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Abstract—Switched circuits are widely used, particularly for 

power electronic applications in which efficiency is important. Of 

these applications, the class-E amplifier has been given particular 

attention, since it is theoretically a 100% efficient switched circuit 

that has been successfully demonstrated in applications such as 

ballasts, converters, frequency multipliers and communication 

amplifiers at frequencies as high as 10GHz. However, with 

increasing power or frequency, nonlinearities become extremely 

important, for instance, in order to achieve actual class E 

operation and even to avoid destruction of the switching device.  

In this paper, a new method for determining the steady-state 

response of nonlinear circuits containing ideal switches is 

proposed. While the method is more general, the description is 

based on the Class E amplifier because of its inherent interest. 

The method is based on a time-domain Gear discretization of the 

circuit equations. A technique for determining the initial samples 

of the discretized equation of each topology is developed, based on 

the fact that state variables are constant during switching. 

Finally, assuming a periodic steady-state, a single algebraic 

system of nonlinear equations is obtained in which the unknowns 

are the samples of the control variable of the nonlinearity in the 

whole signal period. To validate the method described, a 

comparison with PSpice simulations is provided. 

 
Index Terms— Class E, steady-state, discrete-time, nonlinear 

circuits, switched circuits, circuit analysis.  

 

I. INTRODUCTION 

WITCHED circuits have become widely used due to their 

efficiency in power-supply circuits and RF power 

amplifiers, among others. Analysis and simulation tools are 

essential for designers because they allow the performance of 

circuits to be accurately predicted and optimized. They also 

enable the required active device specifications to be 

determined a priori. General nonlinear switched-circuit 

analysis techniques have been described for this purpose (see 

[1], [2] and references therein), and specific approximate 

techniques have also been developed for resonant converters 

[3]. Several papers have improved certain aspects of 
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simulation, such as [4], in which a state-space modeling 

technique is introduced for linear circuits, and [5], in which a 

general nonlinear continuous formulation procedure for large-

signal analysis of switching dc–dc converters is presented. 

Note that most techniques are formulated in the time-domain 

because of the inherent difficulty of describing temporal 

dependence in the frequency domain. There are also methods 

based on the Volterra series that are suitable for soft-

nonlinearities, such as [6]. 

In many applications, an exact knowledge of the transient 

behavior is not critical, as the main interest is in the steady-

state waveforms [7], [8], [9]. However, switched circuits may 

cause initial inconsistent conditions [10], which lead to Dirac 

impulses that are not correctly handled by some techniques 

[11]. Several techniques for overcoming these problems, 

including specific switch models [12], have been developed. 

In this paper a new method for the steady-state analysis of 

switched circuits with nonlinear elements is presented, with an 

emphasis on applying it to the class E amplifier. The value of 

this novel approach is in the combination of the following 

advantages: 

1) Computational efficiency is increased by the fact that this 

method obtains the steady-state waveforms of the 

nonlinear circuit directly, therefore solving an algebraic 

nonlinear system of equations. 

2)  In switched network analysis, the discretization order or 

the integration step, or both, have to be adaptively 

reduced in order to accurately determine the initial 

conditions of the next circuit configuration. In the 

approach described, as a novelty, a fixed discretization 

order and an integration step are used, resulting in a 

constant-rate sampling grid. The initial samples required 

to start the discretized equation in each topology are 

obtained directly from the samples prior to switching and 

assuming state variable conservation. 

3) The method is especially suitable for nonlinear switched 

circuits, since time-domain described nonlinearities can 

be included directly into the formulation without the need 

for linearization. This is an advantage compared to 

harmonic balance methods, in which it is difficult to 

represent the network changes in the frequency domain 
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and repeated transformations between the time and 

frequency domains are required.  

4) The switch is treated as an ideal element with zero 

switching time, in contrast with other approaches in 

which it is appropriately remodeled (e.g. [12], [13]).  

5) The proposed approach is especially suitable for 

sensitivity calculations and lends itself easily to 

optimization, which is the objective of current research.  

There are some limitations of the proposed method. First, 

the state-space description of the circuit needs to be known. 

Although the method might well be extended to a circuit 

containing several switches and several nonlinear elements, 

this paper focuses on a single switch example and specifically 

on the class E amplifier. Furthermore, this method relies on the 

value of the state variables being conserved during the 

switching process. The extension to include several switches 

and several nonlinearities does not require any new conceptual 

developments, but is rather involved and therefore not covered 

here. This and the inclusion of non-consistent initial conditions 

are described in [14]. 

