curve is quite quick for experienced Java devebmponent to activating or deactivating the AC in runtime.
opers. The AOP paradigm is not limited to Java Applicationghe JMX technology offers a great flexibility and adaptdipili
we can find AOP solutions for C# or C++ like AspectC# [23because we can change the ACs or add new ones and the JMX
and AspectC++ [22] respectively. Furthermore, AOP offefglanager can discover them by itself and vice versa.
other important and interesting capability for our purpose 2) JMX Monitoring Agents. JMX Monitoring Agents have
AOP allows us to inject code in compile, load or runtimethe responsibility to access to the operating System arelatol
So, AOP allows us to inject our monitoring framework inresource metrics, AC on demand. So, JIMX monitoring Agents
runtime without to have access to the source code, allowingually will be executed before and after every access tyeve
even to inject our code over third-part J2EE applications application component under monitoring. Currently, weehav
even legacy Java Applications. developed a limited number of monitors only to show the

2) Java Management Extensions. The JMX technology effectiveness of the approach.
offers a set of capabilities to manage and monitor any systeng) JMX Manager Agent: JMX Manager Agent is the core of
component: from devices to Java objects. The JMX is basedr proposal. The JMX Manager Agent has the responsibility
on 3-level architecture: Probe level, Agent level and Remoto collect the metrics by component and build the resource-
Management Level. The Probe level is composed by the prolaesnponent map. Furthermore, it has the responsibility to
(called MBeans). Every MBean represents a Java object. Tativate or deactivate ACs on demand. For example, to reduce
Agent level or MBeanServer is the core of the JMX technologye overhead of the solution or to focus the monitoring over a
and acts as intermediary between MBeans and the extersed of determined objects. The JMX Manager Agent builds the
applications. Finally, the Remote Management Level allowesource-component map and offers a first analysis to esdtabl
external applications communicate with the MBeanServar whe most possible root cause component of the software aging
JMX connectors or protocol adapters. So, JMX allows tmm advance. If a software aging has been detected while
connect and communicate with Java objects (MBeans) nmonitoring the system metrics using a traditional monitgri
runtime without modify the application sourcecode allogvintool, we can use the JMX Manager Agent (and the rest of our
to interact with them, transparently. framework) to determine (or at least help to) the component
or components involved in the software aging.

4) External Front-end: The External Front-end is a simple

After present the technologies used to develop our approafiont-end to allow administrators to communicate with the
it is moment to present the architecture of our solutiodMX Manager Agent to know the status of the components
We can divide our approach in four main components: The real time or activate new ACs or new JMX Monitor Agents
Aspect Component (AC), the JMX monitoring Agents, thend obtain more details of the application behavior.
JMX Manager Agent and the External Front-end. Figure 1 o
shows the components that compose our solution. C. Root Cause determination Srategy used by JMX Manager

1) Aspect Component: Aspect Component is composed by Agent
the two elements: The Aspect Component (AC) and the AspectOur current root cause determination mechanism is very
Component Proxy (AC Proxy). Every application componesimplistic and has to be refined in the future. The main
has an AC associated (thanks to the Join Point definitiomjea is that the component is more aging-related when the

B. Architecture approach

C |AC External
— Front end
<L JM JMX Manager %

AC Proxy Monitoring Agent
= ents, <
WAS W
/F 1 1 L :>
MBeanServer Monitoring Data
JVM

=

Operating System

Fig. 1. Components of Monitoring Framework

component resource consumption and the usage frequency is IV. EXPERIMENTAL CASE STUDY

high. In figure 2 we present the core of our current map Ao present our proposal, we have conducted a set of

Fheqry. If a component is very gsed and the resource usaeg&)eriments to evaluate the effectiveness of our apprdgach.
is high (accumulated along the time) the component inceeas

: o .) §ea is to test our prototype to determine the cause of a led

its probability to become the main aging-component of the leak. | b . h i |

application. For example, if we have four components in orrger_nory eax. n(;le_xt su secthn we present the experimenta
O ' nvironment used in our experiments.

