

Volume I
Report – Budget

TREBALL DE FI DE GRAU

“CREATION OF INTERACTIVE

3D DOCUMENTS TO SUPPORT

THE SETUP PROCESS OF

MACHINE TOOLS”

TFG presentat per obtenir el títol de GRAU en

ENGINYERIA MECÀNICA

Per Víctor Arnedo Blanco

Barcelona, 11 d’octubre de 2016

Director: José Antonio Travieso Rodríguez

Departament de Enginyeria Mecànica (DEM)

Universitat Politècnica de Catalunya (UPC)

TABLE OF CONTENT

RESUM .. V

RESUMEN .. V

ABSTRACT ... V

ACKNOWLEDGMENT ... VI

CHAPTER 1: INTRODUCTION .. 1

CHAPTER 2: MARKET ANALYSIS ... 2

2.1. Applicable standard formats for setup-documents 2

2.1.1. HTML .. 2

2.1.2. PDF .. 4

2.2. Underlying 3d-formats ... 5

2.2.1. U3D ... 5

2.2.2. X3D .. 6

2.3. Software involved in the workflow ... 7

2.3.1. Tetra 4D ... 7

2.3.2. 3D Tool ... 8

2.3.3. LaTeX ... 9

2.3.4. CAD Exchanger ... 10

2.4. Ways to implement the solution ... 11

CHAPTER 3: IMPLEMENTATION .. 14

3.1. Web application in a browser ... 14

3.1.1. Generation of the set-up web app 15

3.1.2. Embedding of the 3d model .. 17

3.1.3. Embedding further required information into the web app 19

3.2. Creation of pdf document with tetra4d 23

3.2.1. Generation of the set-up document 23

3.2.2. Embedding 3d model in the document 25

3.2.3. Embedding further required information into the document 27

3.3. Creation of a 3d pdf document with 3d tool and latex 30

3.3.1. Generation of set-up document and embedding of the 3d model

 30

3.3.2. Embedding further required information into the document 32

3.3.3. Possible improvements .. 39

CHAPTER 4: EXAMPLES OF IMPLEMENTATION 43

4. 1. Web Application in the browser ... 44

4.2. Tetra4D .. 47

4.3. 3D Tool and LaTeX ... 50

CHAPTER 5: CONCLUSIONS .. 54

CHAPTER 6: BIBLIOGRAPHIC REFERENCES ... 56

CHAPTER 7: COMPLEMENTARY BIBLIOGRAPHY 60

BUDGET ... 65

LIST OF FIGURES

Figure 2.1. 3D PDF created by 3D Tool. .. 9

Figure 2.2. Old workflow. .. 12

Figure 2.3. Web App workflow. process. .. 13

Figure 2.5. 3D Tool and LaTeX workflow. process. ... 13

Figure 2.4. Tetra4D workflow. process. .. 13

Figure 3.1. CAD Viewer without any 3D model. ... 15

Figure 3.2. CAD Viewer with 3D model example features. ... 16

Figure 3.4. CAD Viewer example views. .. 16

Figure 3.3. CAD Viewer example. .. 16

Figure 3.6. Data folder. ... 18

Figure 3.5. CAD Viewer files folder. .. 18

Figure 3.7. Main.js code after modification. ... 18

Figure 3.8. Example 3D model embedded in the Web App. ... 19

Figure 3.9 Metadata of the developer’s example. .. 20

Figure 3.10. Metadata of Example3DModel code. ... 21

Figure 3.11. Metadata of Example3DModel in the Web app. .. 21

Figure 3.12. Annotations of Example3DModel in the Web app. .. 22

Figure 3.13. Example template from Tetra4D Enrich. .. 24

Figure 3.15. Created template. ... 25

Figure 3.14. Head of the created template... 25

Figure 3.17. Template with 3D model embedded. ... 26

Figure 3.16. Tetra4D Converter features. ... 26

Figure 3.18. Template with hierarchical table inserted and piece highlighted. 27

Figure 3.19. Tetra4D Enrich features. ... 28

Figure 3.20. Example CSV table. ... 28

Figure 3.21. Example clipboard table. .. 28

Figure 3.22. Template with information table inserted. .. 29

Figure 3.23. Final document after carrousel implementation. ... 30

Figure 3.24. Code for embedding 3D model. .. 31

Figure 3.25. Graphic of the camera and object in a coordinates XYZ system [31]. 32

Figure 3.26. Code for a table. .. 33

Figure 3.27. Code for the Operator annotations. ... 34

Figure 3.28. Code for name of the model and author. ... 34

Figure 3.29. Code for text field and button for digits of component. .. 35

Figure 3.30. Code for JavaScript function. .. 35

Figure 3.31. Code for table of further information. .. 35

Figure 3.32. Structure of the document. .. 37

Figure 3.33. Code for the JavaScript function. .. 37

Figure 3.34. Final manually implemented 3D PDF document. ... 38

Figure 3.35. Code for the declaration of the colours. ... 38

Figure 3.36. Code for the processing of DAT file. ... 39

Figure 3.37. Code for the improved table of information. ... 40

Figure 3.38. Code for the automatic name of the model and author. 41

file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817208
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817209
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817210
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817211
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817212
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817213
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817214
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817215
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817216
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817217
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817218
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817219
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817220
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817221
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817222
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817223
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817224
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817225
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817226
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817227
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817228
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817229
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817230
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817231
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817232
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817233
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817234
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817235
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817236
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817237
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817238
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817239
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817240
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817241
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817242
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817243
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817244
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817245
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817246
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817247
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817248
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817249
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817250

Figure 3.39. View of the improved table of information. ... 41

Figure 3.40. Result of the automatic name of the model and author. 41

Figure 4.1. View of the Assembly 1 in the CAM software. ... 43

Figure 4.2. View of the Assembly 2 in the CAM software. ... 44

Figure 4.3. View of the Assembly 1 in the converter software. .. 44

Figure 4.4. View of the Assembly 2 in the converter software. .. 45

Figure 4.5. View of the Assembly 1 in the web application. ... 45

Figure 4.6. View of the Assembly 2 in the web application. ... 46

Figure 4.7. Assembly 2 annotations. ... 46

Figure 4.8. Tetra4D created template... 47

Figure 4.9. Adding the 3D model on Tetra4D created template. ... 48

Figure 4.10. Adding the 3D model on Tetra4D created template. ... 48

Figure 4.11. 3D model on Tetra4D created template. .. 49

Figure 4.12. Assembly 1 generated document. .. 49

Figure 4.13. Assembly 2 generated document. .. 49

Figure 4.14. LaTeX created template. ... 50

Figure 4.15. Exporting Assembly 1 as U3D file in 3D Tool. ... 51

Figure 4.16. Exporting Assembly 2 as U3D file in 3D Tool. ... 51

Figure 4.17. Text pad document for the information table. ... 52

Figure 4.18. Resulted document for assembly 1. ... 52

Figure 4.19. Resulted document for assembly 2. ... 53

Figure 7.1. Tools budget of the software and solutions. .. 65

Figure 7.2. Engineering and documentation costs budget. .. 66

Figure 7.3. Total costs budget. .. 66

file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817251
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817252
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817253
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817254
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817255
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817256
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817257
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817258
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817259
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817260
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817261
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817262
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817263
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817264
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817265
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817266
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817267
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817268
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817269
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817270
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817271
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817272
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817273
file:///C:/Users/victor/Documents/ENGINYERIA%20INDUSTRIAL/TFG/THESIS%20UPC.docx%23_Toc463817274

RESUM

El present projecte consisteix en la recerca i implementació de solucions per

a la millora de la creació de documents 3D interactius de suport a la

enginyeria de fabricació. La idea és facilitar el flux de treball entre el

dissenyador i l’operari de màquines creant plataformes en les quals es puguin

veure clarament les parts dels assemblatges, les seves característiques i

realitzar possibles feedbacks per tal d’optimitzar l’elaboració de les peces. A

més, es pretén millorar la qualitat dels documents creats fins aleshores,

implantant nous tipus d’arxius i millores gràfiques amb les que serà molt més

difícil la pèrdua d’informació durant el procés.

Es compararan les solucions trobades tant tècnica com econòmicament,

realitzant exemples de cadascuna de les formes d’obtenir els documents, i

finalment es proposarà la més adient.

RESUMEN

El presente proyecto consiste en la búsqueda e implementación de soluciones

para la mejora de la creación de documentos 3D interactivos de apoyo en la

ingeniería de fabricación. La idea es facilitar el flujo de trabajo entre el

diseñador y el operario de máquinas creando plataformas en las cuales se

puedan ver claramente las partes del ensamblaje, sus características i realizar

posibles feedbacks por tal de optimizar la elaboración de las piezas. Además,

se pretende mejorar la calidad de los documentos creados hasta ahora,

implantando nuevos tipos de archivos y mejoras gráficas con las que será

mucho más difícil la pérdida de información durante el proceso.

Se compararán las soluciones encontradas tanto técnica como

económicamente, realizando ejemplos de cada una de obtener los

documentos, y finalmente se propondrá la más adecuada.

ABSTRACT

The current thesis consists on the research and implementation of solutions

for the improvement in the creation of 3D interactive documents for the

support in manufacturing engineering. The idea is ease the workflow between

the designer and the operator creating new platforms in which it is possible

to see clearly the assembly components, their features and carry possible

feedbacks on so the elaboration of pieces can be optimized. Furthermore, it

is pretended to increase the documents quality done until now, implementing

new file types and graphic improvements with which the loose of information

during the process will be more difficult.

The founded solutions will be compared technical and economically, making

examples of each of the ways of obtaining the documents, and finally the

most suitable one will be proposed.

ACKNOWLEDGMENT

I would not like to finish this thesis without thank and dedicate this work to

some people first.

First of all, I would like to thank to Dr. Prof.-Ing Andreas Ellermeier for giving

me the possibility of participating in such a project as AutoRüst in their

laboratory and be a part of the team for a few months in OTH Regensburg.

Secondly, I want to show my gratitude to Scientific Assistant Herr. Daniel

Vögele for the weekly meetings and help that have make this thesis having

the direction to reach the goals defined.

Finally, this thesis would not have been possible without the support of my

family and girlfriend. I would like to take the opportunity here to express all

my gratitude to all their effort, advices and comprehension during all my stay

in Regensburg. To Jennifer, thanks to hold me even being at thousands of

kilometres from you. It has been a very difficult issue and you deserve it all.

To Miquel and specially my mother, all my appreciation. It is always difficult

to be separated from your sons, but your help, advices, strength given and

the convincement to come here and enjoy this unforgettable experience has

been priceless. To my father, it will have been impossible without your calls,

advices and support all these months along. Thank you to all my family,

brothers, sister, nephew… you are always there and it is so valuable to me.