 

II. THE CLASS E AMPLIFIER 

Since the class-E concept was first introduced [15], [16] 

(Fig 1), many papers have been published describing its 

performance and design criteria. The device is considered to 

act as a switch, and the stage includes a tuned output network 

that forces nominal class E switching conditions: zero-voltage 

and zero-voltage derivative at the instant of turn ON. Some 

analytical descriptions of this circuit assume an ideal switch 

that models the switching device, an infinite tuned output 

network quality factor Q, and an ideal RF choke in the power 

supply path. Later works consider finite DC-feed inductance, 

finite tuned output network Q, nonzero active device ON-

resistance, nonlinear elements (especially the nonlinear output 

capacitance of the device) and effects of duty cycle [17] and 

component variations [18]. Note that in this amplification 

mode there is a capacitance shunting the device. The required 

value of this capacitance decreases with increasing 

frequencies, ultimately being provided merely by the device’s 

output capacitance. Thus, the nonlinear nature of this 

capacitance is highly relevant to the overall performance of the 

amplifier [19].  

In this paper, the switch is modeled as an ideal switch, i.e. a 

short-circuit in the on state and an open-circuit in the off state. 

The switch is assumed to be externally controlled. The duty-

cycle, D, representing the ratio between the time the switch is 

on and the switching period, is not constrained to 0.5 in this 

analysis as in [20]. The choke is modeled by the inductance, Lq 

and the corresponding DC resistance RLq. The nonlinear 

capacitor shunting the device is described by 
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with the model parameters Cj0, Vbi and  as in [21]. Equation 

(1) may include a linear term Cl, which is zero in the case of a 

class E amplifier in which the shunting capacitance is provided 

completely by the switching device. However, since nonlinear 

inductors or capacitors are best described in terms of flux or 

charge variables, (1) is rewritten as  
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This circuit is used as a supporting example to describe the 

technique proposed in this paper. The next section is devoted 

to the method description and the results are presented in 

Section 4. 

 

III. METHOD DESCRIPTION 

The proposed method is an extension of [22-24], in which 

the circuit is described by a discretized differential equation in 

terms of the samples of the control variable of the nonlinear 

element, i.e. v in Fig. 1. In this paper, as in [22-24], the 

objective is to compute a vector of samples of a given variable 

of a switched nonlinear circuit in the steady-state. Specifically, 

samples of the control variable of the nonlinear element are 

obtained. Any other current or voltage waveforms can be 

easily derived from these data. However, in contrast to prior 

work, the approach described here relies on a state-variable 

formulation of the circuit, which provides the additional 

information needed for switching, as will be shown.  

A. State equations 

The state equations that describe the circuit depicted in Fig. 

1 in the on state are 
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(4) 

 

where f(v(t))=q(v(t)) represents the nonlinear function 

describing the nonlinear capacitor charge and vg(t) may be any 

time-varying waveform even though vg(t) is a constant in 

conventional class E amplifiers.  

Defining 
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Equation (3) may be written in compact form as:  
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where the “hat” operator (^) denotes 
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Similarly, equation (4) may be rewritten as 

 

( ( )) ( ) ( ) ( )T

g gf v t x t dv t d v t  c  (9) 

 

where cT=[0 0 0 1] and  d= dg =0 for the class E amplifier in 

Fig. 1. 

Note that for this circuit it is straightforward to obtain the 

equations corresponding to the off state simply by assuming 

that the resistance, Rs, has an infinite value. 

B. Circuit equations in terms of the control variable 

Certain steps are required to describe the circuit in terms of 

the control variable and its successive derivatives for each 

topology. These steps are carried out in the Laplace domain 

for operational convenience. First, assuming zero initial 

conditions, state equations (7) and (9) are expressed in the 

Laplace transformed domain as 
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Combining the two expressions above, 
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where the terms multiplying V(s) and Vg(s) are quotients of 

polynomials in s that share the same denominator, the 

polynomial 

 

 AI  ssq det)(~  (13) 

 

where the negative sign has been introduced for convenience. 

Now, equation (12) may be rewritten as 
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 (14) 

 

where )(~ sp , )(~ sq and )(~ sr  polynomials in s of an order equal 

to the circuit order c, i.e. 4 in this case. Now, defining the 

vectors of polynomials coefficients,  
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equation (14) may be written back in the time-domain as: 
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C. Discretization 

The next step is to discretize the equations of the form (16) 

resulting from each topology. The first-order Gear method 

(Gear-1, also known as backward Euler) approximates the first 

derivative as [21]:  
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where  is the sampling period and the notation 
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is used. 

