
Title: Linear invariants for the equal-input evolutionary
model

Author: Alba Puy Tapia

Advisor: Marta Casanellas Rius

Department: Matemàtiques (MAT)

Academic year: : 2016 - 2017

Degree in Mathematics

Universitat Politècnica de Catalunya
Facultat de Matemàtiques i Estadística

Degree in Mathematics

Bachelor’s Degree Thesis

Linear invariants for the
equal-input evolutionary model

Alba Puy Tapia

Supervised by Marta Casanellas Rius

June, 2017

Thanks to Marta Casanellas for being my supervisor. Thanks to my family, my boyfriend and friends for
giving me hope even when I couldn’t see the light during these years. Thanks to Jaume Franch, Pere Pascual,
Narciso Román and other professors for teaching me not only the mathematic issues a mathematician should
know, but also for making me become one.

Abstract

Mathematical models for describing biological systems are becoming more and more important nowadays.
In this thesis we will study Markov processes on phylogenetic trees and deeply study the equal-input model,
which is the first non-trivial model that presents the interesting properties of simple models. We will
study widely this model, talking about its invariants, computing the linear ones for the case of n = 5 and
studying the linear equations that satisfy all the distributions arising from it. We will also talk about some
notions of phylogenetic trees and the distinction between topology and model invariants, understanding the
generalization of these processes to phylogenetic mixtures.

Keywords

Algebraic invariant, algebraic phylogenetic tree, evolutionary model

1

Contents

1 Introduction 3

2 Background 4
2.1 Phylogenetic trees . 4
2.2 DNA alignments . 5
2.3 Markov models: Equal-input model . 6

3 Phylogenetic invariants for the equal-input model 10
3.1 Phylogenetic invariants . 10
3.2 Linear invariants . 10

4 Phylogenetic mixtures 17

5 Computational part 19

6 Results 27

7 Conclusion 31

2

1. Introduction
"Every new body of discovery is mathematical in form, because there is no other guidance we can have."
Charles Darwin.

Through all times, biologists have tried to find out the origin of all the species trying to piece together
parts of this ’tree of life’ based on the observations they have. However, new improvements in mathematics
made us, the mathematicians, play an important role in transforming genomic data into phylogenetic trees,
useful to find more hints about where we came from.

The modeling of the evolution of the species in a phylogenetic tree is done according to Darwin’s theory
of natural selection. In a phylogenetic tree the leaves represent the current species, the root the common
ancestor and the edges the speciation process.

Nowadays, studying the evolutionary relationship of the species implies the study of the relation between
the molecules of DNA associated to them. These molecules usually correspond to genes and, thanks the
double helix symmetry, could be thought as a sequence of nucleotides: adenine (A), cytosine (C), guanine
(G) or thymine (T).

The main goal of phylogenetics is to get, from the DNA sequences of a group of current species, the
reconstruction of the ancestral relations between them. To this aim evolutionary nucleotide substitution
models have been introduced since 1969 and these have been since then, the basis of phylogenetic recon-
struction.

In this line, the main goals of this project are:

• Studying Markov processes on phylogenetic trees and deeply study the properties of the equal-input
model (explained in section 2.3). Understanding the generalization of these processes to phylogenetic
mixtures (explained in section 4).

• Understanding the notions of invariants on phylogenetic trees and the distinction between topology
and model invariants (explained in section 3.1).

• Study the linear equations that satisfy all the distributions arising from an equal-input Markov process
on a phylogenetic tree based on the previous study of Marta Casanellas and Mike Steel (explained in
section 3.2).

• Compute explicitly generators of the space of linear invariants for phylogenetic trees on five leaves
evolving under the equal-input model (explained in section 5).

3

2. Background

2.1 Phylogenetic trees

We introduce here some notions that we are going to use in the following pages:

Definition 2.1. A graph G = (N, E) consists of a set N of nodes and a set E ⊆
(N

2

)
of edges connecting

pairs of nodes.

Definition 2.2. The degree of a node in a graph is the number of edges adjacent to it.

Definition 2.3. A subgraph of a graph is another graph, formed from a subset of the nodes of the graph
and all of the edges connecting pairs of nodes in that subset.

Definition 2.4. A tree is a graph that is connected and has no cycles. There are many alternative charac-
terizations of trees; for example, the following are equivalent:

• T = (N, E) is a tree.

• T = (N, E) is connected and it has |N| − 1 edges.

• For any two nodes u and v of T , there is a unique path from u to v .

Definition 2.5. The leaves of a tree are the nodes whose degree is one. We call also the edges of a tree
branches.

Definition 2.6. A phylogenetic tree on a set of species S is a tree T together with a bijection ψ from the
set of leaves of T to S is a branching diagram showing the inferred evolutionary relationships among various
biological species based on similarities and differences in their genetic characteristics. Each leaf is related
with a existing species and the internal nodes are the common ancestors. The branches between two nodes
represent the evolutionary processes between them.

The bijection ψ labels the leaves of the tree with species in S . So, two trees are topologically equivalent
if there exists a graph isomorphism between both that preserves the labeling of the leaves.

Example 2.7.

Figure 1: Phylogenetic trees with different topology

Phylogenetic trees can have a distinguished interior node, called the root, and then edges which are
directed out of the root. A root represents a common ancestor for all the current species of the tree.
Rooted trees are called binary if every branch is divided in two other branches until we arrive to the leaves.
It is impossible with only the DNA of the current species and the evolutionary models to reconstruct the
exact position of this root, so that, the most phylogenetic methods consider trees without root.

4

Example 2.8.

(a) Tree rootless (b) Tree with root

Figure 2: Trees without and with root

The next notation is going to be used to express the different topologies of a tree: we will write: AB|CD
if we consider a four leaves tree to express that leaves A and B are together and C and D. See example 2.9.

Example 2.9. This example shows the three possible different topologies for a four leaved tree:

(a) AB|CD (b) AC |BD (c) AD|BC

Figure 3: The three different topologies for unrooted trees with 4 leaves.

Phylogenetic trees can come also with lengths assigned to the branches. In phylogenetics the length of
a branch represents the evolutionary distance between the nodes in the branch (and it is usually measured
as the elapsed amount of mutations between both DNA sequences).

2.2 DNA alignments

Nowadays it is usual to look at the DNA molecules in the genome of the species to reconstruct phylogenetic
trees. The DNA is a nucleic acid, formed by smaller molecules called nucleotides. A nucleotide is composed
of a sugar, a phosphate group and a nitrogen-containing base, which determines the type of the nucleotide.

