
J2EE Instrumentation for software aging root cause
application component determination with AspectJ

Javier Alonso and Jordi Torres
Barcelona Supercomputing Center
Dept. of Computer Architecture

Technical University of Catalonia
Barcelona, Spain

Email: [alonso, torres]@ac.upc.edu

Josep Ll. Berral
Dept. of Software

Dept. of Computer Architecture
Technical University of Catalonia

Barcelona, Spain
Email: berral@ac.upc.edu

Ricard Gavald̀a
Dept. of Software

Technical University of Catalonia
Barcelona, Spain

Email: gavalda@lsi.upc.edu

Abstract—Unplanned system outages have a negative impact
on company revenues and image. While the last decades have
seen a lot of efforts from industry and academia to avoid them,
they still happen and their impact is increasing. According
to many studies, one of the most important causes of these
outages is software aging. Software aging phenomena refers
to the accumulation of errors, usually provoking resource con-
tention, during long running application executions, like web
applications, which normally cause applications/systems hang or
crash. Determining the software aging root cause failure, not
the resource or resources involved in, is a huge task due to the
growing day by day complexity of the systems. In this paper we
present a monitoring framework based on Aspect Programming
to monitor the resources used by every application component in
runtime. Knowing the resources used by every component of the
application we can determine which component or components
are related to the software aging. Furthermore, we present a
case study where we evaluate our approach to determine in a
web application scenario which component/s are involved in the
software aging with promising results.

I. I NTRODUCTION

Enterprise environments are rapidly changing, as new needs
appear. In particular, availability of the information allthe
time and from everywhere is today a common requirement.
To achieve these new challenges demanded by the industry
and society, new IT infrastructures have had to be created.
Applications have to interact among themselves and with the
environment to achieve these new goals, resulting in complex
IT infrastructures that need brilliant IT professionals with
hard-to-obtain skills to manage them. However, the complexity
is achieving such a level that even the best administrators can
hardly cope with it.

A recent study1showed the average downtime or service
degradation cost per hour for a typical enterprise is around
US$125,000. Moreover, outages have a negative impact on
the company image that could affect profits indirectly. Fur-
thermore, it is now well known that currently, computer
system outages are more often due to software faults, and not
hardware [1], [2]. Several studies [3], [4], [5] have showedthat
software aging phenomena is one of the sources of the unavail-
ability. Software aging phenomena refers to the accumulation
of errors, usually provoking resource contention, during long
running application executions, like web applications, which

normally cause applications/systems hang or crash [6]. Grad-
ual performance degradation could also accompany software
aging phenomena. The software aging phenomena are often
related to others, such us memory bloating/leaks, unterminated
threads, data corruption, unreleased file-locks and overruns.

For this reason, the applications have to deal with the
software aging problem in production stage, making software
rejuvenation techniques [7] necessary. There are two basic
rejuvenation strategies: Time-based and proactive-basedstrate-
gies. In Time-based strategies, rejuvenation is applied regularly
and at determined time intervals. In fact, time-based strategies
are widely used in real environments, such web servers [8],
[9].

On the other hand the proactive strategies system metrics
are continuously monitored and the rejuvenation action is
triggered when a crash or hang up of the system due to
the software aging is an evident provability. This approach
is a better technique, because if we can predict the crash and
apply rejuvenation actions only in these cases, we reduce the
number of rejuvenation actions with respect to the time-based
approach.

The effectiveness of these proactive strategies is based
on the accuracy of the monitoring system used to collect
the system metrics. However, the monitoring systems mainly
collect system metrics understanding the applications asblack
boxes, becoming impossible to know which is the root cause
of the software aging. They are based on knowing the re-
source or resources involved in the software aging. For this
reason, the main rejuvenation strategy is applying a reboot
or application restart. This approach has an important impact
over the application availability. New techniques have been
proposed to reduce the Mean Time to Recover (MTTR) like
Micro-rebooting [10]. Micro-rebooting reduces dramatically
the MTTR because they only reboot the faulty component. For
this reason, determining the root cause component becomes
critical to apply these surgical techniques. However, if wewant
to determine which component/s are involved in the software
aging we need a monitoring framework which allow us to
know how many resources are used by every component.

