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Abstract

The periodicity of problems in mathematics and applied science leads
to the solution of linear systems that involve circulant coefficient ma-
trices. In this work, we analyze a type of circulant matrices namely
A = Circ(a, b, c, . . . , c, b). It turns out that A is nothing but the com-
binatorial Laplacian of the n-cycle when a = 2, b = −1 and c = 0 or,
more generally, for any q ∈ R, the matrix associated with the Scrödinger
operator on the cycle with constant potential 2(q − 1). Hence, its inverse
is the Green’s function of the n-cycle. The inversion of circulant matrices
strongly connects with the resolution of second order difference equations
with constant coefficients. Using this approach, we can give a necessary
and sufficient condition for the invertibility of matrix A. It is known that,
when exists, the inverse is also a circulant matrix. In this case, we explic-
itly give a closed formula for the expression of the coefficients of A−1.

Besides, we give conditions for the invertibility of circulant matrices
associated with combinatorial structures such as A = Circ(a, a + b(n −
1), . . . , a+jb(n−j), . . . , a+b(n−1)) or A = Circ(a, a, b, b, a, a, . . . , a, a, b, b, a).

The case c = 0 was solved by O. Rojo assuming the condition |a| >
2|b| > 0; that is when A is a strictly diagonally dominant matrix. In this
work we derive the inverse of a general symmetric circulant tridiagonal
matrix, without assuming the hypothesis of diagonally dominance.

1 Matrices Circ(a, b, c, . . . , c, b)

For any a, b, c ∈ R, let b(a, b, c) ∈ Rn defined as b(a, b, c) = (a, b, c, . . . , c, b).
Then, Circ(a, b, c, . . . , c, b) = Circ

(
b(a, b, c)

)
and bτ (a, b, c) = b(a, b, c), since ma-

trix Circ(a, b, c, . . . , c, b) is symmetric. Regarding the case b(a, b, b) = a(a, b, b),
matrix Circ(a, b, b, . . . , b, b) has been analyzed in the previous section, so from
now on we assume c 6= b. The case c = 0 has been analyzed in [1] under the name
of symmetric circulant tridiagonal matrix, assuming the condition |a| > 2|b| > 0;
that is, that Circ

(
b(a, b, 0)

)
is a strictly diagonally dominant matrix.

Notice that Circ
(
b(2,−1, 0)

)
is nothing but the so called combinatorial Lapla-

cian of a n–cycle. More generally, for any q ∈ R, Circ
(
b(2q,−1, 0)

)
is the matrix

associated with the Schrödinger operator on the cycle with constant potential
2(q−1) and hence its inverse is the Green’s function of a n–cycle; or equivalenty,
it can be seen as the Green function associated with a path with periodic bound-
ary conditions, see [2]. Since the inversion of matrices of type Circ

(
b(2q,−1, 0)

)
involves the resolution of second order difference equations with constant coef-
ficients, we enumerate some of their properties.

A Chebyshev sequence is a sequence of polynomials {Qn(x)}n∈Z that satisfies
the recurrence

Qn+1(x) = 2xQn(x)−Qn−1(x), for each n ∈ Z. (1)

Recurrence (1) shows that any Chebyshev sequence is uniquely determined by
the choice of the corresponding zero and one order polynomials, Q0 and Q1
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respectively. In particular, the sequences {Tn}+∞n=−∞ and {Un}+∞n=−∞ denote the
first and second kind Chebyshev polynomials that are obtained when we choose
T0(x) = U0(x) = 1, T1(x) = x, U1(x) = 2x.

Next we describe some properties of the Chebyshev polynomials of first and
second kind that will be useful in the present work. See [3] for proofs and more
details.

(i) For any Chebyshev sequence {Qn}+∞n=−∞ there exists α, β ∈ R such that
Qn(x) = αUn−1(x) + βUn−2(x), for any n ∈ Z.