And of course, to my friends here in the Erasmus Exchange Program, my

family for five months. To all of them thank you for making this experience

something worth to live.

Report

“CREATION OF INTERACTIVE

3D DOCUMENTS TO SUPPORT

THE SETUP PROCESS OF

MACHINE TOOLS”

TFG presentat per optar al títol de GRAU en

ENGINYERIA MECÀNICA

per Víctor Arnedo Blanco

Barcelona, 11 d’octubre de 2016

Director: José Antonio Travieso Rodríguez

Departament d’Enginyeria Mecànica (DEM)
Universitat Politècnica de Catalunya (UPC)

1. Introduction

1

CHAPTER 1:

INTRODUCTION

Research and implementation of solutions for the automatic creation of

interactive 3D documents to support the setup process of tool machines is a

thesis work included in the AutoRüst project for the standardization and

automatic solution in CAD/CAM production processes strings.

The aim of this research is to establish an efficient workflow in the production

of pieces and assemblies between the designer, who works with the

specialized software, and the operator, manipulating the manufacturing

machines. This work is done by the creation of a series of interactive

documents or application with which the operator will be able to interactive

with the 3D model embedded, its information and carry some annotations or

feedback out.

The reader will find inside the thesis theoretical information in the first part

for a better comprehension of all the concepts explained in the second part.

The latest could be described as a practical guide of how to implement the

different chosen solutions for the creation of default templates and addition

of the assemblies and the related data, with all the instructions and images

in order not to be complicated to follow and understand.

2. Market Analysis

2

CHAPTER 2:

MARKET ANALYSIS

In this section we will establish the basis of the thesis. We will carry out a

market analysis, a fundamental task before a project, necessary in order to

understand in which conditions are we able to work, how we can create our

solution and which tools do we have available.

First of all, it is good to know which formats are we going to use in the

process, their history and usage, the capabilities and why do we use them. It

is important, furthermore, to be aware of the software involved. Some of

them can be commercial and, usually, difficult to afford because their high

price. Others, however, are free and open source but usually have less quality

or features than the first ones. It is precise to find a balance between quality

and price in this case. Finally, we will talk about the possible solutions we can

implement to reach the goal of our thesis and we will choose the most suitable

one, according to our considerations.

2.1. Applicable standard formats for setup-

documents

2.1.1. HTML

HTML is the abbreviation of HyperText Markup Language and it is a standard

markup language used to create electronics documents on the World Wide

Web called web sites and applications as well. The code ensures the proper

2. Market Analysis

3

formatting of text and images, so the internet browser, as Chrome or Mozilla

Firefox, is able to display them. It describes the structure of a website

semantically and includes cues for the appearance of the web page, and that

is why is called a markup language, rather than a programming language.

HTML allows images and other objects to be embedded and it is possible to

create interactive forms, as 3D models, inside. [1]

A markup language works with typesetting instructions, such as those in

LaTeX for example, and these instructions are encapsulated by tags. Tags are

also used to specify hypertext links, that allows Web developers to direct

users to other Web pages with only a click of the mouse on either an image

or words. [2]

The last HTML update is HTML 5. It uses the same basic rules as its

predecessor, but adds some new tags and attributes activated by using

JavaScript [3]. If we want to work with HTML, we will need to use a text editor

as long as it is saved with a .html file extension, but it is easier to use a HTML

editor. Once the file is created, we can view it online in a browser after been

uploaded in a web server or just locally in the editor.

In the last fifteen years, there have been a huge number of systems and

proposals of how to embed 3D objects in the Web, but most of them have

disappeared over time. Today we have a sort of systems that are based in

Plugin technology. A few example of them, could be Adobe Flash, Silverlight

or Java3D, but they have two main handicaps. First, they are not installed by

default in most of the systems, so the user has to deal with the installation,

security and possible incompatibilities that happen with the browser or

operative system. In addition, developers who want to work along with DOM

content, building up Web applications or pages that use both, have to solve

the synchronization incapacities that can occur.

There are, as well, a small number of systems that do not use plugins and try

to integrate the rendering system directly into the browser architecture. Due

to the fact that the use of HTML is a good solution for reaching our goal, we

will work with one of this systems, called X3DOM. [4]

X3DOM is an open source JavaScript framework1 used to create declarative

3D scenes in Web pages. It is based on standard browser technology so it

does not need any plugin to display the scenes. Declarative 3D is a concept

that means that you can create and display an interactive 3D scene using a

structured representation rather than writing a code, and, in the case of

X3DOM, this representation is a part of HTML document that represents a

Web page, so the 3D content acquires the same importance than text, links

or images.

1 In computer systems, a framework is often a layered structure indicating what

kind of programs can or should be built and how they would interrelate [5]

2. Market Analysis

4

The name of X3DOM corresponds to X3D, the royalty-free ISO standard for

declarative 3D graphics that will be explained later and DOM, an abbreviation

of Document Object Model. DOM describes the interaction and hierarchical

representations associated with the content of HTML documents. The X3DOM

elements can be manipulated with DOM operations, like other HTML

elements. We can change attributes of a 3D model with a JavaScript just as

we could change the text of a Web page [6].

In brief, we will use X3DOM for three main reasons. The first one is that there

is no need to use a plugin to display the scenes, so the time for the setting

up will be reduced. The second corresponds to the fact that the most of the

parts of X3DOM are standard, so it is easy to exchange content between users

and developers, and, furthermore, there are great facilities on learning the

language. This is also related to the third reason. If you know how to build

simple Web pages, there is the possibility to exploit and extend your

knowledge on HTML and DOM, instead of learning a new API.

2.1.2. PDF

PDF, abbreviation of Portable Document Format, is a storage file format for

digital documents, independent from software or hardware [7]. It is a

complex format, that encapsulates a complete description with images,

graphics, text and other information.

PDF started off in the earlies 90s on the purpose of creating a paperless office

as a project of John Warnock, one of the founders of Adobe. The file format

was created as an internal project, in order that documents could be spread

throughout the company and displayed on any operating system, but it was

not until 1993 that Adobe Systems made the PDF specification available for

free. [8]

The first versions of the PDF documents were not very popular, due to the

large size that they supposed, bigger than most of the documents similar to

them. However, with the introduction of the broadband for commercial users,

the publicity the company made and the easy way to use in every platform

and operating system, this type of file became widespread worldwide.

Nowadays, this format of file has become an open standard and published by

the International Organization of Standardization (ISO) from 2008, but Adobe

Systems has the patent, granting the royalty-free rights necessary for use,

sell and distribute implementations. [9]

PDF files combine different technologies, for embedding, replacing and

allowing fonts to travel with documents or for storing and compressing data

and elements when necessary, for example, but it is strongly based on

PostScript technology [10]. PostScript is a page description language, or PDL,

used in a usual way in printing studios as a transporting format. The concept

2. Market Analysis

5

was new because the utilization of a complete programming language for

describing an image that, later, would be printed by a high quality printer,

and the notation of the programming language was different from what it had

been used, declaring the parameters of a command before the command

itself. This is called the Reverse Polish Notation, or RPN. PDF, considered

another page description language, is derivate from it but simplified.

There are many software, both free and commercial, capable of reading a

PDF document on Internet. For instance, PDF Reader, Foxit Reader or

Bluebeam, but the most common used worldwide is Adobe Reader or Acrobat.

Precisely the last one is the software needed for the purpose of the project,

embedding 3D models and all its information for an interactive use, due to

the huge amount of features it has and its efficiency.

Adobe Reader and Acrobat have the possibility of interacting with 3D models,

provided that it is a U3D OR PRC file. These are formats that will be explained

later. While Adobe Reader only has the possibility of opening the document

and interact with it, Acrobat Pro had the option of embedding the 3D model.

But this is over now, the new updates will not be focused anymore in that

technology, the responsible of this issues are now Tetra4D with Enrich and

Converter software and Techno Soft 3D.

So, in summary, we will investigate how to deal with the problematic with

PDF technology due to the versatility it has, the huge sort of possibilities we

have and different documents and templates we can create and the ease of

sharing documents independently from the software and operating system

used.

2.2. Underlying 3d-formats

2.2.1. U3D

U3D, or Universal 3D, is a data structure and file format used in 3D PDF

documents [12]. This format is an ECMA2 standard with the aim of simplify

the transformation of complex 3D data into a format that can be streamed,

compressed and viewed on affordable, free software and hardware platforms.

U3D encoding is used in a wide range of application areas, including

engineering, manufacturing, medical or art [13]. The format is totally

supported by PDF, so you can access to the 3D content by Adobe reader, for

example. The goal is to have a universal standard for all kind of 3D data and

develop an open source library for easing the use of the format.

2 European Computer Manufacturers Association (ECMA) is an industry association

founded in 1961 and dedicated to the standardization of Information and

Communication Technology and Consumer Electronics [11]

2. Market Analysis

6

U3D is a relatively new format. It was established in 2003 by Industry Forum,

a group composed by a lot of industries from different sectors, like Boeing,

Microsoft or Lego. These companies were supposed to base and extend the

universal 3D format from the already defined X3D file format, but they broke

free from this thinking and worked with a tool created a few years before, the

Intel IFX v2.0 toolkit and its 3D file format, the W3D. The product of this co-

working was the U3D file format. A year later, on 2004, it was approved by

the ECMA so, as said before, it became a standard file format. [14]

U3D philosophy has two main points - the specification is open and the

reference code is available as Open Source. There are a number of tools and

libraries available for the creation of this kind of files, most of them

commercial software, but there are also free options like U3D. Using these

tools requires training and it is difficult to find one of them that does work a

different format from a mesh. This is a problem because the use of a mesh

implies that, if the designer is working with an assembly, he will lose a lot of

properties, like color, and the different parts, becoming all together a unique

solid. In case we want to work with a STEP file, like lots of CAD and CAM

software do, we have problems when converting the files into U3D format

and we have to use a mesh format like STL.

2.2.2. X3D

X3D is a royalty-free open file format, defined as an ISO standard and used

for representing 3D computer graphics [15]. It is an extensible standard that

can be supported easily by creation tools, browsers and other 3D applications,

both for importing and exporting. It replaces VRML (Virtual Reality Modeling

Language), although it provides compatibility with all the VRML content [16].

X3D extends its predecessor with the design and the possibility to employ

XML for real time complete scenes modeling. It can work with other open

source standards, like DOM and XPath.

During the World Wide Web boom there were some intends to integrate

virtual reality in web browsers, but they all failed until VRML was developed.