1IDC #31513, July 2004

In this paper we present a monitoring framework based
on Aspect Oriented Programming (AOP) [11] to monitor the
resources used by every application component. Our approach
is focused, but not limited, on J2EE architectures, but the same
idea could be moved to other languages like C++ [12]. We
have focused on J2EE infrastructures because they are the most
currently extended for web applications.

Our approach is based on the idea to offer a monitoring
solution without need to modify the application or web appli-
cation server (WAS) source code. In fact, thanks to AOP it is
possible to inject our solution to J2EE architectures in runtime.
Furthermore, our solution adds a very limited overhead of the
original application, allowing us to know, with great detail,
the resources used by every component. The idea is to use this
framework to establish which component or set of components
are consuming more resources to build a resource-component
consumption map to help developers and administrators to
determine the software aging root cause failure. Moreover,our
proposal could be used in development and testing application
lifecycle phases to detect misbehaviors, anomalies or to help
to optimize the resource usage by the application. Finally,we
present a case study where we show how our framework works
to decide on where is a memory leak injected in a J2EE web
application like TPC-W [13].

The rest of the paper is organized as follows: Section 2
presents the related work. Section 3 describes our framework
and the technologies used to develop it; Section 4 presents the
experimental case study; and, finally, Section 5 concludes the
paper.

II. RELATED WORK

Traditionally, the monitoring tools have been focused on
collecting a set of external data from the system like per-
formance, memory consumption, response time, threads used,
etc. All of them, understanding the applications or WAS as
black boxes. As an example, we find several commercial and
free solutions like Ganglia [14] or Nagios [15]. Both these
systems allow detecting failures in our systems when the
failure happens. The detection is based on rules defined by
the human system administrators following their experience.
However, the effectiveness of these solutions is limited. These
tools detect failures but they cannot determine where the error
is. The administrator could find the resource or resources
involved with the software aging phenomena thanks to these
tools, but s/he cannot apply or fix the problem because s/he
cannot know where the error is.

In the last years, the new developed applications have
introduced tracing code with the objective to help the System
Administrator to determine where the error is when the failure
happens. However, this approach only offers a post-mortem
analysis of the root-cause failure. Moreover, these solutions are
not portable to other applications because they are developed
ad-hoc and they require a re-engineering work in order to adapt
applications to obtain tracing features.

Concerning root cause determination, several approaches
have also been reported. The Pinpoint project [16] collects

end-to-end traces through the application server with the main
goal to determine the more likely component cause of the
failures in the system. For this purpose, they use statistical
models. They find the components more related with faulty
transactions. The idea is collecting all components used by
every request and the result of the request (failure or success).
This information is used to build a matrix to determine the
guilty component or components. Their approach is quite sim-
ilar to own approach, however they cannot deal with software
aging phenomena because they cannot know the resources
used by every component. Moreover, the Pinpoint solution
has other important limitation: the coupled components. Iftwo
components are used always together (very common in J2EE
applications) in failure transactions, the Pinpoint framework
determines both components with the same probability to be
the root cause failure. However, our approach is ready to
deal with this situation, understanding every component as
independent one.

On the other hand, The Magpie system [17] collects re-
source consumption by each component to model with high
accuracy the system behavior, even of distributed ones. The
Magpie approach is the most similar to ours to determine
the root cause failure; however, the difference is that we are
working at application level and Magpie works at operating
system level. Also, the Magpie needs to modify the operating
system architecture and our solution is completely independent
of the source code increasing the flexibility and adaptability
of our solution.

The use of Aspect Oriented programming to monitor the
applications is hardly an explored solution. Currently, the most
mature solution in this area could be Glassbox [18] which
offers a fine-grain monitoring tool. This approach is focused
mainly on execution time of every component allowing to
detect a big set of failures, however, it is not creating a
relationship between the application components and the re-
sources available or used. It is needed to determine the root
cause failure of software aging phenomena. Other interesting
approach is TOSKANA [19]. it provides an AOP solution for
kernel functions but again it is focused on other metrics more
than aging-metrics related.

