UNIVERSITAT POLITECNICA DE CATALUNYA Barcelona i

BARCELONATECH Supercomputing

Facultat d’Informatica de Barcelona Center B
Centro Nacional de Supercomputacion

UNIVERSITAT POLITECNICA DE CATALUNYA (UPC)
BARCELONATECH

FACULTAT D’INFORMATICA DE BARCELONA (FIB)

BARCELONA SUPERCOMPUTING CENTER (BSC-CNS)

Scalability Study of Deep Learning
Algorithms in High Performance
Computer Infrastructures

Francesc Sastre Cabot

Master in Informatics Engineering

ADVISOR: Jordi Torres i Vinals
Universitat Politécnica de Catalunya (UPC)
Department of Computer Architecture (DAC)

CO-ADVISOR: Maurici Yagiies Goma
Barcelona Supercomputing Center (BSC)

Computer Sciences - Autonomic Systems and e-Business Platforms

April 28, 2017

Abstract

Deep learning algorithms base their success on building high learning capacity
models with millions of parameters that are tuned in a data-driven fashion.
These models are trained by processing millions of examples, so that the de-
velopment of more accurate algorithms is usually limited by the throughput
of the computing devices on which they are trained.

This project show how the training of a state-of-the-art neural network
for computer vision can be parallelized on a distributed GPU cluster, Mino-
tauro GPU cluster from Barcelona Supercomputing Center with the Tensor-
Flow framework.

In this project, two approaches for distributed training are used, the syn-
chronous and the mixed-asynchronous. The effect of distributing the training
process is addressed from two different points of view. First, the scalability of
the task and its performance in the distributed setting are analyzed. Second,
the impact of distributed training methods on the final accuracy of the models
is studied.

The results show an improvement for both focused areas. On one hand,
the experiments show promising results in order to train a neural network
faster. The training time is decreased from 106 hours to 16 hours in mixed-
asynchronous and 12 hours in synchronous. On the other hand we can observe
how increasing the numbers of GPUs in one node rises the throughput, images
per second, in a near-linear way. Moreover the accuracy can be maintained,
like the one node training, in the synchronous methods.

Acknowledgements

I would like to thank my advisor, Jordi Torres, for the great opportunity
he has offered me and for introducing me to the exciting High-Performance
Computer and Deep Learning worlds, as well his encouraging and enthusiasm.
Also, thanks to my co-advisor, Maurici Yagiies, for his help, advice, and pa-
tience. I also would want to highlight the great job done by the BSC Support
Team. Thanks to all because without you this project would not have been
possible.

Thanks to all my colleagues at the Autonomic Systems and e-Business Plat-
forms group (BSC) for making an enjoyable working environment, especially
to Victor Campos and Miriam Bellver for all things that I have learned from
them.

I also would render thanks to Alberto, my friend during the degree, the
master, and now at work which without him, none of this would have started.

Last but not least, my special thanks to my family and friends, for their
support and comprehension when I have needed it.

Contents

1 Problem Statement 7
1.1 Goalofthisthesis. 7
1.2 Machinelearning 7
1.3 Deeplearning. e 8
1.3.1 Trends in Deep Learning for Computer Vision 9
1.3.2 Deep Learning frameworks 13
1.4 Distribution 17
1.4.1 Performance metrics 17
15 TensorFlow 18
1.5.1 Strategies for data parallelism 19
1.6 Infrastructure 20
1.6.1 Minotaurooverview 21
1.7 Neural Networkusecaseo... 22
2 Testing Methodology 25
21 Dataset 25
2.2 Network 25
2.3 Experimentalsetup 26
2.4 Minotauro Deploy 28
2.4.1 Software stack and queue system 28
2.4.2 PS and Worker allocation 30
2.4.3 Distributed runwith Greasy 33
3 Results 35
3.1 Throughput and resource usage 35
3.1.1 Parameter server number. 35
3.1.2 Node parallelism 36
3.1.3 Mixed-Asynchronous 38
3.1.4 Synchronous 39
3.2 Learningtime 40
3.2.1 Mixed-Asynchronous 40
3.22 Synchronous 43
3.2.3 Comparing strategies 45

4 Conclusions 47

4.1 Projectoutcomes a7

4.2 Personal outcome 49

4.3 Future work 50
Bibliography 53

1. Problem Statement

1.1 Goal of this thesis

The aim of this master thesis is to test the scalability of the TensorFlow
framework in the Minotauro machine (GPU cluster) at Barcelona Supercom-
puting Center (BSC) continuing the work started in the thesis of Maurici
Yagues [104]. The contents of this thesis may be valuable for the Barcelona
Supercomputing Center in order to de ne new strategies, new research elds
and to prove that Deep Learning problems can take advantage of high perfor-
mance computers in order to obtain better results in less time.

This document will be focused in three areas: (1) Choose the best con gu-
ration to distribute the Deep Learning algorithms, (2) study the scalability in
terms of throughput and (3) the scalability from the learning standpoint.

The introduction of this thesis will introduce the ideas of Machine Learning
and Deep Learning, explore dierent applications of Neural Networks, and
show a brief detail about the most popular Deep Learning frameworks. Also,
it will explain the concepts of distribution in Deep Learning , the infrastructure
to be used, and the Neural Network use case of this thesis.

1.2 Machine learning

Machine learning (ML) is an Arti cial Intelligence sub eld that provides
computers with the ability to learn without being explicitly programmed. A
Machine Learning algorithm can change its output depending of the data that
it has learned. This kind of algorithms learn data in order to nd patterns
and build a model to predict and classify items. Machine learning performs
well in some scenarios, although there are some cases where it cannot create
an accurate model due to the large amount of variations that the problem has.

For example, a classi er of animal pictures. Pictures of same animal can
be much di erent, di erent positions, di erent daylight, di erent atmospheric
conditions, obstructions. A traditional Machine learning algorithm cannot

7

Figure 1.1: 1A evolution. (Source: Nvidia Blog [26])

achieve this goal whereas there is a kind of ML algorithms, Deep Learning,
that can perform well in this kind of problems.

Figure 1.1 shows a graphic explanation about the Arti cial Intelligence and
the disciplines contained in it.

1.3 Deep Learning

Deep Learning allows computational models that are composed of multi-
ple processing layers to learn representations of data with multiple levels of
abstraction. These methods have dramatically improved the state-of-the-art
in speech recognition, visual object recognition, object detection and many
other domains such as drug discovery and genomics. Deep Learning discovers
intricate structure in large data sets by using the backpropagation algorithm
to indicate how a model should change its internal parameters that are used
to compute the representation in each layer from the representation in the
previous layer. Deep convolutional nets have brought about breakthroughs in
processing images, video, speech and audio, whereas recurrent nets have shone
light on sequential data such as text and speech [53].

	Problem Statement
	Goal of this thesis
	Machine learning
	Deep Learning
	Trends in Deep Learning for Computer Vision
	Deep Learning frameworks

	Distribution
	Performance metrics

	TensorFlow
	Strategies for data parallelism

	Infrastructure
	Minotauro overview

	Neural Network use case

	Testing Methodology
	Dataset
	Network
	Experimental setup
	Minotauro Deploy
	Software stack and queue system
	PS and Worker allocation
	Distributed run with Greasy

	Results
	Throughput and resource usage
	Parameter server number
	Node parallelism
	Mixed-Asynchronous
	Synchronous

	Learning time
	Mixed-Asynchronous
	Synchronous
	Comparing strategies

	Conclusions
	Project outcomes
	Personal outcome
	Future work

	Bibliography