Its first version appeared in the mid-90s, but the second version was the

famous one in the educational and investigation field. Because of the

slowness of the internet, it was very difficult to view a low quality model in

that time, and one of the most important companies behind VRML stopped

the development of the format, so in the earlies 00s it was “forgotten”.

However, a group of companies created the Web3D Consortium due to the

necessity of continuing with the implementation of 3D content in the Web, so

they created X3D format, that corrected VRML shortages, a few years later

[17].

One of the problems of X3D is the necessity of installing plug-in technology

in the browser for interpret it, and due to that, in 2009 a new specification

2. Market Analysis

7

was started to be developed, known as WebGL. It was thought of the way to

introduce 3D content, permanently, in browsers. X3DOM, for example, is

based in this technology nowadays.

X3D supports 3D and 2D graphics as well as animations, audio and video and

CAD/CAM data that can be interactive with the user with mouse-based picking

and dragging.

Summarizing, a good reason to use X3D is the extended compatibility with

other formats and codifications, as VRML or XML that provide it integration

with Web technologies. The possibility of creating Web applications and share

them easily, since the final user only needs a browser for interacting with the

content, and the huge amount of information spread out in the Internet will

make this process highly optimized.

2.3. Software involved in the workflow

2.3.1. Tetra 4D

Tetra4D is a tool that allows the user creating interactive 3D PDF files easily.

It is composed by two different products, 3D Converter and Enrich, both of

them working in Acrobat as a plug-in.

Tetra4D was born in late 2013 as an end-user software, after Tech Soft 3D

acquired it. Before that, it was Adobe who worked on 3D PDF development

for several years and, since there was a huge work done by this company,

Tetra4D’s aim has been refining their technology and extended it to more

users worldwide [18].

One of the tools developed by this company is Tetra4D Converter, the

successor of 3D PDF Converter. Its function is converting 3D CAD and CAM

data into interactive 3D PDF documents with precise solid geometry and

including Product Manufacturing Information. It is also used as a converter

for formats as STEP or STL, and it works with software like Catia or

SolidWorks [19].

Tetra4D Enrich is the other product the company offers us. This tool

incorporates Tetra4D Converter functions and extend them, including all the

required information for the product, like the 3D CAD, metadata or all the

workflows related to the Model Based Enterprise, as 3D MBD Technical Data

Packages with PMI. It is, furthermore, possible to create your own template

or use existing examples in order to build interactive documents with work

instructions, part catalogs or further information of the components. At the

end we will have a document similar to an application, with which the operator

will know all the necessary about the model [20].

2. Market Analysis

8

All in all, the fact of being a very intuitive software, without need of any

programming knowledge is what make consider Tetra4D a very powerful tool,

suitable for our purposes of earning time and facilitate the creation of the 3D

interactive PDF files.

Although all the features and benefits Tetra4D Enrich can provide us, it is

difficult to afford due to its high commercial price. It depends on the company

the decision to adopt this software as their main instrument for creating 3D

PDF files.

2.3.2. 3D Tool

3D Tool is a software specialized in CAD files conversion with designing tools

included. It includes a huge range of different formats that is capable of view

and convert, always depending on the version acquired.

The tool has the possibility to publish 3D PDF itself as seen in figure 2.1, the

goal we wanted to reach in this part of the thesis, but the document created

only includes the 3D model, without the possibility of adding any useful

information like a catalog of the parts or PMI information.

3D Tool has received many satisfactory feedbacks, due to the ease to use it,

without any previous CAD knowledge for informatics, for example. The

interface gives to the user facilities to find whatever he wants, like measure

a part of the model, or convert from one format to another.

It is very useful for us since is one of the few software able to import STEP

files efficiently and after that convert the 3D model into a U3D file. It does

not suppose any difficulty to afford it, because it is a relatively low-priced

tool, so it is perfect for companies or universities that need to produce U3D

files from STEP and a lot of more formats like Catia’s, SolidWork’s or JT.

2. Market Analysis

9

2.3.3. LaTeX

LaTeX is a text preparation system, orientated for a high typographic quality.

It is used specially, because of its features and possibilities, for generating

articles and scientific books in which the use of mathematics expressions is

so important, but also in statistics, economics or political science [21]. The

writer uses code as tagging conventions to establish the structure of the

document, defining the style of the text and adding tables and other elements

such as pictures, animations or 3D models.

LaTeX is based on TeX commands. TeX is a typographic system written by

Donald E. Knuth, that, annoyed with the low quality of his first books, decided

to design his own language and he finished it in early 80s [22]. TeX orders

are difficult to analyse, starting with an inverse slash (“\”), adding arguments

into keys (“{}”) and based on basic orders and macros. Most of them are

included in original Knuth’s plainTeX, LaTeX for technic science in its majority,

and ConTeXt, for publications.

LaTeX was created in 1984 in order to facilitate the use of TeX, providing a

high-level language, comprising a collection of its macros and creating a

program to process LaTeX documents. It purposes a different work

philosophy- working with instructions for focusing in the content of the

document, not in the format details. Its graphics capabilities able the user to

structure easily the document and he can obtain very attractive articles and

books [23].

Figure 2.1. 3D PDF created by 3D Tool.

2. Market Analysis

10

LaTeX requires two steps: in the first one we have to create the file in a text

editor which contains the text we want to publish, and in the second we will

process the text. In this part the text processor interprets the orders written

on it and compiles the document, leaving it prepared for being sent to its

destination. If we want to add or modify something, we will have to change

whatever we want in the file and process it again, just as in high level

programming languages like C or C++.

LaTeX documents have compatibility with any text editor, they consist of plain

text so do not contain hidden formatting codes, and they can be rendered to

PDF files using extension pdfLaTeX [24].

In brief, LaTeX is a very powerful tool for the creation of 3DPDF documents.

It only needs the call to movie15 or the newest media9 packages. Its

capabilities and features make this software a very useful way to implement

our templates and establish our workflow between the 3D model and data

and the PDF file.

2.3.4. CAD Exchanger

CAD Exchanger conceived for the CAD data interoperability. It allows to

visualize 3D data, convert it in a numerous amount of different CAD, mesh,

and other formats. The software works with standard formats, as IGES, STEP

or STL and with modelling specific formats like ACIS, Parasolid or Rhino/Open

NURBS [25].

CAD Exchanger was created by the company CADEX in 2014 by Roman Lygin,

despite some beta versions were realised some years before. It started like

other tech start-ups, as a hobby, but with rich background in software

development and management and inspired in parallel computations, the

founders prototyped a 3D visualization and conversion app that received

positive feedbacks from users. They went on the improvement of the software

and finally founded the company [26].

The problem with CAD data interoperability has been present since CAD

systems started to be designed. The technical factors like the differences in

format designations and descriptions of 3D data, as colours, materials or

metadata, for instance, or the different mathematical descriptions used in

geometrics underneath every CAD system come into play. Also the inclusion

of features in a specific and encompassing format as STEP ends up in

complications and ambiguous interpretations of the standards. All of this

make big companies to create their own formats or work with neutral formats

but giving priorities to their own needs [27].

As the complexity related to data conversion, because not only to the

appearing of new version of existing formats but the grow of complexity and

2. Market Analysis

11

size of them, is growing, new efficient methods are required, and CAD

Exchanger is based in one of these methods. The combination of using parallel

computations, a system based on the idea that big problems might be solved

with little solutions as a whole [28], is what makes this software a powerful

tool for this issue. CAD Exchanger includes three different packages, that are:

-GUI, a graphical user interface app that allows visualize 3D models in

different views and interact with the assembly, giving also different

geometrical information of it.

-SDK, a set of C++ libraries for developers, so they are able to, for example,

importing exact geometry in CAM systems from STEP or JT or analyse product

structure and geometrical data of a 3D model.

-CLI, a server-based solution designed for the collaborative usage, so the

designers can share all their data in cloud-based services in large companies,

for instance.

In our case, CAD Exchanger will be used for the conversion from STEP to X3D

files. The company offers free educational versions and site-wide licensing,

so the software can be used on unlimited number of computers. It is very

useful, in that way, the flexibility they offer us.

2.4. Ways to implement the solution

The creation of a 3D PDF was usually an unsuccessful process, since the 3D

model was exported in a mesh format and was not possible to create a model

tree, for example, the quality was no as high as we wished and was very

slow, due to the fact that there was not a specific template to work with. The

old workflow is shown in figure 2.2. Once the 3D model was created in OPUS,

the CAM software used, it was exported as a STL file, as a mesh, and imported

in MeshLab in order to convert the file in a U3D format. Finally, it was

embedded in a PDF document with LaTeX, but with a very simple template

created also in this software. In this process, a lot of information, starting

from the colour and textures and continuing with PMI and other annotations

were lost. There was, additionally, the possibility to create a 3D PDF

document from OPUS. This option, though, was dismissed since there was no

possibility to create a template or add any table or further information. The

document was composed by the 3D model and nothing else, so the operator

was able to interact with the assembly but had no access to its details.

2. Market Analysis

12

Three solutions have been thought for this issue, but they have been based

in the old workflow, with the idea of optimize it and improve it as much as

possible. The aspects that have been present are the quality of the final

product and the savings of money and time. A primordial requisite was, also,

that the solution had to work with several CAD/CAM software but above all

with OPUS.

With the guidelines given, we had to look for the suitable software in order

to establish connections between them and develop a workflow with their

connections. The implemented solutions have been the next ones:

 Utilization of a Web application for the interaction with a 3D model. In

this case, we will work in the conversion of the STEP model in a X3D

file without the loss of information and characteristics and the

implementation of the model in a different environment, easy to share

and use for the operator. This solution’s workflow is exposed in figure

2.3.

 Use of Tetra4D for the embedding of the 3D model in a 3D PDF

document. As a very powerful tool, Tetra4D Enrich can provide us an

intuitive and brief design of the templates necessaries for the creation

of the documents and the additional features as tables, annotations

and interactive buttons.

The problem of the solution will be the economic cost. The solution

diagram is shown in figure 2.4.

 Design of an interactive 3D PDF with the use of 3D-Tool and LaTeX.

This solution will suppose an economic and limitless solution, since the

last step of the process, with the pdf editor will supply a lot of different

options and with a STEP 3D model, so the quality will increase

considerably. It will be, though, necessary to change some code by the

time of changing the model in the template. In figure 2.5 we can see

the diagram of the workflow.

OPUS

• STL

 MeshLab

 • U3D

 LaTeX

• PDF

Figure 2.2. Old workflow.

process.

2. Market Analysis

13

Figure 2.5. 3D Tool and LaTeX workflow.

process.

Figure 2.3. Web App workflow.

process.

OPUS

• STEP

 Tetra4D

 • PDF

Figure 2.4. Tetra4D workflow.

process.