For all of this, it is needed to include monitoring systems
which can collect external and internal data from complex
systems at runtime to determine the resources used by every
component as well as to be able to integrate itself in the
system without re-engineering the application or obtain the
source code. It is also necessary that these monitoring systems
are adaptable and flexible to allow activation or monitoring
level change (from application overview to component or even
method level or vice versa) at runtime.

III. M ONITORING FRAMEWORK

Before presenting the monitoring architecture proposed we
need to present the technologies used to build our approach:
Aspect Oriented Programming (AOP) and Java Management
Extensions (JMX)[20]. Although it is out of scope of this
paper to present in detail both technologies, it is necessary

to introduce a brief description of them to make clearer the
solution presented in this paper.

A. Used Technology

1) Aspect Oriented Programming: The AOP paradigm al-
lows to isolate the main business logic of the application from
secondary functions like logs or authentication. This paradigm
increases the modularity, allowing to separate concerns, specif-
ically cross-cutting concerns.Aspects is the name of the main
concept of the AOP technology. The aspects are composed by
two elements:Advices and Join Points. The advices are the
code that is executed when the aspect is invoked: The advice
has access to the class, methods and/or fields of the module
which the advice invokes. The Join Point is the definition to
indicate when the advice will be invoked. We can see the Join
Point like a trigger: when the condition is true the Advice
is invoked. For this technology’s implementation, we have
chosen AspectJ [21] because it is a well-known widely used
and mature technology. In addition, this technology offersa
simple and powerful definition of Aspects like Java class, so
the learning curve is quite quick for experienced Java devel-
opers. The AOP paradigm is not limited to Java Applications,
we can find AOP solutions for C# or C++ like AspectC# [23]
and AspectC++ [22] respectively. Furthermore, AOP offers
other important and interesting capability for our purpose.
AOP allows us to inject code in compile, load or runtime.
So, AOP allows us to inject our monitoring framework in
runtime without to have access to the source code, allowing
even to inject our code over third-part J2EE applications or
even legacy Java Applications.

2) Java Management Extensions: The JMX technology
offers a set of capabilities to manage and monitor any system
component: from devices to Java objects. The JMX is based
on 3-level architecture: Probe level, Agent level and Remote
Management Level. The Probe level is composed by the probes
(called MBeans). Every MBean represents a Java object. The
Agent level or MBeanServer is the core of the JMX technology
and acts as intermediary between MBeans and the external
applications. Finally, the Remote Management Level allows
external applications communicate with the MBeanServer via
JMX connectors or protocol adapters. So, JMX allows to
connect and communicate with Java objects (MBeans) in
runtime without modify the application sourcecode allowing
to interact with them, transparently.

B. Architecture approach

After present the technologies used to develop our approach,
it is moment to present the architecture of our solution.
We can divide our approach in four main components: The
Aspect Component (AC), the JMX monitoring Agents, the
JMX Manager Agent and the External Front-end. Figure 1
shows the components that compose our solution.

1) Aspect Component: Aspect Component is composed by
the two elements: The Aspect Component (AC) and the Aspect
Component Proxy (AC Proxy). Every application component
has an AC associated (thanks to the Join Point definition).

The AC has two advices: before and after the application
component execution. The idea is to measure every resource
before and after a component is used. In this way, we can
know how much resource has been used by the component. If
the component has a resource consumption bug, the resource
available after the execution will be lower than before. To
achieve this, the AC communicates (using MBeanServer) to
the JMX Monitoring Agents to know the resource status when
is demanded. Currently, our architecture is based on a limited
set of Monitoring Agents by every resource under monitoring.
We have decoupled the JMX Monitoring Agents to the AC
(thanks to JMX technology) to increase the adaptability and
flexibility of the solution. Currently, if a Monitoring Agent
is modified or changed, we don’t need to change the AC at
all. The MBeanServer capabilities allow the AC to discover
new or updated JMX Monitoring Agents. The AC Proxy
has the task to create a communication channel between the
AC and the JMX Manager Agent. This channel allows the
JMX Manager Agent interacts with the AC. From asking
some information like how many requests have used by the
component to activating or deactivating the AC in runtime.
The JMX technology offers a great flexibility and adaptability
because we can change the ACs or add new ones and the JMX
Manager can discover them by itself and vice versa.

