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Abstract 

In the last years there has been a considerable increase in electrical power consumption; moreover, 

there has been a growing in incorporation of generation sources of renewable technologies. Previsions 

suggest that this trend will be growing in the coming years. This challenge requires the construction of 

new power lines or the increase of the capacity of existing power lines. However, due to the difficulty in 

planning new tower sites and the related environmental impacts and social concerns, it is often 

extremely difficult to build new transmission and distribution lines, especially in urban areas or in 

regions of ecological interest. This problem leads to the energy sector to search a feasible solution to 

solve saturation problems of electrical lines due to increased demand and generation. A solution that 

some countries have chosen, due to its technological and economic viability, is replacement of 

conventional conductors with others operating at high temperature, known as HTLS (High-Temperature 

Low-Sag) conductors. HTLS conductors, with an almost identical section of conventional ones, allow 

increasing the nominal current capacity, with an allowable increase in operating temperature. Some 

HTLS conductors can operate continuously at temperatures as high as 250 ºC, due to their innovative 

design with strength core that allows reaching high temperature without compromising mechanical 

resistance of conductor.  

Although cables manufacturers have developed a new methodology design to increase the capacity 

of the lines, manufacturers of components involved in power transmission and distribution, such as 

substation connectors, have not developed yet devices compatibles with this technology.  

The thesis presented by the author is dedicated to develop a new family of high-capacity substation 

connectors compatible with HTLS conductor’s technology. The new family of high-capacity connectors to 

be developed in this thesis must pass the mandatory standard tests dictated by the international 

regulations. Therefore, the aim of this thesis is to improve the materials used in the connectors and the 

installation procedure to fulfill the thermal and mechanical constraints of the standard tests and to 

develop software tools to aid the optimal thermal design of such connectors. 

The doctoral thesis has been carried out by means of collaboration agreement between UPC and the 

company SBI Connectors, within the framework of the Industrial Doctorates Plan, promoted by the 

Generalitat de Catalunya. Furthermore, the thesis is developed within the project Retos de Colaboración 

RTC-2014-2862-3 “Desarrollo de Conectores de Subestación compatibles con Tecnología HTLS y las 

Técnicas de Ensayo Asociadas”, which main objective is the development of high-capacity substation 

connectors and associated testing methods. The project, supported by Spanish Ministry of Economy and 

Competitiveness, was granted in 2014 under the Plan for Scientific and Technical Research and 

Innovation for 2013-2016.  
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1. Introduction 

In the last years there has been a considerable increase in electricity consumption, particularly in 

developing countries. Forecasts indicate that this trend will continue in the coming years. According to 

the International Energy Agency (IEA), in the next years there will be an increase in world energy 

consumption and a very important part of the generation (around 50%) will come from renewable 

energy sources. It is also estimated that in 10 years electricity consumption from renewable sources will 

increase about 25% in many European countries [1]. This increase in power consumption has caused the 

risk of line saturation in some areas and the consequent need to increase power lines capacity. 

However, it is often extremely difficult to build new distribution and transmission lines, especially in 

urban areas or in regions of ecological interest [2]. 

Considering the high cost of installing new power lines, the difficulty in planning new tower sites and 

the related environmental impacts, social concerns, and the time involved in building new lines, a 

solution that some countries have chosen due to its technological and economic feasibility, is the 

replacement of conventional conductors with others operating at high temperature, known as HTLS 

conductors (High- Temperature Low-Sag). These conductors, with a similar section than the 

conventional ones, allow increasing the nominal current capacity, with a consequent increase in 

operating temperature. HTLS conductors can operate continuously (in steady-state conditions) at 

temperatures from 150 to 250° C, and allow, in many cases, doubling the capacity of existing lines [3]. 

 

The definition of an electric connector, according to the ANSI/NEMA CC 1-2009 standard [4] is “a 

device that joins two or more conductors for the purpose of providing a continuous electrical path”. 

Therefore, substation electrical connectors, the joints that physically connect power transmission lines 

with substation conductors and busbars, play a critical role in the efficiency and reliability of 

transmission systems and power distribution. It is recognized that a failure in a single connector can 

cause the failure of the entire line. For this reason electrical connectors can be regarded among the 

weaker elements in electric transmission lines [5] and therefore their reliability must be ensured. 

Although cables manufacturers have developed a new methodology design to increase the capacity 

of the lines, manufacturers of components involved in power transmission and distribution, such as 

substation connectors, have not developed yet devices compatibles with this technology. Currently, in 

the market there are not available substation connectors compatible with HTLS systems. The new 

families of high-capacity substation connectors compatible with HTLS technology have to be designed to 

withstand, under rated operating conditions, temperatures higher than the traditional application, to 

prevent failures that could have serious consequences on the power transmission and distribution 

systems.   

Therefore, the proposed project has a high degree of innovation, having the objective to develop a 

new product with very high technology requirements, ensuring a proper electrical, thermal and 

mechanical behavior under severe operating conditions introduced by HTLS technology. 

 



The first aspect to be analyzed to accomplish the requirements of high-capacity substation 

connectors is the selection of the base material. At present, substation connectors are manufactured by 

using A356 cast aluminum alloy due to its good castability and physical properties. This aluminum alloy it 

is rarely used in the as-cast condition, because it exhibits relatively poor mechanical properties due to 

the presence of eutectic silicon in the form of coarse acicular plates [6], which act as internal stress 

raisers when a mechanical load is applied. As a consequence, the A356 alloy in as-cast conditions cannot 

be used in high-voltage applications and it has to be exposed to heat or chemical treatments. 

Heat treatments, very common processes in foundry, are used to obtain higher mechanical 

properties. The most common heat treatment for A356 alloy is the T6, which consists of a solution heat 

treatment, water quenching and artificial aging [7]. T6 dissolves precipitates (Mg2Si) in the Al matrix, 

homogenizes the casting and spheroidizes the eutectic silicon. Currently, it is a common practice to 

expose substation connectors to T6 heat treatment before installation. 

On the other hand, chemical treatment is not currently used in manufacturing connectors even 

though it can improve both electrical and mechanical properties, compared to the un-modified alloy. 

The chemical treatment, also known as modification, consists in the addition of small quantities of a 

modifier element to the melt. It allows changing the morphology of the eutectic silicon phase from 

flake-like to fine fibrous [8], which results in an improvement of the mechanical and electrical properties 

of the alloy [9]. The main physical properties of the traditional and the improved material will be 

characterized in order to ensure the reliability of the high-capacity substation connectors. Electrical 

resistivity, which is the main parameter, which affects the operating temperature of the connector, will 

be evaluated in a wide range of temperatures, from cryogenic up to 200 ºC. 

 

Moreover, to design the new family of substation connectors it is necessary to take into account the 

contact resistance. It is an accepted fact that the electrical contact resistance greatly influences the 

thermal behavior of substation connectors and other electrical equipment. Therefore, during the design 

stage of such electrical devices it is essential to accurately predict the contact resistance to achieve an 

optimal thermal behavior, thus ensuring contact stability and extended service life.  

If contact resistance is low and stable in time, a good electrical connection and a long life of 

substation connector is guaranteed; whereas, if it is high and unstable, it could cause overheating of the 

connector and, consequently, a reduced operating life [10]. Connector’s long term performance is 

directly related to the contact points established during installation [11]. The restriction of current flow 

to these few contact points, also known as “a-spots,” constitutes a first contribution to the total contact 

resistance; this component is usually called constriction resistance [12].  

Moreover, it is necessary to take into account the effect on contact interface of a thin oxide film 

layer. It is well known that aluminum and its alloys reacts quickly with atmospheric oxygen, and a 

passivation layer of few nanometers of aluminum oxide, usually known as alumina, grows on 

atmospheric exposed aluminum surfaces [13]. Since aluminum oxide is very insulating, electrical current 

can transfer across the alumina layer only thanks to tunneling and fritting mechanisms [14]. As a 

consequence, the film resistance is the second component of the total contact resistance of a joint. 

However, a good electrical contact between two conductors can be established only if the contact spots 

can be created due to  the mechanical rupture of the oxide insulating film [14].  



Contact surface preparation is essential to guarantee proper contact between connector and 

conductor since the contact resistance can notably degrade substation connectors’ performance. The 

most common installation procedures found in technical literature for aluminum-to-aluminum and 

aluminum-to-copper connections and their performances under thermal cycling are analyzed and 

compared [12], [15]–[18]. Most of these works have shown that the mechanical abrasion reached by 

brushing surfaces, and lubrication through contact aid compound application is the most efficient 

method to ensure an adequate contact resistance in aluminum-to-aluminum connections [14]. 

However, many studies demonstrated that if HTLS cables will replace traditional conductors, the 

installed population of connectors will age more rapidly and the number of connector failures will 

increase due to the increased aging effects of higher temperature and current density. Therefore, also 

the installation procedure needs to be improved, with the aim to improve the thermal behavior of high-

capacity substation connectors. In this thesis a surface treatment for high-capacity substation 

connectors, which consists on a chemical cleaning before conventional installation will be proposed to 

improve their performance. The thermal behavior of connectors installed with the new installation 

procedure will be compared with the traditional one. To this end, temperature rise, thermal cycle and 

short-time withstand current tests will be performed with connectors installed with both traditional and 

new installation procedure. 

To predict the thermal behavior of high-capacity substation connectors in operating conditions 

imposed by HTLS conductors, it is important to be able to estimate the electrical constriction 

resistance.  

First of all different ECR models available in the technical bibliography have been analyzed and 

compared find out the most suitable model for substation connectors. It will be shown that the model 

that shows the better agreement with experimental data is The Kogut and Komvopoulos fractal model 

for conductive rough surfaces, which assumes fractal geometry, elastic-plastic asperities and size-

dependent micro-contacts ECR to estimate ECR. However, fractal-based models are based on several 

variables whose values need to be tuned for each particular application, since they depend on the 

nature of the contacting surface and specifically the surface roughness. A genetic algorithm (GA) 

approach to determine the optimal values of the parameters in the fractal model to accurately fit the 

measured surface roughness with that predicted by the fractal model will be proposed in this thesis.  

 

This thesis will be also dedicated to the implementation of the electromagnetic-thermal 

multiphysics model developed to simulate the thermal behavior of high capacity substation connector.  

Joule power losses calculated in the electromagnetic analysis are the heat source used as input data of 

the thermal analysis, which allows predicting the temperature evolution and distribution in the 

considered domain.  

This model will be used to implement a FEM-based simulation tool to predict the result of short-

time and peak withstand current tests and temperature rise test in substation connectors. 

 It is well-known that short-circuits generate thermal and electromechanical stresses [19], [20], so 

power systems are designed and tested to ensure that electrical and mechanical devices involved can 

withstand short-circuit conditions. To this end such devices are tested and certified in accordance with 

the short-time withstand current and peak withstand current tests, as defined by different international 

standards [21]–[23]. 



 

Temperature rise test allows determining the substation connector’s thermal behavior under both 

transient and steady state conditions and thus evaluating if its size and design is compatible with the 

electromagnetic-thermal stress at which it is subjected during normal operational conditions. According 

to the ANSI/NEMA CC1-2009, the temperature rise must be performed at 100%, 125%, and 150% of the 

rated current. 

Thermal stress generated by short-circuit and temperature rise currents may increase the contact 

resistance, thus affecting contact stability [24] and therefore the expected service life, due to the 

increase of the electrical resistance and associated power losses.  

Therefore, to ensure reliable operation, connectors should not suffer from excessive overheating 

[25], thus their suitable thermal behavior must be ensured.  

Due to the huge current requirements in terms of instantaneous power of these demanding short-

circuit tests [26], they must be carried out in very specific and expensive laboratory facilities. On the 

other hand, temperature rise tests usually last a long time, are very power-consuming and therefore are 

very expensive. Therefore the development of a realistic simulation tool is essential for anticipating the 

results of the mandatory laboratory tests in a fast inexpensive way. 

In this thesis an advanced 3D-FEM modelling tools to perform realistic simulations to determine the 

thermal stresses at which substation connectors are subjected during short-time withstand current and 

peak withstand current and temperature rise tests will be developed. 

By using this modelling tools to assist the connectors’ design and optimization process, an optimized 

design can be achieved, thus satisfying the electromagnetic and thermal requirements imposed by the 

international standards [22], [27] and ensuring to pass the compulsory laboratory tests imposed by the 

standards. The simulation tools will be validated through experimental test. 

 

Finally, the test and validation of the high-capacity substation connectors will be described. Short-

time and peak withstand current and temperature rise tests according to international standards will be 

performed with the aim to validate the new design, material and installation procedure of the new 

product.  

 

In annex A the problem of the loop inductance will be introduced. A critical problem that arises 

when performing short-circuit tests to large loops involving substation connectors is the inductive 

component of the loop impedance. Transformers used to perform short-circuit tests usually have a 

secondary winding with very few turns, producing a low output voltage. The reactive component of the 

impedance, which is related to loop size, limits the current output capacity, because it tends to saturate 

the output of the transformer since it consumes large amounts of reactive power. The inductance of the 

most typical testing loop configuration (round nonmagnetic conductor forming circular loop) under 

alternating current supply will  be analyzed, since it significantly determines voltage drop in the loop, 

thus increasing reactive power consumption, limiting conductor’s ampacity and the current output 

capacity of the power transformers used to perform the tests. In addition an initial estimation of the 

loop inductance is required to determine the voltage set-point during the short-time current withstand 

and peak withstand current tests.  Finally, a simple method to minimize the power requirements when 

conducting short-circuit tests, based on the reduction of reactive power consumption will be proposed. 



1.1 Objectives 

This works aims to contribute to the development of a new family of high-capacity substation 

connectors compatible with HTLS technology.  

 

The main objectives of this work are listed as follows: 

1. Concept phase 

This phase consists in defining the requirements of the new aluminum alloy for high-capacity 

substation connectors and selecting and testing the new alloy.  

1.1 Definition of high-capacity substation connector’s requirements.  

1.2 Study, selection and optimization of the suitable materials for manufacturing high-capacity 

substation connectors.  

1.3 Electrical, mechanical and thermal characterization of the conventional aluminum alloy used for 

substation connectors and the optimized alloy for high-capacity substation connectors.  

1.4 Analysis of the electrical contact resistance in substation connectors. Improvement of the 

installation procedure for high-capacity substation connectors. 

 

2. Objectives of the prototyping phase.  

This phase consists in defining the main design parameters for this application as well as to develop 

a multi-physics FEM model to assist the design process of the connectors and ensuring appropriate 

electrical and thermal behavior.  

2.1 Identification of the key design parameters to develop a new family of high-capacity substation 

connectors  

2.2 Developing multi-physics software tools for modeling and simulating the electromagnetic and 

thermal behavior of the connector.  

2.3 Design optimization of high-capacity substation connectors with the aid of multi-physics 

simulations of temperature rise and short-circuit tests. 

 
3. Objectives of the testing phase.  

This phase consists in adapting the standard temperature rise and the short-circuit laboratory tests 

for high-capacity substation connectors operating at high temperature, as well as to test the new 

products. 

3.1 Short-time and peak withstand current test for high capacity substation connectors. 

3.2 Temperature test for high capacity substation connectors. 

 

1.2 Main Contributions 

1. Settling the requirements of the material for high capacity substation connectors. 



2. Analysis and optimization of the alloy to manufacture substation connectors. Settling of the 

requirements for heat and chemical treatments for the alloy. Characterization of the 

microstructure of conventional and optimized alloy. 

3. Characterization of the mail electrical, mechanical and thermal properties of the conventional 

and optimized alloy to manufacture substation connectors. 

4. Analysis of the electrical contact resistance in substation connectors. Improvement of the 

installation procedure through a chemical cleaning with the aim to reduce contact resistance. 

Characterization of the thermal behavior of substation connectors installed with the proposed 

installation procedure and comparison with traditional connectors. 

5. Analysis of different available models of electrical constriction resistance in technical 

bibliography. Development of the GA-optimized fractal model to predict the electrical 

constriction resistance in substation connectors. Experimental validation through resistance 

measurements. 

6. Development of electromagnetic-thermal Multiphysics models to simulate the thermal behavior 

of substation connectors. Development of 3D-Finite Element tool to simulate the result of the 

short-time and peak withstand current tests in substation connectors. Development of 3D-Finite 

Element tool to simulate the result of the temperature rise tests in Substation Connectors. 

Validation of the simulation tools with experimental data. 

7. Test and validation of high-capacity substation connectors through standardized short-time and 

peak withstand current test and temperature rise test. 

8. Introduction to the problem of the inductance of the testing loop.  Analysis of formulas to 

estimate inductance of round conductor forming a circular loop. 

9. Optimization of short circuit test. Analysis of a simple setup to minimize the power 

requirements when conducting short-circuits tests for substation connectors. Validation through 

experimental test. 
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2 State of the art 

In this chapter the state of the art about substation connectors and the main testing standards to 

evaluate their performance will be presented. Moreover a digression about HTLS conductors, their 

properties, materials and technology will be shown with the aim to introduce the framework in which 

this thesis has been developed. 

3.1 Substation Connectors 

Electrical substations are localized in the proximity of a production plant, at the point of delivery to the 

end user and the points of interconnection between the lines since they constitute the nodes of 

electricity transmission grid.  

 

Depending on their characteristics, size and function, substations can be divided into four categories [5]:  

 Switchyard at generating station. It connects the generators to the utility grid and provides off-

site power to the plant.  

 Customer substation. This one functions as the main source of electric power supply for one 

particular customer.  

 Switching substation. It involves the transfer of bulk power across the network. Typically it is the 

end point for transmission line originated by generating switchyard and it provisions the 

electrical power for circuits that feed distribution stations. It does not have transformers and 

operates only at a single voltage level.  

 Distribution Substation. It supplies the distribution circuits that directly furnish the electric 

customers.  

 

 

Figure 2.1. Electrical substation 



Substations employ various devices for safety, switching, voltage regulation and measurement. Busbars 

are the main current carrying conductors within a substation. Busbars are made of copper or aluminum, 

and are supplied in many configurations, including rectangular bars, round tubing, square tubing, 

stranded cables, etc.  

Substation connectors are the joints that physically link the power transmission line and the substation 

conductors and busbars [7].  

They are usually divided into different categories, depending on the physical junction between the 

connector and the conductor: mechanical, welded, and compression type are the most common ones. 

The challenge for substation connector design is to meet dimensional, mechanical and electrical 

constraints. Mechanical connectors are often used for substation connections due to their adaptability 

to sizing [6]. 

Substation connectors, which will be considered in this thesis, are, therefore, aluminum alloy devices of 

mechanical type, where coupling parts, that is the parts which transmit electrical power, are 

mechanically joined by applying a specific torque by means of bolts and nuts, with the aim to maintain 

the connection integrity and ensure an adequate contact resistance between connector and conductor. 

Figure 2.2. Substation connectors and their position in an 

electrical substation. 



Mechanical type substation connectors have a wide range of geometries and sizes.  

Fig. 2.2 shows two types of substation connectors belonging to SBI Connectors Spain catalogue. 

Advantages that make mechanical type widely used in transmission systems include: 

 Achieve desired resilience. This helps to reduce the stress due to thermal expansion which tends 

to cause excessive creep. 

 Simple installation and usage. They permit to disassemble the components without damage, 

enabling their re-use. 

Disadvantages of mechanical connections include: 

 Specific torques must be applied to provide proper clamping force. Installers rarely apply 

calibrated torques. Hence, tightening torques applied on identical installations are usually not 

repeatable. 

 Mechanical connections in areas of high vibration may require more maintenance and periodic 

inspection. 

 If insolated connection is required, their geometries make it difficult an appropriate coverage. 

 

Being the high-capacity connector constrained by definition to the HTLS conductors’ technology, in 

this study will be considered the substation connectors that joins two or more HTLS cables, such as the 

T-connectors shown in Fig. 2.  

3.1 Testing standard for substation connectors 

International standards must be considered in order to evaluate substation connectors’ 

performance. The ANSI/NEMA CC1 standard [7] provides standard test methods and performance 

requirements to evaluate the electrical and mechanical characteristics of substation connectors under 

normal operating conditions.  

Current standard tests are performed at room temperature. However, it is well known that HTLS 

cables operate at much higher temperatures and therefore possibly the associated connectors. For high-

capacity substation connectors, the standard framework does not exist yet because it raises complex 

technical challenges that must be addressed in the near future. 