Due to various processes of mutation, suppression or insertion of nucleotides, the DNA of the same gen
in different species is not equal, in fact, it usually present some similar regions and other that are difficult
to compared. Also, the genes might appear in different regions due that the genome of different species has
different number of nucleotides, chromosomes and genes. That is why, before starting to study the ancestral
relations between the species is really important to know which parts of the genome of each species give
the same information. This information is kept in an alignment of DNA sequences.

5

Definition 2.10. An alignment is a table in which rows are the DNA sequences of each species of study
are and each column corresponds to the nucleotides which have evolved from the same nucleotide in the
common ancestor.

In order to simplify, in this thesis only are going to be taken the mutation events into account, forgetting
about the suppression and insertion events, as is usually done in phylogenetics.

Example 2.11.

Gorilla Gorilla AACTTCGAGGCTTACCGCTG
Homo Sapiens AACGTCTATGCTCACCGATG
Pan Troglodytes AAGGTCGATGCTCACCGATG

Table 1: Alignment of DNA chains of the species Homo Sapiens (humans), Pan Troglodytes (chimpanzee)
and Gorilla Gorilla (gorilla).

Once we have an alignment and an evolutionary model, we can compute the relative frequencies of
each combination of nucleotides. Since each phylogenetic tree has its own evolutionary characteristics, the
probability of obtaining a certain alignment is different for each tree.

There are different methods that use these probabilities to determine the tree that has originated the
alignment.

2.3 Markov models: Equal-input model

In order to model the evolutionary process of the species considered to study, the following hypothesis are
assumed:

• We consider only binary trees (the internal nodes have degree tree or two if it is the root).

• The evolutionary processes on the adjacent branches only depends on the common node.

• The mutations of the DNA chain occur randomly.

• The different positions in the DNA chain evolve independently one from each other and with the same
probability of mutation.

Due to the last hypothesis it is enough to model one position: to each node i it is assigned a discrete
random variable Xi with values in {A, C , G , T}. The variables at the leaves represent observations from
the nucleotides of the actual species. Each column of the alignment corresponds to one observation of the
random vector X = (X1, ... , Xn), being n the number of species considered.

The random variable at the interior nodes are hidden variables (we don’t have observations about them).
Let T be a phylogenetic tree on a set of n species, either rooted or unrooted. If the tree is rooted then the
root naturally defines an orientation on the edges of the tree. If it is not rooted, then we choose an internal
node and direct the edges out of it.

6

Following a Markov process, a substitution matrix Se is assigned to the edge e. The entries of Se are
the probabilities P(x |y , e) of the nucleotide y at the predecessor node being substituted by the nucleotide
x at the child node thorough the evolutionary process represented by e.

Se =

A C G T

P(A|A, e) P(C |A, e) P(G |A, e) P(T |A, e) A
P(A|C , e) P(C |C , e) P(G |C , e) P(T |C , e) C
P(A|G , e) P(C |G , e) P(G |G , e) P(T |G , e) G
P(A|T , e) P(C |T , e) P(G |T , e) P(T |T , e) T

Note that, as they represent probabilities, the sum of the rows must be equal to one. The entries of Se are
unknown and together with the nucleotides distribution at the root (πA,πC ,πG ,πT) are the parameters of
the model where πA + πC + πG + πT = 1 .

Depending on the structure of the matrix different models can be obtained. For example, if no restriction
is imposed at the entries of Se the most general model is obtained, named general model of Markov GMM:

Se =

ae be ce de

ee fe ge he

je ke le me

ne oe pe qe

But if, for example, πA = πT and πC = πG are imposed, the Strand symmetric model is obtained, reflecting
the symmetry of the DNA molecule. If πA = πC = πG = πT , then be = ce = de is imposed and the
Jukes-Cantor Model JC is obtained:

Se =

ae be be be

be ae be be

be be ae be

be be be ae

The parameter ae in the last model is the probability for a nucleotide of not being substituted.

Remark 2.12. As the addition of all the elements of a row of the matrix should be one, we have just one
free parameter per edge for the JC model: ae + 3be = 1.

For the general Markov Model there are three free parameters at the root and twelve at each substitution
matrix.

7

Example 2.13. Lets focus on the following phylogenetic tree:

Figure 4: Statistical model of a tree of three leaves.

Knowing the substitution matrices and the distribution of the nucleotides at the root π = (πA,πC ,πG ,πT),
the probability of obtaining X1 = x , X2 = y and X3 = z can be obtained under Markov process on this tree
is:

pT
xyz = P(X1 = x , X2 = y , X3 = z |T) =

∑
xr ,x4∈{A,C ,G ,T}

πxr S1(xr , x)S4(xr , x4)S2(x4, y)S3(x4, z), (1)

If the Jukes-Cantor model is considered, we have:

pT
AAA = pT

CCC = pT
TTT = pT

GGG

where pT
AAA =

1

4
(a1a4a2a3 + 3b1b4a2a3 + 3a1b4b2b3 + 3b1a4b2b3 + 6b1b4b2b3)

pT
ACC = pT

ATT = pT
AGG = pT

CAA = pT
CTT = pT

CGG = pT
GAA = pT

GCC = pT
GTT = pT

TAA = pT
TCC = pT

TGG

where pT
ACC =

1

4
(a1a4b2b3 + 2a1b4b2b3 + a1b4a2a3 + 6b1b4b2b3 + b1a4a2a3 + 2b1a4b2b3 + 2b1b4a2a3)

pT
ACA = pT

ATA = pT
AGA = pT

CAC = pT
CTC = pT

CGC = pT
GAG = pT

GCG = pT
GTG = pT

TAT = pT
TCT = pT

TGT

where pT
ACA =

1

4
(a1b4a2b3 + 2a1b4b2b3 + a1a4b2a3 + b1a4a2b3 + 3b1b4b2a3 + 3b1b4b2b3 + 2b1b4a2b3

+ 2b1a4b2b3)

pT
AAC = pT

AAT = pT
AAG = pT

CCA = pT
CCT = pT

CCG = pT
GGA = pT

GGC = pT
GGT = pT

TTA = pT
TTC = pT

TTG

where pT
AAC =

1

4
(a1a4a2b3 + a1b4b2a3 + 2a1b4b2b3 + b1a4b2a3 + 3b1b4a2b3 + 4b1b4b2b3 + 2b1a1b2b3