application: A, B, C and D. A and B have a memory leak ol(% P

100KB in each execution and C and D have a memory leak Experimental Setup

of 10KB. A and B will be in the right zone of the vertical-) , i))
axis and C and D in left zone. If A is more used than B [N this section we describe the experimental setup used in al

then A is in the bottom of the right size (the most suspiciod&Periments presented below. The experimental environmen
zone) and B in the top. In the same way we can locate tRnulates a real web environment, composed by the web
C and D components. Using this analytic approach of tfpplication server, the database server and thg clientsingac
components behavior, the JMX Manager Agent builds the N Our experiments, we have used a multi-tier e-commerce
map of root cause aging failure. We have used this approadfe that simulates an on-line book store, following thensta
because the software aging is due an accumulation of agif§grd configuration of TPC-W benchmark [13]. We have used
errors that usually are consuming resources along the tith§ Java version developed using serviets and using as a
until their exhaustion. For this reason, we want to know whic\ysal [24] as database server. As application server, we

component is consuming more resources, so which componB@Ye used Apache Tomcat [25]. TPC-W allows us to run
is more correlated with the aging phenomena. different experiments using different parameters and uade

controlled environment. These capabilities allow us toduan

low Gomponent the eyaluation of our approach t_o predict_the t_ime untilufis

Used Details of machine characteristics are given in Table I.

A\ TPC-W clients, called Emulated Browsers (EBs), access the
web site (simulating an on-line book store) in sessions. A

Loss ses_sion is a sequence of logically connect_ed (from the EBt poi

Suspicious of view) requests. Between two consecutive requests fram th
high Resource same EB, TPC-W computes a thinking time, representing the
Consumption time between the user receiving a web page s/he requested and
> deciding the next request. In all of our experiments we have
low Resource used the default configuration of TPC-W. Moreover, follogvin
Consumption More the TPC-W specification, the number of concurrent EBs is kept
Suspicious constant during the experiment.
Component To simulate the aging-related errors consuming resources
< until their exhaustion, we have modified the TPC-W imple-
high Component mentation. In our experiments we have played with Memory

Used resource. To simulate a random memory consumption we have
modified a servlet which computes a random number between
0 and N. This number determines how many requests use
the servlet before the next memory consumption is injected.

Component

Fig. 2. Resource Consumption@smponent Usage map

TABLE |
MACHINE DESCRIPTION
Clients Application Database
Servers server
Hardware 2-way Intel 4-way Intel 2-way Intel
XEON 24 XEON 1.4 XEON 2.4
GHz with 2 GHz with 2 GHz with 2
GB RAM GB RAM GB RAM
Operating Linux 2.6.8-3- Linux 2.6.15 Linux 2.6.8-2-
System 686 686 T
VM - jOKL5 — with - CERIBgUBEREEEEEEESIEREETEELE
1GB heap :honggllr:rlenggwrt?#gﬂgﬁ:)ut Execution Time (seconds)
Software TPC-W Tomcat 5.5.26 MySql 5.0.67
Clients
Fig. 3. Throughput of TPC-W under a dynamic workload

Therefore, the variation of memory consumption depends of et d . leaki .
the number of clients and the frequency of servlet visits. 2) Effectivenessto determine a memory Ing component:

According to the TPC-W specification, this frequency depen@fter evaluating the overhead introduced by our framework

on the workload chosen. This makes that with high workload€ decided tcl) teks'F our approach undefr a softwarr:a aging due
our servlet injects quickly memory leaks, however with lo a memory feax in one comporjent of TPC-W. T € memory
workload, the consumption is lower too. But, again th@ak was injected as it was described before and we intratluce

l]nQQKb of memory leak. We have developed a JMX Monitoring

random variable, with fluctuations that become less relevardnt which allows us to know the real size of a Java
when averaged over time. Therefore, we could thus simule@@ed' The real size of a Jaya Object mcludeg the size of the
this effect by varyingV, and we have decided to stick to Omyobject.s referenced by th'e object u.n(jer monltorlng. But het t
one relevant parametery. This error helps us to validate ©°lOWing referenced objects, avoiding a recursively @ss:

our framework under different scenarios. TPC-W has thré J2EE applications, all objects inherit from superclasd a
types of workload (Browsing, Shopping and Ordering). In odf we apply recursively the process to calculate the size of

case, we have conducted all of our experiments using shgpp‘ e object., we find thgt one object ha§ a_indirect relatiqnshi
distribution. with practically all objects of the application. Thanks tost

monitoring agent we can know the memory object size at every
B. Experimental Results moment.