OPUS

• STEP

 3D Tool

 • U3D

 LaTeX

• PDF

OPUS

• STEP

 CAD Exchanger

• X3D

 HTML Editor
• Web App

3. Implementation

14

CHAPTER 3:

IMPLEMENTATION

In this section we will talk about the way the solutions have been

implemented and how we have created the interactive documents and web

applications. The research has been based in three different aspects, finding

the way to have a web application for X3D files and designing two kinds of

PDF documents with different programs, features, effort to put and time to

spend on it. The implementation of the solutions will be explained step by

step in order to be as a guide for the creation of a workflow and a way to

design templates or applications for 3D models in diverse sources. It will

include explanations, images and code when necessary.

3.1. Web application in a browser

The use of a Web application for interacting with a 3D model is a different to

implement the idea of the creation of a document. In this case, we do not

create a template and embed the 3D model, but we create an app with which

the user, in this case the operator, will be able to have all the views, move

the model, have a tree of the pieces that compose the assembly and have

further information in this app. The software needed for the start-up will be:

 CAD-Exchanger as file converter.

 Browser (Chrome, Firefox, IE, etc., with WebGL technology)

 HTML text editor and compiler (CoffeeCup Free HTML Editor)

3. Implementation

15

3.1.1. Generation of the set-up web app

As said before, we will not need a set-up document as a template, but we will

need to have a base, a place in which embed our 3D model, and this will be

the application. With a non-very extended knowledge in HTML language, it is

difficult to design something like this, but fortunately exists nowadays a huge

amount of information and examples on the Internet, so it is possible to find

free-open source work related and use it or modify, always considering the

author of it, Christian Stein [28] in this case. Browsing we see a lot of material

based on X3DOM, and websites specialized in this area. One of these

(Doc.x3dom.org), provide us with examples and tutorials so we can learn the

language and programming with practical cases and another one (GitHub) is

a forum where developers and people interested in this issue can share and

spread through their works and codes.

In the last, it is possible to obtain the code of a CAD Viewer, a Web application

prepared for supporting the addition of 3D models and its data, as well as a

tree of the assembly pieces and programming its views. The CAD Viewer looks

like in figures 3.1. and 3.2.

Figure 3.1. CAD Viewer without any 3D model.

3. Implementation

16

The web example allows us to have an idea of the features and capabilities it

has. As said before, we can open the assembly parts tree so we can select,

in yellow in this case, the desired one. There are also different ways to view

it. It has been implemented annotation and metadata sections so the

developer can add further information if necessary, as seen in figure 3.3. We

also have different views in order to facilitate the interaction with the model,

showed in figure 3.4.

Figure 3.2. CAD Viewer with 3D model example features.

Figure 3.3. CAD Viewer example.

annotations.

Figure 3.4. CAD Viewer

example views.

3. Implementation

17

If we want to obtain this application, we have to go to the pertinent website

where users can share their projects and download the files located there and

follow the instructions. Now we will have at our disposition the set up

environment in which we will add the wished 3D model after a few

modifications explained below.

3.1.2. Embedding of the 3d model

Once we have the application available, we have to focus in creating the X3D

file from the STEP 3D model. We have different options. It is possible to

generate a X3D file from a mesh format as STL in FreeCAD or MeshLab, but

the problem would be the loss of information as the colour and that we will

have a unique solid, not an assembly, so it will not be possible to interact

viewing the different components, creating a part tree.

Considering that issues, we will use CAD Exchanger, a software capable of

converting STEP files into X3D conserving all the characteristics. It is a

commercial software, so it will suppose an economic cost to make use of it,

but we will put the quality ahead of the economic wastes.

Opening the software, we will see that is very intuitive and easy to carry the

conversion out. We only have to drop a file on the appropriated space for it

or look for the file in the computer. The software will look as in the figure

below, with the 3D model we want to use in this case.

After that, we select Export in the menu, and we transform the model into a

X3D file and save it in a folder we can remember easily. Done the conversion,

we have to move again to the website from where we downloaded the Web

app (GitHub). There we will see some instructions to follow in order to add

the model into the app. Before continuing we will need to open another

software. It is CoffeeCup Free HTML Editor, that will enable us the possibility

of editing the code that we will need to modify, compile it and show the result

in a browser or internal console. We can, though, use another HTML editor,

it will not suppose a difference in our work.

The next step consists on getting the data folder, and create inside a folder

with the wished name. The folder data is shown in figure 3.5. with the other

downloaded files and the example folder we will create will be called

Example3DModel, as seen in figure 3.6. After that, we will have to open the

main.js file in the HTML text editor, and modify the name after

’MYAPP.model’ with the name of the folder [30], as we can see in figure 3.7.

When finished that, the only thing we will have to do is pasting the X3D file

in the folder Example3DModel, in our case, with the name “model.x3d”. Every

time we want to embed a new 3D model in the app, we will have to create a

3. Implementation

18

new folder, change the name in the code as shown before and save the X3D

file in the new folder as “model.x3d” again.

Figure 3.5. CAD Viewer

files folder.

Figure 3.6. Data folder.

Figure 3.7. Main.js code after modification.

3. Implementation

19

We also will be able to change the centre of rotation if necessary in the same

configuration code, after ‘MYAPP.centerOfRotation’, or the colour of

highlighted parts, after ‘MYAPP.x3dNodeHighlightColor’ writing the HTML

colour corresponding code, like #FF2D00.

Now, if everything told before is already done, our 3D model will be added in

the Web application and we will be able to open it in a browser, Mozilla Firefox

in this case, and move, rotate and interact with it, highlighting, furthermore,

the wished parts and even hiding them. It is shown in figure 3.8.

3.1.3. Embedding further required information into the web app

It exists the possibility of adding the 3D model data in the Web app. What we

have to do is creating a TXT file and saving it in the same folder as the model,

inside the data folder. With this process we will create a pull-down menu in

the MetaData section of the Web application. The example given by the

developer looks like figure 3.9.

Figure 3.8. Example 3D model embedded in the Web App.

3. Implementation

20

As we can see in figure 3.9, the TXT file has a specific structure, due to the

fact that has to be read by the main.js code. The text is between the keys []

and every part is situated enclosed by the keys {}. In addition, we can relate

each datum to a part of the assembly, typing first “id” and naming the part

as in the tree. Then we name the part in “title” and after that, in “text”, we

add the information. We will implement some data in our Example3DModel.

It is shown in figure 3.10. It is important to save it in Example3DModel folder,

in our case, with the name “metadata.txt”. It would be a further investigation

issue trying to find a way to create this kind of file directly from the CAD/CAM

software, with the same structure to reduce the workflow time. The overall

view of the result is seen in figure 3.11.

Moreover, we can add annotations in the 3D model, a very useful fact for the

operator, since the designer can make comments or explanations about a

specific part of the work process or the collocation of a piece, for instance. It

is done just in the same way as the metadata, but saving the TXT file as

“annotations.txt”. An example is done in figure 3.12.

Figure 3.9 Metadata of the developer’s example.

3. Implementation

21

Figure 3.10. Metadata of Example3DModel code.

Figure 3.11. Metadata of Example3DModel in the Web app.

3. Implementation

22

To sum up, the use of the Web application for sharing the interacting 3D

model is a good option, even not being a document itself. It also has

disadvantages. We cannot insert a table of the parts of the assembly, for

instance, or add a text field in which the operator can write commentaries

and annotations about the model or the process so a feedback with the

designer cannot be established. Furthermore, a document like a PDF file could

be more easily interpreted organising all of its elements in a unique sheet.

However, the facility of rendering the Web app in a mobile phone or tablet

provides this method versatility and freedom to the user, since there is no

need of a commercial software to visualize it. It is true that, in this case, we

are using an already developed application, but it is a good starting point.

Obviously we could learn the way to modify it depending on our necessities

and requirements or developing a new program.

The fact is that implementing this solution we will stablish a powerful, reliable

and easy workflow, since the generation of a new app is done by creating a

new folder with the model and changing a name in the code. Additionally, it

is a relatively cheap option.

Figure 3.12. Annotations of Example3DModel in the Web app.

3. Implementation

23

3.2. Creation of pdf document with tetra4d

Tetra4D is a commercial and powerful tool with which we will be able to create

interactive PDF documents easily. We have the possibility of making our own

template, adding on it the 3D model with just a click of our mouse, without

the necessity of having converted it into U3D or X3D, just with the STEP file.

Its methods and features will provide us an earning of time and effort. The

software necessary for this implementation will be:

 Tetra4D Enrich

 Acrobat Pro DC or XI

3.2.1. Generation of the set-up document

There are two different ways to create our template if we decide to use

Tetra4D. The first one would consist in creating a document in text editor

software, adding tittles and leaving space for the elements we want to embed,

as the 3D model, a tables or other information related to the assembly. Once

the document is organized we will have to save it as a PDF file and it will be

ready to be manipulated in Tetra4D. This option, despite being a very easy

one, has many disadvantages. It is, for instance, necessary to create a new

document every time we want to publish a new 3D model, so this does not

represent an optimization of the process. Our idea is creating a defined

template with a default structure and in which we only had to change the

name of the model, the 3D model itself, the table of its components and its

PMI data. This is possible to do with Tetra4D.

For this the second option to implement our workflow, we will use the chosen

software. We have, also, two different ways to design the template in this

case. We can create our own template or use one of the defaults Tetra offers

us. In the last case, the document is divided in different parts, including the

company logo, a collection of buttons for the interactivity and space for tables

or information about the assembly. It would look as in figure 3.13. It is

possible, furthermore, to modify the appearance of the default template to

our likeness, changing the colours, the font or the logos for example.

Tetra4D Enrich gives us also the chance to design our own template in a very

intuitive way and with tutorials and instructions in order to help us. We will

explain how to do it, creating our example.

3. Implementation

24

The first thing we should do is preparing the software involved in the

workflow. These are, Adobe Acrobat Pro and Tetra4D Enrich. We will find 28

days’ free trial versions in their Websites3, but if we want to continue with

this solution, we should buy the licenses with the price later will be exposed.

Once everything is installed in the operating device we can start with the

design of the template. The features we have available are creating tittle,

subtitle and description, as well as interactive tables and spaces for further

information and buttons with which the operator can interact with the 3D

model, changing the view of it for example.

We have to create a white sheet document in a text editor like Microsoft Word

and save it as a PDF file, so we will have the base in which work in Tetra4D

Enrich. Once done, we should add a default structure to our document; for

example, adding a firma or university logo, a space for the tittle, the author

and the date the assembly was done or published. We will do this with Acrobat

Pro, editing the PDF and adding text and images. With the space left for the

things said before, we could use formulary boxes so every time we open a

new template we just have to change the text in the corresponding box. The

result can be seen in figure 3.14.