(ii) T−n(x) = Tn(x) and U−n(x) = −Un−2(x), for any n ∈ Z. In particular,
U−1(x) = 0.

(iii) T2n+1(0) = U2n+1(0) = 0, T2n(0) = U2n(0) = (−1)n, for any n ∈ Z.

(iv) Given n ∈ N∗ then, Tn(q) = 1 iff q = cos
(
2πj
n

)
, j = 0, . . . , dn−12 e, whereas

Un(q) = 0 iff q = cos
(
πj
n+1

)
, j = 1, . . . , n. In this case, Un−1(q) = (−1)j+1

and Un+1(q) = (−1)j .

(v) Tn(1) = 1 and Un(1) = n + 1, whereas Tn(−1) = (−1)n and Un(−1) =
(−1)n(n+ 1), for any n ∈ Z.

(vi) Tn(x) = xUn−1(x)− Un−2(x) y T ′n(x) = nUn−1(x), for any n ∈ Z.

(vii) 2(x− 1)
n∑
j=0

Uj(x) = Un+1(x)− Un(x)− 1, for any n ∈ N.

Chebyshev recurrence (1) encompasses all linear second order recurrences
with constant coefficients, see [4], so we can consider more general recurrences.
Let {Hn(r, s)}∞n=0, where r, s ∈ Z and s 6= 0, the Horadam numbers defined as
the solution of the recurrence

Hn+2 = rHn+1 + sHn, H0 = 0, H1 = 1. (2)

Notice that for any n ∈ N∗, Hn(1, 1) = Fn, the n–th Fibonacci number,
Hn(2, 1) = Pn, the n–th Pell number, Hn(1, 2) = Jn, the n–th Jacobsthal num-
ber and Hn(2,−1) = Un−1(1) = n.

The equivalence between any second order difference equation and Cheby-
shev equations leads to the following result, see [4, Theorem 3.1] and [5, Theorem
2.4].

Lemma 1.1. Given r, s ∈ Z and s 6= 0, we have the following results:

(i) If s < 0, then Hn(r, s) = (
√
−s)n−1Un−1

(
r

2
√
−s

)
, n ∈ N∗.

(ii) If s > 0, then H2n(r, s) = rsn−1Un−1
(
1 + r2

2s

)
, n ∈ N∗.

In particular, for any n ∈ N∗, F2n = Un−1
(
3
2

)
, J2n = 2n−1Un−1

(
5
4

)
, and

P2n = 2Un−1(3). In addition, H2n(r, r) = rnUn−1
(
1 + r

2

)
when r > 0 and

Hn(r, r) = (
√
−r)n−1Un−1

(√−r
2

)
for r < 0.

In addition, for any q ∈ R we denote by u(q), v(q) and w(q) the vectors in Rn
whose components are uj = Uj−2(q), vj = Uj−1(q) and wj = Uj−2(q)+Un−j(q),
respectively.
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Lemma 1.2. For any q ∈ Rn, the following properties hold:

(i) wτ (q) = w(q) and 〈w(q), 1〉 =
Tn(q)− 1

q − 1
. Moreover, w(1) = n1.

(ii) w(q) = 0 iff q = cos
(
2πj
n

)
, j = 1, . . . , dn−12 e. In this case, 〈u(q), 1〉 =

〈v(q), 1〉 = 0.

(iii) When n is even, then w2j−1(0) = 0 and w2j(0) = (−1)j−1
[
1 − (−1)

n
2

]
,

j = 1, . . . , n2 .

(iv) When n is odd, then w2j−1(0) = (−1)
n+1
2 +j, j = 1, . . . , n+1

2 and w2j(0) =
(−1)j−1, j = 1, . . . , n−12 .

(iv) When n is odd, then wj(−1) = (−1)j−1(n+ 2− 2j), j = 1, . . . , n.