We have conducted a set of experiments to determine théVe conducted a one hour execution injecting 100KB with
effectiveness of our approach to monitor the resources cdi- = 100 in component A (see figure 4) and the rest of
sumed by every application component under the experirhert@mponents are not modified. We can observe clearly how the
environment described before. component A is growing in memory size due to the memory

1) Framework Overhead: As we presented before, we havdeak, becoming clear which is the guilty component of the
injected a set of components (Aspects) to the applicatiale cosoftware aging. While the rest of component sizes are constan
increasing the instructions executed by the computer. 6o, @ long the experiment consuming a few Kbs, the Object A
monitoring framework has an impact over the performanéze is growing from few Kb to MBs consumed during the
of the applications. Our first experiment was to evaluagxperiment. In this point our simple mechanism is quiterglea
the performance penalty introduced by our framework in &@nly one component has more memory than the rest of them,
one hour execution of TPC-W with two workload changesoncluding that A has the 100% of the responsibility of the
The first two minutes (the warm-up) the workload was 58oftware aging.

Emulated Browsers. During the next 30 minutes the workload3) Effectiveness to determine a set of memory leaking
was increased to 100 EBs and finally, the last 30 minuteimponents: The next experiment presents the effectiveness
the workload was 200 EBs. In figure 3 we can observe tloé our approach to determine how four components are guilty
throughput obtained by the original TPC-W and TPC-W under the software aging, but different level of responsililiVe
monitoring with our infrastructure. have conducted a new one hour execution, however this time,

The penalty overhead is quite promising: only 5% of ovefeur objects (A, B, C and D) have been modified to inject
head, monitoring all TPC-W application components. In thisOOKB following the formula described in the experimental
experiment we didn't inject any memory leak. The responsetup section. In figure 5, we present only the four guilty
time penalty is quite complicated to evaluate because TPC-amponents to reduce the image. We can observe how the
uses a thinking time to simulate the time used by users fiur object sizes are increasing along the experiment but at
read the webpage. This time is random following statisticdifferent rate due to the injection mechanism in deed (all
distribution. For this reason, two executions have diffiéreobjects follow the same injection rate configuratidn= 100)
response times. However, the workload (requests by tin ureind the frequency they are used by the clients (EBs). We can
is constant a long the time. observe how the components A and B have the same memory

average consumption rate would depend on the average of

18000 20000

16000
14000
12000 15000 1
< | @ 10000 <4
8 |X =000 ¢ | X 10000 -
3 6000 =
° 4000 o 5000
2000
0 T L o+
1 1M1 21 31 41 51 61 71 81 91 101 111 121 1011 20 31 41 51 &1 71 8l 9i 101 111 121

Monitoring Instances Monitoring Instances

16 4
1] 16000
U | 12 14000
T . 12000
“ |
o |8 o0s- @ 10000
3 067 B € so00
o 0.4 4 H 6000
o o
0.2 1 4000
 ————————— 2000
11 20 31 4 51 &l 71 8 91 d0i 111 121 0
Monitoring Instances 111 20 31 41 51 &1 71 8 91 101 111 121
Monitoring Instances
141
12
s 8000
1]
£ 7000
w g 087 6000 -
o |X 06 v 5000
5 1S
Lo 047 S | € 4000
3 0,2 g 3000
o ——_————— 2000
111 20 3 4 s 81 71 81 81 101 111 121 1008 1
Monitoring Instances 111 20 3 41 B el 71 81 81 101 111 121

Monitoring Instances

Fig. 4. Injection in component A (100KB)

Kb

size after the same period. This fact indicates that botbatbj
have more or less the same frequency usage by the users
for this reason, in average the same memory leak. They w

Object D

be in the bottom right zone of the figure 2. However, we ce Pt 21 s a1 st 7t s e 01 111 121
observe how object C has a less memory used, so, objec Monitoring Instances

will be in the top right zone. Finally, we can observe how

object D never injected a memory leak because the frequency Fig. 5. Detail of injection in 4 components

usage by the users is too low to provoke the injection. Far thi

reason the object D memory usage its maintained constant.