Successive derivatives may be obtained by the repeated 

application of (17), yielding:  

 

n

n

n

n

n

n

n

n

v

v

v

v

v

v

vDv 1







































































1

2

121

11

2220

00

1000

ˆ







  
(19) 

 

D1 is defined as the discretization matrix and allows us to 

compute the present samples of v(t) and their successive time 

derivatives from the present and past samples of v(t). 

Also, we can write 
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without having to use the derivative of f(v). 

Finally, the discretized equation equivalent to (16) is 

obtained as:  
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Equation (21) can be particularized for each switch state. 

This equation allows us to compute a new sample of v(t) from 

the previous ones, i.e. it allows us to integrate the circuit 

response. 

D. Relation between the control variable and the state 

variables 

In order to obtain a relationship between the nonlinearity 

control variable and the state variables, (9) is successively 

derived and x  is substituted from (7). This yields: 
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where c is the circuit order. This equation is rewritten in 

compact matrix form as 

 

0vMvfIvMOx gg  ˆ)(ˆˆ  (24) 

 

Equation (24) establishes a relation between the state 

variables and the nonlinearity control variable and its 

successive derivatives. Using the discretization matrix, this 

equation can be written as:  

 

0vDMfIDvDMOx g1g11v  )(v  (25) 

 

which is an implicit function that relates the samples of the 

control variable to the state variables. 

From (25), the state variables, x, can be solved for any 

instant from a number of samples of the control variable equal 

to the order of the circuit. This is possible if the matrix O, 

which is also called the observability matrix [25], is invertible. 

The circuit state is observable from v, or what is equivalent, O 

is invertible if there are no independent sub-circuits in the 

circuit network. A procedure for the case when O is not 

invertible is described in [14] 

If the state variables are known, (25) can also be solved to 

obtain the samples of the control variable, v. Therefore, this 

equation can be used to obtain the state variables from the 

samples of the control variable or vice versa.  

E. Switching Equations 

To initialize (21) after switching, a number of initial 

samples of the nonlinear element control variable have to be 

computed from the last samples before switching. We address 

this process in this subsection.  

The process followed is summarized in Fig. 2. First, the 

vector of samples of the state variables prior to switching, x-, is 

obtained from the vector of the last samples of v(t), v-, (step 

no. 1, Fig. 2). Equation (25) is rewritten in the pre-switching 

topology (denoted with the superscript “-“) as: 

 

   )(
1   vfIDvDMvDMOx 1g1g1

 (26) 

 

Second, since switching does not alter the state variables, 

their initial values in the post-switching topology (denoted 

with the superscript “+”) are obtained directly (step no. 2, Fig. 

2) as: 

 
  xx  (27) 

 

Third, the initial samples of the control variable are 

obtained from the vector of state-variables after switching 

(step no. 3, Fig. 2). Equation (25) is rewritten for this topology 

as: 

 

0vfIDvDMvDMxO 1g1g1   )(  (28) 

 

Note that the initial samples of v(t), v+, are the unknowns in 

this process. These samples coincide in time with the last 

samples before the switching instant. The resulting switching 

equations, which relate v+ to v-, are obtained by combining 

(26), (27) and (28) 
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where no superscript – or + is assigned to vg, since there is no 

distinction between them in any topology. 

An equation similar to (29) must be written for each 

topology change. 

F. Increasing the discretization order. 

Since with Gear-1 discretization accuracy is only achieved if 

the time step  is very small, higher-order discretization 

methods may be used while retaining the overall strategy. The 

increase in the discretization order significantly reduces the 

number of samples required for the same accuracy. For the 
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Gear-2 discretization scheme [21], the discretization matrix is:  
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(30) 

 

or in compact form 
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Equation (16) is discretized yielding an equation similar to 

(21), making use of (31). On the other hand, substituting this 

into (24) yields: 
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This system of c equations can be solved directly for the c 

state variables if O is non-singular. However, the control 

variable cannot be obtained as a function of the state variables, 

because in that case there are 2c unknowns and only c 

equations. Therefore, in order to obtain v, an additional 

linearly independent set of 4 equations is needed.  

For this purpose, (24) is derived with respect to time,  

 

0vfIvMvMxO gg  )(ˆˆˆ
  (33) 

 

Substituting (7) in (33) we obtain 
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an equation that relates the state variables with the control 

variable and its derivatives up to order c+1, represented by the 

vectors v̂  and v̂ . 

