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ABSTRACT t 

A cost function for adaptive filtering is proposed, based 
on the Statistical Reference Criterion. The purpose of 
this criterion is to enforce a given probability density 
function at the output of a system. The only aprioristical 
knowledge utilized is that of the target pdf. This makes it 
particularly suitable for blind adaptation in the context of 
arrays in contrast to Temporal or Spatial Reference 
Techniques. Applications that are foreseen are: blind 
channel equalization, adaptive beamforming for single or 
multiple signals and source separation. The main goal is 
blind signal recovery in unfavourable wanted signal-to- 
interence power ratios. 

1. INTRODUCTION 

When trying to recover a signal that has been filtered by 
an unknown channel or trying to separate independent 
signals, some kind of statistical matching is usually 
performed (i.e., enforce constant amplitude, 
independence between outputs, etc.) [3][4][5]. We intend 
here not to constrain ourselves to a given feature but 
instead to perform a complete distribution (pdf) matching 
[1][2]. This is specially suitable for communications 
scenarii where we have complete knowledge of the 
signal statistics, that is, of their constellation and coding 
schemes. Assuming that interfering signals and noise are 
present in our scenario, we show that enforcing that the 
actual distribution at the system output be as close as 
possible to the target distribution will lead to 
minimization of output noise power and residual 
interference. We need only to use an easily 
implementable functional that measures the distance 
between two pdf s from a particular realization of the 
process that will be available to us at the system output. 
We propose next one such cost function which is closely 
related to the Kullback-Leibler Distance (IUD) between 
two pdf s, 

(1.1) 

J(  w) = - EA, In E, e-IZ-''lZ la: 
Zffl 
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where A' and Z denote the RV's corresponding to the 
target and actual distributions, respectively and EA and 
E z  denote expectation operators with respect to the 
subscripted RV. J(w) denotes the cost function where w 
is the coefficient vector that produces the system output 
from the data x as z = w H x  This cost function has been 
proposed for a scalar RV. In a more general formulation 
where we consider a vector RV, we must enforce the 
joint distribution by means of, 

(1 .a 

where now A '  and Z denote the vector RV's 
corresponding to the target and actual joint distributions 
and Rt is a noise correlation matrix usually taken to be 

Some important points about this criterion are reflected 
in the following propositions. 

021. 

2. PROPERTIES 

Proposition 1: the cost function can be expressed in the 
alternative way, 

(2.1) 

where the argument of the natural logarithm is precisely 
the pdf of the actual RV Z plus a term of additive 
independent Gaussian noise, Nt. The variance of this 
term is precisely the resolution in the estimation of the 
pdf of Z. The intuitive interpretation of this proposition is 
straightforward. Let us take the argument of the natural 
logarithm as it appears in 1.1 It reduces to the 
expectation of a Gaussian non-linearity centered in the a' 
value of the random variable A'. This is precisely a 
measure of how likely it is that the actual random 
variable Z falls in  a neighbourhood of a', with the 
'neighbourhood defined according to the variance q. 
That is, the Gaussian non-linearity plays the role of an 
indicator function. Its exact relationship with the pdf of Z 
may be construed from the interpretation of this non- 
linearity as the probability density function of a noise 
term Nt, independent of Z. Let us note that the pdf of the 
addition Z+Nt is precisely the convolution of the 
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respective pdf s, and that the argument of the logarithm is function can be expressed in the following way, 
simply this convolution, although it has been expressed analogous to the Minimum Variance Criterion, 

(2.6) 
have that, w, = argmin J(w) = R;jHa 
through expectations of random variables. In writing, we 

(2.2) W 

C 

where we have resorted to the symmetry of the 
distribution of Nt: pNt(t)=pNt(-t). 
+ 
It appears then that we can estimate the pdf of the 
underlying process 2 with any degree of precision, 
depending only on how small we choose the variance bt 
to be. The limitation is only practical. The smaller this 
variance is, the larger the number of samples to obtain 
reliable estimates. In practice, this variance is not chosen 
very small to guarantee rapid convergence. Simulations 
show that this is not very critical to obtain a good 
performance of the algorithm. The relationship 
enunciated in proposition 1 leads to the following 
proposition, 
Proposition 2: it is easy to prove from the last 
proposition that for continuous RV, the cost function can 
be expressed in terms of the KLD and the entropy of the 
target distribution as, 