It would be appropriated to follow the idea of the company examples, since

it is suitable for our purposes. We should leave a space for the 3D model in

the left side of the document and another one below for buttons, views or

text field for annotations, and on the right for the table of pieces and PMI

3 Websites:< https://acrobat.adobe.com/us/en/free-trial-download.html>,

<http://www.tetra4d.com/tetra4d-enrich/>

Figure 3.13. Example template from Tetra4D Enrich.

3. Implementation

25

data or further information. Before inserting the interactive content, the

template would look like in figure 3.15.

Obviously this is just an example, a model of template we can use. Tetra4D

Enrich is capable of provide us endless kind of designs and configuration for

templates. Once this is done, the next step will be the embedding of the 3D

model in the document.

3.2.2. Embedding 3d model in the document

This task supposes one of the easiest parts in this workflow. Tetra4D Enrich,

as said before, is capable of adding not only U3D files in the 3D PDF

documents but also converting STEP files in U3D or even embedding STEP

files in the templates with just one click, since it includes all the Tetra4D

Converter features. If our template is done, we can add the 3D model going

Figure 3.14. Head of the created template.

Figure 3.15. Created template.

3. Implementation

26

to the tools menu of Converter in Acrobat Pro and clicking in Add 3D, as we

can see in figure 3.16.

We select our 3D model file and the area of the template we want to take up

for it. We will have to select some quality options as the colour of the

background, depending on our necessities. The result is shown in figure 3.17.

Figure 3.16. Tetra4D Converter features.

Figure 3.17. Template with 3D model embedded.

3. Implementation

27

3.2.3. Embedding further required information into the

document

Tetra4D Enrich also gives us a lot of facilities for adding in our 3D PDF

documents information about the 3D model and other features are possible

to combine for compounding a very interactive document. The first thing we

can add is a table of the components of the assembly. We have different ways

to create this table. The software itself can generate the part lists or

alternatively import it from external data like a CSV file or from a clipboard

generated in a spreadsheet created in an editor like Microsoft Excel.

If we want the software to create it, there is the possibility to make a flat list,

in which every part acquires a number but they have no relation on any other

part. Additionally, we could design a hierarchical list, in which the hierarchy

of the 3D information is reflected with sub-assemblies generated. The

composition of the number of the list changes in this way. We can see an

example of a table with the highlighted component in figure 3.18. We only

have to click on this option in the menu of Tetra4D Enrich, shown in figure

3.19.

Figure 3.18. Template with hierarchical table inserted and piece highlighted.

3. Implementation

28

If we want to generate an extern data table, we should generate a table like

in the example of figure 3.20, in the case of CSV format, with the same

structure or a table in a spreadsheet and copy it in the case of the clipboard

table addition, as in figure 3.21. Both options can be found in the same menu.

Figure 3.20. Example CSV table.

Figure 3.19. Tetra4D Enrich features.

Figure 3.21. Example clipboard table.

3. Implementation

29

Once the tables are embedded we can manipulate them and give format to

them, inserting colour, fonts or other options. In figure 3.22 we can see how

the result will be after inserting the corresponding tables in the document.

After that, we will insert a carrousel, in which we will be able to select the

views of the model and change them just pressing the buttons. The final

result of the document is shown in figure 3.23.

There are sometimes, although, difficulties to generate a table because the

file has not charged correctly the model tree. In this case we can fix the

problem importing and exporting the STEP file with another CAD/CAM

software as NX Siemens, so the model tree will be correctly generated and

the table perfectly implemented in our document.

All and all, this would be an example of document we can use for our purposes

but, if wished, there is the possibility to insert more elements, such as buttons

or 3D attributes to the model. Anyway, with this example we will have spent

just a few minutes, since he template could be used for more than one

assembly, and generating the elements is quite simple and fast to learn and

implement.

Figure 3.22. Template with information table inserted.

3. Implementation

30

3.3. Creation of a 3d pdf document with 3d tool and latex
3D Tool and LaTeX will provide us with the necessaries mechanisms for

converting an STEP model into an U3D file and create interactive 3D PDF

documents. It has been the solution in which we have been focused because

its necessity to write some code when we want to change the 3D model to

embed in the template, but the final document will include helpful elements

that will make the comprehension of the assembly to work a very easy task

apart from the 3D model view and the model tree, that will allow us also to

highlight the selected part on it. For this solution, the software needed will

be:

 3D Tool Advanced

 LaTeX’s TeXstudio

3.3.1. Generation of set-up document and embedding of the 3d

model

The generation of the 3D PDF document has been different in this case. The

way the design has been done is based in the trial and error method and

started with the inclusion of the U3D file in the LaTeX document.

Figure 3.23. Final document after carrousel implementation.

3. Implementation

31

First of all, we had to convert the STEP model into U3D file. For this purpose,

we used the software 3D Tool. The only problem this software has is that it

is not capable of converting the PMI data, so it will not be available for us in

order to include it in the 3D PDF document. Knowing this, we create the U3D

file and we save it in the same folder in which we will save all the programs

we will create with LaTeX.

Once done this, we should start working with the LaTeX environment in

TeXstudio. LaTeX is a language based on libraries, so if we want to implement

some objects or different features we will have to call this libraries including

packages at the beginning of the main program. Our document will be

composed of a main program that will import all the tables and information

from other complementary smaller programs and the elements will be

implemented manually. After that, our goal should be try to import all the

necessary information automatically from the CAD/CAM software and

visualize it in the document. The first thing to do is import the 3D model from

the U3D file with the package movie15 or media9. In this case we will include

both. Then, as always in LaTeX, we have to create a new document, giving it

a format. For this, we will use the command \documentclass with which we

will establish the size of the font, the sheet and the kind of document, in this

case an article. After that we write the \begin{document} command,

necessary every time we want to create a PDF file and include between this

command and the \end{document} one the code for implementing the 3D

model, basic for starting with the creation of our template and work basis as

well. We can see the example code of our first program in figure 3.24.

Figure 3.24. Code for embedding 3D model.

3. Implementation

32

In this example we can see we have included another package as hyperref,

necessary for the inclusion of most of the features we will utilize for make the

document more interactive and intuitive. We use the includemedia command

for the embedding of the 3D model, and inside the keys we set all the options

for the visualization of it, from the width and height of the box in which it will

be include, to the center point of the orbit, the center of the camera vector

and the orbital radius of the viewer with 3Dcoo, 3Dc2c and 3Droo

respectively. We can see it graphically in figure 3.25. We also activate the

toolbar, the menu and finally add the 3D model with the name model.u3d in

order that the designer can change the assembly to publish just saving the

new one with this name and changing the old one in the corresponding folder.

3.3.2. Embedding further required information into the

document

With this initial process done, we will obtain a simple PDF document in which

we will have the 3D model and we will be able to interact with it as in a

CAD/CAM viewer software.

Before starting programming, the template, a structure of it has to be

designed. Knowing where to collocate each element is necessary to ease the

work and do it in an organized way. The interactive aspects we want to add

to our example template are basically:

- Name of the model

Figure 3.25. Graphic of the camera and object in

a coordinates XYZ system [31].

3. Implementation

33

 Author

 Table of the assembly’s components

 Further information and annotations box

 Operator comments or feedback box

Working with all this kind of items results difficult in LaTeX, above all

positioning them in the document. For this issue, the solution though has

been base the structure in a table, so each component will be located in a

specific cell and they will not superimpose one over the other.

The implementation of a table requires \begin{tabular} and for our type of

structure. We can also \begin{center} to set the collocation. The attributes

to include will be the position of the element in each column. This only can

be done testing in which place fits better everything. We have to include the

first letter of the side we want them to be in each column like {l c} for left

and center, for instance. If we want to include elements on it, we should

separate columns with the symbol “&” and rows with “\\”, being possible,

also, to give a specific height to the row writing [20 ex] at the end of each

line. The number of the example can be changed depending on our

necessities. One of the elements implemented in our table will be, as said

before, a table of the 3D model components. This table will be created in

another program like in figure 3.26, so we will need to use the package

inputenc for the importing of elements from other programs. All the

elements including external data will be imported, so the command \input

will be used more than once in our main code.

When we create this table, we have to save it in the same folder as the main

code and use the command giving as attribute the name of the file, like

\input{table_test} as we will see in our main program.

Another element we want to implement is a text field with which the operator

will be able to annotate whatever he considers necessary. To make it real,

Figure 3.26. Code for a table.

3. Implementation

34

we will need the command \TextField and set its options up. We can

establish its height, weight, the size of the font, the background colour, the

value or the name of the text field, an important fact in future elements. In

this case, we also give it the possibility of having a multiline format and a

border, as well as include it inside a \makebox, that will provide the field a

specific space so it will not be modified by the changes of other elements in

the table. In figure 3.27 we can see the code of this text field. The make box

attributes are the weight, height and the position of the element inside. The

text field, furthermore, can have a title, determined at the end of the

declaration in between keys.

Another element that could be implemented with text field would be the name

and the author. We will insert them also in \makebox and collocate them on

the top of the document. Figure 3.28 shows us both parts of the code.

The setting of all the options can be consulted in the libraries documents. A

lot of information is available in the Internet about it and it does not suppose

a huge effort to find it out.

The last thing it will be implemented is the information section. As the name

indicates, in this table we will create there will be all the data the CAD

software can give us about a part of the assembly. The idea is to select one

of the components writing down its number and the table will return all the

information available about it. The code will be divided in three parts, seen in

figures 3.29, 3.30 and 3.31.

Figure 3.27. Code for the Operator annotations.

Figure 3.28. Code for name of the model and author.

3. Implementation

35

It is appropriated to explain the important aspects of the code embedded in

this part. The first thing to implement is a system, seen in figure 3.29, with

which the program is capable to identify the part of the assembly we require

the information. It is done with a text field in which the operator has to

introduce a two digits, limited by the option maxlen, and we will call it Part

ID.

After that, we will implement one of the interactive elements LaTeX offers us,

a button with \PushButton. This button has many ways to be used, but we

Figure 3.29. Code for text field and button for digits of component.

Figure 3.30. Code for JavaScript function.

Figure 3.31. Code for table of further information.

3. Implementation

36

will utilize the simple one, pressing it. The attributes are similar to a text field,

giving it colour or border as well, and at the end we implement a function in

it and give a name. The function has to be declared before the beginning of

the document and it will be called insertText.