 

Although, from the design point of view, substation connectors are subjected to a large amount of 

variables, this thesis will be focused in those particular parameters that affect their performance when 

connectors are used coupled with HTLS cables. Therefore, with the aim to develop a methodology to 

design high-capacity substation connectors, this work is mainly focused on temperature rise, thermal 

cycle and short-circuit tests. Table 2.1 summarizes testing standards considered in this thesis. 

 

 



Table 2.1. Main testing standards for substation connectors. 

Name Description 
 

Test Year 
 

Ref. 

ANSI NEMA 
CC1 

 

Electrical power connections for 

substations 

Temperature rise 

test 

2009 [4] 

ANSI C119.4 Connectors for use between 

aluminum to aluminum and aluminum 

to cooper conductors designed for 

normal operation at or below 93 degree 

C and copper to copper conductors 

designed for normal operation at or 

below 100 degree C. 

Thermal cycle test 2011 [28] 

IEC 62271-1 High-voltage switchgear and 

controlgear - Part 1: Common 

specifications 

Peak withstand 

current and short-

time withstand 

current test 

2007 [29] 

IEC 61238-11 Compression and mechanical 

connectors for power cables for rated 

voltages up to 30 kV (Um = 36 kV) - Part 

1: Test methods and requirements 

Short-circuit test 2003 [30] 

1 Referred to compression and mechanical connectors for power cables for rated voltages up to 30 kV. 

In the following sub-sections test methods summarized in Table 2.1 are presented, with the aim to 

understand the international standard requirements for substation connectors. 

2..1 Temperature rise test 

The temperature-rise test method is described in the ANSI NEMA CC1- 2009 standard [4], which is 

the main standard reference for substation connectors. 

The temperature rise test is useful to determine the substation connector’s thermal behavior under 

both transient and steady state condition and thus evaluate if its size and design is compatible with the 

electromagnetic-thermal stress, at which it is subjected. The standard explains that, at the discretion of 

the manufacturers, the temperature rise test on electric power connectors may be conducted either 

indoors or outdoors.  

The temperature rise shall be determined at 100, 125, and 150% of the rated current, with 

equilibrium temperatures obtained at each level. The standard describes equilibrium temperature as a 

constant temperature (+/-2ºC) between three successive measurements taken five minutes apart. 

Measurements are made at the end of the first 30 minutes and at one-hour intervals thereafter until 

completion of the test.  

The rated current shall be in accordance with tabulated values that established this value as 

function of conductor size. 



In order to eliminate heat sinks or hot spots on the test loop, conductors of the correct size and type 

may have a length from each opening of the connector to the point where the connection is made to 

the circuit of at least 8 times the conductor diameter (but not less than 1.2 m). 

Moreover, it has to be taken into account that various types of connectors require to be tested in 

accordance with the following specifications: 

 Terminal connectors: The current shall be either the current rating of the equipment to which 

the connector is connected, or the current rating of the conductor for which the opening is 

designed, whichever is lower. 

 Angle and straight connectors: The values of current shall be selected as a function of the 

conductor that has the lower current-carrying value where the openings are of two sizes, and on 

the basis of the conductor that is common to both openings where the openings are of the same 

size. 

 "T" connectors: The test current shall be based on the conductor having the lowest current 

rating in the assembly. 

ANSI NEMA CC1 requires that the temperature rise of the tested electric power connector does not 

exceed the temperature rise of the conductor with which it is intended to be used. The temperature rise 

of an electric power connector, which connects conductors of different sizes, shall not exceed the 

temperature rise of the conductor having the highest temperature rise. 

 

 

Figure 2.3. Results of temperature rise test performed at 100%, 125% and 150% of n % of nominal current established 

for conductor. 

 

2..2 Thermal cycle test 

Connector’s thermal behavior can also be evaluated by means of the standard current cycle test 

regulated by the ANSI C119.4-2011 standard [28]. The current cycle test is a very important tool to 

evaluate the aging process of connectors. Thermal cycles result in thermal expansion and contraction of 

the electrical contact interface, which contributes to degrading the contact points [14]. The test current 



must be adjusted to result in a steady-state temperature rise on the control conductor between 100°C 

and 105°C above ambient temperature. Temperature measurements of the connectors, conductors, and 

ambient air have to be made at the end of the specified heating cycle, immediately before the current is 

turned off, whereas resistance measurements have to be made at the end of the heating cycle period, 

with all connectors thermally stabilized at the room temperature. 

 

Figure 2.4. General graph of an heat cycle provided by the IEC 61238-1 standard. 

The resistance of the tested connection shall be stable. Stability is achieved if any resistance 

measurement, including allowance for measurement error, does not vary by more than ±5% from the 

average of all the measurements at specified intervals during the course of the test. Moreover, the 

temperature of the tested connector shall not exceed the temperature of the control conductor. 

2..3 Peak withstand current and short-time withstand current test 

According to IEC 62271-1:2007 [29] standard the rated short-time withstand current, often denoted 

as Ik, is the root-mean-square (RMS) value of the current that the analyzed electrical device can 

withstand under specified conditions during a prescribed period of time, while the rated peak withstand 

current, , denoted as Ip, is defined as the peak value of the first major loop (Fig. 2.5) of the rated short-

time withstand current which the electrical device under analysis can withstand under specified 

conditions. For a frequency of 50 Hz, the rated peak withstand current is equal to 2.5 times the rated 

short-time withstand current. The standard duration of short circuit is 1 s. If necessary, a value lower or 

higher than 1 s may be chosen (most used values are 0.5 s, 2 s and 3 s).  

 

Steady-state temperature 

http://www.mdpi.com/1996-1073/9/6/418/htm#fig_body_display_energies-09-00418-f001


 

Figure 2.5. Short-time withstand current (Ik) and peak withstand current (Ip). 

To verify that the connector has not suffered significant damage due to the peak and short-time 

withstand current tests, it has to accomplish a main requirement:  the connector must not have suffered 

visible damages. Moreover, the resistance of the connectors shall be measured; if the resistance has 

increased by more than 20 %, and if it is not possible to confirm the condition of the contacts by visual 

inspection, an additional temperature-rise test should be performed. 

2..4 Short-circuit test 

According to the IEC 61238-1:2003 Standard  [30] which regulates the short-circuit tests for low- and 

medium-voltage connectors, the short-circuit current must raise the temperature of the reference 

conductors from an initial value of 35 °C up to 250–270 °C. The duration of the short-circuit current shall 

be in the range [0.9, 1.05] s when applying a maximum current of 25 kA. If the required short-circuit 

current exceeds this value, a longer duration up to 5 s with a current level between 25 kA and 45 kA can 

be applied to reach temperatures of 250–270 °C. 

2..5 Other tests 

Although other tests will be treated briefly, it is necessary to clarify those improvements on high 

current, and thus high temperature performances will not worsen the connector behavior when 

performing other tests. The mandatory tests required for substation connectors [4] to ensure their 

performance once installed in high voltage transmission systems are listed as follows. 

 Pullout strength test: in this test the connector is fastened to the conductor by means of bolts 

at a recommended torque. Then, a tensile load is applied to the conductors. As a result, the 

pulling velocity must not exceed 20.8 mm·min-1 per meter length. 



 Corona and radio interference voltage test: this is maybe the most complex test since it 

consists on determining the voltage at which corona appears. This test requires a high voltage 

generator to energize the test samples at these voltage levels. It also requires a shielded room 

protected against external EMI sources. Although, tests are usually performed under dry 

atmospheric condition, also there exist standard procedures to perform wet and artificial 

pollution tests. 

 Torque strength test: in this test the conductors shall be assembled in the connector and the 

bolts tightened uniformly and alternately at 113 N·m and being tightly incremented until a 50% 

over the nominal torque value is achieved without fracture. 

3.1 HTLS Technology 

With the growth in electrical power demand, problems associated to the increasing electric power 

demand and minimal constructions of new power lines are ensured.  

This problem has led to find for other realistic and feasible solutions to solve this saturation 

problem. Different possibilities have been proposed in the last years. However, the solution which 

appears more feasible from a technological, economic and social point of view is based on increasing the 

capacity of existing lines by replacing conventional conductors with new conductors that either have 

lower electrical resistance and/or are capable to operate at higher temperature within the existing line 

limits of sag and tension [31]. Many methods of increasing thermal rating have been presented, some of 

which are described below:  

 Increasing the ampacity of an existing line using a replacement conductor larger than the 

original one (having lower resistance). The main negative effect is the increase of both ice and 

wind loads and tension loads on existing structures. A larger conventional conductor, thus, 

requires the reinforcement of suspension structures.  

 

 Increasing the ampacity of an existing line by using a replacement conductor with nearly the 

same diameter as the original conductor but capable of operation at higher temperature (within 

existing sag clearance and loss-of-strength constraints). This second solution does not suffer the 

problems of the first one and avoids the need for reinforcement of suspension structures. These 

conductors are known as High-Temperature Low-Sag (HTLS) conductors; HTLS conductors can 

operate continuously at temperatures as high as 200°-250º C, allowing in many cases almost 

doubling the capacity of existing lines [3].  

 



 

Figure 2.6.Method for increasing current line capacity. 

Therefore, the main advantage of HTLS conductors is an increased line ampacity with minimal 

changes in the mechanical structure of the existing line. 

 

2..1 Materials and properties 

HTLS conductors are constructed with a combination of aluminum (or aluminum alloy) wires, which 

provide conductivity, and core wires to offer mechanical strength. The main constituent materials used 

in HTLS conductors are diverse: some cores are common steel strands coated with zinc, zinc alloy, or 

aluminum. Other conductors utilize new materials like fiber reinforced aluminum composites or fiber 

reinforced polymer composites [32] 

There are several basic categories of HTLS transmission conductors as shown in Table 2.2. It is worth 

noting that each conductor is a combination of structural core material and conductive material [31]. 

Table 2.2. Basic categories of HTLS transmission conductors. 

Acronym Name  External wires Core 

wires 

ACSS Aluminum Conductor. 

Steel Supported 

 

Aluminum Steel 



ACSS - TW Trapezoidal shaped 

strands, Aluminum 

Conductor. Steel 

Supported 

 

Aluminum 

(Trapezoidal 

shaped) 

Steel 

G(Z)TACSR Gap Type (Ultra) 

Thermal Resistant 

Aluminum Alloy Conductor, 

Steel Reinforced 
 

Aluminum Alloy Steel 

T(K)(Z)ACSR Thermal (High 

Strength) (Ultra) Resistant 

Aluminum Alloy Conductor, 

Steel Reinforced 

 

Aluminum Alloy Steel 

X(Z)TACIR Extra (Ultra) Thermal 

Resistant Aluminum Alloy 

Conductor, Invar 

Reinforced 

 

Aluminum Alloy Invar 

ACCR Aluminum Conductor, 

Composite Reinforced 

 

Aluminum Composite 

ACCC Aluminum Conductor, 

Composite Core 

 

Aluminum Composite 

 

The thermal rating of alloy aluminum conductor steel reinforced (ACSR) based lines is limited by the 

maximum sag or by the annealing of aluminum strands. The standard thermal limit of Al-alloys is about 

90°C - 100°C. The thermal limit is established in this range of temperature because any further heating 

can anneal the conductor. 

To avoid annealing three techniques are possible:  



 Anneal intentionally the aluminum used to produce conductors before installation; factory 

annealed aluminum uses the acronym ACSS.  

 Provide an alloy that is immune to annealing at high temperature.  

 Alloy the aluminum with zirconium. This is done in varying degrees to produce TAL, ZTAL/UTAL 

and XTACIR designated alloys.  

The improved performance of HTLS conductors therefore originates lower thermal expansion 

coefficients and enhanced behavior of tensile strength with temperature. There is a great variation of 

commercially available HTLS conductors; several types can be considered depending on the core and 

conducting material [33], [34]. 

 ACSS (Aluminum Conductor Steel Supported): Fully annealed aluminum strands over a 

conventional steel stranded core. 

 GTACSR (Gapped TAL Alloy Aluminum Conductor Steel Reinforced): High-temperature aluminum 

alloy strands (TAL) separated by an oil-filled gap from a conventional steel stranded core. 

 (Z)TACIR (Zirconium Alloy Aluminum Conductor Invar Steel Reinforced): High-temperature 

aluminum alloy strands (TAL, ZTAL, KTAL and XTAL) over a low-thermal elongation steel alloy 

(INVAR). 

 ACCR (Aluminum Conductor Composite Reinforced): ZTAL wires over a low-thermal elongation 

metal matrix composite core. 

 ACCC (Aluminum Conductor Composite Core): Fully annealed aluminum strands over a low-

thermal elongation polymer matrix composite core. 

Only the XTAL version reaches thermal limits as high as the annealed standard alloy. This kind of 

alloy also modestly increases the aluminum’s resistance whereas annealing reduces it. These alloyed 

conductors are combined with standard or special steel core materials and have the same weight to 

diameter ratios as ACSR counterparts and almost the same sag-temperature relationship. The sags are 

large at high temperatures because the thermal expansion characteristics are basically unchanged from 

the standard ACSR values [31]. 

The material properties and phenomena that control transmission line design are [32]: 

 Tensile strength, density and elongation to failure are the main properties that can affect line 

design tension and sag. 

 Elastic modulus of core materials affects the line sag. A high value of this property causes a 

minimal sag change; conversely, low value of elastic modulus can cause large sags under 

conditions of heavy mechanical load. Heavy ice and wind represents high mechanical loads. 

 Coefficient of thermal expansion. Thermal elongation is defined by the coefficient of thermal 
expansion (CTE). For HTLS conductors, since aluminum has a larger CTE than the core, the CTE of 
the core affects the maximum sag of the conductor. At high temperature operation the 
aluminum transfers its mechanical load to the core, so the core has to withstand most of the 
mechanical load.  

 Electrical conductivity concerns to the outer aluminum material, which provides the majority of 
the electrical conduction.  

 Fatigue resistance is affected by aeolian vibration (low amplitude, high frequency process; 
occurs in a range of 10-100 million cycles) and galloping (high amplitude, low frequency process; 
it occurs in a range of 10-100 thousand cycles). It does not represent a problem for steel and 



composite cores. Fretting the aluminum layers at support locations typically causes fatigue 
failures in conventional conductors.  

 Creep is a time dependent permanent elongation of the conductor under a sustained 
mechanical load. Aluminum and Al-alloys can suffer this problem (they exhibit a higher creep 
rate). Conversely, steel and fiber reinforced composite core have very low levels of creep.  

 Corrosion resistance, steel cores need a corrosion protection like zinc (galvanized) coatings, 
aluminum cladding, or zinc- 5% aluminum-mischmetal coatings. Aluminum has good corrosion 
resistance in almost all environments; but aluminum corrosion can occur in particular 
environments like oxygen deficient cells, in salt polluted environment. Corrosion in metal matrix 
composites can occur in the interfacial boundary between fiber and matrix. Furthermore, it is 
necessary to evaluate the formation of galvanic coupling between the core and the outer 
aluminum strands. 

 Environmental aging of polymer constituents (moisture, heat, UV) can decrease tensile and 
flexural strength, or can induce changes in glass transition temperature “Tg.” 

 Brittle fracture is a stress-corrosion phenomenon and can occur in glass reinforced polymer and 
carbon polymer systems. The brittle fracture occurs with stress in water or an acidic 
environment (acid rain or acids generated from the interaction of electrical corona and humid 
air). 

 Resistance to sustained high temperature (core) and heat resistance: all the materials that 

compose the conductor (core, outer aluminum, grease) have to resist high temperature 

exposure without appreciable changes in fundamental properties. Steel cores are limited by 

coating breakdown to either 200-250°C (galvanized) or 250-300°C (aluminum-clad and “zinc-5% 

aluminum-mischmetal alloy coated steel wire) due to reaction and breakdown of the protection 

layers. 

 Glass transition temperature of polymer composites (Tg) is the knee point of the curve in 

which the polymer matrix begins to soften. In the proximity of Tg the capacity of the matrix to 

transfer loads between the load-bearing fibers decreases. 

 Flexural strength of polymer composites: the flexural strength of metals and metal matrix 

composites affects the tensile strength of the conductor. 

 Thermal cycling: in fiber reinforced composite materials, due to the different CTE of different 

materials present, thermal cycling induces alternating stress state. It can cause de-lamination, 

matrix aging or cracking in polymer matrix. 

  



3. Materials for high-capacity substation 

connectors 

High capacity substation connectors, compatible with HTLS conductors, will be forced to work 

continuously at higher temperatures when compared to traditional applications. Thus, high-capacity 

connector’s material has to resist high temperature exposure without appreciable changes in its 

fundamental properties. It is possible to define main requirements for high-capacity substation 

connector’s material:  

 Maximize mechanical strength (ultimate tensile strength, yield strength, elongation to failure);  

 Maximize electrical conductivity;  

 Maximize thermal conductivity;  

 Minimize coefficient of thermal expansion;  

 Minimize corrosion behavior;  

To meet these requirements it is necessary to improve the materials currently used to manufacture 

substation connectors.  

 The main mechanical, thermal and electrical properties of the traditional and the improved material 

have to be characterized in order to ensure the reliability of the high-capacity substation connectors. 

Electrical resistivity, which is the main parameter affecting the operating temperature of the connector, 

needs to be evaluated in a wide range of temperatures, from cryogenic up to 200 ºC that correspond to 

the maximum temperature that can be experienced from connector’s material when operates with HTLS 

conductors.  

3.1 Introduction 

Aluminum and aluminum alloys are the most-used materials in high voltage applications. Aluminum 

is a metal of the 3rd group, with atomic number 13 and atomic weight 26.98. It is one of the most 

abundant elements in the Earth's crust, but it is not present in nature as metallic aluminum, but in the 

form of oxides (bauxite). It is one of the most widely used and inexpensive engineering materials and 

has a great number of applications in almost all industrial sectors [35]. Aluminum has high electrical and 

thermal conductivity, paramagnetic behavior, excellent resistance to oxidation and corrosion, good 

workability and low density; all this properties make it very attractive for manufacturing cables and 

substation connectors for high voltage transmission systems.  

Fig. 3.1 shows the Ashby plot of different properties involved in material’s selection for high voltage 

applications. Fig. 3.1 a) shows electrical resistivity in Ω ·m as function of cost (£/m3), whereas in Fig. 3.1 

b) strength in MPa is plotted as function of density (kg/m3), for different materials. 



 

Figure 3.1. Ashby plot of different properties involved in material’s selection for high voltage applications. a) Electrical 

resistivity vs cost and b) Strength vs density. 

Since aluminum has an FCC crystal structure, it is very ductile even at very low temperatures. The 

main limitation of aluminum is its low melting temperature (660 °C) that restricts the maximum 

temperature at which it can be used. Moreover, pure aluminum has poor mechanical properties, which 

do not allow withstand the stresses to which connectors are subjected. 

The mechanical strength of casting aluminum may be enhanced by many methods (alloying, grain 

size reduction, heat treatment, etc.); however, these processes decrease resistance to corrosion, and 

most of the electrical proprieties. Principal alloying elements are copper, magnesium, silicon, 

manganese, and zinc [36]. 

Currently substations connectors are usually manufactured by sand casting. The process, 

characterized by using sand as the mold material is widely used in industrial application since it is 

relatively cheap. 

The main objective of the next sections (3.2 and 3.3) is to present the state of the art about:  

 Microstructure of Al-Mg-Si alloys and its relation with main physical properties;  

 Optimizing alloys’ microstructure;  

3.2 Microstructure of Al-Mg-Si alloys 

Due to the combination between excellent castability and good physical properties, aluminum-

silicon alloys are the most commonly used in most industry sectors and provide about 90% of all the 

casting manufactured [35]. They contain enough silicon to cause the eutectic reaction. Silicon confers 

low melting point and fluidity. As shown in Al-Si phase diagram (Fig. 3.2) the Al-Si binary system forms a 

simple eutectic at the temperature of 577°C and at composition of 12.6% Si. The maximum solubility of 

silicon in aluminum is 1.5 % at the eutectic temperature, and the solubility of silicon increases with 

temperature to 0.016% Si at 1190°C [37]. 



 

 

Figure 3.2. Al-Si phase diagram. 