2) JMX Monitoring Agents: JMX Monitoring Agents have
the responsibility to access to the operating System and collect
resource metrics, AC on demand. So, JMX monitoring Agents
usually will be executed before and after every access to every
application component under monitoring. Currently, we have
developed a limited number of monitors only to show the
effectiveness of the approach.

3) JMX Manager Agent: JMX Manager Agent is the core of
our proposal. The JMX Manager Agent has the responsibility
to collect the metrics by component and build the resource-
component map. Furthermore, it has the responsibility to
activate or deactivate ACs on demand. For example, to reduce
the overhead of the solution or to focus the monitoring over a
set of determined objects. The JMX Manager Agent builds the
resource-component map and offers a first analysis to establish
the most possible root cause component of the software aging
in advance. If a software aging has been detected while
monitoring the system metrics using a traditional monitoring
tool, we can use the JMX Manager Agent (and the rest of our
framework) to determine (or at least help to) the component
or components involved in the software aging.

4) External Front-end: The External Front-end is a simple
front-end to allow administrators to communicate with the
JMX Manager Agent to know the status of the components
in real time or activate new ACs or new JMX Monitor Agents
and obtain more details of the application behavior.

C. Root Cause determination Strategy used by JMX Manager
Agent

Our current root cause determination mechanism is very
simplistic and has to be refined in the future. The main
idea is that the component is more aging-related when the

Fig. 1. Components of Monitoring Framework

component resource consumption and the usage frequency is
high. In figure 2 we present the core of our current map
theory. If a component is very used and the resource usage
is high (accumulated along the time) the component increases
its probability to become the main aging-component of the
application. For example, if we have four components in our
application: A, B, C and D. A and B have a memory leak of
100KB in each execution and C and D have a memory leak
of 10KB. A and B will be in the right zone of the vertical-
axis and C and D in left zone. If A is more used than B
then A is in the bottom of the right size (the most suspicious
zone) and B in the top. In the same way we can locate the
C and D components. Using this analytic approach of the
components behavior, the JMX Manager Agent builds the
map of root cause aging failure. We have used this approach
because the software aging is due an accumulation of aging-
errors that usually are consuming resources along the time
until their exhaustion. For this reason, we want to know which
component is consuming more resources, so which component
is more correlated with the aging phenomena.

Fig. 2. Resource Consumption vsĊomponent Usage map

IV. EXPERIMENTAL CASE STUDY

After present our proposal, we have conducted a set of
experiments to evaluate the effectiveness of our approach.Our
idea is to test our prototype to determine the cause of a led
memory leak. In next subsection we present the experimental
environment used in our experiments.

A. Experimental Setup

In this section we describe the experimental setup used in all
experiments presented below. The experimental environment
simulates a real web environment, composed by the web
application server, the database server and the clients machine.

In our experiments, we have used a multi-tier e-commerce
site that simulates an on-line book store, following the stan-
dard configuration of TPC-W benchmark [13]. We have used
the Java version developed using servlets and using as a
Mysql [24] as database server. As application server, we
have used Apache Tomcat [25]. TPC-W allows us to run
different experiments using different parameters and under a
controlled environment. These capabilities allow us to conduct
the evaluation of our approach to predict the time until failure.
Details of machine characteristics are given in Table I.

TPC-W clients, called Emulated Browsers (EBs), access the
web site (simulating an on-line book store) in sessions. A
session is a sequence of logically connected (from the EB point
of view) requests. Between two consecutive requests from the
same EB, TPC-W computes a thinking time, representing the
time between the user receiving a web page s/he requested and
deciding the next request. In all of our experiments we have
used the default configuration of TPC-W. Moreover, following
the TPC-W specification, the number of concurrent EBs is kept
constant during the experiment.