In figure 3.30 we can see the code of the function used in the button. It is

based on JavaScript, as we can see, and it is started with the command

\begin{insDLJS}, whose attributes include the function, the base name of

it, and the script name. Inside it, we can observe that a variable is declared

as a number. The value of the number, obtained from the one written in the

text field by the operator, will be caught with

this.getField(“valor”).value. The name in between the parenthesis is

the name of the text field used for the number of the component, as we can

check in figure 3.29, and it will be used for the switch below this declaration,

setting the information pertaining to every component. As noticed in the

image of the code, there are four cases used as example, all finished with a

brake order but it can be modified whenever we want with the information

wished. The only thing we have to do is write in between the quotation marks

the text we want and add, if necessary, more cases in their corresponding

number. Compulsorily, we have to write a default option in which we can

write a message such as “This number can be founded in the table” to make

know the operator that the digits noted are wrong. To get the information we

will utilize again this.getField and value, but this time we will give it the

name of the text field used to show the facts, in figure 3.31. In this case, the

name will be texto and the only differences respect the other text field will

be the inclusion of an option called readonly, to not be able to modify the

information in the PDF document, and its insertion in a table, that will provide

a better format with a tittle above the field. This text field and table will be

written in another program and included with \input in the main program.

Once all the elements are established, we will have to structure them into the

document using, as said before, a table of elements. The thought format has

been similar to the one shown in figure 3.32. To design the table, we have

based our code on the example shown before but improving it with the

multirow package. This library allows us to use more than one row in a

specific column while in another one there is just one. That means that, while

in the left column there is only the 3D model situated, we can position the

table of content and the further information table with the same height

occupied by the 3D model but in the right column.

We will leave a little space at the bottom of the right column so it is possible

to incorporate new features that the designer considers necessary or suitable.

We can see the code for the main table in figure 3.33.

3. Implementation

37

In the code it is noticed that the multirow includes three rows in the right

column. This is due to the fact that the button and text field for the lecture of

the component number are positioned above the table of further information,

so we structure that in two different rows to make it clearer. We can see the

imported files as well in the program. All and all, the PDF document will look

like in figure 3.34.

Figure 3.32. Structure of the document.

Figure 3.33. Code for the JavaScript function.

3. Implementation

38

As we can see in the figure above, the tables have been formatted, colouring

its rows. This is possible with the packages xcolor and colortbl and defining

colours like in figure 3.35, where we can see they are defined with the RGB

code between 0 and 1. We can find all the combinations in the Internet. After

that, we will have to implement the command \rowcolor{colour} with the

already defined colour.

Other aspects of the code to comment are the use of other packages. It has

been implemented the geometry package, which provides us with some

options for the management of the margins and also the array package, for

the formatting of the elements inside the tables.

Figure 3.34. Final manually implemented 3D PDF document.

Figure 3.35. Code for the declaration of the colours.

3. Implementation

39

3.3.3. Possible improvements

One of the aims of the thesis, as explained before, is to find or create a fast

and efficient workflow between the designer and the operator. In this section,

the different possibilities to make this purpose real will be explained, as well

as possible ways to continue the research in this field.

A little betterment that could be implemented fall to the further information

table. In the example shown in the section above, the data corresponding to

each component was directly written in the main program. We can, actually,

import this information from an external DAT file made from the CAD

software, only needing the required format so our code is capable to interpret

the text and process it in the wished way and save it in the same folder as

the programs used. Searching in the web we find a code like in figure 3.36,

an example that enables us to read a file and store in different arrays each

row of the text. The idea would be to give the information of the specific

component in its correspondent row, so, for instance, if we want to show the

information of a bolt numbered as the piece 6 of the assembly, its information

should be written down on the sixth row of the document.

Figure 3.36. Code for the processing of DAT file.

3. Implementation

40

The code above is composed by very complex elements of the last LaTeX

language version. The package xparse must be added for the good work of

the function. In the main code we will call the already declared function of

\ReadFile, that with the command \myarray{} and the name of the text, as

{somearray.dat}, will read and call the arrays stored from the file. In our

program, we will declare the function before the beginning of the document

and the command inside the JavaScript function, in the switch. Every case

will have the line this.getField(“texto”).value=”\myarray{1}”, with the

number inside the last command depending on the component whose

information is pertaining, for sending the value of the array created to the

text field of the further information table, already explained in

infot_table_test. The commands used before are arbitraries, so we can

create our own commands with the wished name. The problem all of this

implies is that we will have to create as cases as pieces has the assembly, so

the process is not completely automatized. However, we will earn a lot of

time with this improvement if we are able to create this kind of file with our

designing software. We can see the code created in figure 3.37 and the result

in figure 3.38.

Figure 3.37. Code for the improved table of information.

3. Implementation

41

In addition, we can apply the same system for the automatization of the name

of the 3D model and author implementation. We will need, though, our

CAD/CAM software exporting this information in a DAT file in different rows.

Once obtained the file, and saved in the same folder we have to write a similar

code line than for the last solution, but changing \myarray by another name

as \nameauthor, so the array stored in that variable will be called every time

we write it, and the name of the file at the end of the line.

Finally, we will substitute the text fields used for that issue with our variables,

so the elements will be implemented automatically every time we change the

file with a new 3D model. This part of the code, in which we can observe the

command \textbf that sets the letters in bold, will look like in figure 3.38

and the result is shown in image 3.39.

At the end we will have a similar template as in figure 3.34, but improved

and more efficient. There is, however, some more things that can be changed

so all the information is reproduced automatically in our document. And the

way to do it would be following the steps done in this issue, with the arrays

systems. One of the solutions could be improved may be the automatic read

of all the cases for the information table, so the designer does not have to

Figure 3.39. View of the improved table of information.

Figure 3.38. Code for the automatic name of the model and author.

Figure 3.40. Result of the automatic name of the model and author.

3. Implementation

42

write as cases as pieces the assembly has in the switch of the JavaScript

function. Implementing a loop in and comparing the number got in the text

field with the array wished and show it might be the goal in this situation.

In the same way would be the betterment of the creation of the components

table. The problem here is that the format explained before for the table has

to be written in the code, so we cannot just import and insert it as an array

variable but we have to write in the program. However, the method might be

quite similar to the used for the information table, reading an extern file and

process it so the program can show the data automatically, with loops to give

more flexibility to the account of elements in it. The way to continue is already

started, and more effort and work will be required to obtain a completely

automatic generation of a 3D PDF document.

4. Examples of implementation

43

CHAPTER 4:

EXAMPLES OF

IMPLEMENTATION

In this section we will display a sequence of pictures that will show all the

processes step by step graphically of how the solution is implemented, not

entering in the background part, since it has been explained in the previous

chapter. We will use two assemblies so the good functioning with

independence of the 3D model can be demonstrated. Before starting with

each solution we should have both pieces saved in STEP file from the CAM

software, and they look like in figures 4.1 and 4.2.

 Figure 4.1. View of the Assembly 1 in the CAM software.

4. Examples of implementation

44

4. 1. Web Application in the browser

This is the only solution in which we will need to convert our STEP files into

X3D files, so we will need the software CAD Exchanger, the chosen one

because of its relation quality-price, to generate the desired files:

Figure 4.2. View of the Assembly 2 in the CAM software.

Figure 4.3. View of the Assembly 1 in the converter software.

4. Examples of implementation

45

After the exporting them as X3D files and send them to individual folders with

each name inside the DATA folder where all the other files are, we should

rename the wished assembly to model.x3d and change the name of

MYAPP.model in the main.js file. The name we have to write is how the folder

of the assembly is called. As an example, if the folder of assembly one is

called in the same way, Assembly1, we should write MYAPP.model =

“Assembly1” in main.js code and call our file model.x3d. Once everything is

done, we can open the index.html file in Mozilla Firefox browser, as it is the

best to support all the features of the 3D model.

Figure 4.4. View of the Assembly 2 in the converter software.

Figure 4.5. View of the Assembly 1 in the web application.

4. Examples of implementation

46

We also can add information in MetaData and Annotations sections, changing

the notepads as shown in implementation chapter before. This is an example

for Assembly 2:

Figure 4.6. View of the Assembly 2 in the web application.

Figure 4.7. Assembly 2 annotations.

4. Examples of implementation

47

4.2. Tetra4D

This solution is the easiest one in terms of functionality. We only need to

create a template as in figure 4.8 and add in it the interactive objects, as the

3D model, the table of components and the views of the assembly.

In this case, no converter is needed since Tetra4D Enrich itself englobes

Tetra4D Converter and it is able to import STEP files in the PDF files, so we

only need this software to carry this solution on.

It results a very fast process, with which in five minutes we can have an

interactive 3D PDF document ready to share with the operator and very easy

to manipulate and intuitive. We can see the process in the next figures.

First of all, we add the 3D model in the template with the tool provided by

the software, as we can see in figures 4.9 and 4.10.

Figure 4.8. Tetra4D created template.

4. Examples of implementation

48

After that, we should add the table of components, also with the tools, and

the views and further information. The latest can be implemented by a CSV

file or a clipboard, done in a spreadsheet for example. We can see the result

of the two assemblies interactive documents in figures 4.11, 4.12 and 4.13.

Figure 4.9. Adding the 3D model on Tetra4D created template.

Figure 4.10. Adding the 3D model on Tetra4D created template.

4. Examples of implementation

49

Figure 4.11. 3D model on Tetra4D created template.

Figure 4.12. Assembly 1 generated document.

Figure 4.13. Assembly 2 generated document.

4. Examples of implementation

50

4.3. 3D Tool and LaTeX

For this solution, two software will be necessary. First, 3D Tool will act as the

STEP to U3D converter, generating the necessary file to add, coding, in the

second software, LaTeX’s TeXstudio. With the latest, we can create a template

that can be used for our assemblies. We have designed one, and looks like

figure 4.14.

After the creation of the template, we should add all the objects of the

document, as the 3D model, the text fields for the information and the

observations of the operator and the table of components.

The programming of the rest of the parts is explained in chapter 3, so we

only have to write the components, add the figure in the corresponding part

and creating the TXT file to make the interactive document read all the

information and showing it in the corresponding room of the template.

First of all, we have to open the documents in 3D Tool and export them as

U3D files, like in figures 4.15 and 4.16.

Figure 4.14. LaTeX created template.

4. Examples of implementation

51

The next step in both cases is opening the coded program in the LaTeX editor

and change the name of the U3D 3D model to import for the document,

Assembly1 and Assembly2 in our case. Then, we would have to write the

name, quantity and code of each component in the assembly in the

table_test.tex file to be able to view it in the main document. Furthermore,

we have to write a text pad document like in figure 4.17, in the same way,

so the main program can read and show it in the information table.

Figure 4.15. Exporting Assembly 1 as U3D file in 3D Tool.