+ 2b1b4b2a3)

pT
ACG = pT

ACT = pT
AGC = pT

AGT = pT
ATC = pT

ATG = pT
CAG = pT

CAT = pT
CGA = pT

CGT = pT
CTA = pT

CTG

= pT
GAC = pT

GAT = pT
GCA = pT

GCT = pT
GTA = pT

GTC = pT
TAC = pT

TAG = pT
TCA = pT

TCG = pT
TGA

= pT
TGC

where pT
ACG =

1

4
(a1a4b2b3 + a1b4a2b3 + a1b4b2a3 + a1b4b2b3 + b1a4a2b3 + 4b1b4b2b3 + 2b1b4b2a3

+ b1a4b2a3 + 2b1b4a2b3 + b1a4b2b3)

8

This can be done for any tree, but the expression of the probabilities in terms of the parameters gets
more complicated. We will call pT

x1,...,xn the probability of observing pattern x1, ... , xn at the leaves 1, ... , n
of T, and pT will be the corresponding probability vector pT = (pT

A...A, ... , pT
T ...T).

Remark 2.14. The root of a phylogenetic tree is not identifiable. That is, different root placements can
lead to the same vector of probabilities at the leaves, if we allow different transition matrices.

The Equal Input model (EI) for a set S of k states is a particular type of Markov process on a tree,
defined as follows.Let π be a distribution on the set S . This distribution π will play the role of the stationary
distribution for this model and, as the model is time-reversible, this will also be the distribution at the root
of the tree. Throughout this thesis we shall assume that the distribution π is known (as it is the stationary
distribution it can be inferred from the data) and is strictly positive.

Given a root vertex vo let π be a distribution of states at vo and for each (directed edge e = (u, v)
(directed away from v0). In the EI model, each transition matrix Se has the property that for some value
θe ∈ [0, 1] and all states α,β ∈ S with α 6= β we have:

Sαβ
e = πβθe

This model generalizes the familiar fully symmetric model of k states (such as the ’Jukes-Cantor model’
when k = 4) to allow each state to have its own stationary probability. The fully symmetric model on
k states assumes π to be the uniform distribution, π = (1

k , ... , 1
k) and for k=4 this is the Jukes-Cantor

model we presented above. In the case k = 4 with S equal to the four nucleotide bases, the equal input
model is known as the Felsenstein 1981 model. The defining property of the model is that the probability
of transition from α to β (two distinct states) is the same, regardless of the initial state α(6= β).

Example 2.15. The Felsenstein 1981 model, like the Jukes-Cantor model, assumes that all substitutions
are equally likely, but can model an arbitrary stationary distribution, π = (πA,πC ,πG ,πT) where πA 6=
πC 6= πG 6= πT . The Felsenstein model transition matrix is:

Se =

1− (πC + πG + πT)θe πCθe πGθe πT θe

πAθe 1− (πA + πG + πT)θe πGθe πT θe
πAθe πCθe 1− (πA + πC + πT)θe πT θe
πAθe πCθe πGθe 1− (πA + πC + πG)θe

9

3. Phylogenetic invariants for the equal-input model

3.1 Phylogenetic invariants

From now T is going to be the topology of the phylogenetic tree, and n is going to be the number of species
considered (n leaves). Let’s call M the evolutionary model with d free parameters. The next polynomial
map is going to be associated to the leaves:

ϕM
T : Rd −→ Rkn

θ = (θ1, ... , θd) −→ pT

For instance, the Jukes-Cantor model on the tree of Figure 4 has associated the following polynomial map:

ϕM
T : Rd −→ R43

= R64

(b1, b2, b3, b4) −→ pT = (pT
AAA, pT

AAC , ... , pT
TTT)

and pT
AAA, pT

AAC , ... , pT
TTT are written in therms of the parameters as (1), where we substitute ae by 1−3be .

Although the parameters of the model are probabilities and are at the interval [0, 1] the map is going to
be considered at Rd in order to be able to apply the results and techniques of algebraic geometry.

ImϕM
T contains all the distributions generated by the parameters of T . Also, considering S ⊆ R4n , I (S)

is defined as the set of polynomials that are zero on S , is an ideal and has a finite set of generators due to
the Hilbert basis theorem.

Definition 3.1. Given a tree topology T of n leaves and a evolutionary model M, the polynomials of
IM(T) = I (ImϕM

T) are called invariants of T.

Definition 3.2. The polynomials of IM(T) that are not in IM(T ′) for some other tree T ′ are called topology
invariants of T and the ones that lie in IM(T) for any tree topology on n leaves are called model invariants.

3.2 Linear invariants

Linear invariants are invariants of degree one. Some models do not allow linear invariants but some models
do. The models that have linear invariants have very nice properties, some of which we are going to study
in the next pages.

From now, some of the following theoretical results are going to be illustrated as set of applied examples,
the general proof can be found at the article of Marta Casanellas and Mike Steel: Phylogenetic mixtures
and linear invariants for equal-input models [3].

10

Lemma 3.3. For variables θ1, ... , θd , consider polynomials f1(θ), ... , fM(θ) ∈ R[θ1, ... , θd] of the following
form:

fi (θ) =
∑
A⊆[d]

c
(i)
A

∏
j∈A

θj , c
(i)
A ∈ R.

(i) Then f0 ≡ 0 (i.e. c0
A = 0 for all A ⊆ [d]) if and only if for any t 6= 0, f0(θ) = 0 for all θ ∈ {0, t}d .

(ii) Let f = (f0, ... , fM) : Rd → RM and let L : RM → R be a linear map. Define an equivalence relation
among the elements of {0, t}d by θ ∼ θ′ if f (θ) = f (θ′), and let θ1, ... , θs be the representatives of
these equivalence classes. We call qi = f (θi), i = 1, ... , s. Then L(f (θ)) = 0 for all θ ∈ Rd if and
only if L(qj) = 0 for j = 1, ... , s.

The proof of this lemma relies on multilinear algebra. Although the statement requires a lot of notation,
it only says that to check whether a linear function f0 is an invariant on T , one just needs to check whether
f0 vanishes when the parameters are 0 or 1 (or any t instead of 1).

We are going to illustrate it with the example on the Jukes Cantor model on three leaves used at the
previous section.

Let f1 = PT
AAA and f2 = PT

CCC and consider f0 = f1 − f2 = 0. Then, we could check that PT
CCC = PT

AAA

without having to compute PT
CCC or PT

AAA: one just needs to compute PT
AAA and PT

CCC for parameters
bi ∈ {0, 1} and check if they are equal in all the cases.