There is only one invariant reaction in the phase diagram, the eutectic reaction:  

L→α+Si (eutectic)  

The eutectic reaction takes place at 577 °C and at a silicon percentage of 12.6%. The Al–Si eutectic 

can form as follows, in function of the Si concentration [37]:  

 Directly from the liquid in the case of a silicon concentration of 12.6% (eutectic Al–Si alloy);  

 In the presence of primary aluminum in the case of silicon contents <12.6% (hypoeutectic Al–Si 

alloys);  

 In the presence of primary silicon crystals in the case of silicon contents >12.6% (hypereutectic 

Al–Si alloys).  

The following table explains how the eutectic reaction takes place and the evolution of the 

microstructure, with reference to the phase diagram for a hypo-eutectic alloy, as the A356.0, currently 

used to produce substation connectors. 

Table 3.1. Eutectic reaction and evolution of the microstructure for a hypo-eutectic alloy. 

Phase Diagram Microstructure  

 

 
Mixture of Al and Si with a composition at the 

left of the eutectic point. The alloy is fully liquid. 



 

 
The mixture is slow cooled until it reaches 

temperature TL (liquid line). At this temperature 

α-Aluminum phase starts to solidify as dendrites 

at any favorable nucleation sites. Dendrites grow 

to become grains of α.  

 

 

 

 

 
 

The alloy continues to cool.  

Nucleating and growing regions of solid alloy 

form grains and grain boundaries.  

The remaining liquid becomes richer in Si. The 

composition of the solid alpha also becomes 

richer in Si.  

 

 
Solidification of α phase continues until 

enough Al has been removed; liquid is of eutectic 

composition.  

This composition is obtained at eutectic 

temperature, where α stops forming as a discrete 

solid and the remaining liquid starts to solidify 

into the lamellar eutectic composition of α and Si. 

Solid eutectic forms.  



 

 
The existing eutectic nucleation sites will 

grow, adding α to the stripes of α and Si to the 

stripes of Si in the eutectic regions.  

Unlike the alpha solidification, it is not 

necessary to continue decreasing the 

temperature to achieve full solidification (the 

eutectic liquid solidifies in the same way as a pure 

solid, at a specific temperature).  

 

 

 

 

 
The alloy has solidified: the structure is 

composed by grains of Al-α and grains of eutectic 

mixture (α and Si).  

 

 

Generally, hypoeutectic and near-eutectic Al-Si alloys are used when good castability and corrosion 

resistance are required. Moreover, in this class of alloys, the addiction of Mg provides age-hardening, 

through Mg-Si precipitates, and improves mechanical properties of the material [35]. 

Currently, hypo-eutectic cast A356 alloy, also known as Al-Mg0.3-Si7 alloy, whose composition is 

shown in Table 3.2, is the most used alloy of the entire class, an, also, it can be considered the common 

used material to produce substation connectors. 

Table 3.2. Composition of A356.0 alloy. 

Element Percentage 

Aluminum, Al  91.1 - 93.3 %  

Copper, Cu  <= 0.20 %  

Iron, Fe  <= 0.20 %  

Magnesium, Mg  0.25 - 0.45 %  

Manganese, Mn <= 0.10 %  

Other, each <= 0.05 %  



Other, total <= 0.15 %  

Silicon, Si 6.5 - 7.5 %  

Titanium, Ti <= 0.20 %  

Zinc, Zn <= 0.10 %  

 

Microstructure and physical properties of alloys are strongly related.  

The main parameters that control physical properties of A356 are: 

 Grain size and morphology; 

 Primary (DAS) and secondary dendrite arm spacing (SDAS); 

 Shape and distribution of eutectic silicon particles; 

 Secondary phases; 

 Porosity. 

The quality of the microstructure of alloys depends on chemical composition, melting process, 

casting process and solidification rate [38]–[40]. The effects of these variables on microstructure are 

reported in the technical literature [41]–[43]. 

Solidification in hypo-eutectics alloys, as A356, begins with the development of a primary aluminum 

dendrite network. It is well known that fine dendritic microstructures in castings, characterized by low 

dendrite arm spacing, have higher mechanical properties, particularly if the tensile strength and ductility 

are considered. 

The secondary dendrite arm spacing (SDAS), which controls the size and the distribution of porosity 

and intermetallic particles, depends on chemical composition of the alloy, cooling rate, local 

solidification time and temperature gradient. If it is desired that porosity and second phase constituents 

result finely dispersed, SDAS have to be as smaller as possible. Analytical and empirical models 

correlating the main solidification parameters and the secondary dendrite arm spacing have been 

studied by many authors [44], [45]. 

The morphology of the silicon phase can be rod-like (fine-fibrous) or flake-like depending on many 

factors. Day and Hellawell [6] identified the different forms of silicon in Al-Si eutectic as a function of the 

temperature gradient, growth rate and alloy composition. The silicon rod particle diameter, silicon 

spacing and silicon rod length describe the morphology of the silicon phase. 

The solidification rate determines the coarseness of the microstructure including the fraction, size 

and distribution of intermetallic phases. Fig. 3.3 [46] shows the variation of microstructure with cooling 

rate for a hypo-eutectic alloy. Sand casting is the most common process to produce substation 

connectors and presents the lowest cooling rate among the three processes (sand cast, permanent mold 

cast and die cast). The dendrite cells in sand cast are larger, the silicon flakes (shown in dark) are 

coarser. Moreover, the defect size such as pore size is also controlled by the solidification rate. 



 a)  b)  c) 

Figure 3.3. Microstructure obtained with different solidification rate. a) Sand cast. b) Permanent mold cast and c) die 

cast. (from [46]). 

In aluminum casting alloy a small equiaxed grain structure improves not only the resistance to hot 

cracking and mass feeding, but also enhances main mechanical properties of alloy [35]. The most 

evident effects of reduction in grain size are the more uniform distribution of gas porosity and eutectic 

structure. Grain refinement is affected by alloy composition, cooling rate, temperature gradient in the 

melt and, as explained above, casting method. When a casting method characterized by slow cooling is 

used (e.g. sand casting) grain refinement can be achieved by blocking the columnar growth using 

mechanical or electromagnetic forces to detach dendrite arms, or by adding additives (nucleants), that 

provide more nuclei (nucleants provide a surface for growth at the liquid temperature of alloy). 

 

A356 alloy is rarely used in the as-cast condition, because it exhibits relatively poor mechanical 

properties due to the presence of eutectic silicon in the form of coarse acicular plates which act as 

internal stress raisers when a mechanical load. As consequence of poor mechanical properties, A356 

alloy in as-cast conditions cannot be used in high-voltage applications. 

The two main processes used to improve the properties of this alloy are [47]: 

 Heat treatment 

 Chemical treatment 

The heat treatment, a very common process in foundry, is used to obtain desired mechanical 

properties (in terms of tensile strength, ductility and hardness) although it also can affect the electrical 

properties. Heat treatment dissolves precipitates (Mg2Si) in the Al matrix, homogenizes the casting and 

spheroidizes the eutectic silicon.  

The chemical treatment, also known as modification, consists in the addition of small quantities of 

modifier element to the melt. It results in a change of the morphology of the eutectic silicon phase from 

flake-like to fine fibrous, which results in an improvement of the mechanical and electrical properties. 

3.3 Heat treatments  



In order to improve the low mechanical properties of the A356 alloy in as-cast conditions, in 

industrial practice, substations connectors are usually subjected to a heat treatment before being 

installed. The most common heat treatments for A356 alloy are T4 and T6.  

T4 heat treatment consists of solution heat treatment, water quenching and natural aging at room 

temperature to a substantially stable condition, whereas T6 heat treatment consists of a solution heat 

treatment, water quenching and artificial aging.  

Heat treatments, also known as precipitation hardening, are based on the precipitation of small 

dispersed particles of Mg2Si within the phase matrix, which permit to enhance the strength and 

hardness of the alloy. The presence of the precipitate particles and the strain fields in the matrix 

surrounding the coherent particles provide higher strength by hindering the movement of dislocations. 

An alloy is heat treatable if these requirements are accomplished [36]: 

 Appreciable (on the order of several percentual points) maximum solubility of one component in 

the other; 

 Alloying elements exhibit increasing solid solubility in aluminum as the temperature increases 

A356 alloy meets these requirements. 

 

a)  b) 

Figure 3.4. Temperature and time required for T6 (a) and T4 heat treatments (b ). 

In detail, T6 heat treatment consists of [16]: 

1) Solution heat treatment: Formation of a single-phase solid solution by dissolution of all 

solute atoms. It consists of heating the alloy to a temperature within the α phase field 

(T0) and waiting until all the β phase is completely dissolved. 

Solution heat treatment allows obtaining: 

 dissolution of the hardening elements (Mg and Si) into α-AI, 

 homogenization of the casting 

 spheroidization and coarsening of the eutectic silicon. 

In the metallurgical literature, for A356 alloy, for both T4 and T6,  it is reported as reference 

temperature for this treatment 540º C for 12 h [35]; however, many authors [48], [49] have suggested 

both lower temperatures (500°C) and higher temperatures (up to 560°C)  with different treatment 

times. 

2) Quenching to temperature T1 (room temperature). Thanks to the rapid cooling, 

diffusions and the accompanying formation of any of the β phase are prevented. 



3) Precipitation hardening: The supersaturated α-Al solid solution is heated to 

temperature T2 within the region α+β, at which temperature diffusion rate is 

appreciable. The β precipitate phase begins to form (like finely dispersed particles). 

In the metallurgical literature, for A356 alloy, it is reported as reference temperature for this 

treatment 155º C for 3-5 h [35]. After the appropriate aging time at T2, the alloy is cooled to room 

temperature. 

 

In T4 heat treatment the first two steps (solution heat treatment and quenching) are the same 

described for T6 treatment, whereas precipitation hardening is substituted by natural aging, this 

process occurs spontaneously at room temperature until the metal reaches a stable condition. 

The purpose of T4 and T6 treatments is to precipitate out of solution the hardening particles (Mg2Si) 

that were dissolved during the solution heat treatment. The precipitation sequence has been proposed 

by many authors; Dutta and Allen [35] proposed the precipitation sequence in this alloy system as:

 

Figure 3.5. Precipitation sequence for A356.0 alloy proposed by Dutta and Allen [35]. 

Where SSSS is the super-satured solid solution of alpha-phase and solute clusters are clusters of Mg 

and Si atoms. GP is the Guiner Preston zone; precipitation usually starts from the formation of GP zones, 

which can be considered as fully coherent metastable precipitates. The following evolution of the 

microstructure involves the replacement of the GP zones with more stable phases. GP zones elongate in 

the [100] matrix direction and assume a needle shape. The needles grow with time and become rods 

and, finally, platelets (β represents Mg2Si equilibrium precipitates). 

3.4 Chemical modification 

Silicon modification is a practice used to refine the eutectic structure in A356 alloy. The eutectic 

silicon phase in unmodified alloys is present in the form of flake-like or plate-like. Eutectic silicon 

modification can be defined as the transformation of eutectic silicon phase from coarse and plate-like to 

a fine and fibrous. Through this modification, mechanical properties improvement is guaranteed as 

consequence of structure refinement [50].  

Modification can naturally occur at rapid solidification rates (this process is known as quench 

modification) but in the practice, for sand casting characterized by slow cooling rates, modification is 

achieved by small addition of elements of groups IA, IIA and rare earths europium, lanthanum, cerium, 

praseodymium and neodymium (chemical modification) [35].  

In the technical literature the most accepted theory that explains the modification mechanism is the 

one based on growth mechanisms, proposed by Lu and Hellawell [51], which is based on the assumption 

that modifiers retard the growth rate of silicon. Modified action is due to impurity incorporation in 
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silicon structure, that contains more imperfections than unmodified silicon phases; thus, if imperfections 

are a potential site for branching; silicon when grows in a modified structure have to bend and twist, 

and it results in forming a fibrous morphology. 

Fig. 3.6 (source [8]) shows the comparison between the microstructure of unmodified and modified 

hypo-eutectic alloy. Silicon phase is present in the form of coarse and plate-like in first one (a) and as 

fine and fibrous in the second one (b). 

a)  b) 

Figure 3.6. Microstructure of unmodified (a) and modified (b) hypo-eutectic alloy.  

The size requirements for modifier element is [35]: 
𝑅𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑟

𝑅𝑆𝑖
> 1.64 

Where Rmodifier is the atomic radius of modifier element and RSi is the atomic radius of silicon.  

The most used modifier agents in industrial application are sodium and strontium, due to the strong 

modifying action at low concentrations.  

Strontium is usually added to the melt in the form of low-strontium master alloys such as AI-10 wt% 

Sr in the temperature range of 670º C-720º C [35]. Other authors report optimum treatment 

temperatures ranging from 680°C to 750°C in A356 alloy.  

It is reported in literature that is preferable the use of strontium as modifier agent, compared to 

sodium, due to higher recovery (>90%) and lower rate of loss [35]. However, the effect of strontium is 

weaker than that of sodium, especially at low cooling rates. 

3.4.1 Modification of A356.0 alloy for substation connectors 

Chemical treatment, as abovementioned, is not currently used to manufacture connectors even 

though it can improve both electrical and mechanical properties, when compared wih the un-modified 

alloy. The chemical treatment, also known as modification, consists in the addition of small quantities of 

a modifier element to the melt. It results in a change of the morphology of the eutectic silicon phase 

from coarse acicular to fine fibrous, which results in an improvement of both electrical and mechanical 

properties.  

With the aim to characterize the microstructure and main physical properties of the A356-modified 

alloy, some sample material was melted in Giga Foundry (Santpedor, Barcelona) and subsequently the 

T6 heat treatment was applied. Strontium was chosen as modifier agent, due to the strong modifying 



action at low concentrations. It has been performed the modification with the addition of 0.03% of 

Strontium, that was added to the melt in the form of low-strontium master alloys (Al-10 wt% Sr ) at a 

temperature of about 700º C. 

 a)  b)  c) 

Figure 3.7. Different phases of the A356-Sr modified sample’s casting. 

Figs.3.7 shows the main phase of A356-modified sample’s casting. In fig. 3.7 a) it is shown the 

molten metal after the degassing process; in Fig. 3.7 b) the metal is poured into the molt to fill the cavity 

and all the channels. The filling time is very short in order to prevent early solidification of metal. Fig. 3.7 

c) shows the samples before machining and heat treatment. 

3.4.2 Microstructure of un-modified and Sr-modified A356.0 alloy 

The microstructure of un-modified and Sr0.03-modified A356 alloy, has been analyzed and 

compared. The pictures with different magnifications have been taken by means of an optical 

microscope from the Department of Materials of UPC, Barcelona.  

By analyzing the results presented in Table 3.3, it can be observed that the Sr-modified alloy 

presents a fine fibrous eutectic silicon structure (in grey), while in the un-modified alloy, the silicon is 

present as coarse-flakes. 

Table 3.3. Microstructure of un-modified and Sr-modified A356.0 alloy with different magnifications. 

Magnifica

tion 

A356.0 un-modified A356.0 Sr-modified 

5X 

  



10X 

  
20X 

  

3.4.3 Effect of the heat treatment and the chemical modification on electrical 

conductivity and thermal properties of A356.0 alloy 

The effect of heat treatment on electrical conductivity has been studied in the technical literature 

[47]. It has been shown that when applying a solution heat treatment, the electrical conductivity value is 

related to the changes in silicon morphology. The precipitation of Mg2Si during artificial aging, improves 

the electron flow in the aluminum matrix and, therefore, electrical conductivity increases. 

Many authors have studied the effect of strontium modification on electrical conductivity. It has 

been found that strontium modified Al-Si and Al-Si-Mg alloys exhibit a larger electrical conductivity [9], 

[52]. The increase in electrical conductivity is due to the differences in the eutectic silicon shape, since 

the electrons flow more easily through smaller eutectic regions. 

3.5 Characterization of physical properties in un-modified and Sr-

modified A356.0 alloy  

3.5.1 Mechanical properties 

A tensile test, also known as tension test, is the most fundamental type of mechanical test that can 

be performed to characterize the basic properties of a material. In tensile tests the sample is subjected 

to a controlled tension until failure. The test is simple, relatively inexpensive, and fully standardized.  

The strength of interest may be measured as the stress necessary to cause appreciable plastic 

deformation or the maximum stress that the material can withstand. These measures of strength are 

used during the design stage of substation connectors. The material’s ductility, which is a measure of 

the deformation before it fractures, is also a property of great interest in connector’s design. 

The tensile test process involves placing the test specimen in the testing machine and slowly 

extending it until it fractures. During this process, the elongation of the gauge section is recorded 

https://en.wikipedia.org/wiki/Elongation_%28materials_science%29


against the applied force. The engineering strain, ε, is calculated from the elongation measurement by 

means of equation (1)  [53]:  

𝜀 =
∆𝐿

𝐿0
=

𝐿−𝐿0

𝐿0
   (3.1) 

where L0 is the initial gauge length in m, and L is the final length in m.  

The engineering stress, σ, is calculated from the force measurement with the following equation 

[53]: 

𝜎 =
𝐹

𝐴0
     (3.2) 

where F is the tensile force in N and A0 is the nominal cross-section of the specimen.  

Data collected from the machine can be graphed into a stress–strain curve, shown in the Fig 3.8. 

 

Figure 3.8. . General stress–strain curve. Engineering stress (σ) is shown as a function of engineering strain (ϵ). 

The mechanical properties that have been evaluated to characterize and compare the behavior of 

the un-modified and Sr-modified alloys are: 

 Ultimate Tensile Strength (UTS). Ultimate tensile strength is defined as the maximum stress in 

Mpa that a material can withstand while being stretched or pulled before breaking. The UTS is 

usually found by performing a tensile test and recording the engineering stress versus strain. 

The highest point of the stress–strain curve (see point on the engineering stress/strain diagram 

in Fig. 3.8) is the UTS. It has been calculated as the maximum load withstander by the specimen 

divided by its initial section. 

 

 Elongation to fracture (A%). It is the increase in length that has suffered the specimen before its 

fracture. It is measured between two points whose position is normalized and expressed as a 

percentage. 

 

https://en.wikipedia.org/wiki/Deformation_%28engineering%29
https://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve
https://en.wikipedia.org/wiki/Stress_(mechanics)
https://en.wikipedia.org/wiki/Tensile_test
https://en.wikipedia.org/wiki/Stress%E2%80%93strain_analysis#Uniaxial_stress
https://en.wikipedia.org/wiki/Strain_(engineering)
https://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve


Both the ultimate tensile strength (UTS) and elongation to failure (A%) are intensive properties, i.e., 

its value depends on the size of the test specimen. However, it depends on other factors such as the 

preparation of the specimen, the presence of surface defects, the presence of internal pores and the 

temperature of the environment and material. For this reason it is necessary to consider that there is 

significant variability in the values obtained in the measurement of mechanical properties. 

3.5.1.1 Tensile Specimens 

The tensile specimen employed for experimental measurements, shown in Fig. 3.9, has enlarged 

ends for gripping and a circular gage section, which cross-sectional area is reduced so that deformation 

and failure will be localized in this region. Measurements are made in the gage length and the distances 

between the ends of the gage section and the shoulders should be great enough to produce the fracture 

in the gage length. Moreover, the gage length should be large enough compared to its diameter. Fig 3.9 

shows the 2D-drawing and Table 3.4 summarizes the dimensions of the specimens used in this study. 

Table 3.4. Dimensions of the test specimen used in the mechanical tensile tests 

Dimension Value (mm)  

Gauge length G 56±1 

 

Diameter D 14±0.3 

Radius of fillet R R 74 

Length of reduced 

section A 

80±1 

Total length L 200±2 

 

 

Figure 3.9. a) Drawing and dimensions of the test specimen used in the mechanical tensile tests. b) Specimen gripping 

system employed for the experimental test. 

There are various ways of gripping the specimen. In the tests performed in this project serrated 

grips (shown in fig 3.9 b)) have been employed. The most important concern in the selection of a 

gripping method is to ensure that the specimen can be held at the maximum load without slippage or 

failure in the grip section.  

3.5.1.2 Experimental setup 

Tensile strength and elongation to failure are obtained by performing a tensile test with a universal 

vertical testing machine of 5 tons, as shown in Figure 3.10, placed in the Amber-UPC laboratory. This 



type of machine has two crossheads. The first one is adjusted for the length of the specimen and the 

other is driven to apply tension to the test specimen. 