Proof. w(q) = 0 iff Un−j(q) = −Uj−2(q) for any j = 1, . . . , n and this equality
holds iff Un−1(q) = 0 and Un−2(q) = −1. Moreover, Un−1(q) = 0 iff q =
cos
(
kπ
n

)
, k = 1, . . . , n − 1, thus Un−2(q) = (−1)k+1, leads to Un−2(q) = −1 iff

k = 2j. �

Remark: The quotient Tn(q)−1
q−1 is well defined for q = 1, because Tn(1) = 1,

Un(1) = n + 1, and T ′n(q) = nUn−1(q), using l’Hôpital’s rule, lim
q→1
〈w(q), 1〉 =

nUn−1(1) = n2. Moreover, for q = 1, is w(1) = n1 thus, 〈w(1), 1〉 = n2.

Proposition 1.3. For any q ∈ R,

Circ
(
b(2q,−1, 0)

)
w(q) = 2[Tn(q)− 1]e.

and the following holds:

(i) Circ
(
b(2q,−1, 0)

)
is invertible iff q 6= cos

(
2πj
n

)
, j = 0, . . . , dn−12 e and,

Circ
(
b(2q,−1, 0)

)−1
=

1

2[Tn(q)− 1]
Circ

(
w(q)

)
.

(ii) If q = 1, the linear system Circ
(
b(2q,−1, 0)

)
h = v is compatible iff 〈v, 1〉 =

0 in this case, for any γ ∈ R the only solution satisfying 〈h, 1〉 = γ is given
by

hj =
γ

n
− 1

2n

n∑
i=1

|j − i|(n− |i− j|)vi, j = 1, . . . , n.

(iii) If q = cos
(
2πj
n

)
, j = 1, . . . , dn−12 e, the linear system Circ

(
b(2q,−1, 0)

)
h =

v is compatible iff 〈h, u(q)〉 = 〈h, v(q)〉 = 0.

Proof. To prove (i), notice that w(q) is the first column of the Green function
for the Schrödinger operator for a n–cycle, or equivalently for a (n + 1)–path
with periodic boundary conditions, see [2, Proposition 3.12].

To prove (ii), it suffices to see that G = (gij), where gij =
1

12n

(
n2 − 1 −

6|i− j|(n− |i− j|)
)
, i, j = 1, . . . , n is the Green function of the Combinatorial

Laplacian of the cycle, see for instance [6]. The third claim (iii), comes from
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(ii) of Lemma 1.2 that states w(q) = 0. In addition, in this case, Un−1(q) = 0,
Un−2(q) = −1 and Un(q) = 1. Besides, vectors u(q) and w(q) satisfy

2qu1 − u2 − un = −1− Un−2(q) = 0,

−u1 − un−1 + 2qun = −Un−3(q) + 2qUn−2(q) = Un−1(q) = 0,

2qv1 − v2 − vn = 2q − 2q − Un−1(q) = 0,

−v1 − vn−1 + 2qvn = −1− Un−2(q) + 2qUn−1(q) = 0,

thus, Circ
(
b(2q,−1, 0)

)
u(q) = Circ

(
b(2q,−1, 0)

)
v(q) = 0. �

Next, the main result in this section is proved. We give necessary and
sufficient conditions for the existence of the inverse of matrix Circ(a, b, c, . . . , c, b)
and we explicitly obtain the coefficients of the inverse, when it exists.

Theorem 1.4. For a, b, c ∈ R, the circulant matrix Circ(a, b, c, . . . , c, b) is in-
vertible iff

(
a+ 2b+ (n− 3)c

) dn−1
2 e∏
j=1

[
a− c+ 2(b− c) cos

(2πj

n

)]
6= 0

and, in this case

Circ(a, b, c, . . . , c, b)−1 = Circ
(
g(a, b, c)

)
,

where if a 6= 3c− 2b

gj(a, b, c) =
Uj−2(q) + Un−j(q)

2(c− b)[Tn(q)− 1]
− c

(a+ 2b− 3c)
(
a+ 2b+ (n− 3)c

) , j = 1, . . . , n,

with q =
c− a

2(b− c)
, whereas

gj(3c− 2b, b, c) =
1

12n(c− b)
(
n2− 1− 6(j− 1)(n+ 1− j)

)
+

1

n2c
, j = 1, . . . , n.