Figure 4.16. Exporting Assembly 2 as U3D file in 3D Tool.

4. Examples of implementation

52

In figures 4.18 and 4.19 we can see the resulted document for both

assemblies.

Figure 4.17. Text pad document for the information table.

Figure 4.18. Resulted document for assembly 1.

4. Examples of implementation

53

Figure 4.19. Resulted document for assembly 2.

5. Conclusions

54

CHAPTER 5:

CONCLUSIONS

In this thesis, three solutions for the implementation of a workflow for the

creation of 3D PDF documents from CAD/CAM software have been exposed.

After working exhaustively with all of them we can conclude in some facts

and opinions.

The carrying out of the Web application with HTML and X3D may be a good

choice for its versatility, ease of creation and interactivity in different kind of

devices. It supposes a distinct solution that also could be combined with the

other two and the economic costs involved on it, attached to the conversion

from STEP file to X3D, are quite low. Additionally, there is no necessity to

HTML programming knowledge for its carrying out.

The 3D PDF creation has two different options to be put into practice. Each

one has a process to be implemented, variating its difficulty, the time

employed and the costs, but being objective, its results are really similar.

Although Tetra4D offers a more intuitive way of work, automatic processes

without programming and the no necessity of converting in U3D files the 3D

model, the template and final document created with 3D Tool and LaTeX can

reach an analog appearance and with a much lower price. It is true that we

will have to learn TeX language in order to set our workflow up, but its results

can be pretty satisfactory.

Therefore, the utilization of the last two tools will be the most suitable way

to solve our initial issues. A little code will have to be written in order to

design our own template and insert our components table, as said in the

implementation section, but with the automation performed, the earning of

time in the creation of a new document with a new 3D model embedded will

5. Conclusions

55

be noticed. And this is one of the reasons why we will recommend this solution

after the research done. They will be all exposed below:

 3D Tool and LaTeX will suppose a slight economic investment

compared with all the capabilities and features possible to be

embedded in our templates and documents.

 The quality of the 3D PDF created is excellent and the elements can

produce a very useful interactivity with the manufacturing operator.

 There is chance for further investigation and researching in the field so

an amelioration of the documents created can be carried out.

 The efficiency concerning to the earning of time is obtained since the

change of the 3D model published requires some steps that last no

longer than a few minutes if the way to do it is known.

All the tools detailed in the thesis constitute a possibility of implementation

for a workflow in the project, but 3D Tool and LaTeX fulfil all the

necessities stipulated and will finally be the choice selected for our

purposes.

6. Bibliography

56

CHAPTER 6:

BIBLIOGRAPHIC

REFERENCES

[1] Computerhope.com. (2016). What is HTML (HyperText Markup

Language)?. [online] Available at:

http://www.computerhope.com/jargon/h/html.htm [Accessed 3 Jun. 2016].

[2] Webopedia.com. (2016). What is HyperText Markup Language - HTML?

Webopedia Definition. [online] Available at:

http://www.webopedia.com/TERM/H/HTML.html [Accessed 3 Jun. 2016].

[3] Computerhope.com. (2016). What is HTML (HyperText Markup

Language)? - What is HTML5?. [online] Available at:

http://www.computerhope.com/jargon/h/html.htm [Accessed 3 Jun. 2016].

[4] Behr, J., Eschler, P., Jung, Y. and Zollner, M. (2009). X3DOM – A DOM-

based HTML5/ X3D Integration Model. [online] pp.1-3. Available at:

http://www.web3d.org/wiki/images/3/30/X3dom-web3d2009-paper.pdf

[Accessed 4 Jun. 2016].

[5] WhatIs.com. (2016). What is framework? - Definition from WhatIs.com.

[online] Available at: http://whatis.techtarget.com/definition/framework

[Accessed 4 Jun. 2016].

6. Bibliography

57

[6] Doc.x3dom.org. (2016). X3DOM Documentation: Getting Started.

[online] Available at:

http://doc.x3dom.org/gettingStarted/background/index.html [Accessed 4

Jun. 2016].

[7] Wikipedia - La enciclopedia libre. (2016). PDF. [online] Available at:

https://es.wikipedia.org/wiki/PDF [Accessed 6 Jun. 2016].

[8] Prepressure.com. (2013). The history of PDF | How the file format and

Acrobat evolved. [online] Available at:

http://www.prepressure.com/pdf/basics/history [Accessed 6 Jun. 2016].

[9] Wikipedia. (2016). Portable Document Format. [online] Available at:

https://en.wikipedia.org/wiki/Portable_Document_Format [Accessed 6 Jun.

2016].

[10] Wikipedia. (2016). PostScript. [online] Available at:

https://en.wikipedia.org/wiki/PostScript [Accessed 6 Jun. 2016].

[11] Ecma-international.org. (2016). Welcome to Ecma International.

[online] Available at: http://www.ecma-

international.org/memento/index.html [Accessed 6 Jun. 2016].

[12] Pdf3d.com. (n.d.). About U3D Format | Create 3D PDF | 3D Conversion

| Universal 3D - Universal 3D (U3D) Format. [online] Available at:

http://www.pdf3d.com/u3d/ [Accessed 6 Jun. 2016].

[13] Pdf3d.com. (n.d.). About U3D Format | Create 3D PDF | 3D Conversion

| Universal 3D - U3D is Used For. [online] Available at:

http://www.pdf3d.com/u3d/ [Accessed 6 Jun. 2016].

[14] Pdf3d.com. (n.d.). About U3D Format | Create 3D PDF | 3D Conversion

| Universal 3D - History of the U3D File Format. [online] Available at:

http://www.pdf3d.com/u3d/ [Accessed 6 Jun. 2016].

[15] Wikipedia. (n.d.). X3D. [online] Available at:

https://en.wikipedia.org/wiki/X3D [Accessed 10 Jul. 2016].

[16] Sabia.tic.udc.es. (n.d.). Conociendo X3D. [online] Available at:

http://sabia.tic.udc.es/gc/Contenidos%20adicionales/trabajos/3D/x3d/Cono

ciendo%20X3D.htm [Accessed 10 Jun. 2016].

6. Bibliography

58

[17] Sabia.tic.udc.es. (n.d.). WebGL. [online] Available at:

http://sabia.tic.udc.es/gc/Contenidos%20adicionales/trabajos/Tutoriales/Tu

torialWebGL/index.htm [Accessed 10 Jun. 2016].

[18] Fritz, R. (2015). Three Reasons Tetra4D and Tech Soft 3D Fit Together

| Tetra4D. [online] Tetra4d.com. Available at:

http://www.tetra4d.com/three-reasons-tetra4d-and-tech-soft-3d-fit-

together/ [Accessed 12 Jun. 2016].

[19] Tetra4d.com. (n.d.). Tetra4D Converter | Tetra4D. [online] Available at:

http://www.tetra4d.com/tetra-4d-converter/ [Accessed 12 Jun. 2016].

[20] Tetra4d.com. (n.d.). Tetra4D Enrich | Tetra4D. [online] Available at:

http://www.tetra4d.com/tetra4d-enrich/ [Accessed 12 Jun. 2016].

[21] Unwalla, M. (2016). LaTeX: an introduction. Communicator, [online]

Spring 2016. Available at: http://www.techscribe.co.uk/ta/latex-

introduction.pdf [Accessed 16 Jun. 2016].

[22] Ctan.org. (n.d.). CTAN: TeX. [online] Available at:

https://www.ctan.org/tex/ [Accessed 16 Jul. 2016].

[23] Wikipedia ES. (2016). LaTeX. [online] Available at:

https://es.wikipedia.org/wiki/LaTeX [Accessed 16 Jun. 2016].

[24] Wikipedia. (2016). LaTeX. [online] Available at:

https://en.wikipedia.org/wiki/LaTeX [Accessed 16 Jun. 2016].

[25] Isicad.net. (2016). isicad: CAD Exchanger: The easiest way to convert

3D data - Introduction. [online] Available at:

http://isicad.net/articles.php?article_num=18432 [Accessed 24 Jun. 2016].

[26] Isicad.net. (2016). isicad: CAD Exchanger: The easiest way to convert

3D data - The Beginning. [online] Available at:

http://isicad.net/articles.php?article_num=18432 [Accessed 24 Jun. 2016].

[27] Isicad.net. (2016). isicad: CAD Exchanger: The easiest way to convert

3D data - Key reasons that make CAD interoperability challenging. [online]

Available at: http://isicad.net/articles.php?article_num=18432 [Accessed 24

Jun. 2016].

6. Bibliography

59

[28] Arquitectura de Computadoras. (2013). COMPUTACIÓN PARALELA.

[online] Available at:

https://conceptosarquitecturadecomputadoras.wordpress.com/computacion

-paralela/ [Accessed 24 Jun. 2016].

[29] GitHub. (2015). x3dom/cad-viewer. [online] Available at:

https://github.com/x3dom/cad-viewer [Accessed 17 Jun. 2016].

[30] GitHub. (2015). x3dom/cad-viewer. [online] Available at:

https://github.com/x3dom/cad-viewer [Accessed 17 Jun. 2016].

[31] A. Grahn. (2012). The movie15 Package. [Online]. Available:

http://ctan.math.utah.edu/ctan/tex-

archive/macros/latex/contrib/movie15/doc/movie15.pdf [Accessed on: Jun.

6, 2016].

6. Bibliography

60

CHAPTER 7:

COMPLEMENTARY

BIBLIOGRAPHY

Dictionary.com. (2016). the definition of HTML. [online] Available at:

http://www.dictionary.com/browse/html [Accessed 14 May 2016].

Wikipedia. (n.d.). HTML. [online] Available at:

https://en.wikipedia.org/wiki/HTML [Accessed 14 May 2016].

Rouse, M. (2005). What is HTML (Hypertext Markup Language)? - Definition

from WhatIs.com. [online] SearchSOA. Available at:

http://searchsoa.techtarget.com/definition/HTML [Accessed 14 May 2016].

Es.wikipedia.org. (n.d.). HTML. [online] Available at:

https://es.wikipedia.org/wiki/HTML [Accessed 15 May 2016].

Web3d.org. (2016). What is X3D | Web3D Consortium. [online] Available at:

http://www.web3d.org/x3d/what-x3d [Accessed 16 May 2016].

Web3d.org. (n.d.). Getting Started with X3D | Web3D Consortium. [online]

Available at: http://www.web3d.org/getting-started-x3d [Accessed 16 May

2016].

6. Bibliography

61

Álvarez, M. (2011). ¿Qué fue de VRML? Conoces X3D? [online]

DesarrolloWeb.com. Available at:

http://www.desarrolloweb.com/articulos/vrml-x3d.html [Accessed 18 May

2016].