For vectors v̂ , ˆ( )f v  and ˆ
gv  a new discretization technique 

needs to be defined. To obtain this matrix: (i) a first-order 

approximation of the first derivative is used, and (ii) higher 

order derivatives are calculated using a second-order 

approximation. This combination gives rise to the following 

matrix, D21,[14]:  
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or in compact form 
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Now (34) can be discretized using both D22 and D21: 
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Finally, the result of combining (32) and (37) is a system of 

2c equations in the 2c unknowns of the v, from which v can be 

solved. As a result, v can be obtained from x and vice versa.  

The resulting switching equations are obtained as follows. 

First, state variables are obtained in the pre-switching topology 

from (32): 

 

   g22g2222 vDMvfIDvDMOx
  )(

1
 (38) 

 

Next, state conservation implies that 
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and finally, the initial samples in the post-switching topology 

are obtained from (32) and (37): 
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Combining (38-41) gives: 
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which is a system of equations with the same number of 
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unknowns, relating v  to v . 

Renaming the terms in this equation allows us to rewrite 

(42) in compact form as: 

 

0vSvfDvSvfSvS gg2f   )()(  (43) 

 

Note that even-higher-order discretization methods can be 

used following a similar procedure. However, while increasing 

from Gear-1 to Gear-2 results in significant improvement, 

extensive tests show that the results obtained with the Gear-2 

discretization order are accurate enough and a good 

compromise between accuracy and complexity. On the other 

hand, higher discretization orders may cause instability 

convergence problems that make them inappropriate for use in 

this method.  

G. The Global System of Equations 

Note that equations of type (21) allow successive samples of 

v(t) to be computed, while equations of type (43) compute the 

initial values after each switching. Repeatedly combining them 

allows us to compute the transient response. However, 

introducing the periodicity assumption, i.e. vN+1=v1, where 

T=N, yields an algebraic formulation directly in the steady-

state.  

The global system of steady-state equations is built from 

two types of equations that correspond to discretized 

differential equations (21) and the switching equations (43) 

respectively, while the unknowns are all the samples of a 

period of the control variable in the steady state, including 

initial samples. 

The number of equations in the global system is: 

 
OFFON
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where N is the number of real samples in a period, nON is the 

number of initial samples in the on state and nOFF is the 

number of initial samples in the off state.  

The resulting system of equations is made up of a) matrices 

built from parts of circulant matrices of the form 
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which in turn are obtained from equations of type (21) and b) 

switching matrices corresponding to equations of type (43). 

By using the notation (45), the circulant matrices 
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are defined. 

Parts of these matrices must be placed in the correct 

position depending on the switching instant and switching 

state.  

With this objective, defining 
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the indexes of the first samples corresponding to the on and 

the off period are computed respectively as: 
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Next, a general placing matrix I (a,b,c,d) of dimensions Nf x 

(b+c+d) is defined as [14]: 
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where a,b,c,d are parameters.  Placing matrices allow inserting 

discretization equations of the type (21) and switching 

equations of the type (43) into the correct rows and columns of 

the matrices of the global system of equations, as will be 

shown next. 

First, the placing matrices for the samples in the on and off 

states are defined respectively as: 
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In a similar way, the placing matrices for the initial samples 

in the on and off states are defined respectively as:  
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and the placing matrices for the last samples in the on and off 

state are defined respectively as: 
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Finally, the global system of equations may be written as: 
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The unknown vector v contains the initial samples at each 

switching instant and the samples of a switching period. 

Vector vg contains the samples of a switching period of the 

external excitation. 

The nonlinear system of equations (56) can be efficiently 

solved by trust neighborhood methods [26] based on 

modifications of Newton’s method. Note that in the linear case 

(56) provides the steady-state response, solving a linear system 

of equations. This is used as an initial estimation for the 

nonlinear case.  

 

IV. VERIFICATION 

To verify the proposed modelling technique, a class-E 

amplifier was designed for a frequency of 6.78MHz. Table I 

shows the particular values of the circuit elements. The device 

used is an IXYS DE275-102N06A RF power MOSFET. The 

device nonlinear output capacitance parameters, Cj0, Vbi and , 

together with the on resistance were extracted using the 

technique described in [27] from measurements in the 

switching conditions. Table I shows the circuit parameters of 

the amplifier. Accurately estimating the device values enables 

us to design a class-E amplifier which does not need an 

external shunt capacitance to be added in order to obtain the 

class E switching conditions.  