The reason is because this object is used not so much in TRGE root cause determination approach. However, in the new
W shopping workload distribution. It will be in the top righteXperiment, increasing the size of the memory leak (from
zone. Following our approach objects A and B will be the mo$00Kb to 1MB) has becoming on the most important reason
suspicious components, after that, object C and finallyeaibj of the software aging. Objec A continues being an important
D. Figure 6 shows the composited map by JMX Managéactor of the software aging (second position) and Object B,
Agent. has also important impact over the memory consumption but
now with a lower memory leak (from 100KB to 10KB), it is

4) Effectiveness to determine the root cause failure under ™" i
in third position.

different injection sizes: Our approach allows to know how the
components are consuming the memory along the execution.
After that, we decided to repeat the last experiment, but in
the new experiment we injected only 10KB in Object B, 1IMB In this paper we have presented a monitoring framework
in Object C and D while object A becomes the same witfor detecting software aging root causes, using the Aspect
100KB. The idea is showing how to the memory leak anQriented Programming and Java Management Extensions tech-
the usage of the component has an impact over the suspiciagfgies. Our methodology allows monitoring the applicas
level of the component or components to be the root causewithout altering their source code and injecting the obsesv
software aging. in runtime, being able to connect or disconnect them on
In figure 7 we show the memory size of the four objectslemand.
We can see again how object D results in constant object sizd-or this case of study, we focus on a specific kind of
(2KB aprox.) because is used too low. On the other hand, nftware aging: memory leakage. We present a theoretic map
the last experiment Object C was in third position followingvhere, depending on the components observed behavior, we

V. CONCLUSION

low Component
Used

T &

Object A

high Resource
Consumption

18000

< L/
low Resource @

Consumption
¥

high Component
Used

Object B

Fig. 6. Resource Consumption&smponent Usage map composed by JM
Manager Agent

ect C

can determine the component that with high probability & trs
root cause of the resource consumption.

Our experimentations show that our method allows dete
mining, given an aging-error, the most suspicious comptsner
helping designers and system operators to look for the r¢

)

16000 -
14000 4
12000 4
a 10000 4
X
8000 -
6000 -
4000 -
2000 A
0 T — 7T e e
1 11 21 31 41 51 61 71 81 91 101 111 121
Monitoring Instances
1400
1200 +
1000 +
800 -
=2
X
600 q
400
200
0 e L s e o A e s e e L s e e e L A
1 1 21 31 41 51 61 71 81 91 101 111 121
Monitoring Instances
70000
60000 -
50000 4
40000 +
a
X
30000 4

20000

10000

— T T T T T T T T T T T T T T T T
1 11 21 31 41 51 61 71 81 91 101 111 121
Monitoring Instances

cause and then fix the problem.

In our future work, we focus on the application of this
framework and methodology towards other software agir
causes, like CPU and thread leaks among others, and ¢
improve the determination method looking for mameel ligent
decision makers in front of different software aging synmpso

Object D

ACKNOWLEDGMENT

This research work has been supported by the Span

Kb

1 11 21 31 41 51 61 7 81 91 101 111 121
Monitoring Instances

Ministry of Education and Science (projects TIN2007-60625
and by the Generalitat de Catalunya (2009-SGR-980). R.
Gavaldh is partially supported by the EU PASCAL2 Net-
work of Excellence and by the MICINN SESAAME project,
TIN2008-06582-C03-01/TIN. 6]

REFERENCES
[7]

[1] D. Oppenheimer, A. Ganapathi, and D. A. Pattersdvhy do internet
services fail, and what can be done about it?.In 4th USENIX Symposium
on Internet Technologies and Systems (USITS’03), 2003. [8]

[2] S. Peret and P. NarasimhanCauses of Failure in WWeb applications.
Technical Report CMU-PDL-05-109, Carnegie Mellon Univ,d>2005.