 

Figure 3.10. Vertical bench of 5 tons used to perform the mechanical tensile tests. 

The software integrated in the test machine measures and records in a graph the engineering stress 

σ against the engineering strain ε. The highest point of the stress-strain curve is the ultimate tensile 

strength (UTS). The test specimens, although belonging to the same batch and are apparently identical, 

can still produce considerably different results. Therefore, multiple tests (3 per alloy and for each heat 

treatment) have been performed to determine the mechanical properties. These results are summarized 

in tables 3.5 and 3.6. In addition, the mean and the standard deviation of values are reported in order to 

show the variability of the results. 

3.5.1.3 Results 

Tables 3.5 and 3.6 present results of tensile test for both un-modified and Sr-modified A356.0 alloy. 

Table 3.5. Results of mechanical tests performed on samples of un-modified A356.0 alloy with different heat 

treatments. 

Alloy/Item 
Heat 

treatment 

Ultimate 

tensile strength 

UTS [MPa] 

Mean 

UTS [Mpa] 

Standard 

deviation UTS 

Elongat

ion A [%] 

Mea

n  

A[%] 

Stand

ard 

deviation 

A 

        

A35

6.0 

A 
T0 

146.88 
144,45 8,17 

2,2 
2,20 0,2 

B 151,12 2,0 



C 135,33 2,4 

A35

6.0 

A 

T4 

190,56 

194,48 12,01 

4,0 

3,87 0,81 B 184,93 3,0 

C 207,96 4,6 

A35

6.0 

A 

T6 

273,95 

262,99 9,65 

2,1 

2,17 0,21 B 259,25 2,4 

C 255,78 2,0 

 

Table 3.6. Results of mechanical tests performed on samples of A356.0-Sr modified alloy with different heat treatmens. 

Alloy/Item 
Heat 

treatment 

Ultimate 

tensile 

strength UTS 

[MPa] 

Mean 

UTS [Mpa] 

Standard 

deviation 

UTS 

Elongation 

A [%] 

Mean 

A[%] 

Standard 

deviation A 

A356.0- 

Sr 0,03 

A 

T0 

156.23 

159.22 2.59 

3.32 

3.62 0.28 B 160.85 3.88 

C 160.58 3.66 

A356.0- 

Sr 0,03 

A 

T4 

211.44 

220.71 9.88 

6.24 

6.57 0.58 B 219.57 6.22 

C 231.12 7.,24 

A356.0- 

Sr 0,03 

A 

T6 

267.39 

263.77 3.57 

2.16 

2.22 0.18 B 263.54 2.08 

C 260.25 2.42 

 

From the results summarized in Tables 3.5 and 3.6, the following conclusions are drawn: 

 For the A356.0-Sr0.03 modified alloy specimens with thermal treatment T0 and T4, both the 

ultimate tensile strength and the elongation to fracture are greatly improved; 

 For the A356.0-Sr0.03 modified alloy specimens with heat treatment T6 there is a slight 

improvement in the ultimate tensile strength (less variation between different samples, lower 

standard deviation) and the percentage elongation to fracture, compared to the traditional 

A356.0 alloy. 

From these results it can be stated that the modified alloy presents better mechanical properties 

than the standard alloy, especially for the thermal treatments T0 and T4. 

3.5.2 Electrical Properties 

Electrical resistivity (also known as specific electrical resistance or volume resistivity) is an intrinsic 

property that quantifies the intensity with which a given material opposes to the flow of electric current. 

A low electrical resistivity of the material indicates that it easily allows the movement of the electric 

charge. The SI unit of electrical resistivity is the ohm-meter (Ω⋅m). 



In metals, crystalline defects serve as scattering centers for conduction electrons, therefore, their 

number determines the resistivity of material. The concentration of crystalline imperfections depends 

on temperature, composition, and the degree of cold work of a metal specimen. Experimental 

measurements collected in technical literature demonstrated that the total resistivity of a metal is the 

sum of the contributions from thermal vibrations, impurities, and plastic deformation and this 

phenomena act independently of one another [36]. 

 

The electrical resistivity of the un-modified A356.0 alloy and the A356.0-Sr0.03 modified alloy were 

measured at room temperature and also from room temperature to 200 °C in order to determine the 

temperature coefficient of the resistivity.  

3.5.2.1 Resistivity measurements at room temperature 

The resistivity ρ of a metal can be measured directly in a sample of constant section, when the total 

resistance of the sample R, the length L and the area A of the cross section of the bar are known. 

𝜌 =
𝑅·𝐴

𝐿
    (3.3) 

The experimental method requires great care to ensure that the results adequately represent metal 

resistivity. In this sub-section the procedure used to measure resistivity at room temperature is 

described and obtained results presented.  

Specimens of both un-modified A356.0 and A356.0-0.03Sr modified alloys used for the electrical 

resistivity measurement were fabricated by sand casting and subsequently heat treated following the 

same manufacturing method of the substation connectors. Then they were machined to obtain a 

constant, square or circular section, with a total length of 150 mm. The dimensions of the test pieces 

with the relative dimensional tolerances are summarized in Table 3.7. 

The cross section area of the specimen was measured with great precision to obtain a good 

measure of the resistivity. A digital micrometer was employed to measure the cross section area of the 

test specimens (the side l in the case of square section specimens and the diameter D in the case of 

circular section specimens). Side l and diameter D measurements were made at six points equidistant 

from each other along the total length of the specimen. For the calculation of the electrical resistivity, 

the average value of the cross section at the six points was considered. 

Another important parameter is the length L or distance between the test points that was used to 

measure the voltage drop by applying the 4-point method. This distance was determined with a caliper. 

During the test the room temperature was measured using a digital thermometer.  

The effects of human body heat, the Joule heating due to the DC current flowing, and room 

temperature gradients can cause a temperature rise in the object under test. Therefore, the surface 

temperature of the conductor was monitored during the measurement through a K type thermocouple 

placed in contact with the surface of the specimen. 

Finally, in order to determine the resistivity, electrical resistance measurement Rx of the test 

specimens was carried out. The Kelvin or 4-wire method was employed, using a Raytech Micro-

Centurion II digital micro-ohmmeter, with the following characteristics: 0-200 ADC, accuracy ± 0.1% 

reading ± 0.01μΩ.  



Measurements were performed between point A and point B of the testing specimen. Testing DC 

current was settled to 5 ADC, this value was chosen with the aim to ensure an adequate accuracy but also 

to prevent the heating of the testing object due to the current flow.  

 

Figure 3.11. Scheme of the test setup for measuring electrical resistivity of the alloys. 

Table 3.7. Specimens used for the measurement of the electrical resistivity and the resistivity coefficient. 

Alloy Heat 

Treatment 

Number 

of 

specimens 

Dimensions Length 

A356.0 T0 5 

4 mm± 0.1 

150 mm ± 1 

mm 

A356.0 T4 5 

4 mm± 0.1 

150 mm ± 1 

mm 

A356.0 T6 5 

4 mm± 0.1 

150 mm ± 1 

mm 

A356.0- 

0.03Sr 

T0 4 

4.8 mm± 

0.1 

150 mm ± 1 

mm 



A356.0- 

0.03Sr 

T4 3 

4.8 mm± 

0.1 

150 mm ± 1 

mm 

A356.0- 

0.03Sr 

T6 4 

4.8 mm± 

0.1 

150 mm ± 1 

mm 

 

Table 3.8 shows the results of the electrical resistivity of the standard A356.0 and A356.0-Sr0.03 

modified alloy obtained in this project, normalized at 20ºC. 

Table 3.8. Average resistivity of the standard A356.0 and A356.0-Sr0.03 modified at 20ºC. 

Alloy Heat 

Treatment 

Number 

of samples 

Mean value of resistivity 

at 20ºC (ρ, 10-8 Ω·m) 

A356.0 T0 5 5.27 

A356.0 T4 5 5.24 

A356.0 T6 5 5.21 

A356.0- 0.03Sr T0 4 4.46 

A356.0- 0.03Sr T4 3 4.45 

A356.0- 0.03Sr T6 4 4.27 

 

Results  presented  in Table 3.8 show that for both alloys the T6 heat treatment is the one that 

allows obtaining a smaller resistivity, whereas the T0 (as cast) is the one that provides a higher 

resistivity. Comparing the electrical resistivity values of the un-modified A356.0 alloy and the A356.0-

Sr0.03 modified alloy at 20 °C, a decrease of more than 15% of the resistivity can be observed in the case 

of the modified alloy for the three analyzed heat treatments. This fact is very important as it will allow a 

better thermal behavior of the high-capacity substation connector. 

The decrease of the electrical resistivity is due to the differences in microstructure of the two alloys, 

in particular it can be observed that the eutectic silicon shape and size have an important influence on 

the determination of the electrical properties, since electrons flow more easily through smaller eutectic 

regions. 

3.5.2.2 Temperature coefficient of resistivity 

The electrical resistivity of conductive materials increases with temperature. The temperature 

dependence of resistivity in conductor materials can be considered linear within a limited temperature 

range and described by the following approximation: 

)]·(1·[
00

TT  
    (4) 

where α is the temperature coefficient of the electrical resistivity. 



In order to measure the temperature coefficient of electrical resistivity, electrical resistance 

measurement of the analyzed specimens was carried out from cryogenic temperatures (boiling point of 

liquid nitrogen, -195.79 ºC) to 200ªC.  The Kelvin or 4-wire method was applied using a stabilized DC 

source of 3A and a digital voltmeter (Fig. 3.12 a).  

b) c) 

 d)  e) 

Figure 3.12. Experimental setup for the measurement of the temperature coefficient of electrical resistivity a) Simplified 

scheme of the test setup for the measurement from room temperature to 200ªC.  b) Stabilized current source and voltage 

and current measurement system. c) Temperature-controlled electric oven d) Resistance measurement of the test specimen 

at temperature of boiling point of liquid nitrogen stored in a vacuum flask. e) Resistance measurement of the test specimen 

at temperature of sublimation temperature of dry ice placed in an insulated box . 

The electric potential difference is measured through two tips placed in contact with the surface of 

the specimen, fastened through a ceramic bar, as it can be seen in Fig 3.13. The surface temperature of 

the sample was measured by using a T-type thermocouple placed in contact with the surface of the 

specimen.  

A temperature controlled electric oven (Fig. 3.12 c) was employed to heat the specimen to the 

desired temperature from room temperature to 200ºC.  

Temperature coefficient of resistivity was also characterize at cryogenic temperatures. Specimen 

resistance was measured at the sublimation temperature of dry ice, the solid form of carbon dioxide, 

(−78.5 °C) and liquid nitrogen boiling point (−195.79 °C), as shown in fig. 3.12 d) and e). 

 

 



 
 

Figure 3.12. Experimental setup for the measurement of the temperature coefficient of electrical resistivity. Fixing 

system of the testing specimen. 

Tables 3.9 and 3.10 show the variation of the temperature coefficient of resistivity of the un-

modified A356.0 and A356.0-Sr0.03 modified alloys obtained in this project. 

Table 3.9. Temperature coefficient of resistivity of the un-modified A356.0 and A356.0-Sr0.03 modified alloys from room 

temperature to 200ºC. 

Alloy 
Heat 

treatment 

Number 

of samples 
Temperature range 

Mean temperature 

coefficient (α, 10-3 ºC-1) 

A356.0 

 

T0 5 

20 < T <= 50 ºC 27 

50 < T <= 100 ºC 

 
25 

100 < T <= 150 ºC 23 

150 < T <= 200 ºC 20 

T4 5 

20 < T <= 50 ºC 

 
25 

50 < T <= 100 ºC 

 
23 

100 < T <= 150 ºC 

 
21 

150 < T <= 200 ºC 16 

T6 5 

20 < T <= 50 ºC 

 
24 

50 < T <= 100 ºC 

 
23 



100 < T <= 150 ºC 

 
19 

150 < T <= 200 ºC 17 

A356.0- 0.03Sr 

 

T0 4 

20 < T <= 50 ºC 

 
29 

50 < T <= 100 ºC 

 
25 

100 < T <= 150 ºC 

 
22 

150 < T <= 200 ºC 19 

T4 3 

20 < T <= 50 ºC 

 
27 

50 < T <= 100 ºC 24 

100 < T <= 150 ºC 21 

150 < T <= 200 ºC 19 

T6 4 

20 < T <= 50 ºC 

 
29 

50 < T <= 100 ºC 

 
26 

100 < T <= 150 ºC 

 
24 

150 < T <= 200 ºC 19 

Table 3.10. Temperature coefficient of resistivity of the un-modified A356.0 and A356.0-Sr0.03 modified alloys 

atcryogenic temperatures. 

Alloy 
Heat 

treatment 

Number 

of samples 
Temperature range 

Mean temperature 

coefficient (α, 10-3 ºC-1) 

A356.0 

 

T0 2 
-78.5 < T <= 20 ºC 31 

-196< T <= -78.5 ºC 32 

T4 2 
-78.5 < T <= 20 ºC 28 

-196< T <= -78.5 ºC 29 

T6 2 -78.5 < T <= 20 ºC 30 



-196< T <= -78.5 ºC 30 

A356.0- 0.03Sr 

 

T0 2 
-78.5 < T <= 20 ºC 32 

-196< T <= -78.5 ºC 31 

T4 2 
-78.5 < T <= 20 ºC 27 

-196< T <= -78.5 ºC 27 

T6 2 
-78.5 < T <= 20 ºC 30 

-196< T <= -78.5 ºC 31 

 

3.5.3 Thermal conductivity 

Thermal conductivity is a material property describing its ability to conduct heat. Thermal 

conductivity can be defined as the quantity of heat transmitted through a unit thickness of a material (in 

a direction normal to a surface of unit area) due to a unit temperature gradient under steady state 

conditions. The SI unit of thermal conductivity is W/(m·K).  

In solid materials heat transport is due to lattice vibration waves (phonons) and free electrons. 

Thermal conductivity is determined by these two mechanisms and the total conductivity is the sum of 

the two contributions. In metals a large numbers of free electrons participate in thermal conduction, 

consequently, metals usually exhibit high thermal conductivity [36]. 

Alloying metals with impurities results in a reduction in the thermal conductivity, for the same 

reason that has been explained for the electrical conductivity, that is, the impurity atoms act as 

scattering centers, which results in a decrease of electron motion efficiency. This effect is more 

accentuated if impurity atoms are in solid solution. 

3.5.3.1 The Wiedemann–Franz law 

The thermal conductivity of metals is quite high and those metals that are the best electrical 

conductors are also the best thermal conductors. At a certain temperature, the thermal and electrical 

conductivities of the metals are proportional, but increasing the temperature increases the thermal 

conductivity while decreasing the electrical conductivity. This behavior is quantified in the Wiedemann-

Franz law [54]: 

 

𝐿 =
𝑘

𝜎𝑇
    (5) 

 

where the constant L is the Lorenz number, k the thermal conductivity in W/(m·K), σ the electrical 

conductivity in S/m and T the absolute temperature in K. This relationship is based on the fact that in 

both heat and electric transport, the free electrons of the metal are involved. The thermal conductivity 



increases with the average velocity of the particles because these increase the energy transport. 

However, the electrical conductivity decreases with increasing particle velocity, because collisions divert 

electrons from the charge transport path. The ratio of thermal to electrical conductivity depends on the 

square of the mean velocity, which is proportional to the kinetic temperature. 

3.5.3.2 Experimental setup 

The system consists of three parts, the heating element (hot source), the testing object and the cold 

source. 

The heating element consists of an embedded heating resistor with an electrically power supply 

system. The heating element acts as hot source with the objective to provide and control heat supplied 

to the testing specimen. A hole has been drilled on the top point of the testing specimens with the aim 

to insert the heating resistor, in order to create a temperature gradient along the test sample.  

The testing specimen is an aluminum alloy bar with cylindrical section, which drawing is shown in 

Fig. 3.13. 

 

Figure 3.13. Test specimen use for the measurement of thermal conductivity. 

A set of calibrated T-type thermocouple has been used to measure temperature at different points 

along the testing specimens. Five circular openings (of known length with 40 mm spacing) have been 

drilled through the specimen surface for the insertion of thermocouples for temperature 

measurements.  

The cold-end source consists of an aluminum block with a volume of 0.12x0.12x0.04 m3, which 

thermal inertia is sufficiently high to create the thermal gradient required for heat flow. The aluminum 

block was designed to hold the cylindrical specimen. 



 

Figure 3.14. Experimental setup for the measurement of thermal conductivity. 

3.5.3.3 Thermal conductivity calculation 

Heat conduction occurs when a body is exposed to temperature gradient and heat flows from the 

higher temperature region to the lower region. Under the hypothesis that heat is transferred only by 

conduction, if the metal is uniform (in terms of composition and dimensions) the temperature along a 

chosen length decreases uniformly with distance from the relatively hot region to the cold point. 

The designed system to measure thermal conductivity is based on the definition of thermal 

conductivity as the quantity of heat, ΔQ, transmitted during time Δt through a thickness ΔL, in a 

direction normal to a surface of area A, per unit area of A, due to a temperature difference ΔT, under 

steady state conditions and when the heat transfer is dependent only on the temperature gradient. 

  

𝑘 =
∆𝑄

∆𝑡

∆𝐿

𝐴 ∆𝑇
= 𝑃𝑖𝑛

∆𝐿

𝐴 ∆𝑇
    (6) 

 

Being  ΔL  the distance between measuring points in m, A the cross section of the testing specimen 

in m2, ΔT the temperature gradient in K, Q the thermal energy and t the time in s.  

 



 

Figure 3.15. Semplificated scheme wich explain the mechanism of thermal conduction. the quantity of heat, ΔQ, is 

transmitted during time Δt through a thickness ΔL, in a direction normal to a surface of area A, due to a temperature 

difference ΔT. 

The ration 
∆𝑄

∆𝑡
 is the thermal energy in W which enter in the system and can be written as 𝑃𝑖𝑛. 

If thermal energy is generated by electric heating system, like a resistor, Pin it can be expressed as 

function of the current I in A and voltage V in V applied to the heater. 

𝑃𝑖𝑛 = 𝑃𝑒𝑙 = 𝑉 · 𝐼   (7) 

 

Moreover, it is necessary to take into account that in experimental measurement it is practically 

impossible to perfectly isolate the testing probe from the surrounding air. Therefore, heat transfer 

depends also on convective and radiative phenomena along the sample’s boundaries, and has to be 

taken into account in the calculation of the thermal conductivity. 

Convective and radiative heat flux can be calculated as follows:  

 

𝑄𝑐𝑜𝑛𝑣 = 𝑆𝑒𝑥𝑡 · ℎ · (𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑎𝑖𝑟)    (8) 

𝑄𝑟𝑎𝑑 = 𝑆𝑒𝑥𝑡 · 𝜎 · ε · (𝑇𝑠𝑢𝑟𝑓
4 − 𝑇𝑎𝑖𝑟

4)   (9) 

 

where Sext is the surface in contact with surrounding air in m2, h the convective coefficient in W·m-2K-

1, Tsurf the surface temperature in K, Tair the room temperature in K, ε is the dimensionless emissivity 

coefficient and σ (W/(m2·K4)) is the Stefan–Boltzmann constant. To calculate the surface-to-ambient 

radiation, it is assumed that the ambient behaves as a black body at the temperature Tair. 

 

Therefore, taking into account convective and radiative phenomena, thermal conductivity becomes: 

𝑘 = (𝑉𝐼 − 𝑄𝑐𝑜𝑛𝑣 −𝑄𝑟𝑎𝑑)
∆𝐿

𝐴 ∆𝑇
   (10) 

To estimate the conductive and radiative heat flux along the external surface of the testing 

specimen, thermal FEM simulations have been conducted for each testing sample. An example of results 

provided by thermal simulations is shown in Fig. 3.16. 



 

Figure 3.16. Example of 3D-FEM thermal simulation used to estimate convective and radiative heat flux on external 

boundaries of the testing specimens. 

3.5.3.4 Results 

Results presented in Table 3.11 show that for both alloys the T6 heat treatment is the one that 

allows obtaining a higher thermal conductivity.  Analyzing thermal conductivity values of the un-

modified A356.0 alloy and the A356.0-Sr0.03 modified alloy at room temperature, it can be observed 

that thermal conductivity in modified alloy increases by more than 15% for the three analyzed heat 

treatments, compared with the un-modified alloy. Higher thermal conductivity will allow a better 

thermal behavior of the high-capacity substation connector. 