 

The described analysis technique is validated against a 

PSpice simulation of the circuit in Fig. 1, using a nonlinear 

capacitor model and an ideal switch for the active device. To 

achieve a reasonable accuracy, the step ceiling parameter in 

the PSpice simulation was set to 0.1ns, which resulted in 1540 

samples per period, and it was verified that the steady-state 

had been achieved after 300 RF periods. The result of this 

simulation is taken as the reference against which the other 

waveforms are compared.  

Fig. 3 and Fig. 4 show the drain voltage waveform and non 

linear capacitor current respectively computed with the 

described method, taking only 82 samples per period, and the 

PSpice simulation taken as a reference. When the number of 

samples of the described method is doubled, the two 

waveforms become indistinguishable.  

 

Table II shows a comparison of the relative mean quadratic 

error of the vCs(t)and iLq(t) waveform when the presented 

method and PSpice are compared with the reference solution. 

The number of samples is 100 in both methods. It should be 

noted that 18 samples are a result of the initial samples. 

Therefore, there are only 82 samples that can be represented 

for this method in Fig. 3.  

 

V. CONCLUSION 

A new method for determining the steady-state periodic 

response of nonlinear switched circuits has been presented 

based on the particular case of a Class E amplifier. A step-by-

step description of the method is as follows. First, starting 

from the state equations (7), the differential equation 

describing the circuit in terms of the control variable (16) is 

obtained for each topology. This equation is discretized 

making use of the Gear integration rules (21). A procedure to 

compute the initial samples required to initialize the 

discretized equation (21) after each switching instant is 

described. These switching equations are obtained from the 

last samples of the control variable before switching, making 

use of the conservation of state variables during switching. 

Equations (29) and (43) describe specific results for first and 

second order Gear discretizations, respectively. Finally, 

making use of the periodicity assumption, a global system of 

equations (56) is built from the discretized differential 

equations and the switching equations for each topology.  

As a consequence, the original problem is transformed into 

a nonlinear algebraic system of equations, in which the 

unknowns to be determined are the initial samples and the 

samples of one period of the nonlinearity control variable in 

steady state. Any other circuit variable is easily obtained from 

the nonlinearity control variable.  

Accuracy is improved using higher order discretization rules 

keeping a constant time step at every sampling point. This 

contrasts with conventional time-domain techniques in which a 

variable sampling grid is usually obtained, with greater sample 

density in the vicinity of switching. The exact sample after 

switching, which may be useful information in some circuits, is 

computed as a byproduct. 

The objective of this approach is an increased accuracy in 
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relation to the number of samples. The algorithms have been 

implemented in Matlab with no special emphasis on efficient 

coding. Even so, the required computing time is comparable to 

that of other commercially available products, which make use 

of compiled and carefully optimized engines. 

The resulting formulation allows us to compute the 

sensitivities of the waveform to different circuit parameters 

very efficiently. Current research is aimed at using this 

information for circuit optimization. 

A comparison of the simulation results of several circuits, 

and in particular a nonlinear class E amplifier, with those 

obtained from PSpice shows excellent agreement, with the 

added advantage of not having to compute the transient until 

the steady state is detected. 
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Fig. 1.  Class E amplifier. The switching device is modeled by the ideal 

switch, Rs, and the nonlinear capacitance, Cs. 
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TABLE II 

RELATIVE ERROR 

 PSpice This Method 

iLq 1.47·10-2 5.14·10-4 

iCs 2.85·10-2 6.85·10-4 

vCs 7.59·10-3 2.96·10-4 

 

 

 

TABLE I 

CLASS-E DESIGN PARAMETERS 

Operation and Linear Devices Nonlinear Device 

f 6.78 MHz Lq 97 H Cj0 2.3 nF 

D 0.4 RLq 10   0.67 

VDD 42 V L 6.2 H Vbi 0.71 V 

R 24  C 138 pF RS 2.4  

 

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-2

-1.5

-1

-0.5

0

0.5

1

t [s]

I C
s
 [

A
]

PSpice

This Method

 
Fig. 4.  Comparison of the nonlinear capacitor current waveform computed 

with the described method and the PSpice simulation. 
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Fig. 3.  Comparison of the drain voltage waveform computed with the 

described method and the PSpice simulation. 
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Fig. 2.  Computing the initial samples after switching. 
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