To simulate the aging-related errors consuming resources
until their exhaustion, we have modified the TPC-W imple-
mentation. In our experiments we have played with Memory
resource. To simulate a random memory consumption we have
modified a servlet which computes a random number between
0 and N . This number determines how many requests use
the servlet before the next memory consumption is injected.

TABLE I
MACHINE DESCRIPTION

Clients Application
Servers

Database
server

Hardware 2-way Intel
XEON 2.4
GHz with 2
GB RAM

4-way Intel
XEON 1.4
GHz with 2
GB RAM

2-way Intel
XEON 2.4
GHz with 2
GB RAM

Operating
System

Linux 2.6.8-3-
686

Linux 2.6.15 Linux 2.6.8-2-
686

JVM - jdk1.5 with
1GB heap

-

Software TPC-W
Clients

Tomcat 5.5.26 MySql 5.0.67

Therefore, the variation of memory consumption depends of
the number of clients and the frequency of servlet visits.
According to the TPC-W specification, this frequency depends
on the workload chosen. This makes that with high workload
our servlet injects quickly memory leaks, however with low
workload, the consumption is lower too. But, again, the
average consumption rate would depend on the average of this
random variable, with fluctuations that become less relevant
when averaged over time. Therefore, we could thus simulate
this effect by varyingN , and we have decided to stick to only
one relevant parameter,N . This error helps us to validate
our framework under different scenarios. TPC-W has three
types of workload (Browsing, Shopping and Ordering). In our
case, we have conducted all of our experiments using shopping
distribution.

B. Experimental Results

We have conducted a set of experiments to determine the
effectiveness of our approach to monitor the resources con-
sumed by every application component under the experimental
environment described before.

1) Framework Overhead: As we presented before, we have
injected a set of components (Aspects) to the application code
increasing the instructions executed by the computer. So, our
monitoring framework has an impact over the performance
of the applications. Our first experiment was to evaluate
the performance penalty introduced by our framework in an
one hour execution of TPC-W with two workload changes.
The first two minutes (the warm-up) the workload was 50
Emulated Browsers. During the next 30 minutes the workload
was increased to 100 EBs and finally, the last 30 minutes,
the workload was 200 EBs. In figure 3 we can observe the
throughput obtained by the original TPC-W and TPC-W under
monitoring with our infrastructure.

The penalty overhead is quite promising: only 5% of over-
head, monitoring all TPC-W application components. In this
experiment we didn’t inject any memory leak. The response
time penalty is quite complicated to evaluate because TPC-W
uses a thinking time to simulate the time used by users to
read the webpage. This time is random following statistical
distribution. For this reason, two executions have different
response times. However, the workload (requests by time unit)
is constant a long the time.

Fig. 3. Throughput of TPC-W under a dynamic workload

2) Effectiveness to determine a memory leaking component:
After evaluating the overhead introduced by our framework
we decided to test our approach under a software aging due
to a memory leak in one component of TPC-W. The memory
leak was injected as it was described before and we introduced
100Kb of memory leak. We have developed a JMX Monitoring
Agent which allows us to know the real size of a Java
Object. The real size of a Java Object includes the size of the
objects referenced by the object under monitoring. But not the
following referenced objects, avoiding a recursively process.
In J2EE applications, all objects inherit from superclass and
if we apply recursively the process to calculate the size of
the object, we find that one object has a indirect relationship
with practically all objects of the application. Thanks to this
monitoring agent we can know the memory object size at every
moment.

We conducted a one hour execution injecting 100KB with
N = 100 in component A (see figure 4) and the rest of
components are not modified. We can observe clearly how the
component A is growing in memory size due to the memory
leak, becoming clear which is the guilty component of the
software aging. While the rest of component sizes are constant
a long the experiment consuming a few Kbs, the Object A
size is growing from few Kb to MBs consumed during the
experiment. In this point our simple mechanism is quite clear,
only one component has more memory than the rest of them,
concluding that A has the 100% of the responsibility of the
software aging.