(2.3) 
J( W) = KLD( A', 2 + N , )  + H( A') 

such that the only dependence on the coefficient vector is 
found in the first term, the Kullback-Leibler distance 
between A and Z+Nt. Therefore, minimization of the 
cost function is akin to minimization of a KLD. The 
proof is very simple, we only have to operate as follows, 

(2.4) 

so that we can establish a one-to-one correspondence 
between the terms of this expression and those in 2.3. 
Note that the first term is precisely the KL distance 
between the actual and the target random variables 
(except for the noise term Nt resulting from the 
estimation window). The second term is precisely the 
entropy of the target random variable A. 
+ 
ProDosition 3: given the following model for the data xk, 

(2.5) 
xk = Hak+nk , EnknF=R,, 

for some vector a. 
+ 
The value of a reflects just what the contribution from 
neighbouring symbols is for w=w,. As in all blind 
equalization criteria, there always exists some residual 
intersymbol interference term, as these kind of criteria do 
not tend to minimize the power of additive noise. Rather, 
they minimize the overall power of noise and residual 
interference. This is also linked to the fact that for that 
solution, constellation shrinkage occurs. When we 
consider the single source case, proposition 3 states that 
the vector that minimizes the cost function is 
proportional by a scalar term to the Minimum Variance 
solution. In the multiple source case, it is not necessarily 
implied that extraneous sources (.or neighbouring 
symbols) are nulled at the system output. 
The proof of proposition 3 has not been included in this 
paper due to its intrinsic complexity. The fact that the 
coefficient vector is expressed in this way reflects the 
property that this function has of maximizing SNR at the 
system output. When the extended cost function for the 
vector case is used in the context of siignal separation, it 
can also be shown that the minimizing W O  is also 
analogous to the Minimum Varianice Criterion in a 
similar way. That is, we do not only (achieve separation 
of independent signals but also minimization of the noise 
power and residual interference (in contrast with HOS- 
based methods which are not sensitive to Gaussian noise 
power). 

3. UPDATELAW 

Up to this point we have considered only the cost 
function. The coefficient vector w is, updated with the 
gradient rule. The gradient equations can be easily 
derived as, 

(3.1) 

where the q-functions have been defin'ed in the following 

(3.2) 
way, 

where the signal of interest is one component of the 
signal vector ak, the vector w0 that minimizes *e cost Note that these functions depend on the particular 

distribution of the variable Z. As the statistics of this 
random variable changes for each iteration, re-evaluation 
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of these memory non-linearities will be mandatory for 
each update of w. It is precisely this dependence on the 
actual distribution and not on the target distribution, 
tighly coupled with its memory, what makes this 
criterion truly sensitive to the distance between pdf s. 
Usually, in blind algorithm of the Bussgang type, the 
underlying non-linearity is memoryless and fixed, 
dependent only on the target distribution. The 
consequence of this is that for Bussgang-type algorithms, 
the coefficent vector w may be captured by some local 
minimum induced by the presence of interferers. We 
understand here by local minimum the the target pdf and 
the actual pdf do not coincide. This happens because the 
utilized cost function is only sensitive to the maxima of 
the pdf and not to the frequency of occurrence of its 
likeliest values. It can be avered that in general 
convergence of the cost function herein proposed to a 
desirable minimum is with all likelihood assured, as it 
has been endorsed by comprehensive set of simulations. 
We do not purport here that convergence is absolute for 
all possible input signal distributions. Rather, that the 
local minimum population is reduced in extreme in 
comparison to Bussgang-type algorithms, and that 
convergence is safe for a broad range of situations with 
unfavourable signal-to-interference power ratios. 
ProDosition 4: we will prove herein that the solution w of 
the cost function is somewhat related to the Wiener. 
criterion, 

(3 .3)  
w = RZEa;x, 

Proof: equating the gradient already derived in 3.1 to 
vector 0, we arrive at, 

(3.4) 
E,,E,q(z, a’)z*xk = E,.,tEZq(z, a’)a’*xk 

using the fact that the output z can be expressed as 
Z=WHXk, we have, 

(3.5) 
E,(E,q(z,a’))x,xfw = E,(E,<q(z, d)a’)*xk 

naming the term within parantheses on the right-hand 
side of the equality as &, we can finally prove the 
proposition, 