The previous lemma is useful for a evolutionary models. However, from now on we need to restrict to
the equal input model. At the section 5 we will compute the linear invariants for an equal-input model of a
tree with 5 leaves.

In the Equal Input model, once we fix π, the probability PT (χ, θ) of observing a character at the leaves
of T is:

PT (χ|θ) =
∑

(sv)v∈S Int(T)

πsv0

∏
(u,w)∈E(T)

S su ,sw
e

A subforest F of T is a subgraph comprised of a collection of disjoint trees {T1, ... , Tr} such that the
only nodes of degree ≤ 1 in Ti are leaves of T .

From now, we will say that a subforest F = {T1, ... , Tr} is a full subforest of T if it the union of the
sets of leaves of T1, ... , Tr includes all the leaves of T .

We define ΘF as the collection of edge parameters θe such that θe = 0 if e ∈ E (Ti) for some Ti ∈ E
and θe = 1 for all other edges e. We will define the partition that F generates over the leaves as σ(F).

11

Example 3.4. Considering the tree in the Figure 5(a) we give values to the edges to get the full subforest
F . Which defines the following partition σ(F) = {1, 2|3, 4|5|6, 7, 8}.

(a) Tree of 8 leaves (b) Giving values to the edges

(c) Subforest F

Figure 5: Illustrative example

Lemma 3.5. (a) Let Θ be a collection of parameters (θe)e∈E(T) such that θe is either 0 or 1 for all
e ∈ E (T). Then there exists a unique full subforest F ∈ FT such that PT ,Θ = PT ,ΘF

.

(b) A degree 1 polynomial
∑

χ λχxχ is a linear phylogenetic invariant for a tree T if and only if∑
χ

λχPT (χ|ΘF) = 0

for any full subforest F ∈ FT .

We illustrate the proof with an example:

(a) Let us consider the following tree:

Figure 6: Graph with seven nodes.

12

First, we consider different full subforests F and G are different subforests of the tree and prove that
there exists χ that makes P(χ|ΘG) 6= P(χ|ΘF) (this illustrates the "uniqueness" part of the proof).

(a) Subforest F (b) Subforest G

(c) Edge e0

Figure 7: Subforests

Due to F and G are subforests completed, they generate different partitions: σ(F) = {1, 2|3, 4, 5|6|7}
and σ(G) = {1, 2, 3, 4, 5|6, 7}.
There exist an edge e0 such that is compatible with σ(F) (if each "block" of σ(F) are inside the
"blocks" produced by σ(e0)). The partition of e0 is σ(e0) = {1, 2, 3, 4, 5, 6|7} and is not compatible
with σ(G).
So, if χ is the character that assign x to one connected part from T − e0 and y 6= x to the other
component we have P(χ|ΘG) = 0 while P(χ|ΘF) 6= 0.
Now let Θ satisfy the statement (a) of the lemma. Lets define A ⊆ E (T) edges from T that have
θe = 1.

(a) Tree with values at the edges (b) Subforest F

Figure 8: Deleting the nodes equal to 1

Considering σ(T\A) the partition obtained deleting all the edges of A. If F is the subforest FT (σ(T\A)),
then we have PT ,Θ = PT ,ΘF

.

13

(b) Is a direct consequence from lemma 3.3(ii) and lemma 3.5(a).

�

Let Θ be a collection of edge parameters on a tree T . For a site character χ, lets define:

p̃T
χ (Θ) =

PT (χ|Θ)

πχ1πχ2 ...πχn

Calling:

x̃χ =
xχ

πχ1πχ2 ...πχn

Example 3.6. In order to use the previous lemma in an applied case we explain the "Lake invariants" in
the tree of four leaves.

The Lake invariants are:

PACAC + PACGT = PACGC + PACAT , (2)
PACCA + PACGT = PACCG + PAACT (3)

The equation (2) is invariant for the trees T1 = 12|34 and T2 = 14|23 while it is not invariant for
T3 = 13|24.

We compute the probabilities for each tree:

Table 2: Table of calculations equation (2):
T1 = 12|34 T2 = 14|23 T3 = 13|24

pACAC 0 0 1
πAπC

pACGT 0 0 0
pACGC 0 0 0
pACAT 0 0 0

Getting:

0 = 0 at T1

0 = 0 at T2

1

πAπC
= 0 at T3

Being clear that T3 does not have the linear invariant while T1 and T2 do.

The equation (3) is invariant for the trees T1 = 12|34 and T3 = 13|24 while it is not invariant for
T2 = 14|23.

14

We compute the probabilities for each tree:

Table 3: Table of calculations equation (3):
T1 = 12|34 T2 = 14|23 T3 = 13|24

pACAC 0 1
πAπC

0
pACGT 0 0 0
pACGC 0 0 0
pACAT 0 0 0

Getting:

0 = 0 at T1

1

πAπC
= 0 at T2

0 = 0 at T3

Being clear that T2 does not have the linear invariant while T1 and T3 do.

Lemma 3.7. We say that two characters χ and χ′ are equivalent, χ ≡ χ′, if σ(χ) = σ(χ′) and χi = χ′i for
any leaf i that belongs to a block of the partition of cardinality greater than or equal to two. Let χ ≡ χ′ be
two characters on the set X = [m].

(a) If χ ≡ χ′ then x̃χ − x̃χ′ is a linear invariant.

(b) If π is not invariant by any permutation of the set of states, then for any tree T the following equality
p̃T
χ (Θ) = p̃T

χ′(Θ) for every Θ implies that χ ≡ χ′ (i.e. in this case every linear phylogenetic invariant
of type x̃χ − x̃χ′ satisfies χ ≡ χ′).

We illustrate the proof with an example:

(a) Having χ = AACGG and χ′ = AATGG , we want to prove that χ ≡ χ′. It is easy to see that

Figure 9: Graph with five nodes.

σ(χ) = {12|3|45} = σ(χ′) := σ.
By lemma 2.6.(b) we have to prove p̃χ(ΘF) = p̃χ′(ΘF) for any full subforest F ∈ FT .

• If σ(F) does not refine σ:
For example σ(F) = {12345}:
The probabilities are: p̃χ(ΘF) = p̃χ′(ΘF) = 0.