Table 3.9. Average thermal conductivity of the standard A356.0 and A356.0-Sr0.03 modified at 25ºC. 

Alloy 
Heat 

Treatment 

Number of 

samples 

Mean value of resistivity at 

20ºC (ρ, 10-8 Ω·m) 

A356.0 T0 3 139.6 

A356.0 T4 3 136.8 

A356.0 T6 3 144.4 

A356.0- 0.03Sr T0 3 143.0 

A356.0- 0.03Sr T4 3 147.8 

A356.0- 0.03Sr T6 3 151.2 

  



4. Contact Resistance 

 

The contact resistance defines the energy-efficiency, the stable performance and the long-term 

service of an electrical connection. If the contact resistance is low and stable in time, a good electrical 

connection and a long-term performance of substation connector is guaranteed; whereas, if it is high 

and unstable in time, it could cause overheating of the connector and, consequently, a reduced 

operating life [10].  

Substation connectors are usually considered the weakest points in the power grid, mainly due to 

the poor installation practice and the lack of knowledge of their degradation rate [55]. These facts often 

involve the difficulty to predict the useful life of a component. Moreover, it is worth mentioning that the 

mechanical, metallurgical, thermal and electrical processes involved in the establishment and the 

maintenance of the electrical contact are very complex and nowadays there is a lack of a unified model 

which describes the phenomena occurring at contact interface [55]. With the advent of HTLS 

conductors, the role of the substation connectors in the transmission and distribution system is even 

more critical, because high temperature operation of conductors increases the current density and 

operating temperature of associated connectors. As a consequence, the aging process of connectors is 

accelerated, and thustheir expected service life reduced. Temperature cycling tests (at 125 ºC and 150 

ºC) conducted on connectors that were originally rated for 70 ºC operating temperature have detected 

the electrical and thermal deterioration in most types of connectors [56].  

Thus, if HTLS cables will replace traditional conductors, the installed population of connectors will 

age more rapidly and the number of connector failures will increase due to the increased aging effects 

of higher temperature and current density.  

4.1 Chemical cleaning to reduce the contact resistance  

Connector’s long term performance is directly related to the contact points established during 

installation [10]. The restriction of current flow to these few contact points, shown in Fig. 4.1, also 

known as “a-spots,” constitutes a first contribution to the total contact resistance; this component is 

usually called constriction resistance [12]. 

 

Figure 4.1. Conductor’s surfaces on the micro scale. Current flow is restricted to contact points established during 

installation. 



Constriction resistance depends on some properties of conductor materials, such as hardness and 

electrical resistivity, applied bolts torque, apparent contact area, or surface’s conditions among others.  

Moreover, it is necessary to take into account the presence of a contact interface due to a thin oxide 

film. The common used material to manufacture substation connectors is A356.0 aluminum cast alloy. It 

is well known that aluminum and its alloys react quickly with atmospheric oxygen, and a passivation 

layer of few nanometers of aluminum oxide, usually known as alumina, grows on atmospheric exposed 

aluminum surfaces [13]. Since the aluminum oxide is very insulating material, the electrical current can 

pass across the alumina only thanks to tunneling and fritting mechanisms [55]. As consequence, the film 

resistance is the second component of the total contact resistance of a joint. However, a good electrical 

contact between two conductors can be established only if the contact spots can be created by means 

of the mechanical rupture of the oxide insulating film [55]. 

 

This study aims to propose a surface treatment for substation connector’s and the associated 

conductors, which allows reducing the contact resistance. This treatment consists on a chemical 

cleaning before conventional substation connector’s installation. Contact surface preparation is 

essential to guarantee proper contact between connector and conductor since the contact resistance 

can notably degrade substation connectors’ performance. 

 

4.1.1 Analyzed substation connectors and installation procedures 

Resistance measurements of contact resistance at room temperature has been conducted on a 

junction composed by different typologies of substation connectors from SBI Connectors catalogue and 

32 mm diameter AAAC conductors. Specifically, analyzed connectors are listed below: 

 

Figure 4.2. The substation connectors analyzed. a) S330TLS t-type connector. b) S330SLS coupler connector. c) S330SNS 

coupler connector 

 

 T-connector S330TLS  (I); 

 Coupler with two caps S330SLS (II); 

 Coupler with three caps S330SNS (III). 

Different assembling procedures and surface treatments, summarized in Table 4.1, are studied. 

Table 4.1. Installation procedures applied to substation connectors. 

Installation 

procedure 

Conductor’s surface 

treatment 

Connector’s Surface 

Treatment 

1 Not treated Not treated 



2 

Brushed 

Oxide inhibiting 

compound application 

Brushed 

Oxide inhibiting 

compound application 

3 

Brushed 

Oxide inhibiting 

compound application 

Chemical cleaning 

Oxide inhibiting 

compound application 

 

The conventional assembling procedure consists in brushing both conductor and connector’s 

surfaces just before assembling, with the aim to remove the aluminium oxide film (alumina). After 

brushing it is generally a recommended practice to paint both contact surfaces with an oxide inhibiting 

compound. These compounds ensure good contact and enhance the expected life of the connection 

[11]. 

Chemical cleaning treatment involves the application of a chemical solution on the contact surfaces 

between the connector and the conductor during about 45 minutes, after which the components were 

assembled according to the standard procedure. 

4.1.2 Contact resistance measurements 

The Kelvin or 4-wire method was employed to perform resistance measurements, as shown in Fig. 

4.3. To this end a Raytech Micro-Centurion II digital micro-ohm meter (max. current 200 ADC, accuracy ± 

0.1% Reading ±0.01μΩ) was used. Resistance measurement was performed between points A and B as 

shown in Fig. 4.3. The theoretical resistance of the connectors was calculated through electromagnetic 

FEM-simulation, which was subtracted from the measured resistance, thus obtaining the contact 

resistance. 

 

Figure 4.3. Resistance measurement with the Kelvin 4-wire method. 

Table 4.2.Measured values of contact resistance a total connector’s resistance. 

 S330TLS S330SLS S330SNS 

Installation 

procedure 

Contact 

Resistance 

(µΩ) 

Total 

Resistance 

(µΩ) 

Contact 

Resistance 

(µΩ) 

Total 

Resistance 

(µΩ) 

Contact 

Resistance 

(µΩ) 

Total 

Resistance 

(µΩ) 

1 32.16 36.37 51.42 55.28 52.33 57.13 



2 8.74 12.95 11.01 14.87 9.89 14.69 

3 4.88 9.09 4.54 8.40 5.87 10.58 

 

Resistance measurements shown in Table 4.2 indicate that when no surface treatment is applied 

(procedure 1), the contact resistance is very high, since the rupture of the alumina film caused by the 

axial force due to the bolts assembly is not enough and, therefore, few contact points have been 

established between the contact surfaces of the conductor and connector. The conventional installing 

procedure (2) results in an important decrease of the contact resistance compared to procedure 1, due 

to the mechanical rupture of the oxide insulating film by brushing surfaces. 

With procedure 3 a significant decrease of the contact resistance is obtained compared to the 

conventional procedure, through the almost complete removal of the oxide layer from the surface of 

the connector.  

Experimental resistance measurements clearly demonstrate that oxides and contaminants difficult 

the establishment of a good electrical connection. 

4.1.3 Components of connector’s resistance 

In Fig. 4.4 the different components of S330SNS connector’s resistance with the three installation 

methods are shown. Thanks to estimated value of constriction resistance, calculated by means of Holm-

Greenwood model (eq. 5), which will be fully described in section 4.4.3.1  it is possible to note that, with 

the novel chemical cleaning proposed by the authors (procedure 3), the contact resistance component 

due to the oxide film is practically eliminated.  

 

Figure 4.4. Components of contact resistance for the three installation procedures analyzed. 

4.2 Improved thermal behavior due to the chemical cleaning 

As introduced below, if HTLS cables will replace traditional conductors, the installed population of 

connectors will age more rapidly and the number of connector failures will increase due to the increased 

aging effects of higher temperature and current density.  



Hence the need to characterize the thermal behavior of an electrical contact and optimizing the 

installation procedure of substation connectors in order to reduce contact resistance and ensure a lower 

temperature during normal operating conditions. In section 0 it has been shown that contact surface 

preparation is essential to guarantee proper contact between connector and conductor, since the contact 

resistance can notably degrade substation connectors’ performance. In the technical literature the most 

common installation procedures for aluminum-to-aluminum and aluminum-to-copper connections and 

their performances under thermal cycling are analyzed and compared [12][15][16][17][18]. Most of these 

works, have shown that the mechanical abrasion (reached by brushing surfaces) and lubrication through 

contact aid compound application is the most efficient method to ensure an adequate contact resistance 

in aluminum-to-aluminum connections [55]. However, this practice can be further improved with the 

chemical cleaning described in section 4.1. Results presented have shown that the proposed installation 

procedure allows minimizing the contact resistance of substation connectors, and thus improving energy 

efficiency of the electrical connection. 

The aim of this section is to characterize the relationship between installation procedure, the 

resulting contact resistance and the thermal performance of substation connectors. First of all the 

thermal behavior of substation connectors assembled with the traditional [11] and the new installation 

method proposed by the authors [57] will be characterized by means of the experimental Temperature 

Rise test according to the ANSI/NEMA CC1-2009 standard [4], the Current Cycle test according to ANSI 

C119.4-2011 standard [28] and the short-time withstand current test described in the IEC 62271-1:2007 

[29] standard. Thanks to these results, the temperature and the variation of contact resistance due to 

thermal stress, with the two installation methods, will be analyzed and compared.  Moreover, by means 

of experimental measurements, the temperature dependence of the contact resistance will be analyzed, 

with the aim to characterize the performance of an electrical contact at high operating temperatures.  

Finally, to determine the temperature coefficient of the contact resistance, an experimental 

resistance measurement will be performed continuously during the cooling phase of a contact interface, 

which was previously heated at 200 ºC.  

4.2.1 Traditional Installation Procedure vs Chemical Cleaning 

Experimental temperature rise and current cycle tests have been conducted on a loop composed by 

two different typologies of substation connectors from SBI Connectors catalogue and 32 mm diameter 

AAAC conductors. Specifically, the analyzed connectors are listed below: 

 T-connector S330TLS  (a); 

 Coupler with two caps S330SLS (b); 

The experimental test to characterize temperature dependence of the contact resistance has been 

conducted on a smaller loop composed by a S330SLS connector, which joined two 32 mm diameter 

AAAC conductors.  

Also the experimental short-time withstand current test has been conducted on a smaller loop 

composed by a S285TLS connector, which joined two 27.6 mm diameter GTACSR conductors.  

 



 

Figure 4.5. The substation connectors analyzed. a) S330TLS t-type connector. b) S330SLS coupler connector. c)  S285TLS 

t-type connector 

Different assembling procedures and surface treatments are analyzed and shown in Table 4.3. 

Table 4.3. Installation procedures applied to analyzed connectors. 

Installation 

Procedure 

Surface’s Treatments 

AAAC Conductor Substation Connector 

1  Brushed 

 Oxide inhibiting compound 

application 

 Brushed 

 Oxide inhibiting compound 

application 

2  Brushed 

 Oxide inhibiting compound 

application 

 Chemical cleaning 

 Oxide inhibiting compound 

application 

 

4.2.2 Experimental validation of the thermal improvement due to the chemical 

cleaning 

4.2.2.1 Test 1: Temperature rise test. Traditional procedure vs chemical cleaning. 

The temperature rise test is useful to determine the substation connector’s thermal behavior under 

both transient and steady state condition and thus to evaluate if its design and installation procedure 

are compatible with the electromagnetic-thermal stress at which it is subjected. The temperature rise is 

determined at 100, 125, and 150% of the rated current, with equilibrium temperatures obtained at each 

level. The standard describes equilibrium temperature as a constant temperature (+/-2 ºC) between 

three successive measurements taken five minutes apart. The rated current shall be in accordance with 

tabulated values that establish this value as function of conductor size.  

A temperature rise test according to the requirements of the NEMA CC1-2009 [4] was conducted in 

the AMBER-UPC laboratory. The test object was a closed loop circuit composed of eight connectors, as 

shown in Fig. 4.6. It included four S210ZTLST-connectors, four S210ZA4P23LS terminals and an AAAC 

SALCA 593 conductor with diameter d = 32 mm. The two t-connectors closer to the transformer 

terminals were used with the sole purpose of connecting the loop to the power transformer, so they 

were not taken into account for this analysis. Three connectors were installed according to procedure nº 

1, as shown in Fig. 4.6, whereas the remaining connectors were installed according to procedure No. 2, 

with the purpose of comparing the thermal behavior of connectors assembled with the different 



procedures. The experimental test was performed at atmospheric conditions (18 ºC). Current values 

settled during the test are shown in Table 4.4.  

 

 

 

Figure 4.6. Experimental temperature rise test. Testing loop with connectors with different installation procedures. 

Connectors assembled with procedure No. 1 are indicated in red, whereas connectors installed with procedure No. 2 in blue. 

Table 4.4.Current values settled during the temperature rise test. 

Step Testing current 

% of nominal 

current 

Value 

[ARMS] 

1 100 % 1015 

2 125 % 1270 

3 150% 1525 

 

The experimental setup consists of a single-phase variable autotransformer connected in series with 

a single-phase transformer (120 kVA, 0-10 kA, 50 Hz). They are connected to the test loop, which 

includes the eight connectors described above. A calibrated Rogowski coil probe (Fluke i6000s Flex) was 

employed to measure the output current provided by the transformer at each current level. Current 

measurements have an uncertainty of about 2%. 

To measure the temperature evolution during the transient phase and in steady state condition, 16 

K-type thermocouples with an AISI 316 external sheath of 1 mm diameter were placed on the 

connectors’ bodies and on the top points of two AAAC conductors. A small hole was drilled through the 

connector body, to ensure the contact of the thermocouple with the connector surface. The 

thermocouples were connected to an acquisition card and the signal was processed by a PC. Measures 

were acquired every 10 seconds. 

Results 



The temperature rise test allows determining the substation connector’s thermal behavior under 

both transient and steady state condition. The test was performed at three current levels, as indicated in 

Table II. Fig. 4.7 shows the temperature rise for the three current levels, and the zoom of the third 

current step, that is at 150% of nominal current, for the six connector analyzed.  

 

a)  b) 

Figure 4.7. a) Results of the experimental temperature rise test. In red it is shown the temperature of the connectors 

installed with procedure No.1, whereas in blue connectors assembled with procedure No. 2. b) Zoom of the third step, 

performed at 150% of nominal c current. 

The test demonstrates a better thermal behavior of the connectors installed with procedure No. 2, 

showing a lower transient and steady-state temperature, compared to the temperature of connectors 

assembled with the traditional procedure.  

Table 4.5. Temperature rise test. Steady state temperatures of analyzed connectors, at the third current step. 

Connector 

Steady-state Temperature (ºC) at I3=  1522 ARMS 

 Mean 
Std. 

Deviation 
Type Item Inst. Procedure 

T 3 

1 

141.4 

140.8 3.4 Coupler 4 143.9 

Coupler 7 137.15 

Coupler 2 

2 

133.5 

134.3 1.1 Coupler 5 133.8 

T 6 135.6 

 

Moreover it should be noted that, as summarized in Table 4.5 with procedure No. 2 there is less 

variation of temperature between the three specimens analyzed with the same treatment. This behavior 

is very important to evaluate the stability and the reliability of a connector. 

4.2.2.2 Test 2: Current Cycle test. Traditional procedure vs chemical cleaning.  



Connector’s behavior can also be evaluated by means of the standard current cycle test regulated by 

the ANSI C119.4-2011 standard [28]. The current cycle test is a very important tool to evaluate the aging 

process of connectors. Thermal cycles result in thermal expansion and contraction of the electrical 

contact interface, which contributes to degrade the contact points [55]. The test current must be 

adjusted to result in a steady-state temperature rise on the control conductor between 100°C and 105°C 

above ambient temperature.  

Temperature measurements of the connectors, conductors, and ambient air have to be made at the 

end of the specified heating cycle, immediately before the current is turned off, whereas resistance 

measurements have to be made at the end of the heating cycle period, with all connectors thermally 

stabilized at the room temperature. Fifteen thermal cycles according to the requirements of the ANSI 

C119.4-2011 standard were conducted in the AMBER-UPC laboratory. The test object and the 

experimental setup, shown in Fig. 4.8, were the same explained in the previous section. Experimental 

tests were performed at atmospheric conditions (15 ºC). An additional K-type thermocouple was used to 

measure the room temperature. 

 

Figure 4.8. Heat-cycle test.  Experimental setup. 

Results 

As explained in the previous chapter, the current cycle test allows determining the thermal aging of 

substation connectors. Fifteen thermal cycles according to the requirements of the ANSI C119.4-2011 

standard were conducted in the AMBER-UPC laboratory. Table IV shows the temperature measurements 

performed at the end of the last heating cycle, immediately before the current is turned off. Table V 

shows the connector’s resistance, the contact resistance and its variation before and after the test.  

The theoretical resistance of the connector was calculated through electromagnetic FEM-simulation, 

which was subtracted from the measured resistance, thus obtaining the contact resistance. Results 

summarized in Table 4.6 show that connectors assembled according to procedure No. 2 have a lower 

steady-state temperature, compared to the connectors assembled with the traditional procedure. 

Table 4.6. Heat cycle test. Steady state temperatures of analyzed connectors. Cycle No. 15. 

Connector Steady-state 

Temperature (ºC) 



Cycle 15 

Type Item Inst. 

Procedure 

T 3 1 86.3 

Coupler 4 88.5 

Coupler 7 84.0 

T 2 2 81.4 

Coupler 5 80.6 

Coupler 6 82.6 

 

Moreover, observing results summarized in Table 4.7, the contact resistance variation of the 

connectors assembled with procedure No. 1 is high and instable. Conversely, the contact resistance 

variation for the connectors assembled with procedure No. 2 is lower and stable for both analyzed 

geometries. 

Table 4.7. Heat cycle test. Resistance measurements of analyzed connectors before and after thermal cycles. 

Connector Connector Resistance 

(µΩ) 

Contact Resistance (µΩ) 

Before 

(Cycle 0) 

After 

(Cycle 

15) 

Before 

(Cycle 0) 

After 

(Cycle 

15) 

Var 

 
Type Item Inst. 

Proc. 

T 3 1 9.14 9.84 4.22 4.96 +17.5% 

Coupler 4 11.3 12.04 7.00 7.77 +11% 

Coupler 7 9.40 8.78 5.10 4.51 -11.6% 

Coupler 2 2 6.78 6.82 2.48 2.55 +2.8 % 

Coupler 5 6.80 6.70 2.50 2.43 +2.8 % 

T 6 9.60 9.45 4.68 4.57 +2.3 % 

 

4.2.2.3 Test 3: Short-time withstand current test. Traditional procedure vs chemical 

cleaning.  

With the aim to compare the thermal behavior of substation connectors, installed with the new and 

the traditional installation procedure, subjected to a short-circuit current, two short-time withstand 

current tests according to IEC 62271-1:2007 [29] standard were performed in the AMBER-UPC 

laboratory. 

In the first one, the S280TLS connector was assembled with installation procedure No. 1 (with 

reference to Table X), whereas in the second test another sample of S285TLS connector was installed by 

means of procedure No. 2 with the purpose of comparing the thermal behavior of connectors 

assembled with the different procedures. Experimental tests were performed at atmospheric conditions 

(15 ºC).  



The experimental setup includes a 120 kVA single-phase variable autotransformer [0V- 400V] connected 

to a 120 kVA 400/10 V transformer whose rated output values are 0-10 V, 0-10 kA. The output of this 

transformer was connected to the test loop. The loop current was measured with a calibrated Fluke 

i6000s-Flex Rogowski coil with an uncertainty of 2%. Temperature measurements were performed with 

5 T-type thermocouples placed on the second layer of strands of the tested conductor and different 

points of the connector. Thermocouples signals were acquired every 0.4 ms by means of an OMEGA 

DAQ USB-2400 acquisition card. An additional T-type thermocouple was used to measure the room 

temperature. 