3) Effectiveness to determine a set of memory leaking
components: The next experiment presents the effectiveness
of our approach to determine how four components are guilty
of the software aging, but different level of responsibility. We
have conducted a new one hour execution, however this time,
four objects (A, B, C and D) have been modified to inject
100KB following the formula described in the experimental
setup section. In figure 5, we present only the four guilty
components to reduce the image. We can observe how the
four object sizes are increasing along the experiment but at
different rate due to the injection mechanism in deed (all
objects follow the same injection rate configurationN = 100)
and the frequency they are used by the clients (EBs). We can
observe how the components A and B have the same memory

Fig. 4. Injection in component A (100KB)

size after the same period. This fact indicates that both objects
have more or less the same frequency usage by the users and,
for this reason, in average the same memory leak. They will
be in the bottom right zone of the figure 2. However, we can
observe how object C has a less memory used, so, object C
will be in the top right zone. Finally, we can observe how
object D never injected a memory leak because the frequency
usage by the users is too low to provoke the injection. For this
reason the object D memory usage its maintained constant.
The reason is because this object is used not so much in TPC-
W shopping workload distribution. It will be in the top right
zone. Following our approach objects A and B will be the most
suspicious components, after that, object C and finally, object
D. Figure 6 shows the composited map by JMX Manager
Agent.

4) Effectiveness to determine the root cause failure under
different injection sizes: Our approach allows to know how the
components are consuming the memory along the execution.
After that, we decided to repeat the last experiment, but in
the new experiment we injected only 10KB in Object B, 1MB
in Object C and D while object A becomes the same with
100KB. The idea is showing how to the memory leak and
the usage of the component has an impact over the suspicious
level of the component or components to be the root cause of
software aging.

In figure 7 we show the memory size of the four objects.
We can see again how object D results in constant object size
(2KB aprox.) because is used too low. On the other hand, in
the last experiment Object C was in third position following

Fig. 5. Detail of injection in 4 components

our root cause determination approach. However, in the new
experiment, increasing the size of the memory leak (from
100Kb to 1MB) has becoming on the most important reason
of the software aging. Objec A continues being an important
factor of the software aging (second position) and Object B,
has also important impact over the memory consumption but
now with a lower memory leak (from 100KB to 10KB), it is
in third position.

V. CONCLUSION

In this paper we have presented a monitoring framework
for detecting software aging root causes, using the Aspect
Oriented Programming and Java Management Extensions tech-
nologies. Our methodology allows monitoring the applications
without altering their source code and injecting the observers
in runtime, being able to connect or disconnect them on
demand.

For this case of study, we focus on a specific kind of
software aging: memory leakage. We present a theoretic map
where, depending on the components observed behavior, we

Fig. 6. Resource Consumption vsĊomponent Usage map composed by JMX
Manager Agent

can determine the component that with high probability is the
root cause of the resource consumption.

Our experimentations show that our method allows deter-
mining, given an aging-error, the most suspicious components,
helping designers and system operators to look for the real
cause and then fix the problem.

In our future work, we focus on the application of this
framework and methodology towards other software aging
causes, like CPU and thread leaks among others, and also
improve the determination method looking for moreintelligent
decision makers in front of different software aging symptoms.

ACKNOWLEDGMENT

This research work has been supported by the Spanish
Ministry of Education and Science (projects TIN2007-60625)
and by the Generalitat de Catalunya (2009-SGR-980). R.
Gavald̀a is partially supported by the EU PASCAL2 Net-
work of Excellence and by the MICINN SESAAME project,
TIN2008-06582-C03-01/TIN.

REFERENCES

[1] D. Oppenheimer, A. Ganapathi, and D. A. Patterson.Why do internet
services fail, and what can be done about it?.In 4th USENIX Symposium
on Internet Technologies and Systems (USITS’03), 2003.