Proof. A necessary condition for the invertibility of Circ
(
b(a, b, c)

)
is 〈b(a, b, c), 1〉 =

a + 2b + (n − 3)c 6= 0, so, we will assume that this condition holds. Moreover,
a necessary and sufficient condition to get Circ

(
b(a, b, c)

)
invertible is the com-

patibility of the linear system Circ
(
b(a, b, c)

)
g = e, and in that case there is an

only solution that satisfies 〈g, 1〉 = 〈b(a, b, c), 1〉−1.
Hence,

Circ
(
b(a, b, c)

)
g = e iff Circ

(
b(a− c, b− c, 0)

)
g = e− c〈b(a, b, c), 1〉−11

and moreover, 〈g, 1〉 = 〈b(a, b, c), 1〉−1.
Since b(a− c, b− c, 0) = (c− b)b(2q,−1, 0), the linear system

Circ
(
b(a− c, b− c, 0)

)
g = e− c〈b(a, b, c), 1〉−11

is equivalent to system

Circ
(
b(2q,−1, 0)

)
g =

1

(c− b)
(
a+ 2b+ (n− 3)c

)((a+ 2b+ (n− 3)c
)
e− c1

)
.
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If g is a solution of the above system, then

(a+ 2b− 3c)

(c− b)
(
a+ 2b+ (n− 3)c

) = 〈Circ
(
b(2q,−1, 0)

)
g, 1〉 = 〈g,Circ

(
b(2q,−1, 0)

)
1〉

= 〈b(2q,−1, 0), 1〉〈g, 1〉 =
(a+ 2b− 3c)

(c− b)
〈g, 1〉.

As a consequence, if a+2b−3c 6= 0 then 〈g, 1〉 =
1

a+ 2b+ (n− 3)c
= 〈b(a, b, c), 1〉−1.

Under this assumption; that is, if a 6= 3c − 2b or equivalently q 6= 1, then
Circ

(
b(a, b, c)

)
g = e iff

Circ
(
b(2q,−1, 0)

)
g =

1

(c− b)
(
a+ 2b+ (n− 3)c

)((a+ 2b+ (n− 3)c
)
e− c1

)
.

In addition, if
dn−1

2 e∏
j=1

[
a− c+ 2(b− c) cos

(
2πj
n

)]
6= 0, then q 6= cos

(
2πj
n

)
, for

any j = 1, . . . , dn−12 e. Using claim (i) in Proposition 1.3, Circ
(
b(2q,−1, 0)

)
is

invertible, and

g =
1

2(c− b)
(
a + 2b + (n− 3)c

)
[Tn(q)− 1]

Circ
(
w(q)

)((
a + 2b + (n− 3)c

)
e− c1

)
=

1

2(c− b)
(
a + 2b + (n− 3)c

)
[Tn(q)− 1]

((
a + 2b + (n− 3)c

)
w(q)− c〈w(q), 1〉 1

)
.

If there exists j = 1, . . . , dn−12 e, such that a− c+ 2(b− c) cos
(

2πj
n

)
= 0, i.e.

q = cos
(

2πj
n

)
, then, statement (ii) in Lemma 1.2 ensures

〈
(
a+2b+(n−3)c

)
e−c1, v(q)〉 =

(
a+2b+(n−3)c

)
v1(q) = a+2b+(n−3)c 6= 0

so, by claim (iii) in Proposition 1.3, the linear system Circ
(
b(a, b, c)

)
g = e is

incompatible and, Circ
(
b(a, b, c)

)
is not invertible.