Doc.x3dom.org. (n.d.). X3DOM Documentation: Tutorials. [online] Available

at: http://doc.x3dom.org/tutorials/index.html [Accessed 25 May 2016].

CoffeeCup Software. (2016). Free HTML Editor. [online] Available at:

http://www.coffeecup.com/free-editor/ [Accessed 27 May 2016].

Acrobat.adobe.com. (n.d.). PDF files, Adobe Portable Document Format |

Adobe Acrobat DC. [online] Available at:

https://acrobat.adobe.com/us/en/why-adobe/about-adobe-pdf.html

[Accessed 2 Jun. 2016].

Wikipedia. (n.d.). Portable Document Format. [online] Available at:

https://en.wikipedia.org/wiki/Portable_Document_Format [Accessed 2 Jun.

2016].

Manuel, F. (2013). Los mejores lectores PDF para Windows. [online]

Xatakawindows.com. Available at:

http://www.xatakawindows.com/aplicaciones-windows/los-mejores-

lectores-pdf-para-windows [Accessed 2 Jun. 2016].

Evans, D. (n.d.). Print Center Features - Adobe PostScript vs. Adobe PDF.

[online] Adobe.com. Available at:

https://www.adobe.com/print/features/psvspdf/ [Accessed 2 Jun. 2016].

Taft, E., Chernicoff, S. and Rose, C. (1999). PostScript language reference.

3rd ed. [ebook] Adobe Systems Incorporated, pp.1-15. Available at:

http://partners.adobe.com/public/developer/en/ps/PLRM.pdf [Accessed 2

Jun. 2016].

Es.wikipedia.org. (2016). PostScript. [online] Available at:

https://es.wikipedia.org/wiki/PostScript [Accessed 2 Jun. 2016].

File-extensions.org. (n.d.). How to open and convert files with U3D file

extension. [online] Available at: http://www.file-extensions.org/u3d-file-

extension [Accessed 3 Jun. 2016].

3D PDF Consortium. (n.d.). U3D - 3D PDF Consortium. [online] Available at:

http://www.3dpdfconsortium.org/u3d/ [Accessed 3 Jun. 2016].

6. Bibliography

62

Systems, 3. (2015). More on Universal 3D (U3D) Format - 3DA Systems.

[online] 3DA Systems. Available at:

http://www.3dasystems.com/blog/more-on-universal-3d-u3d-format/

[Accessed 2 Jun. 2016].

Wikipedia. (n.d.). Universal 3D. [online] Available at:

https://en.wikipedia.org/wiki/Universal_3D [Accessed 3 Jun. 2016].

Elsevier.com. (n.d.). Interactive U3D models. [online] Available at:

https://www.elsevier.com/books-and-journals/content-

innovation/interactive-u3d-models [Accessed 3 Jun. 2016].

Thoma, M. (2012). Creating pdf-forms with LaTeX. [online] Martin Thoma.

Available at: https://martin-thoma.com/creating-pdf-forms-with-latex/

[Accessed 6 Jun. 2016].

Rainiero, N. (2012). Embed 3Ds into PDF with LaTeX & U3D | Rainnic in the

Clouds. [online] Rainnic.altervista.org. Available at:

http://rainnic.altervista.org/content/embed-3ds-pdf-latex-u3d [Accessed 6

Jun. 2016].

En.wikibooks.org. (n.d.). LaTeX/Installing Extra Packages - Wikibooks, open

books for an open world. [online] Available at:

https://en.wikibooks.org/wiki/LaTeX/Installing_Extra_Packages [Accessed 6

Jun. 2016].

LaTeX Project Team. (2001). LaTeX 2E for authors. [Online]. Available on:

https://latex-project.org/guides/usrguide.pdf, [Accessed on: Jun. 6, 2016].

Wikipedia. (n.d.). LaTeX. [online] Available at:

https://en.wikipedia.org/wiki/LaTeX [Accessed 6 Jun. 2016].

A. Grahn. (2015). The media9 Package, v0.49. [Online]. Available:

http://texdoc.net/texmf-dist/doc/latex/media9/media9.pdf, [Accessed on:

Jun. 6, 2016].

Sharelatex.com. (n.d.). Positioning images and tables - ShareLaTeX, Online

LaTeX Editor. [online] Available at:

https://www.sharelatex.com/learn/Positioning_images_and_tables

[Accessed 7 Jun. 2016].

6. Bibliography

63

Texblog.org. (2012). Multi-column and multi-row cells in LaTeX tables –

texblog. [online] Available at: http://texblog.org/2012/12/21/multi-column-

and-multi-row-cells-in-latex-tables/ [Accessed 7 Jun. 2016].

T. Feuerstack, Bremen, Germany. (2003). Dokumente einfach interaktiv.

[Online]. Available on: ftp://ftp.fernuni-hagen.de/pub/pdf/urz-

broschueren/unplugged/upl007.pdf, [Accessed on: Jun. 10, 2016.]

Filippov, A. (2015). Elphel Development Blog » X3D assemblies from any

CAD. [online] Blog.elphel.com. Available at:

http://blog.elphel.com/2015/12/x3d-assemblies-from-any-cad/ [Accessed

10 Jun. 2016].

Brutzman, D. and Daly, L. (2007). X3D. Amsterdam: Elsevier/Morgan

Kaufmann.

Techsoft3d.com. (2016). Tetra4D® Products | Tech Soft 3D. [online]

Available at: http://www.techsoft3d.com/products/tetra-4d-applications/3d-

pdf-converter/ [Accessed 12 Jun. 2016].

Tex.stackexchange.com. (n.d.). TeX - LaTeX Stack Exchange. [online]

Available at: http://tex.stackexchange.com/ [Accessed 15 Jun. 2016].

Cadexchanger.com. (2016). CAD converter available in SDK, GUI and CLI -

CAD Exchanger. [online] Available at:

http://cadexchanger.com/products.html [Accessed 17 Jun. 2016].

Dahl, C. (2004). Planet PDF - Example Acrobat JavaScripts. [online]

Planetpdf.com. Available at:

http://www.planetpdf.com/creative/article.asp?ContentID=6828 [Accessed

20 Jun. 2016].

Sharelatex.com. (n.d.). Commands - ShareLaTeX, Online LaTeX Editor.

[online] Available at: https://www.sharelatex.com/learn/Commands

[Accessed 2 Jul. 2016].

Budget

“CREATION OF INTERACTIVE

3D DOCUMENTS TO SUPPORT

THE SETUP PROCESS OF

MACHINE TOOLS”

TFG presentat per optar al títol de GRAU en

ENGINYERIA MECÀNICA

per Víctor Arnedo Blanco

Barcelona, 11 d’octubre de 2016

Director: José Antonio Travieso Rodríguez

Departament d’Enginyeria Mecànica (DEM)
Universitat Politècnica de Catalunya (UPC)

Budget

65

 BUDGET

In this section the different costs will be exposed. First of all, we will carry a

budget of the software to use on, and after selecting a solution, we will make

a total costs budget. It is an aspect to have in consideration if we are thinking

in adopting a workflow process for this issue. Once all the features and the

implementation have been explained, we have to decide which is the most

suitable solution, looking for a balance between quality and price. Here, in

table 7.1, there is a comparative table in which we can see the different prices

of the software and the cost will suppose every solution.

SOFTWARE Solution 1 (€) Solution 2 (€) Solution 3 (€)

CAD Exchanger
CoffeeCup HTML

Tetra4D Enrich
Acrobat Pro
3D Tool

LaTeX’s TeXStudio

548
0

1748
676.39

300

0

TOTAL 548 2424.39 300

It is appropriated to put into context this budget. The licences exposed, given

by the companies, are for one year but might be offers and discount if the

user or firma want to use more than one computer license or extend it for

more than one year. This happens with CAD Exchanger for instance, that

reduce the price of the software if the licenses are demanded for more than

one year in approximately a 50% of the original price. Knowing this, we could

compare the different options thinking about the savings of money.

One of the options stands out from the others. Tetra4D Enrich solution is a

relatively expensive option for a single user and an object of discussion for a

firma accounting department, since its price exceeds the amount of 2000€

per license. In this case, the client is paying for the quality and the facilities

Figure 7.1. Tools budget of the software and solutions.

Budget

66

the product offers him, due to the fact he has not the necessity of

programming any code and the software does all the conversions necessaries.

The problem may fall to the necessity of acquiring Adobe’s Acrobat Pro apart

from Tetra4D Enrich, so it increases the cost in approximately a 40%. There

is no necessity to have this software for the display of a 3D PDF, but Tetra4D

Enrich only works in the Pro version environment, so it is a pack that must

be bought.

If we do not want to spend so much money, it is preferable for us to waste

some time in coding and creating our templates, the option would be 3D Tool

and LaTeX. In an economical view, it is the best option to choose if our goal

is to obtain PDF documents. We will need the 3D Tool Advanced version for

the conversion and a LaTeX editor and compiler as TeXstudio for free. It is a

high savings of money respect from the first solution, but it is also slower, so

it is important to assess these issues.

Furthermore, if we prefer creating a Web application instead of a PDF

document, we will have to obtain CAD Exchanger, the cheapest X3D file

converter. If the option of the created and shared Web app exposed in the

thesis is enough good, it will not suppose any cost, otherwise we will have to

develop our own Web environment in order to implement the idea.

If we make an overview of all we have seen it is noticed that, except for

Tetra4D Enrich, we have to pay for converter software. One thing that can be

found out in the market analyse is the fact that there was a huge difficulty to

find U3D and X3D converters, and the ones capable of making this conversion

possible for free did not allow the import of STEP files. Under the

circumstances, it was necessary to move to commercial software, and the

cheapest ones are reflected in this work. If we want to have the quality of

U3D and X3D files from STEP 3D models, we will have to spend money on it.

This is the main reason why there are not non-cost solutions in the budget.

As in the report, we will consider the option of using 3D Tool and LaTeX so

we will carry an engineering and documentation budget and add it to the tools

budget so we can create a total costs budget.

Task
Cost of junior engineer

(€/h)
Hours Total cost

Initial information research
Implementing solutions
Programming

Typing and revising

15
15
15

15

150
80

180

190

3000
1200
2700

2850

TOTAL 600 9750

Figure 7.2. Engineering and documentation costs budget.

Budget

67

Concept Cost (€)

Tools and software

Engineering and documentation
IVA (21%)

300

9750
2110.50

TOTAL 12160.50

As we can see in the tables, the total cost of the project carried on by a junior

engineering will be of TWELVE THOUSAND ONE HUNDRED SIXTY euros and FIFTY cents.

Figure 7.3. Total costs budget.