15

• If σ(F) refines:
For example σ(F) = {1|2|3|45}:
The probabilities are: p̃χ(ΘF) = πAπCπG and p̃χ′(ΘF) = πAπTπG .
Computing the new probability:

p̃T
χ (ΘF) =

πAπCπG
πAπAπCπGπG

=
1

πAπG

p̃χ′(ΘF) =
πAπTπG

πAπAπTπGπG
=

1

πAπG

So p̃T
χ (ΘF) = p̃T

χ′(ΘF).

(b) It is going to be assumed that π is not invariant by any permutation of the set of states, for example
π = {πA,πC ,πG ,πT} = {0.1, 0.2, 0.3, 0.4}, so that πs = πt is and only if s = t. Also, that for a
tree T (the one at the Figure 5) we have p̃χ(ΘT) = p̃χ′(ΘT) for any collection of edge parameters
ΘT . Then, for each block Bi of σ(χ) = {12|3|45} of size bi greater or equal that 2 (B1 = {1, 2} and
B2 = {4, 5} with b1 = b2 = 2 ≥ 2) consider the forest Fi = {TBi

,∪l 6∈Bi
{l}}, where TBi

is the smallest
subtree of T joining the leaves of Bi .

(a) F1 = {1, 2|3, 4, 5} (b) F2 = {1, 2, 3|4, 5}

Figure 10: Subforests

Then p̃T
χ (ΘFi

) = 1

π
bi−1
si

if si is the state of χ at the leaves of Bi . By hypothesis this is equal to p̃T
χ′(ΘFi

).

But p̃T
χ′(ΘFi

) is zero if σ(χ′) does not contain the block Bi . Performing the same argument for any
block we obtain σ(χ) = σ(χ′). Now for each Bi we have p̃T

χ (ΘFi
) = p̃T

χ′(ΘFi
) and hence 1

π
bi−1
si

= 1

π
bi−1

s′
i

if s ′i is the state of χ′ at the leaves of Bi . As bi ≥ 2, the assumption on π implies si = s ′i and thus,
χ ≡ χ′.
Remark 3.8. If π is the uniform distribution, then we have PT (χ|Θ) = PT (χ′|Θ) if and only if σ(χ) =
σ(χ′). Indeed, in this case if we consider any permutation g of the set of states S, the polynomials
xχ − xg∆χ are linear phylogenetic invariants for any tree (proved by Marta Casanellas), where g∆χ
stands for the corresponding permutation of states at the leaves. But these polynomials can also be
rewritten as xχ − xχ′ for σ(χ) = σ(χ′).

�

Example 3.9. For n = 4. The previous lemma gives the following. If we consider different states x , y , z , t
and another set of four different states x ′, y ′, z ′, t ′ the linear phylogenetic invariants are:

x̃xyzt − x̃x ′y ′z ′t′ , x̃xxyz − x̃xxy ′z ′ , x̃xxxy − x̃xxxy ′

and the analogous invariants obtained for other partitions of [4] involving singletons.

16

4. Phylogenetic mixtures
Definition 4.1. Fix a distribution π on the set of states. Given a particular tree T , we denote by PT ,Θ, the
distribution of an Equal-Input model with parameters π, Θ on T . We define the space of mixtures on T as:

Dπ
T = {p =

∑
i

λiPT ,Θi
|
∑
i

λi = 1}

In other words, a mixture p is a distribution resulting from a combination of distributions from the Equal
Input model in the tree T .

If T is the set of phylogenetic trees on [n], we define the space of phylogenetic mixtures on [n] as:

Dπ = {p =
∑
i

λiPTi ,Θi
|
∑
i

λi = 1, Ti ∈ T }

That is, in Dπ we consider mixtures of distribution from de EI model on different trees.

From now on, we fix n ≥ 4 throughout the rest of the section. We call Σk the set of partitions of
[n] of size at most k (note that if k ≥ n, this is the whole set of partitions of [n]). If σ is a partition
of [n] compatible with trees T and T ′, and we consider F = FT (σ) and F ′ = FT ′(σ), then one has
PT ,ΘF

= PT ′,ΘF ′
. This point will be briefly denoted as qσ (because it does not depend on the chosen tree

compatible with σ). For example, if σ = 1|234 we can take T as any of the trees of four leaves.

Example 4.2. Using the alignment of the example 2.11, it could be that different parts of the alignment
came from different substitution matrices on the same tree.

Gorilla Gorilla AACTTCG AGGCTTACCGCTG
Homo Sapiens AACGTCT ATGCTCACCGATG
Pan Troglodytes AAGGTCG ATGCTCACCGATG

< −λ1− > < −−−λ2 −−− >

Figure 11: Example of mixtures

Being the same model, same tree topology T but different substitution parameters we obtain that the
mixture is p = λ1PT (θ1) + λ2PT (θ2), with λ1 = 7

20 and λ2 = 13
20 .

The space of phylogenetic mixtures is clearly related to the space of linear invariants. Indeed if we let
Eπ
T be the set of vectors in Rkn

where all the linear invariants for T vanish (that is, Eπ
T is the dual to the

space of linear invariants for T), then Eπ
T is the director space of the affine linear variety Dπ

T . Similarly if
Eπ is the set of vectors in Rkn

where all the linear model invariants vanish, then Eπ is the director space

17

of the affine linear variety Dπ. As a consequence, studying Dπ
T and Dπ is equivalent to studying the set of

linear invariants.
The following theorem computes the dimension of the space of phylogenetic mixtures on trees (and as

a consequence, the dimension of the space of linear model invariants).

Theorem 4.3. (Casanellas-Steel) If π is a distribution on k states with positive entries, then {qσ|σ ∈ Σk}
are affine linearly independent points. Moreover, if π is the uniform distribution or generic distribution, or
if k ≥ n, then Dπ coincides with 〈qσ|σ ∈ Σn〉a and has dimension |Σk | − 1 (which equals Bn − 1 if k ≥ n).

In the next chapter we are going to verify htis theorem by computing this set of points for n = 5 and
k = 4.

18

5. Computational part
In this section we are going to compute the linear independent points for Dπ

T for n = 5 and therefore will
verify the theorem 4.3. First of all, in order to make it easier to understand the code, we are going to explain
what every function does:

• initializer(w) : this function turns into -1 all the components of the vector w.

• are_equal(v1, v2) : return true if v1 and v2 are equal.

• canonizer(original, v) : return the representative of the equivalence relation, which is calculated by
giving for each character an alphabetical order. If we have yyzzz (for the function it is 11222) it will
return 11222 (xxyyy).