 

The parameters of the short-time withstand current tests are summarized in Table 4.8  

Table 4.8. Parameters for short-time withstand current tests 

Test Highest 

current 

(kApeak) 

RMS value of the ac 

component (kA) 

Joule-integral 

(kA2·s) 

Test 

duration 

(ms) 

Short-time withstand 

current 1 (inst. Proc. No 1) 

14.946 9.456 269.80 3017 

Short-time withstand 

current 1 (inst. Proc. No 2) 

14.803 9.679 281.92 3008 

 

Results 

Fig. 4.11 shows the temperature rise during the short time withstand current test for the T-

connector S285TLS and the HTLS conductor for both installation procedures, due to the short-circuit 

current.  

 



 

Figure 4.9. . a) Results of the experimental short time withstand current tests. In red it is shown the temperature of the 

connectors installed with procedure No.1, while in blue connectors assembled with procedure No. 2. 

The test demonstrates a better thermal behavior of the connector installed with procedure No. 2 

(chemical cleaning), providing a lower transient and steady-state temperature (of about 20ºC), 

compared to the temperature of the connector assembled with the traditional procedure.  

4.3  Determination of temperature dependence of contact resistance 

With the aim to characterize the temperature dependence of the contact resistance in substation 

connectors, an experimental test was performed in AMBER/UPC laboratory. The contact interface 

between a substation connector and a conductor, assembled with procedure No. 2, was heated at 300% 

of nominal current of the conductor until reaching the equilibrium temperature. Then, the power 

transformer was switched off and disconnected from the testing loop. At this point, the contact 

resistance was measured continuatively during the cooling phase. The test object was a closed loop with 

only one connector, as shown in Fig. 4.8. The elements that composed the loop were a S330SLS 

connector and AAAC SALCA 593 conductor with diameter d = 32 mm. Four T-type thermocouples were 

placed on the connector’ body (on the top points of AAAC conductor and in the contact interfaces 

between connector and conductor) to measure the temperature of the test object.  
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Figure 4.10. Determination of the temperature dependence of contact resistance. Heating of the testing loop. 

Resistance measurement with the 4-wires method and thermocouples' position. 

The Kelvin or 4-wire method was employed to perform continuous resistance measurements, as 

shown in Fig. 5. To this end a Raytech Micro-Centurion II digital micro-ohm meter (max. current 200 ADC, 

accuracy ±0.01μΩ) was used. Resistance measurement was performed between points A and B as 

shown in Fig. 4.9.  Simultaneously, the associated temperature was recorded by using thermocouples. 

The contact resistance is obtained by subtracting the resistance of the portion of the conductor and 

the resistance of the connector at the resistance measured between A and B. The theoretical resistance 

of the connector was calculated through electromagnetic FEM-simulation, while conductor resistance 

was obtained. 

4.3.1 Results  

The contact interface between a substation connector and a conductor, assembled with procedure 

No. 2, has been heated at 300% of nominal current, reaching an equilibrium temperature of 200º C. 

During the cooling, the resistance between points A and B, and the temperature of the test objects were 

measured continuously. 

The contact resistance was calculated as: 

 

)()()()( TRTRTRTR CondConnBAC             (4.1) 

 

where Rc is the contact resistance, RA-B the resistance measured between points A and B, RConn the 

resistance of the connector calculated by means of FEM simulation and RCond the conductor’s resistance, 

determined by means of experimental measurements. 

Conductor’s and connector’s resistance are assumed to be temperature dependent: 

 

)](1·[)( ,0,0 CondCondCondCondCondCond TTRTR          (4.2) 

)](1·[)( ,0,0 ConnConnConnConnConnConn TTRTR           (4.3) 



where Tcond and TConn are the temperature of the conductor and connector’s surfaces measured by 

means of T-type thermocouples, R0 the resistance at reference temperature (T0 = 293.15 K) and α is the 

temperature coefficient.  

Fig. 4.10 shows the contact resistance as function of the contact interface temperature.  From the 

analysis of the collected data, it can be concluded that the contact resistance has an almost linear 

behavior between room temperature and 200 °C. Through the linear fit a temperature coefficient α = 

0.0055 ºC-1 was obtained. These results very are useful for simulation purposes, since they allow taking 

into account the dependency of the contact resistance with temperature. 

 

Figure 4.11. Contact resistance as a function of the contact interface temperature.  Measured values and linear 

approximation. 

4.4 GA-Optimized Fractal Model to Predict the Constriction Resistance of 

Substation Connectors 

Since the contact interface restricts the current carrying capacity of any electrical connection [58], it 

is of paramount importance to develop accurate and reliable models to determine the electrical contact 

resistance and therefore the current density distribution across the contact interface in order to design 

optimized and competitive connectors and other electrical devices. The electrical contact resistance has 

two main components. The first term, known as electrical constriction resistance (ECR), leads to an 

additional resistance due to the roughness of the contacting surfaces since the electrical current has to 

flow through the geometric constriction. The second term, known as film resistance, is attributed to 

poorly conductive films or oxides formed at the contacts’ interface [59]. In this work this latter term is 

almost removed by applying a previous chemical cleaning of the interface so that the main term of the 

contact resistance is the constriction resistance. The restriction resistance is greatly influenced by 

different variables such as the applied mechanical load, mechanical and electrical properties of the 

surfaces in contact or environmental conditions [60]. 

Early studies were pioneered by Holm [61] and Greenwood [62], who proposed analytical formulas 

to calculate the ECR due to round shaped clusters [59]. In the literature one can find different methods 



to model the contact resistance of rough surfaces, including statistical, multiscale and fractal models 

[63]. Rough contact surfaces form multiple microscopic contact points which tend to form clusters 

defining a real contact area within the apparent or macroscopic contact area [64]. In a work based on 

finite simulations, Leidner et al. [58] concluded that the current distribution across the contact interface 

of two spherical surfaces is highly influenced by the surface roughness. They observed a steady increase 

of the maximum current density with increasing values of the surface roughness which was attributed to 

a decreasing number of contact spots. 

Surface measurements have revealed  that peaks and valleys profiles associated to rough surfaces 

show a multiscale pattern [59] with no evident smallest scale [64]. Fractal-based models are good 

candidates to reproduce constrictive effects taking into account such different scales [59] since most of 

the statistical models do not consider this phenomenon [63]. An accurate fractal description can be 

achieved by adequately characterizing the physics of the problem. Therefore it is expected that when 

increasing the number of scales, the ECR approaches a limit value even under the elastic approach in 

which the real contact area is assumed to be proportional to the mechanical load intensity [59]. 

However, when considering a limit case with infinite scales, that is, a perfect fractal surface, the true 

area of contact comprises an infinite number of zero size contact spots, which are subjected to an 

infinite contact pressure [65]. According to Kwak et al. [64] and Wilson et al. [63], at sufficient small 

scale, asperities experiment a plastic deformation because the mechanical load intensity excesses the 

critical value, and the areas of contact tend to group into clusters. Compared to pure elastic contacts, 

the pressure in elastic-plastic contacts decreases at the peak points and increases at the valleys and the 

plastic flow flattens the surface  roughness [65].  Therefore accurate ECR models must be able to 

reproduce this effect. The description of surface roughness with an increasing scale resolution leads to a 

progressive increasing number of contact points with smaller area, thus accumulating the individual 

contributions to the area of contact. Since they are connected in parallel, the sum  of these resistances 

decreases, because this is a dominating effect [59]. The number of microcontact clusters determines the 

real contact area, their distribution being severely influenced by the small-scale surface roughness 

whereas their locations are determined by the large scale surface waviness. The ECR depends upon both 

the size and number of microcontacts and their grouping into clusters [66]. 

Due to its random and multiscale nature, an accurate prediction of the ECR of rough surfaces is still a 

challenging problem [59].  Kogut and Kompoupoulos [67] developed a model to determine the contact 

resistance of conductive rough surfaces, assuming a fractal geometry, elastic-plastic asperities and size-

dependent micro-contacts ECR. However, fractal-based models are based on several variables whose 

values need to be tuned for each particular application, since they depend on the nature of the 

contacting surface and specifically the surface roughness. The tuning of these parameters is not a trivial 

task, so an automatic system to perform this operation is highly desirable.  

In this thesis, a genetic algorithm (GA) approach to determine the optimal values of the parameters 

in the fractal model to accurately fit the measured surface roughness with that predicted by the fractal 

model of the rough surface, is proposed. The proposed surface roughness measurement can be done 

with an inexpensive surface roughness tester which is available in many industry laboratories. 

Therefore, from the fractal model of the rough surface a reliable and accurate prediction of the ECR can 

be done if the parameters such as the surface roughness, the apparent area of contact and the contact 

pressure are known. Although the work developed focuses on the calculation of the contact resistance 



of substation connectors during the design stage, the proposed method can be applied to many other 

electrical devices with electrical contacts. 

4.4.1 Surface Roughness Parameters 

This section describes the main indexes used to characterize surface roughness according to the EN-

ISO 4287 international standard [68]. The arithmetical mean roughness Ra [m] is defined as the mean or 

average value of the absolute roughness height ׀zi׀ along the sampling length L,  
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n being the number of points considered within the sampling length L, and zi the roughness height 

value at point i-th. 

The root-mean-square roughness Rq [m] is calculated as,  
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Figure 4.12. Scheme of an electrical joint with conforming surfaces in contact. 

Many simple surface roughness testers assume idealized asperities exhibiting a full-wave 

rectified sinewave shape, thus  Rq can be determined from the measurement of Ra  as [69], [70],  

aq
RR ·11.1          (4.6) 

However, when dealing with rough surfaces with asperities exhibiting a Gaussian distribution, the 

relationship between Rq and Ra can be expressed as [71], 

aaq
RRR 25.1·2/  

     (4.7) 

As expected, the relationship between Rq and Ra depends on the distribution of the asperities, so the 

application of (3) and (4) can lead to inaccurate results. 

Other important roughness-related parameters are the maximum height of the profile, Ry and the 

average maximum height of the profile, Rz, which is defined as the average of the ten greatest peak-to-

valley deviations in the evaluation length. 

vpy
RRR            (4.8) 

where Rp is the maximum peak height and Rv the maximum valley depth. 

The average maximum height of the profile Rz is calculated as, 
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where Rpi and Rvi are, respectively, the i-th  highest peak, and the i-th  lowest valley. 

The dimensionless mean and root-mean square slopes, ma and mq respectively, are other 

parameters used to characterize the morphology of the asperities, 
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The EN-ISO 4287 international standard [68] suggests calculating the derivative term in (4.10) and 

(4.11) as, 
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However, an accurate measure of ma or mq requires complex instruments which are expensive and 

habitually not available. Therefore ma is often approximated by applying different empirical correlations 

in the form ma = x·(Rq)y, where x and y are parameters whose values change depending on the 

bibliographic reference considered [72]–[74].  

 Parameters Rq and ma for an interface formed by two conforming rough surfaces can be calculated 

as [75], 
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subscripts 1 and 2 denoting both contacting surfaces. 

4.4.2 The proposed GA-Optimized Fractal Model  

Mathematical methods accounting for multiscale effects, such as fractal-based algorithms, can 

provide a detailed description of the ECR and thus accurate solutions. Fractal methods are also 

appealing because allow dealing with multiscale topographies since they exhibit scale invariance 

features, so measurements are independent of sample length and instrument resolution [67]. The 

fractal-based ECR theory developed by Kogut and  Komvopoulos (KK) [67] assumes a fractal geometry to 

describe the surface topography, elastic-plastic deformation of the interfacial asperities, and size-

dependent ECR of the microcontacts in the real contact area. The KK fractal model applies a fractal 

approach to describe the roughness of a contact interface by means of scale-invariant parameters. The 

three-dimensional KK surface topography is generated by means of a truncated two-variable 

Weierstrass-Mandelbrot function,  
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where A can be expressed as, 
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(x,y) being the surface points considered in the model, z(x,y) the elevation coordinate of such points, 

L the sampling length, D (2 < D < 3) the fractal dimension, G the fractal roughness, γ > 1 a scaling 



parameter, M the number of superposed ridges applied to generate the surface profile, n the frequency 

index with nmax the upper limit of n, and nm, ( 0 < nm, < 2π) a random phase angle. The fractal 

dimension D is a measure of the complexity of the fractal pattern, thus quantifying the weight of the 

high-frequency components.  

The KK fractal model accounts for elastic-plastic deformation of the interface asperities. This model 

assumes that the contact between two rough surfaces can be modeled by means of a rough rigid surface 

in contact with a smooth elastic-plastic medium.  

It is noted that in the following paragraphs some of the parameters are normalized with respect to 

the apparent contact area Aa, thus resulting in dimensionless parameters that are marked with an 

asterisk. 

When r < l, l being the average mean free path of the electrons in the contacting materials, that is, l 

= (l1 + l2)/2, and r the radius of the apparent area of contact Aa, it is assumed that the electrons pass 

across the contact area without experiencing any scattering, so the constriction resistance is dominated 

by the Sharvin mechanism. Alternatively, when r > l, the constriction resistance is dominated by the 

scattering of electrons across the contact area and thus by the Holm mechanism [67].   

When dealing with cast aluminum substation connectors, the radius r of the apparent area of 

contact Aa is of the order of micrometers (r  ̴ 10-6 m), whereas the mean free path of the electrons for 

aluminum can vary from some tens to several hundred angstroms (l  ̴ 10-9 m to 3·10-8 m), depending on 

their energy level [76]. Therefore, the second condition (r > l) is accomplished in this case and thus the 

ECR is dominated by the Holm mechanism. 

According to the KK formulation, the ECR based on the Holm formulation [77] is calculated as the 

sum of individual parallel resistances corresponding to the constriction resistances of the contact points 

established during the installation of the electrical connection. The dimensionless Holm electrical 

conductivity CH* is calculated as follows, 
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a’S* = a’S/Aa and a’C*= a’C/Aa being, respectively, the smallest dimensionless truncated microcontact 

area and the critical dimensionless truncated microcontact area and Aa the apparent area of contact. 

They set the threshold value between elastic and fully plastic deformation areas. So, when the area of 

the asperities accomplishes a’ > a’C, the asperities experiment an elastic deformation whereas when a’ < 

a’C they experiment a fully plastic deformation. The dimensionless critical truncated micro-contact area 

a’C* is defined as: 
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with b = [0.5·π·(0.454 + 0.41ν1)]2, ν1 being the Poisson’s ratio of the softer material in the electrical 

connection and E [N·m-2] the reduced elastic modulus given by, 

E = [(1 - ν1
2)/E1 + (1 - ν2

2)/E2]-1    (4.20) 



Subscripts 1 and 2 referring respectively, to the softer and harder material, Y [N/m2] being the yield 

strength and K = HB/Y the dimensionless ratio of the hardness to the corresponding yield strength. 

The value of the largest truncated microcontact area a’L*, can be found by solving the implicit 

equation of the dimensionless contact pressure P* = P/(Aa·E),   
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P [N·m-2] being the contact pressure and, 
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It is noted that the only unknown variable in (4.21) is a’L*, so it can be solved by applying a 

numerical method for solving equations, such as the Newton-Raphson algorithm.  

4.4.2.1 KK GA-Optimized Fractal Model 

The truncated two-variable Weierstrass-Mandelbrot fractal function in (4.15) includes different 

parameters (L, G, D, M, g and nmax) that must be tuned to generate a three-dimensional geometry with a 

surface roughness similar to that of the real contact interface. The selection of the optimal values of 

such parameters to accurately reproduce the real rough surface requires the application of specific 

optimization tools. Since parameters L, Lo and Ls can be selected beforehand for the specific application, 

they are assumed as constant values during the optimization process. For consistency, it is suggested to 

consider values of L almost 20 times the highest value of the measured arithmetical mean roughness Ra 

of the two contacting interfaces. The number of ridges M to be superposed to generate the fractal 

surface can be determined as [78], 

M = round(log10(L/Lo)/log10g)    (4.23) 

Lo being the smallest characteristic length which is in the order of equilibrium atomic distance, that 

is Lo ≈ 0.5 nm. 

According to [67], [78], the upper limit nmax of the frequency index n can be calculated as, 

nmax = int[log10(L/Ls)/log g]    (4.24) 

Ls being the lower cutoff corresponding to the size of individual particles [79], usually considered of 

about the material’s interatomic distance [80]. 

In this paper the optimal values of the parameters G, D, M, g and nmax are determined by the GA 

algorithm. Only parameters G, D and g are changed at each iteration by applying the GA rules, since L is 

considered as a constant value and parameters M and nmax are calculated from (4.23) and (4.24), 

respectively. The three-dimensional surface topography is iteratively generated from (14.15) and the L, 

G, D, M, g and nmax parameters values explored by the GA algorithm. Next, at each iteration, the surface 

roughness parameters Ra, Ry and Rz are evaluated by applying equations (4.4), (4.8) and (4.9) for each 

fractal surface obtained.  Then an error or objective function is evaluated by comparing the calculated 

values of Ra, Ry and Rz with those obtained from experimental measurements (Ra_meas, Ry_meas and Rz_meas). 

The selected objective function to be minimized by the GA algorithm is as follows, 
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Note that (4.25) evaluates the quadratic difference between the values of Ra, Ry and Rz calculated 

from the fractal surface generated from (4.15) and those measured by means of a surface roughness 

tester, that is, Ra_meas, Ry_meas and Rz_meas.  

This iterative approach is applied until the error e is below a certain threshold value as shown in Fig. 

4.13. 
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Figure 4.13. GA-based optimized fractal model of the ECR. 

 

4.4.3 Reference ECR Models 

This section develops the HG (Holm-Greenwood) and CMY (Cooper, Mikic and Yovanovich) models, 

which are widely applied and used as reference models for accuracy comparison purposes.   

4.4.3.1 Holm-Greenwood model 

Holm theory of smooth contacts [61] has pioneered ECR models. It assumes that the electrical current 

across rough contact surfaces flows through circular a‐spots (small circular spots). According to the Holm 

model, the constriction of the current paths through the a-spots generates the ECR. Greenwood realized 

that the asperities are often grouped forming clusters [14], [81] and thus improved the Holm’s model by 

adding an additional term to the ECR equation to account for the clusters effects. According to the HG 

(Holm-Greenwood) model, the ECR can be calculated as,  
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r being the electrical resistivity of the contacting surfaces, n the number of a-spots, a the radius of the 



a‐spots and α the cluster radius. It is noted that the first term in (26) is due to Holm whereas the second 

term was added by Greenwood. To calculate (4.26) it is required an accurate knowledge of parameters 

n, a, and α, although this information is often difficult to obtain.  

However, according to [82], the ECR of a fixed area interface is independent of the number and 

geometrical distribution of the a-spots. This means that the first term in (26), that is, 1/(2na), is 

negligible compared to the second term, 1/2α. Therefore by only knowing the cluster radius α, it is 

possible to predict the ECR.  

The real area of contact Ac [m2] is related to the mechanical load F [N] and the plastic flow stress H 

[N/m2] as, 

Ac = F/H      (4.27) 

The cluster radius α can be inferred from the real area of contact as 

 /cA        (4.28) 

Finally, the ECR can be obtained as follows, 
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Since (29) does not consider effects such as surface roughness or the apparent area of contact, its 

accuracy is expected to be limited. For example, when analyzing substation connectors with different 

geometries and, thus, different apparent contact areas, the results predicted by (4.29) will be the same, 

which is no realistic.  

4.4.3.2 CMY Model  

Cooper, Mikic and Yovanovich (CMY) developed a statistical thermal model for the contact resistance  

of rough surfaces [75] which was improved in later works [83]–[86]. This model can also be applied to 

the analysis of electrical contacts because of the close similarity between the thermal and the electric 

models of the contact resistance [87]. The CMY model of the ECR for conforming rough surfaces [75] 

assumes that asperities in the contact interface present a peaks-valleys Gaussian distribution and are 

randomly distributed across the apparent area of contact. The CMY model assumes isotropic rough 

surfaces and plastic deformation of the interfacial asperities. This model calculates the ECR [Ω] as, 
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the electrical conductivity of the joint σjoint [Ω-1·m-1] being calculated as, 
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σ1 and σ2 are, respectively, the electrical conductivities of the two contacting surfaces. The 

dimensionless relative pressure prel at the interface is calculated as [75], 
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ma,joint being the average slope of the asperities in the joint, P the contact pressure [N·m-2], Rq,0 = 

1 µm, H0 = 3178 Mpa and parameters c1 [N·m-2] and c2 (dimensionless) are calculated from the Brinnel 

hardness HB [N·m-2] of the softer material as [75], 
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However, the CMY estimation of the ECR given by (30) depends on the slope ma,joint. Although it can 

be measured by using three-dimensional optical profilers or laser interferometers, they are expensive 

and scarcely found in industrial environments, thus limiting their applicability in numerous industry 

applications. Another possibility is the estimation of ma,joint from the measured values of the surface 

roughness, but this estimation is often inaccurate [88] when applying the approximations found in the 

literature [72]–[74].  These shortcomings in the measurement or estimation of ma,joint limit the 

applicability of the CMY model. 