[2] S. Peret and P. Narasimham.Causes of Failure in Web applications.
Technical Report CMU-PDL-05-109, Carnegie Mellon Univ, Dec. 2005.

[3] K. Vaidyanathan, R. E. Harper, S. W. Hunter, and K. S. Trivedi. Analysis
and Implementation of Software Rejuvenation in Cluster Systems. ACM
Sigmetrics 2001/Performance 2001.

[4] K. S. Trivedi, k. Vaidyanathan and K. Goseva-Popstojanova. Modeling
and Analysis of Software aging and Rejuvenation. IEEE Annual Simula-
tion Symposium, April 2000.

[5] T. Dohi, K. Goseva-Popstojanova and K. S. Trivedi.Analysis of
Software Cost Models with Rejuvenation. IEEE Intl. Symposium on High
Assurance Systems Engineering (HASE 2000).

Fig. 7. Determination of Root failure in 4 different injections

[6] M. Grottke, R. Matias Jr. and K.S. TrivediThe Fundamentals of Software
aging In Proc. 1st Int. Workshop on Software Aging and Rejuvenation.
19th Int. Symp. on Software Reliability Engineering, 2008.

[7] Y.Huang, C.Kintala, N.Kolettis and N. Fulton.Software Rejuvenation:
Analysis, Module and Applications.Proceedings of Fault-Tolerant Com-
puting Symposium, FTCS-25, June 1995

[8] K.Vaidyanathan and K.TrivediA Comprehensive Model for Software
Rejuvenation. IEEE Trans. On Dependable and Secure Computing, Vol,
2, No 2, April- 2005

[9] S. Garg, A. van Moorsel, K. Vaidyanathan and K. TrivediA Methodology
for Detection and Estimation of Software Aging. Proc. 9th Int’l Symp.
Software Reliability Eng., 1998.

[10] G.Candea, E.Kiciman, S.Zhang and A.FoxJAGR: An Autonomous
Self-Recovering Application Server. Proc. 5th Int Workshop on Active
Middleware Services, Seattle, June 2003

[11] G. Kiczales et al. Aspect Oriented Programming. Lecture Notes in
Computer Science, Vol. 1241, pp. 220-242, Springer 1997.

[12] D. Mahrenholz, O. Spinczyk, and W. Schröder-PreikschatProgram

Instrumentation for Debugging and Monitoring with AspectC++. Pro-
ceedings of the Fifth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, 2002.

[13] TPC-W Java Versionhttp://www.ece.wisc.edu/ pharm/.
[14] [Web-site at Dec. 2009] http://ganglia.info
[15] [Web-site at Dec. 2009] http://www.nagios.org
[16] M. Chen, A. Accardi, E. kiciman, J. Lloyd, D. Patterson, A. Fox, and

E. Brewer. Path-based failure and evolution management. Proc. of the
1st Symp. NSDI’2004.

[17] P. Barham, A. Donnelly, R. Isaacs, and R. MortierUsing Magpie
for request extraction and workload modelling. Proc. of the 6th Symp.
OSDI’2004.

[18] [Web-site at Dec. 2009] http://www.glassbox.com
[19] M. Engel and B. FreislebenSupporting autonomic computing func-

tionality via dynamic operating system kernel aspects. Proc. of the 4th
Intl. Conf. on Aspect-Oriented software development, pp. 51-62, March
14-18, 2005.

[20] [Web-site at Dec. 2009] http://java.sun.com/javase/technologies/core/mntr-
mgmt/javamanagement/

[21] G. Kiczales et al. An Overview of AspectJ. Proc. European Conf.
for Object-Oriented Programming (ECOOP 2001). Lecture notesin
Computer Science, Vo. 2072, pp. 626-657, 2001.

[22] [Web-site at Dec. 2009] http://www.aspectc.org/
[23] H. Kim AspectC#: An AOSD implementation for C#. Master Thesis

Dissertation, Trinity College Dublin, 2002.
[24] MySQL Data Base serverhttp://www.mysql.com/.
[25] Apache Tomcat Serverhttp://tomcat.apache.org/