• select_row(M, k) : it returns the row k of the matrix M.

• add_row(M, u) : this function add the vector u as the last row of the matrix M.

• check_is_new(final_container, cont, u, v) : this function checks if the vector u given is already in
the ’final_container ’ (it or its canonical representative, which are considered to be the same). If it is
already in, it does nothing. Else, it puts it in the ’final_container ’.

• fill(final_container, cont, m, v) : this function generates all the possible combinations we could have
in a vector of length n = 5 with m = 4 possible values each component could have, checking if we
have kept its canonical representative and adding it if not (using the function previously presented
check_is_new).

• printer_numbers(M) : print the matrix M, which is a matrix of numbers.

• printer(M) : print the matrix M, changing each number by the letter we have assigned (0 for x , 1
for y , 2 for z and 3 for t).

• point_machine(point_container, n) : this function fills the matrix which in each row has a possible
qσ. We will use the following notation: q12 = 11000 (which force the leaf 1 and 2 to have the same
state) and q12|34 = 11220 (which force the leaf 1 and 2 and 3 and 4 to have the same state). This
points are going to be kept in the matrix point_container .

• valor(n) : return the letter assigned to each number n.

• calculator(fc, pc) : for each x̃ which we name fc and qσ named pc computes the probability of this
combination.

• probabilitator(prob_container, point_container, final_container, cont) : this function computes
the linearly independent points for DT from the matrices that keep the x̃ and qσ and keep them in
prob_container .

• latex(M) : returns the code we need to have the function in latex language (is implemented in sage).

19

For computing, we used sage:

n is the quantity of leaves.
n = 5

m is the quantity of values the leaf can take.
m = 4

v is an auxiliar vector.
v = vector(QQ ,n)

def initializer(w):
"""
This function changes all the components of the vector w for -1.
"""
for i in range(n):

w[i] = -1
return w

def are_equal(v1, v2):
"""
This function says if v1 and v2 are equal or not.
"""
for i in range(n):

if v1[i] != v2[i]:
return false

return true

def canonizer(original ,v):
cnt = 0
"""
This function returns the canonical representative of a vector.
We use it to keep at the final_container only one
representative of each class.
"""
initializer(v)
for i in range(n):

if v[i] == -1:
for j in range(n):

if original[i] == original[j]:
v[j] = cnt

cnt = cnt + 1
return v

20

def select_row(M,k):
"""
This function returns the row k of the Matrix M.
"""
f = M.nrows()
c = M.ncols()
v = vector(QQ ,n)
for i in range(c):

v[i] = M[k,i]
return v

def add_row(M,u):
"""
This function returns M adding u as the final row.
"""
f = M.nrows()
c = M.ncols()
A = matrix(f+1,c)
for i in range(f + 1):

for j in range(c):
if i == f:

A[i,j] = u[j]
else:

A[i,j] = M[i,j]
return A

#final_container is where the representatives are saved , it is \
initialized

#by taking the trivial representative (all the leaves with the same \
value)

final_container = matrix(QQ ,1,n)

cont is the number of representatives

cont = final_container.nrows()

def check_is_new(final_container ,cont ,u,v):
"""
Checks if the vector u given is already in the ’final_container ’
(itself or its canonical representative , which are considered to
be the same).
If it is already in, it does nothing.
Else , it puts it in the ’final_container ’.
"""
canonized = canonizer(u,v)

21

for i in range(cont):
existing_word = select_row(final_container ,i)
if are_equal(canonized ,existing_word) == true:

return (final_container ,cont)
cont = cont + 1
A = add_row(final_container ,canonized)
return (A,cont)

def fill(final_container ,cont ,m,v):
"""
This function returns the final_container.
"""
for i in range(m):

for j in range(m):
for k in range(m):

for l in range(m):
for h in range(m):

u = [i,j,k,l,h]
(final_container ,cont) = check_is_new(\

final_container ,cont ,u,v)
return (final_container ,cont)

(final_container ,cont) = fill(final_container ,cont ,m,v)

def printer_numbers(M):
"""
This function prints M.
"""
f = M.nrows()
c = M.ncols()
for i in range(f):

for j in range(c):
print M[i,j],

print " "
return None

def printer(M):
"""
This function prints M changing each number for the letter \

assigned.
"""
f = M.nrows()
c = M.ncols()
for i in range(f):

for j in range(c):
if M[i,j] == 0: print "x",

22

elif M[i,j] == 1: print "y",
elif M[i,j] == 2: print "z",
else: print "t",

print " "
return None

s = "There are"
saux = "representatives."
print s, cont , saux

s = "The matrix of representatives is:"
print s
printer(final_container)

#Imposing leaves to have the same value
#point_container is where the points are going to be saved

point_container = matrix(QQ,cont ,n)

def point_machine(point_container ,n):
"""
This function returns all the points
"""
aux = 0
#couples
for i in range (n):

for j in range (i + 1,n):
point_container[aux ,i] = 1
point_container[aux ,j] = 1
aux = aux + 1

#double couples
aux2 = aux - 1
for a in range(aux2):

p1 = -1
p2 = -1
have_one = false
for i in range(n):

if (point_container[a,i] == 1):
if (have_one == false):

have_one = true
p1 = i

else:
p2 = i

for i in range(a,aux2 + 1):
p3 = -1
p4 = -1

23

have_one_two = false
for j in range(n):

if (point_container[i,j]==1):
if (have_one_two == false):

have_one_two = true
p3 = j

else:
p4 = j

if(p1 != p3 and p1 != p4 and p2 != p3 and p2 != p4):
point_container[aux ,p1] = 1
point_container[aux ,p2] = 1
point_container[aux ,p3] = 2
point_container[aux ,p4] = 2
aux = aux + 1

aux3 = aux - 1
triplets
for i in range (n):

for j in range (i + 1,n):
for k in range (j + 1,n):

point_container[aux ,i] = 1
point_container[aux ,j] = 1
point_container[aux ,k] = 1
aux = aux + 1

aux4 = aux - 1
#couple+triplet
for a in range(aux2 + 1):

for i in range(n):
if(point_container[a,i] == 1):

point_container[aux ,i] = 1
else:

point_container[aux ,i] = 2
aux = aux + 1

#fourtets
for i in range (n):

for j in range (i + 1,n):
for k in range (j + 1,n):

for l in range (k + 1,n):
point_container[aux ,i] = 1
point_container[aux ,j] = 1
point_container[aux ,k] = 1
point_container[aux ,l] = 1
aux = aux + 1