 

Finally, the ECR is related to the dimensionless Holm electrical conductivity CH* as, 
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Since, as indicated in Fig. 4.14, the analyzed substation connectors dealt with has two identical 

contact areas with the conductors the ECR must be calculated as,  
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Figure 4.14. Contact interfaces (Aa1 = Aa2 = Aa) between the conductors and the substation connector. 

4.4.4 Experimental  

Three types of substation connectors from the catalogue of SBI Connectors and AAAC (All Aluminum 

Alloy Conductor) conductors (SALCA 593, 32 mm diameter) were studied. The studied substation 

connectors are made of A356.0 aluminum alloy with T6 heat-treatment and the AAAC conductors of 

1350 Al alloy.  

Table 4.9 summarizes the electrical and mechanical properties of the connectors’ and conductors’ 

material required for the different models.  

Table 4.9. Aluminum properties 

Variable Description Value Model 

ρ1 Electrical resistivity 5.2·10-8 Ω·m HG-CMY-GA 



of connector’s Al 

ρ2 Electrical resistivity 

of conductor’s Al 

2.9·10-8 Ω·m HG-CMY-GA 

Y Yield strength of 

conductor’s Al 

73 MPa HG- GA 

H Plastic flow stress 

of conductor’s Al 

219 MPa HG 

ν1 Poisson’s ratio of 

connector’s Al 

0.33 GA 

ν2 Poisson’s ratio of 

conductor’s Al 

0.33 GA 

E1 Young modulus of 

connector’s Al 

70 GPa GA 

E2 Young modulus of 

conductor’s Al 

70 GPa GA 

HB Brinnel hardness of 

conductor’s 

material 

150 MPa CMY 

 

Table I only provides information about Y, H and HB of the conductor material since it is the softer 

material in the contact. 

Fig. 4.15 shows the aluminum substation connectors analyzed. 

a) b)  c) 

Figure 4.15. Analyzed substation connectors. a) S330TLS T-type substation connector. b) S330SLS coupler connector. c) 

S330SNS coupler connector. 

 

To minimize the film resistance due to the formation of a nanometric layer of alumina and to 

improve substation connectors’ thermal performance, a chemical solution was applied at the contacting 

surfaces for 45 minutes [57]. Next, the contacting surfaces were cleaned and the connectors and 

conductors were assembled following the standard assembly method [11]. This surface treatment 

provides almost complete removal the alumina film formed at the contact interface, and thus of the film 

component of the contact resistance. 



The surface roughness of both the substation connectors and conductors dealt with was measured 

by using an inexpensive Mitutoyo Surftest 211 surface roughness tester, which provides fast 

measurements of the of Ra, Ry and Rz parameters according to the EN-ISO 4287 standard [68].   

 

     

Figure 4.16.  Roughness measurements performed with Mitutoyo Surftest 211 surface roughness tester on both 

connector’s and conductor’s surfaces. 

The ECR of the connector-conductor system was measured by means of a digital micro-ohm meter 

Raytech Micro-Centurion II, which provides a maximum output current of 200 ADC and a measurement 

accuracy of ± 0.01μΩ.  It is based on the 4-terminal measurement technique. The ECR was measured as, 

ECR = RAB – Rcond – Rconn        (4.35) 

RAB being the resistance measured between points A and B (see Fig. 4), Rcond the resistance of the 

portion of the conductor between terminals A and B, and Rconn the resistance of the connector, which 

can be calculated from electromagnetic three-dimensional FEM (finite-element method) simulations. 

The resistance of the conductor was measured similarly, by using a conductor length of 1 m and then 

the result was scaled proportionally to the length of the conductor between points A and B shown in Fig. 

4.17. 

The axial force F at the contact interface has to be measured to determine the contact pressure P in 

(4.18) and (4.32) and the real area of contact Ac in (4.27). The axial force F was measured by means of 

the experimental torque clamp test, using the same type of stainless steel bolts and nuts required to 

join the connectors and conductors analyzed. After applying a suitable torque to the M10 bolts (35 

N·m), which was controlled by means of a calibrated HBM TB1A torque transducer, the axial force was 

measured by means of a SENSOTEC D/7080-07calibrated dynamometer.  
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Figure 4.17. ECR measurement by using a micro-ohm meter based on the 4-terminal method. 

4.4.5 Results 

In this section the measurements of the ECR measurements of three aluminum substation 

connectors’ models (S3300TLS, S3300SLS and S3300SNS shown in Fig. 4.18) are compared with the 

results obtained from the three different ECR models detailed in previous sections.  

a) b)  c) 

Figure 4.18. Apparent area (in blue) of contact in the three analyzed substation connectors a) S330TLS, b) S330SLS and c) 

S330SNS. 

Table 4.10 shows the parameters required to determine the ECR of the analyzed substation 

connectors and their values.  

Table 4.10. Substation connectors’ parameters 

Variable Description Value Model 

F,TLS
1 Contact axial force2 4x15500 N HG-CMY-GA 

F,SLS
1 Contact axial force2 4x15500 N HG-CMY-GA 

F,SNS 1 Contact axial force2 6x15500 N HG-CMY-GA 

Aa,TLS Apparent area of contact 

(S3300TLS connector) 

2x29.5·10-4 m2 CMY-GA 

Aa,SLS
 Apparent area of contact 

(S3300SLS connector) 

2x32.5·10-4 m2 CMY-GA 

Aa,SNS Apparent area of contact 

(S3300SNS connector) 

2x49.5·10-4 m2 CMY-GA 

2 S330TLS and S330SLS connectors have four bolts in each contact interface, whereas the S330SNS 

connector has six. The total axial force results from multiplying the axial force in each bolt by the number of 

bolts. 



 

The apparent area of contact Aa indicated in Fig. 5, was calculated using a 3D-CAD software. For the 

three analyzed connectors, the two contact areas have the same size, and thus Aa1 = Aa2 = Aa. 

Table III summarizes the results of the surface roughness measurements performed with the 

Mitutoyo Surftest 211 surface roughness tester. It is noted that the data shown in Table 4.11 are the 

average results of 15 measurements done in different points of the analyzed surfaces. 

Table 4.11. Surface roughness measurements. 

Variable Description Value 

Raconnec Arithmetical mean roughness 

of the connector’s surface 

4.08 mm 

Racond Arithmetical mean roughness 

of the conductor’s surface 

0.36 mm 

Ryconnec Maximum roughness height of 

the connector’s surface 

30.45 mm 

Rzconnec Average maximum roughness 

height of the connector’s 

surface 

28.30 mm 

 

Table 4.12 summarizes the parameters used to generate the three-dimensional fractal contact 

interfaces for each substation models analyzed. Note that the parameters the G, D, M,  and nmax were 

obtained from the GA optimization algorithm by applying the method detailed in Fig. 4.13. 

Table 4.12. Parameters used in the GA-fractal model. 

Variable Description S3300TLS 

connector 

S3300SLS 

connector 

S3300SNS 

connector 

G Fractal roughness 1.0427·10-7 6.5789·10-8 4.8985·10-8 

D Fractal dimension 2.3194 2.3084 2.3012 

g Scaling parameter 1.4030 1.4375 1.5433 

M Number of 

superposed ridges 

36 30 45 

nmax Upper limit of the 

frequency index 

27 25 21 

- Grid size 500x500 500x500 500x500 

L Sample length 0.1 mm 0.1 mm 0.1 mm 

Ls Cutoff length 10 nm 10 nm 10 nm 

Lo Smallest 

characteristic length 

0.5 nm 0.5 nm 0.5 nm 

a’s Smallest truncated 

microcontact area 

6·4.5·10-10 m 6·4.5·10-10 m 6·4.5·10-10 m 

 



The smallest truncated microcontact area a’S shown in Table 4.12 was estimated as six times the 

lattice dimension of the contacting material [89].  

Fig. 4.17 shows the three-dimensional fractal surfaces of the contact interfaces obtained by applying 

(12) with L = 0.1 mm, Ls = 10 nm and a grid size of 500x500 points. 

 a) b) 

 c) 

 

Figure 4.19. Plot of the three-

resolution of 500x500 points) of the contact interface of the substation connectors analyzed. a) S330TLS. b) S330SLS. c) 

S330SNS. 

Table 4.13 summarizes the measured ECR values and those obtained with the GA-optimized fractal 

model proposed in this paper and the reference HG and CMY models. 

Table 4.13. ECR Results. Comparison Between Measured and Predicted Values Of The ECR From The Different Models 

Analyzed. 

Substation 

connector 

Measured 

values 

GA-fractal 

Model 

HG 

Model 

CMY 

Model* 

S330TLS 5.55 µΩ 5.54 µΩ 4.26 µΩ 3.57–7.67 µΩ 

Difference 0.1% 23.2% 26.4–38.1% 

S330SLS 5.26 µΩ 5.89 µΩ 4.26 µΩ 3.56–7.65 µΩ 

Difference 11.9% 19.0% 26.0–45.4% 

S330SNS 6.69 µΩ 6.53 µΩ 3.48 µΩ 2.37–5.10 µΩ 

Difference 2.3% 47.9% 23.7–64.5% 

*Rq calculated from (3) and (4) and ma from [17] and [19] 

 



To account for the inherent deviations among different samples, the measured ECR values displayed 

in Table V are the average values of five units of each substation connector model. According to the 

results summarized in Table V, the proposed GA-optimized fractal ECR model is the one providing better 

results when compared to measured data, although the predictions made by both the HG and CMY 

models are of the same order of magnitude than measurements. 

 

 

 

  



5. Electromagnetic-thermal model for high-

capacity substation connectors 

This chapter performs an state of the art of the main ampacity models presented in the technical 

literature and a discussion about the applicability of these methods to HTLS conductors.  

Ampacity models for HTLS conductors have been analyzed with the aim to have available, fastand 

accurate electromagnetic-thermal models for conductors with which to compare the results provided by 

the 3D-FEM simulation, during the development of simulation tools that will be described in sections 5.4 

and 5.5.  

The state of the art of electromagnetic and thermal modeling of electric devices will be also briefly 

summarized in chapter 0.  

After that, the Multiphysics electromagnetic-thermal model developed to simulate the thermal behavior 

of substation connectors will be described and the 3D-FEM simulation tool implemented to simulate the 

short-time and peak withstand current and temperature rise tests will be presented.   

5.1 State of the art 

5.1.1 Ampacity models for conductors 

Many steady-state ampacity models, based on thermal equilibrium equation of conductors, are found in 

the technical literature. The first ampacity model, based on thermal equilibrium equation, was given in 

1958 by House and Truttle [90]. It was followed by Morgan contribution in 1982 [91], and by the more 

recent models developed by CIGRE [92] and IEEE [93] in 1992 and 2007, respectively. Nowadays, these 

two last models are considered the most prominent works about steady-state ampacity calculation of 

conductors. However, a specific ampacity model for HTLS conductors has not been developed yet. 

Currently, it has been studied the applicability of the traditional models to new operating condition of 

new technology conductors [94]. 

 

The thermal equilibrium equation for conductors can be expressed as follows [95]: 

𝑄𝐽 + 𝑄𝑀 + 𝑄𝑆 + 𝑄𝐶𝑜𝑟 = 𝑄𝐶𝑂𝑛𝑣 + 𝑄𝑅 + 𝑄𝐸    (5.1) 

Where left terms are heating sources: QJ is the joule heating in W/m; QM magnetic heating in W/m, 

QS solar heating in W/m and QCor corona heating in W/m; right terms are cooling source: QConv is 

convective cooling (W/m), QR, radiative cooling (W/m) and QE evaporative cooling (W/m).  

Since corona heating and evaporative cooling can be considered negligible comparing to the other 

terms, eq. (5.1) can be rewritten as: 

𝑄𝐽 + 𝑄𝑀 + 𝑄𝑆 = 𝑄𝐶𝑂𝑛𝑣 + 𝑄𝑅  (5.2) 

5.1.1.1 Internal heating due to electric current  



Joule heating is the phenomenon generating heating losses when an electric current passes through 

a material with finite electrical conductivity. Thus, electric energy is converted to heat through resistive 

losses in the material. In the case of alternating currents, heat gain is greater, due to the skin and 

magnetic effect. To take into account these phenomena, Morgan model provides correction factors, 

which vary depending on the number of layers of non-ferrous wire.  

Also CIGRE model considers effects of alternating currents and proposes two different calculations 

of heating, one for non-ferrous conductors and the other for steel core conductors. For ferrous 

conductors CIGRE adjusts the Joule losses term by taking into account skin and magnetic effects. This 

additional term results in an overall reduction in the ampacity rating on ferrous conductors typically 

between 0-3% depending on the number of wire layers and the ampacity rating being evaluated. For 

non-ferrous conductors, CIGRE computes Joule heating in the same manner as the IEEE method.  

The IEEE model uses AC resistance values obtained from manufacturer’s data-sheet, that take into 

account skin and magnetic effects. Since different materials compose the HTLS conductor, the use of 

IEEE model to calculate internal heating appears to be the more precise [95]. 

5.1.1.2 Convective cooling  

Convective cooling is the cooling effect from airflow around the conductor. Both CIGRE and IEEE 

methods evaluate forced and natural convection.  

The IEEE standard presents two equations for forced convection heat loss rate. The first one is 

appropriated for low wind speeds, whereas the second one for high wind speeds. The larger result of 

these two is then used for the convective cooling term in the heat balance equation. If the wind 

direction influence has to be considered, IEEE multiplies the convective cooling by the wind direction 

factor, called Kangle.  

The CIGRE standard introduces convective cooling by means of dimensional analysis that shows that 

certain non-dimensional groups of parameters are useful in convective calculation. Considering the 

difficulty in solving analytically the constitutive equations, in the study of convection it is almost 

essential the experimental analysis on physical models, supported by the dimensional analysis. In the 

last century, the dimensional theory has been profoundly investigated: its highest achievement is the 

Buckingham theorem (or pi-theorem), which states that any equation modeling a physical problem can 

be rearranged in terms of dimensionless ratios [96]. This method allows generalizing the experimental 

results by means of pure numbers, summarized in the following table, each of which is a group of some 

of the physical quantities affecting the convective phenomenon. 

Table 5.1. Dimensionless numbers related with convective phenomena description. 

Variable Expression Description 

Reynolds 

number 
𝑅𝑒 =

𝜌𝐿𝑤

𝜇
 

Represents the ratio between inertial and friction forces. 

Nusselt 
number  
 𝑁𝑢 =

ℎ 𝐿

𝑘
 

Represents the incidence of the convective mechanisms on the 
heat exchange. It is the ratio between the heat that is 
exchanged by convection between the surface and the fluid, 
and the heat that would exchange the same surface by 
conduction through a layer of fluid with zero velocity of 



thickness L. 
Prandtl 
Number  𝑁𝑢 =

𝐶𝑝·𝜇

𝑘
 

Represents the ratio between the availability of the fluid to 
carry momentum and its availability to carry heat; it depends 
on the nature of the medium and its physical state.  

Grashof 

Number 
𝐺𝑟 =

𝑔𝛽(𝑇𝑤 − 𝑇∞)·𝐿
3

𝜇2
 

Represents the ratio between the inertia forces of buoyancy 
and the square of the friction forces.  

 

ρ  being (kg/m3) the air volumetric mass density, w a characteristic velocity of the fluid with respect 

to the object (m/s), L a characteristic linear dimension (m), µ (Pa·s) the dynamic viscosity of air, Cp 

(J/(kg·K)) the specific heat of air, k (W/(m·K)) its thermal conductivity,  g (m/s2) is the gravity of Earth, β 

(1/K) the thermal expansion coefficient, Tw (K) the surface temperature and T∞ (K) the fluid temperature 

far from the object’s surface. 

 

As in the IEEE standard, CIGRE standard also divides the total convection heat loss rate into two 

parts (forced and natural convective cooling) and in addition introduces a third part, corresponding only 

to low wind speeds.  

IEEE uses a tabular method to determine the air viscosity, air density and thermal conductivity while 

CIGRE uses formulas to determine these terms. The effect of these different methods is that, at wind 

speeds less than 5 fps (5.49 km/h) CIGRE calculates a slightly higher value for convective cooling than 

IEEE does. At higher wind speeds IEEE calculates a higher value. The difference for the convective 

cooling term between the two methods is less than 4% for all wind speeds.  

However, at different wind angles there is a greater variation between the two methods. At wind 

angles greater than 10 degrees, CIGRE method calculates values up to 7% higher than IEEE. At wind 

angle less than 10 degrees IEEE calculates a higher value. At 0 degree attack angle, IEEE calculates a 

convective cooling term 18% higher than CIGRE [97].  

Since applicability of dimensionless equations used in CIGRE model is reduced to a maximum value of 

conductor’s temperature of about 100 ˚C, the use of IEEE model to calculate also the convective cooling 

appears the more precise than CIGRE model [95]. 

5.2 Electromagnetic-thermal simulation of power devices 

In order to design the power devices such as substation connectors, the current carrying capacity (or 

ampacity) should be determined exactly since it is limited by the maximum operating temperature. The 

temperature rise in the power devices is primarily due to Joule’s losses although induced eddy currents 

also have a minor contribution. Many authors in the last years have studied this problem and proposed 

various methods to calculate temperature rise in power devices and, mainly, in power conductors. A 

brief summary of the state of the art is reported as follows.  

In 2002 T. Takahashi, T. Ito, T. Okamoto and T. Imajo [98] proposed two temperature rise calculation 

programs for a protection pipe and cable. The program for a protection pipe is based on an equation of 

heat conduction and the Romberg integration algorithm. The program for power cable temperature is 

based on a thermal equivalent circuit and the application of a fast inversion Laplace transform 



algorithm. The cable is assumed as a line heat source in a uniform medium and the transient 

temperature rise is calculated by the one-dimensional heat conduction equation in the cylindrical 

coordinates system.  

Other authors proposed coupled electromagnetic-thermal model to simulate the temperature 

distribution of XLPE cable [99], based on the finite-element method; the temperature distributions in 

single phase and three phase cable with different phases arrangement were calculated without taking 

into account the temperature dependency of material properties, due to the quite small temperature 

rise of the conductor with the applied current rate.  

In 2008, a work related to the temperature rise of the high voltage GIS busbar was presented [100]. 

The temperature rise in GIS busbar is due to Joule's losses in the conductor and the induced eddy 

current in the tank. Heating-loss should be exactly calculated because power losses of conductor, 

calculated by the magnetic field analysis, are used as the input data to predict the temperature rise for 

the thermal analysis. The required analysis, conducted by means of the commercial software ANSYS™, is 

a couple-field multiphysics problem that accounts for the interactions between three-dimensional ac 

harmonic magnetic and fluid fields. Considering the natural convection and the radiation from the tank 

to the atmosphere, the heat transfer calculation is performed using the finite-volume software CFX™.  

Other authors apply similar methods to simulate the temperature rise of busbars [101], [102]. In 

2002 S. W. Kim et al. proposed a coupled finite element–analytic method where the power losses of a 

busbar were calculated from the magnetic field analysis and were used as the input data to predict the 

temperature rise [103]. The authors reported the difficulty to correctly apply the heat transfer 

coefficient on the boundaries, because the coefficient is not a constant, but depends on temperature as 

well as model geometry among others. The heat transfer coefficient was calculated according to the 

model geometry and varying temperature and was coupled with the finite element method. The heat 

transfer mechanism was done by the natural convection and the radiation from the tank to the 

atmosphere. The authors introduced the Nusselt number proposed by Churchill and Chu [104] in order 

to calculate the temperature-dependent heat transfer coefficient exactly.  