[3] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. &diiv Analysis [9]
and Implementation of Software Rejuvenation in Cluster Systems. ACM
Sigmetrics 2001/Performance 2001.

[4] K. S. Trivedi, k. Vaidyanathan and K. Goseva-Popstoj@ndviodeling [10]
and Analysis of Software aging and Regjuvenation. IEEE Annual Simula-
tion Symposium, April 2000.

[5] T. Dohi, K. Goseva-Popstojanova and K. S. TrivediAnalysis of [11]
Software Cost Models with Rejuvenation. IEEE Intl. Symposium on High
Assurance Systems Engineering (HASE 2000). [12]

Fig. 7. Determination of Root failure in 4 different injeati®

M. Grottke, R. Matias Jr. and K.S. Trivedhe Fundamentals of Software
aging In Proc. 1st Int. Workshop on Software Aging and Rejuvematio
19th Int. Symp. on Software Reliability Engineering, 2008.

Y.Huang, C.Kintala, N.Kolettis and N. FultonSoftware Rejuvenation:
Analysis, Module and Applications.Proceedings of Fault-Tolerant Com-
puting Symposium, FTCS-25, June 1995

K.Vaidyanathan and K.TrivediA Comprehensive Model for Software
Rejuvenation. IEEE Trans. On Dependable and Secure Computing, Vol,
2, No 2, April- 2005

S. Garg, A. van Moorsel, K. Vaidyanathan and K. TrivédMethodology
for Detection and Estimation of Software Aging. Proc. 9th Int'l Symp.
Software Reliability Eng., 1998.

G.Candea, E.Kiciman, S.Zhang and A.FO3JAGR: An Autonomous
Self-Recovering Application Server. Proc. 5th Int Workshop on Active
Middleware Services, Seattle, June 2003

G. Kiczales et al. Aspect Oriented Programming. Lecture Notes in
Computer Science, Vol. 1241, pp. 220-242, Springer 1997.

D. Mahrenholz, O. Spinczyk, and W. Sdder-PreikschatProgram

Instrumentation for Debugging and Monitoring with AspectC++. Pro-
ceedings of the Fifth IEEE International Symposium on Ob{@dented
Real-Time Distributed Computing, 2002.

[13] TPC-W Java Versiorhttp://www.ece.wisc.edu/ pharm.

[14] [Web-site at Dec. 2009] http://ganglia.info

[15] [Web-site at Dec. 2009] http://www.nagios.org

[16] M. Chen, A. Accardi, E. kiciman, J. Lloyd, D. Patterson, Pox, and
E. Brewer. Path-based failure and evolution management. Proc. of the
1st Symp. NSDI'2004.

[17] P. Barham, A. Donnelly, R. Isaacs, and R. Mortigdsing Magpie
for request extraction and workload modelling. Proc. of the 6th Symp.
OSDI'2004.

[18] [Web-site at Dec. 2009] http://www.glassbox.com

[19] M. Engel and B. FreislebenSupporting autonomic computing func-
tionality via dynamic operating system kernel aspects. Proc. of the 4th
Intl. Conf. on Aspect-Oriented software development, pp631March
14-18, 2005.

[20] [Web-site at Dec. 2009] http://java.sun.com/javasgihologies/core/mntr-
mgmt/javamanagement/

[21] G. Kiczales et al. An Overview of Aspectd. Proc. European Conf.
for Object-Oriented Programming (ECOOP 2001). Lecture nadtes
Computer Science, Vo. 2072, pp. 626-657, 2001.

[22] [Web-site at Dec. 2009] http://www.aspectc.org/

[23] H. Kim AspectC# An AOSD implementation for C#. Master Thesis
Dissertation, Trinity College Dublin, 2002.

[24] MySQL Data Base servehnttp://mamw.mysql.conv.

[25] Apache Tomcat Servehttp://tomcat.apache.org/