#all the same value
for i in range (n):

point_container[aux ,i] = 1
return point_container

24

s = "The matrix of (point_container) is:"
print s

point_container = point_machine(point_container ,n)

printer_numbers(point_container)

#Imposing the values
#prob_container is where the probabilities are going to be saved

prob_container = matrix(SR,cont ,cont)

def valor (n):
if(n == 0): return var(’x’)
elif(n == 1): return var(’y’)
elif(n == 2): return var(’z’)
else: return var(’t’)
return None

def calculator (fc,pc):
error = False #if it’s not compatible the combination it will \

finish being true
hihauns = False #if pc has ones
hihados = False #if pc has twos
value = 1 #we are going to change it by multipling and dividing to\
get the value
for m in range (5):

value = value / valor(fc[m]) #we apply the values we got from \
fc

if(pc[m] == 0): value = value*valor(fc[m]) #if we dont have \
restriction we multiply

elif(pc[m] == 1): hihauns = True
else: hihados = True

if (hihauns == False and hihados == False): return 1
if (hihauns == True):

found = False #we want to know the value of the ones
i = 0
while (not found):

if(pc[i] == 1): #when we find it
found = True #we mark that we have it
value = value*valor(fc[i]) #multiply by the value
for l in range(i,5):

if(pc[l] == 1 and fc[i] != fc[l]): error = True
#if there is one in pc but doesnt have the same \

value there is an error

25

i = i + 1
if (hihados == True):

found = False
i = 0
while (not found):

if(pc[i] == 2):
found = True
value = value*valor(fc[i])
for l in range(i,5):

if(pc[l] == 2 and fc[i] != fc[l]): error = True
i = i + 1

if (error == True): value = value*0
return value

def probabilitator(prob_container ,point_container ,final_container ,cont\
):
"""
This function returns the matrix of probabilities
"""
for i in range(cont):

for j in range(cont):
pc = select_row(point_container ,i)
fc = select_row(final_container ,j)
prob_container[i,j] = calculator(fc,pc)

return prob_container

s = "The matrix of (prob_container) is:"
print s

prob_container = probabilitator(prob_container ,point_container ,\
final_container ,cont)

latex(prob_container) #to get the latex code

We wanted also to prove that the rows of prob_container generate a complete subspace of dimension 51.
In order to prove it, we compute its determinant using a python code (which we don’t consider enough
important to add here) because in sage it was extremely slow, uncomputable.

det(prob_container) = − 1

tx60y 37z11
6= 0 ∀x , y , z , t ∈ (0, 1)

Since is not zero for all values of x , y , z , t prob_container always generate a complete space.

26

6. Results
There are 51 representatives.

The matrix of representatives is:

x x x x x
x x x x y
x x x y x
x x x y y
x x x y z
x x y x x
x x y x y
x x y x z
x x y y x
x x y y y
x x y y z
x x y z x
x x y z y
x x y z z
x x y z t
x y x x x
x y x x y
x y x x z
x y x y x
x y x y y
x y x y z
x y x z x
x y x z y
x y x z z
x y x z t
x y y x x
x y y x y
x y y x z
x y y y x
x y y y y
x y y y z
x y y z x
x y y z y
x y y z z
x y y z t
x y z x x
x y z x y
x y z x z
x y z x t
x y z y x

27

x y z y y
x y z y z
x y z y t
x y z z x
x y z z y
x y z z z
x y z z t
x y z t x
x y z t y
x y z t z
x y z t t

The matrix of (point_container) is:

1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 1 0 1
0 0 0 1 1
1 1 2 2 0
1 1 2 0 2
1 1 0 2 2
1 2 1 2 0
1 2 1 0 2
1 0 1 2 2
1 2 2 1 0
1 2 0 1 2
1 0 2 1 2
1 2 2 0 1
1 2 0 2 1
1 0 2 2 1
0 1 1 2 2
0 1 2 1 2
0 1 2 2 1
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1
1 0 0 1 1
0 1 1 1 0
0 1 1 0 1

28

0 1 0 1 1
0 0 1 1 1
1 1 2 2 2
1 2 1 2 2
1 2 2 1 2
1 2 2 2 1
2 1 1 2 2
2 1 2 1 2
2 1 2 2 1
2 2 1 1 2
2 2 1 2 1
2 2 2 1 1
1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1
1 1 1 1 1

29

The matrix of (prob_container) is:

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

0 0
1
x

1
x

1
x

1
x

1
x

0 0 0 0 0 0 0 0 0 0 1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

1
x

0 0
1
x

1
x

0 0 0 1
x

1
x

1
x

0 0 0 0 0 0 0 1
x

1
x

1
x

0 0 0 0 0 0 0 1
x

1
x

1
x

0 0 0 0 0 0 0 1
x

1
x

1
x

1
x

0 0 0 0 0 0 0 0 0 0 0 0
1
x

0 1
x

0 0 1
x

0 0 1
x

0 0 1
x

0 0 0 1
x

0 0 1
x

0 0 1
x

0 0 0 1
x

0 0 1
x

0 0 1
x

0 0 0 1
x

0 0 0 1
x

0 0 0 1
x

0 0 0 1
x

0 0 0
1
x

1
x

1
x

1
x

1
x

0 1
y

1
y

1
y

1
y

1
y

1
y

1
y

1
y

1
y

1
y

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
x

1
x

0 0 0 1
x

1
x

1
x

0 0 0 0 0 0 0 0 0 0 1
y

1
y

1
y

0 0 0 0 0 0 0 1
y

1
y

1
y

0 0 0 0 0 0 0 0 1
y

1
y

1
y

1
y

0 0 0 0 0 0 0 0
1
x

0 1
x

0 0 1
x

0 0 1
x

0 0 1
x

0 0 0 0 1
y

0 0 1
y

0 0 1
y

0 0 0 1
y

0 0 1
y

0 0 1
y

0 0 0 1
y

0 0 0 1
y

0 0 0 1
y

0 0 0 1
y

0 0
1
x

1
x

0 0 0 0 0 0 1
y

1
y

1
y

0 0 0 0 1
x

1
x

1
x

0 0 0 0 0 0 0 0 0 0 1
y

1
y

1
y

0 0 0 0 0 0 0 0 0 0 0 0 1
z

1
z

1
z

1
z

0 0 0 0
1
x

0 1
x

0 0 0 1
y

0 0 1
y

0 0 1
y

0 0 1
x

0 0 1
x

0 0 1
x

0 0 0 0 1
y

0 0 1
y

0 0 1
y

0 0 0 0 1
z

0 0 0 1
z

0 0 0 1
z

0 0 0 1
z

0
1
x

0 0 1
y

0 1
x

0 0 0 1
y

0 0 0 1
z

0 1
x

0 0 0 1
y

0 0 0 1
z

0 1
x

0 0 0 1
y

0 0 0 1
z

0 1
x

0 0 0 0 1
y

0 0 0 0 1
z

0 0 0 0 1
t

1
x2

1
x2 0 0 0 0 0 0 1

xy
1
xy

1
xy

0 0
1
x2 0 1

x2 0 0 0 1
xy

0 0 1
xy

0 0 1
xy

0 0
1
x2 0 0 1

xy
0 1

x2 0 0 0 1
xy

0 0 0 1
xz

0 0
1
x2

1
x2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

xy
1
xy

1
xy

0 0
1
x2 0 1

x2 0 0 0 0 0 0 0 0 0 0 0 0 0 1
xy

0 0 1
xy

0 0 1
xy

0 0
1
x2 0 0 1

xy
0 0 0 0 0 0 0 0 0 0 0 1

x2 0 0 0 1
xy

0 0 0 1
xz

0 0
1
x2

1
x2 0 1

xy
1
xy

1
xy

0 0
1
x2 0 0 0 0 1

x2 0 0 0 0 0 0 0 0 0 0 1
xy

0 0 0 0 0 0 0 0 0 1
xy

0 0 0 0 0 0 0 0 0 1
xy

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
x2 0 0 0 0 0 1

xy
0 0 0 0 0 0 0 0 1

x2 0 0 0 0 0 0 0 0 0 0 1
xy

0 0 0 0 0 0 0 0 0 0 1
xz

0 0 0 0 0 0 0 0 0 0 0 0 0
1
x2 0 1

x2 0 1
xy

0 0 1
xy

0 0 1
xy

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
x2 0 0 0 0 1

x2 0 0 0 0 0 0 0 0 0 0 0 0 1
xy

0 0 0 0 0 0 0 0 0 1
xy

0 0 0 0 0 0 0 0 0 0 1
xy

0 0 0 0 0 0 0 0 0 0 0
1
x2 0 0 0 0 0 0 0 1

xy
0 0 0 0 0 0 1

x2 0 0 0 0 0 0 0 0 0 0 0 0 1
xy

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
xz

0 0 0 0 0 0 0
1
x2 0 0 1

xy
0 1

xy
0 0 0 1

y2 0 0 0 1
yz

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
x2 0 0 0 0 0 1

xy
0 0 0 0 0 0 0 0 0 0 0 1

xy
0 0 0 0 0 0 0 0 0 0 1

y2 0 0 0 0 0 0 0 0 0 0 0 1
yz

0 0 0 0 0 0 0 0 0

1
x2 0 0 0 0 0 0 0 1

xy
0 0 0 0 0 0 0 1

xy
0 0 0 0 0 0 0 0 0 0 0 0 1

y2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
yz

0 0 0 0 0 0

1
x2

1
x2

1
x2

1
x2

1
x2 0

1
x2

1
x2 0 0 0 1

x2
1
x2

1
x2 0

1
x2 0 1

x2 0 0 1
x2 0 0 1

x2 0 0 1
x2 0

1
x2

1
x2 0 0 0 0 0 0 0 0 0 0 0 0 0 1

x2
1
x2

1
x2 0

1
x2 0 1

x2 0 0 0 0 0 0 0 0 0 0 0 0 1
x2 0 0 1

x2 0 0 1
x2 0

1
x2 0 0 0 0 1

x2 0 0 0 0 0 0 0 0 0 1
x2 0 0 0 0 0 0 0 0 0 1

x2 0 0 0 0 0 0 0 0 0 1
x2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
x2

1
x2 0 1

y2
1
y2

1
y2 0

1
x2 0 1

x2 0 1
y2 0 0 1

y2 0 0 1
y2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
x2 0 0 0 0 1

x2 0 0 0 0 0 0 0 0 0 0 0 0 0 1
y2 0 0 0 0 0 0 0 0 0 1

y2 0 0 0 0 0 0 0 0 0 0 1
y2 0 0 0 0 0 0 0 0 0 0

1
x2 0 0 0 0 0 0 0 0 1

y2 0 0 0 0 0 1
x2 0 0 0 0 0 0 0 0 0 0 0 0 0 1

y2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
z2 0 0 0 0 0

1
x3 0 0 0 0 0 0 0 0 1

xy2 0

1
x3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

xy2 0

1
x3 0 1

xy2 0

1
x3 0 1

xy2 0

1
x3 0 1

x2y
0 0

1
x3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

x2y
0 0

1
x3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

x2y
0 0

1
x3 0 0 0 0 0 0 0 1

x2y
0 0

1
x3 0 0 0 0 0 1

x2y
0 0

1
x3 0 0 1

x2y
0 0

1
x3

1
x3 0

1
x3 0 1

x3 0
1
x3 0 0 0 0 1

x3 0
1
x3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

x3 0
1
x3 0 1

y3 0

1
x4 0

30

7. Conclusion
Throughout this project, we have achieved all the objectives we had proposed at the beginning. We studied
the Markov processes on phylogenetic trees and deeply studied the properties of the Equal-Input model,
studying also the linear equations that all the distributions arising from it. Not only that, we computed
explicitly, using sage, the generators of the space of linear invariants for phylogenetic trees on five leaves
evolving under the Equal-Input model.

31

References
[1] E S Allman and J A Rhodes. Phylogenetic invariants. In O Gascuel and M A Steel, editors, Recon-

structing Evolution. Oxford University Press, 2007.

[2] M Casanellas. Algebraic tools for evolutionary biology. La Gaceta de la RSME, 15:521–536, 2012.

[3] M Casanellas and M A Steel. Phylogenetic mixtures and linear invariants for equal input models. Journal
of Mathematical Biology, 2016.

32

	Introduction
	Background
	Phylogenetic trees
	DNA alignments
	Markov models: Equal-input model

	Phylogenetic invariants for the equal-input model
	Phylogenetic invariants
	Linear invariants

	Phylogenetic mixtures
	Computational part
	Results
	Conclusion