(3 .6)  
R,w = E,i?;xk 

+ 
The non-linear function on the satum z which we have 
called &, plays the role of a regeneration funcion of the 
data. This function is sensitive to the true actual 
dstribution at the system output. When the output pdf 
does not coincide with the target pdf, it regenerates a 
distorted reference. The difference with Bussgang 
algorithms is that this distortion effects help avoid the 
euqalizer to get captured by false minima. 

The update law when applied to array signal processing 
is somewhat different. We consider in this case that the 
architecture of the receiver is that of a beamformer plus 
an equalizer in cascade. Therefore, it is described by two 
vectors in the following way. 

(3.7) 
y = wpxw; 

This time, the snapshots captured by the array are 
arranged into matrix X. The update equations are now 
derived by taking the joint gradient with respect to the 
beamformer and the equalizer weights. In some cases 
(high SIR ratio) convergence may be slow as the 
quadratic architecture in 3.7 causes that the beamformer 
may mask the signal from the equalizer if it is not well 
within focus. This is easily shown by the update 
equations. 

(3 .8 )  

w,(k+l) = Ws(k)+P.&*(Yk)XW; 

Wt(k + 1) = w,(k) + y,&*(yk)XTW,* 

It is clear from the last expression how the algorithm 
bootstraps itself into convergence: data temporally filter 
by the equalizer weights are utilized to generate the 
beamformer updates. Concurrently, data spatially filtered 
by the present setting of the beamformer weights are 
used for the equalizer updates. 

3. SIMULATIONS 

The efficiency of this criterion in recovering a signal of 
the wanted distribution is proven in the context of array 
signal processing. For the test scenarii, we assume a 
given spatial distribution of point sources of varying 
distributions, where those signals having unwanted 
statistics are more powerful than the one of interest. Only 
in this case will we be able to prove the validity of the 
Statistical Reference Criterion. 

Figure 3.1: Beam pattern obtained in convergence 
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Figure 3.2 time evolution of the cost function 
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Figure 3.3: time evolution of the estimated probabilities 
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Figure 3.4: In-phase channel. Aperture of the eye versus time. 

We have considered a 7-sensor array on which 4 signals 
impinge: a Gaussian interferer at 50 degrees and 20 dB 
over the sensor background noise, two 9-QAM 
interferers at 30 and -40 degrees and with a power level 
6.5 dB over that of the signal of interest: a QPSK at 0 

degrees, The number of equalizer coefficients is 30. Note 
how the algorithm is able to distinguislh between signals 
of differing distributions. Even though the interferers are 
more powerful than the signal of interest, the receiver is 
able to null out the signals not of interest in the spatial 
stage. There exist a limit for the robustness of the 
algotihm to the capture problem. Absence of 
convergence may be observed if the inlerferers are in the 
order of (roughly) 10 dB more powerful than the signal 
of interest. This could in principle be solved using 
correspondingly smaller step-sizes. Unfortunately, this 
increases the convergence time and the relationship of 
the convergence rate with the step size is not linear. 
At the moment of writing this paper, no other algorithm 
that imposes a given pdf at the output of an adaptive 
system was known to as. Therefore, comparisons for the 
same scenarii were made with variations of the constant 
modulus algorihm. In a way, this algorithm imposes a 
circular pdf at the system output. Simulations showed 
that convergence could not be achieved under the 
conditions in which the cost function herein presented 
successfully operates. Also, the CldA algorithm is 
limited to circular distribution and lacks the freedom of 
choice of the statistical reference philosophy. When 
applying statistical reference to blind equalization, the 
aperture of the eye can also be achieved at the expense 
of longer acquisition time, compared with classical 
algorithms such as Benveniste-Goursat, Sato, etc. It is 
only in tough scenarii in terms of interference and noise 
where our cost function is at its best and other algorithms 
fail. Work is now being undertaken to extend these 
results to signal separation, that is, using information of 
the joint probability density of several signals in the way 
of statistical reference. 
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