When a = 3c− 2b, this is q = 1, then a+ 2b+ (n− 3)c = nc and system

Circ
(
b(2,−1, 0)

)
g =

1

n(c− b)
(ne− 1)

is compatible. Moreover, using claim (ii) in Proposition 1.3, the vector g ∈ Rn
whose components are given for any j = 1, . . . , n by

gj =
1

n2c
− 1

2n(c− b)
(j − 1)

(
n− (j − 1)

)
+

1

2n2(c− b)

n∑
i=1

|j − i|(n− |i− j|),

is the only solution of the system satisfying 〈g, 1〉 =
1

nc
. Last, we only have to

take into account that
n∑
i=1

|j − i|(n− |i− j|) =
n

6
(n2 − 1), for any j = 1, . . . , n.

�

The case a = 3c − 2b in the above theorem, involves the Green function of
a cycle. Cases related to this, raise as application in the analysis of problems
associated with this combinatorial structures.

5



Corollary 1.5. For a given a, b ∈ R, matrix

A = Circ
(
a, a+ b(n− 1), a+ 2b(n− 2), . . . , a+ jb(n− j), . . . , a+ b(n− 1)

)
is invertible iff

(
6a+ b(n2 − 1)

)
b 6= 0 and,

A−1 =
6

n2
(
6a+ b(n2 − 1)

) J− 1

2nb
Circ

(
b(2,−1, 0)

)
.

Corollary 1.6. For a given a, b ∈ R, the following results hold:

(i) If n = 1 mod(4), then A = Circ(a, a, b, b, a, a, . . . , a, a, b, b, a) is invertible
iff (a− b)

(
a(n+ 1) + b(n− 1)

)
6= 0 and then

A−1 =
1

a− b
Circ(b(0, 1, 0)

)
− 2(a+ b)

(a− b)
(
a(n+ 1) + b(n− 1)

) J
(ii) If n = 2 mod(4), then A = Circ

(
a+b
2 , a, a+b2 , b, a+b2 , . . . , a+b2 , b, a+b2 , a) is

invertible iff (a− b)
(
a(n+ 1) + b(n− 1)

)
6= 0 and then

A−1 =
1

a− b
Circ(b(0, 1, 0)

)
− 2(a+ b)

(a− b)
(
a(n+ 1) + b(n− 1)

) J
(iii) If n = 3 mod(4), then A = Circ(b, a, a, b, b, . . . , a, a, b, b, a, a) is invertible

iff (a− b)
(
a(n+ 1) + b(n− 1)

)
6= 0 and then

A−1 =
1

a− b
Circ(b(0, 1, 0)

)
− 2(a+ b)

(a− b)
(
a(n+ 1) + b(n− 1)

) J
(iv) When n is odd, then

A = Circ
(
a+nb, a−(n−2)b, . . . , a+(−1)j−1(n+2−2j)b, . . . , a−(n−2)b

)
is invertible iff b(an+ b) 6= 0 and then

A−1 =
1

4b
Circ

(
b(2, 1, 0)

)
− a

b(an+ b)
J.

We end up this paper by deriving the inverse of a general symmetric circulant
tridiagonal matrix, without assuming the hypothesis of diagonally dominance.
Notice the difference between our result and the methodology given in [1].

Corollary 1.7. For a, b ∈ R, b 6= 0, the circulant matrix Circ(a, b, 0, . . . , 0, b)
is invertible iff

dn−1
2 e∏
j=0

[
a+ 2b cos

(2πj

n

)]
6= 0

and, in this case

Circ(a, b, 0, . . . , 0, b)−1 = Circ
(
g(a, b, 0)

)
,

where

gj(a, b, 0) =
(−1)j

2b[1− (−1)nTn( a2b )]

[
Uj−2

( a
2b

)
+(−1)nUn−j

( a
2b

)]
, j = 1, . . . , n.

Notice that the diagonally dominant hypothesis |a| > 2|b| clearly implies
that a+ 2b cos

(
2πj
n

)
6= 0 for any j = 0, . . . , n.
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