Finally, it should be mentioned the only journal article concerning to electromagnetic and thermal 

behavior of substation connectors present in technical bibliography [105]. This work deals with a 400 kV, 

3000 A, 50 Hz extra-high-voltage expansion substation connector used to connect two substation 

busbars of 150 mm diameter each. The substation connector has four aluminum wires, which provide 

the conductive path between both busbars. The authors of the paper reported that tests showed an 

unequal current distribution through the wires, which was mainly attributed to the proximity effect. A 

three-dimensional finite elements method approach was applied to improve the design and evaluate 

the electromagnetic and thermal behavior of both the original and improved versions of the connector. 

The applied methodology to simulate electromagnetic thermal behavior of substation connector can be 

considered the started point to develop a more complex coupled model, by introducing more accurate 

heat transfer calculation, and resistivity dependence of temperature.  

In conclusion, it can be stated that a realistic transient electromagnetic-thermal 3D-simulation 

method for predicting the result of heating tests in complex-shaped electrical connectors as the one 

developed in this thesis has not been studied and developed yet. 



5.3 Electromagnetic-Thermal model for substation connectors 

In this section, the electromagnetic-thermal model developed to simulate the thermal behavior of the 

high capacity substation connector is presented.  

Joule power losses calculated in the electromagnetic analysis are the heat source used as input data of 

the thermal analysis, which allows predicting the temperature evolution and distribution in the 

considered domain.  

5.3.1 Electromagnetic analysis 

Since the supply frequency is 50 Hz, the quasi-static approximation applies [106] and the 

displacement current can be neglected [107], so Maxwell’s equations become,  
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being, respectively, the divergence and rotational operators, E (V/m) the electric field 

strength, B (T) the magnetic flux density, J (A/m2) the electric current density,  and ρe (C/m3) the free 

electric charge density. The charge continuity equation is also considered, 
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The Ohm’s law establishes the relationship between the current density and the electric field as, 

EJ e


·  (5.8) 

where σe (S/m) is the electrical conductivity. 

From (5.8) the resistive or Joule power losses per unit volume (W/m3) can be calculated as,    

EJPJ


·  (5.9) 

Since the electrical conductivity σe is the inverse of the resistivity ρe, which depends on temperature 

[108], [109], it can be written as,  
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T being the actual temperature, ρe,0 the resistivity at T0 = 293.15 K and αe the temperature 

coefficient. Therefore, from (5.8) and (5.10), (5.9) results in, 
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(5.11) 

Resistive losses Pj are the heat source applied in the heat conduction equation detailed below, this 

being the linkage between the electromagnetic and thermal equations.  

5.3.2 Thermal analysis 



The well-known three-dimensional heat conduction equation can be expressed as [110]: 
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(5.12) 

ρ (kg/m3) being the volumetric mass density, Cp (J/(kg·K)) the specific heat capacity andq

 (W/m2) the 

heat flux density. The term EJ


·  (W/m3) represents the specific power due to the Joule effect, that is, 

the heat source as in (5.11).  

The link between the temperature gradient and the heat flux density is provided by the Fourier’s law 

of heat conduction,    

Tkq 


·  (5.13) 

k (W/(m·K)) being the thermal conductivity of the considered material. By combining (5.11), (5.12) 

and (5.13), the heat conduction equation results in[111], 
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(5.14) 

The initial temperature condition for (5.14) is expressed as,  

T(x,y,z,0) = f(x,y,z) (5.15) 

where f(x,y,z) is the initial (t = 0) temperature distribution in the considered domain.  

The natural convection and radiation boundary conditions for (5.14), can be expressed as [112], 

)·(·)·()··( 44 TTTThTkn   


 (5.16) 

 n


 being the unit vector normal to the boundary of the analyzed domain, h (W/(m2·K)) the 

convection coefficient, T∞ (K) the air temperature, T (K) the surface temperature, ε the dimensionless 

emissivity coefficient and σ (W/(m2·K4)) the Stefan–Boltzmann constant. To calculate the surface-to-

ambient radiation it is assumed that the ambient behaves as a black body at temperature T∞. 

5.3.3 Heat transfer coefficients 

In this thesis it is assumed that the cooling effect contribution is due to the thermal radiation and 

natural convection although forced convection is also possible but not applied during the experimental 

tests carried out. The heat transfer due to convection is often based on coefficients obtained empirically 

since it is a complex phenomenon and depends upon several variables comprising surface dimensions 

and shape, flow regime, fluid temperature and properties like density, specific heat, thermal 

conductivity or kinematic viscosity among others [113], [114]. Diverse heat transfer correlations for 

isothermal surfaces of the most usual geometries are found in the bibliography [115], [116]. Since the 

surfaces of the conductor and connector are not isothermal during the thermal evolution, this paper 

deals with heat transfer coefficients that change with temperature, so during simulations they are 

reevaluated at each time step. 

Correlations for horizontal cylinders  

A great number of correlations for natural convection from horizontal cylinders is available in the 

technical literature. Different correlations have been considered and compared to model the convective 

heat transfer on conductor’s surfaces and cylindrical parts of connectors. These correlations have been 



chosen considering the limits of applicability of the different formulas, including the nominal diameter 

of the cylinder D, the ratio between the length and the nominal diameter L/D or the Rayleight number 

among others.  

Table 5.2 summarizes the final conductor temperature in steady state condition, estimated by 

applying the analyzed correlations, whereas Fig. 5.1 shows and compares the estimated temperature vs 

the time, when using the different correlations, and the experimental measurements.  

Table 5.2. Final conductor temperature in steady state condition, calculated by applying the different analyzed 

correlations. 

Correlation Reference Nusselt Number Predicted 
Equilibrium 

Temperature 

(˚C) 

Experimental 
Equilibrium 

Temperature 

(˚C) 

Churchill 
and Chu 

[104] 

 

227.54 226.6 

Kuehn and 
Goldstein 

[117]  
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231.58 226.6 

Ayrton and 
Kilgour 

[118] 

 

211.20 226.6 

Wamsler [119] 
 

215.03 226.6 

Fand et all. [120] 

 

218.15 226.6 

 

where Ra is the dimensionless Rayleigh number, which depends on the characteristic length Lc (m) 

and Pr is the dimensionless Prandtl number defined below. Note that for the surface of the conductors 

and the barrels of the connector Lc is the diameter of the cylinder D and for the flat surface of the 

connector Lc corresponds to the ratio between the surface area and the perimeter. 

 



Time (seconds)

0 2000 4000 6000 8000

T
e

m
p

e
ra

tu
re

 (
ºC

)

0

50

100

150

200

250

Nu - Churchill and Chu

Nu - Kuehn and Goldstein

Nu - Ayrton and Kilgour

Nu - Wamsler

Nu - Fand et all.

Experimental

 

Figure 5.1. Estimated ACSS conductor temperature using different analyzed correlations (in black) and experimental 

measurements (in red). 

As shown in Table 5.2 and Figure 5.1, the correlation which better fits with experimental data are 

Churchill and Chu’s [104] and Kuehn and Goldstein’s [117] formulas. Therefore, these correlations have 

been considered and implemented in the heat transfer model presented in the manuscript. 

Correlations for flat surfaces 

The Nusselt numbers of McAdams [121] have been applied for the remaining surfaces, since they 

have been modelled as flat surfaces with downward and upward cooling. According to McAdams, the 

Nusselt number for downward cooling must be calculated as, 

1054/1 1010          ·27.0  LcLcLc RaRaNu  (5.17) 

Note that (5.17) has been used in the connectors’ bottom parts (Model A: the body of the 

connector; Model B: palm’s surfaces). The McAdams’ Nusselt number for upward cooling is expressed 

as, 

744/1 1010          ·54.0  LcLcLc RaRaNu  (5.18) 

which has been applied to the upper parts of the connectors (Model A: caps; Model B: palms’ upper 

surfaces). 

 

From the dimensionless Nusselt number, the characteristic length Lc (m) and the thermal 

conductivity k (W/(m·K)), the convective coefficient h can be calculated as[122], 
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(5.19) 

From the dimensionless Prandtl and Grashof numbers, one can calculate the Rayleigh number as, 

PrGrRa LcLc ·  (5.20) 



whereas the dimensionless Prandtl number is obtained as, 

kCPr p /·m  (5.21) 

the Grashof number is, 
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Cp (J/(kg·K)) being the specific heat of air, k (W/(m·K)) its thermal conductivity,  µ (Pa·s) the dynamic 

viscosity of air, g (m/s2) is the gravity of Earth, β (1/K) the thermal expansion coefficient, ρ (kg/m3) the 

air volumetric mass density, Tw (K) the surface temperature and T∞ (K) the fluid temperature far from 

the object’s surface. 

Air properties such as µ, ρ and k change with the temperature Tfilm of the air film, so they are taken 

from values tabulated in [123] and updated at each time step, where Tfilm is defined as [124], 
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(5.23) 

Radiative heat transfer 

Emissivity ε in (5.16) plays a key role in calculating the radiative heat exchange. It is known that 

emissivity highly depends upon the condition and aging of the radiating surface, although it is often 

difficult to determine. It is known that for aluminum conductors, emissivity lies in the range 0.2-0.9 

[125].  

 

5.4 3D-Finite Element Analysis of the Short-Time and Peak Withstand 

Current Tests in Substation Connectors 

5.4.1 Introduction 

The fact that the world is more electrical nowadays than few decades ago is a reality. According to 

data compiled by the International Energy Agency [126], the world electricity generation has almost 

quadrupled during the last four decades, with a steady growing tendency. Due to the fast expansion of 

transmission systems worldwide, power networks are becoming more complex and dense. Short-circuit 

currents are increasing, thus growing the risk of damage, since they can exceed the breaking capacity of 

the related protections [127]. Short-circuits in power systems can lead to severe faults [128], therefore 

it is crucial to ensure that  the fault currents are below the limits of the equipment involved. The 

occurrence of short circuit faults develops unusual heating levels and temperatures of the components 

involved, since the electrical protections take some time to clear such faults currents [129].  

Standard short-time withstand current tests and peak withstand current tests, commonly referred 

as short-circuit tests, are applied to several electrical devices, including power transformers, switchgear, 

controlgear and substation connectors, among others. Therefore, there is a persistent attention in these 

standard tests, both in constructing improved facilities to perform the demanding tests, which include 



modern digital measuring systems [130], as well as in developing software tools to realistically simulate 

the performance of different power devices when subjected to short-circuit tests. 

It is well-known that short-circuits generate thermal and electromechanical stresses [19], [20], so 

power systems are designed and tested to ensure that electrical and mechanical devices involved can 

withstand short-circuit conditions. To this end such devices are tested and certified in accordance with 

the short-time withstand current and peak withstand current tests, as defined by different international 

standards [21]–[23]. 

Substation connectors are required to endure a short-time withstand current of around tens kilo-

amps, usually within 1 s [22] to ensure adequate behavior under short-circuit conditions. However, the 

thermal stress generated may increase the contact resistance, thus affecting contact stability [24] and, 

therefore, the expected service life, due to the increase of the electrical resistance and associated 

power losses. Therefore, with the aim of ensuring reliable operation, connectors should not suffer from 

excessive overheating during short-circuit conditions [25], thus, their suitable thermal behavior must be 

ensured. Due to the huge current requirements in terms of required instantaneous power of these 

demanding short-circuit tests [26], they must be carried out in very specific and expensive laboratory 

facilities, in which customers often have to face long waiting times. Therefore, short-time withstand 

current tests are expensive, due to the laboratory facilities requirements, time-consuming due to the 

laborious installation of the experimental setup and destructive, since the test object is usually rejected 

once tested. 

An attractive and cost-effective solution is to dispose of an advanced modelling tool to perform 

realistic simulations to determine the thermal stresses at which substation connectors are subjected 

during short-time withstand current and peak withstand current tests, from which and from experience, 

the risk of increasing the contact resistance can be estimated. Thanks to this modelling tool to assist the 

connectors’ design process, an optimized design can be achieved, thus, satisfying the electromagnetic 

and thermal requirements imposed by the international standards [105] and ensuring to pass the 

compulsory laboratory tests imposed by the standards.  

Modelling the short-time withstand current test and peak withstand current test in substation 

connectors results in a challenging multiphysics problem because electric, magnetic and thermal 

equations must be formulated and solved altogether. In this problem, the heat source is primarily due to 

the Joule’s losses caused by the main current and the induced eddy currents, and therefore, both skin 

and proximity effects must be taken into account. In addition, conductive, convective and radiative 

phenomena must be taken into account to accurately model the thermal behavior of the connector. 

Several authors have attempted to develop electromagnetic and thermal coupled mathematical 

formulations to model the temperature rise or the temperature distribution in different power devices 

such as power conductors and cables, busbars, surge arresters or transformers [101]–[103], [131]–[136] 

among others, by means of 2D- and 3D-FEM approaches. Nevertheless, the abovementioned references 

do not analyze the problem under study, that is, the thermal analysis of the short-circuit test, although 

in [137] a transient 3D-FEM model to simulate the short-time withstand current capability of an air 

circuit breaker is presented. At the authors’ knowledge, no attempts have been done to model the 

electromagnetic and thermal behavior of substation connectors during the standard short-time and 

peak withstand current tests, which can be a fast and valuable tool to optimally design the thermal 

behavior of such power devices, which can be especially useful during the design and optimization 



stages [105]. In this thesis, a multiphysics 3D FEM-based model is proposed to accurately determine the 

thermal behavior of complex-shaped electrical connectors during the short-time withstand and peak 

withstand current tests, which is a novelty since it cannot be found in the technical literature. The 

proposed model deals with heat transfer coefficients whose values are automatically adapted to the 

geometry of the connector and conductors, fluid properties such as density, viscosity or thermal 

conductivity and surface temperatures. Furthermore, it also calculates the transient temperature 

distribution in both the connector and the power conductors or busbars to which the connector is 

linked. Finally, the results provided by the simulation tool are validated by means of experimental data. 

It is worth noting that, although the tool presented here has been focused to simulate the performance 

of power connectors, the approach carried out can also be applied to many other types of power 

devices. 

5.4.2 The Short-Time Withstand Current And Peak Withstand Current 

According to the IEC 62271-1:2007 standard [22], the rated short-time withstand current, often 

denoted as Ik, is the root-mean-square (RMS) value of the current, which the analyzed electrical device 

can withstand under specified conditions during a prescribed short time. These standards also specify 

the rated duration tk of the short-circuit to be 1 s, although 0.5 s, 2 s and 3 s are also permitted for 

switchgear. 

IEC [22], [138] also defines the rated peak withstand current, denoted as Ip, as the peak value of the 

first major loop (see Fig. 2) of the rated short-time withstand current which the electrical device under 

analysis can withstand under specified conditions. It must be selected according to the DC time constant 

(τ = L/R) of the loop under test. 

It is worth noting that substation connectors and other electrical devices must be designed to safely 

withstand their associated rated short-time and peak withstand currents, that is, without causing any 

mechanical damage to their components. Although the IEC-62271-1 standard does not specify any 

temperature limit for the short-time current withstand test, it states that the temperature of the object 

reached during this test must not be enough to produce significant damage and so to demonstrate its 

thermal capability [138], [139]. 

Therefore, the study of the short-time withstand current and peak withstand current tests is of great 

interest in low and high voltage applications, including vacuum and air circuit breakers [24], [137], [140] 

or transformers [130] among others, whose results are very valuable in order to optimize the design and 

behavior of such electrical devices [137]. The differential equation governing the making of an R-L 

inductive loop is given by,  

dt

tdi
LtiRtV vo

)(
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(5.24) 

Therefore, the transient short-circuit current flowing through an inductive shorted loop can be 

written as [137], 
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where 
22

0
)·(/ LRVI

o
  and )/·(tg -1 RL  . From (5.25) it is deduced that by a tight control of the 

voltage phase angle θv during the making instant, the peak value of the transient short-circuit current 



can be changed from I0 to 2·I0. For example, when θv = φ the DC component term in (5.25) is null and 

thus the peak value of the current results in I0. Conversely, when θv = φ + 90º, the DC term is maximum, 

and the peak value of the current is 2·I0. Fig. 5.2 shows the short-circuit current as described by (5.25). 
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Figure 5.2. Short time withstand current (Ik) and peak withstand current (Ip). 

5.4.3 The Analyzed Connectors 

In this thesis, the thermal behavior of a J33SPK two-cap coupler substation connector (Model A) 

made of A356.0 cast aluminum alloy from the catalogue of SBI Connectors, has been analyzed by means 

of simulations and experimental laboratory tests . This connector is shown in Fig. 5.3a. This coupler 

connects two 32 mm diameter Hawthorn AAC (all aluminum conductor) conductors.  

To further validate the coupled electromagnetic-thermal FEM model proposed, simulations are also 

conducted on a bimetallic terminal Class A for low- and medium-voltage applications, reference 

YAT450AM20C (Model B) from the catalogue of SBI Connectors, which is shown in Fig. 5.3b. The 

connector is composed of Al 99.5 % (barrel), and Cu 99.9 % (palm). It connects two 450 mm2 AA-8030 AL 

conductors. 

 
(a) 

 
 (b) 

Figure 5.3. a) Two-cap J33SPK coupler substation connector. b) Bimetallic YAT450AM20C T connector. 

The main characteristics of the analyzed connectors are summarized in Table 5.3. 



Table 5.3. Analyzed connectors 

Model Connector Conductor Parts Material 

A Coupler substation connector 

(J33SPK) 

Hawthorn 

AAC 

604.2 mm2 

AAC conductor Aluminum 

Coupler connector A356.0 alloy 

Bolts Steel 

B Bimetallic terminal CLASS A 

(YAT450AM20C) 

AA-8030 AL 

450 mm2 

AA-8030 AL Conductor Aluminum 

Terminal’s barrel Aluminum 99.5% 

Terminal’s palm Copper 99.9% 

5.4.4 The 3D-FEM Model 

The model proposed in this thesis is based on three-dimensional finite element modelling (3D-FEM) 

because it is a recognized means to simulate the electromagnetic and thermal behavior of three-

dimensional objects with complex shapes [141], [142]. The problem under study has to be analyzed by 

applying a multiphysics approach, since it involves coupled electro-magnetic-thermal physics. To this 

end, the COMSOL® Multiphysics package [143]  has been used.  

The implemented 3D electromagnetic-thermal model is fully described in section 5.3. 

 

 
a)  

b) 

Figure 5.4. a) Model A. Mesh of the two-cap J33SPK coupler substation connector. b) Model B used to validate the 3D-

FEM model proposed in this thesis. Mesh of the YAT450AM20C bimetallic compression connector 

Table 5.4 summarizes the magnetic and electric parameters applied in the 3D-FEM model. 

Table 5.4. Electric and magnetic parameters considered in the model 

Quantity Symbol Unit Value 

Free-space permeability µ0 N/A2 4π×10-7 

Aluminum relative permeability µr,Al - 1 

A356 alloy relative permeability µr,A356 - 1 

Copper relative permeability µr,Cu - 1 

Air relative permeability µr,air - 1 



Free-space permittivity ε0 F/m 8.85×10-12 

Aluminum relative permittivity εr,Al - 1 

A356 alloy relative permittivity εr,A356 - 1 

Copper relative permittivity εr,Cu - 1 

Air relative permittivity εr,air - 1 

Aluminum reference resistivity ρAl Ω·m 2.77×10-8 

A356 alloy reference resistivity ρA356 Ω·m 4.44×10-8 

Copper reference resistivity ρCu Ω·m 1.68×10-8 

Aluminum temp. coefficient αAl 1/K 0.0041 

A356 alloy temp. coefficient αA356 1/K 0.0028 

Copper temp. coefficient αCu 1/K 0.0039 

 

Table 5.5 summarizes the thermal parameters applied in the 3D-FEM model. 

Table 5.5. Thermal Parameters Considered In the model 

Quantity Symbol Units Value 

Aluminum mass density ρAl kg/m3 2700 

A356.0 alloy mass density ρA356 kg/m3 2685 

Copper mass density ρCu kg/m3 8700 

Aluminum specific heat capacity Cp,Al J/(kg·K) 900 

A356.0 alloy specific heat capacity Cp,A356 J/(kg·K) 900 

Copper specific heat capacity Cp,Cu J/(kg·K) 385 

Aluminum thermal conductivity kAl W/(m·K) 160 

A356 alloy thermal conductivity kA356 W/(m·K) 151 

Copper thermal conductivity kCu W/(m·K) 400 

Stefan–Boltzmann constant σ W/(m2·K4) 5.6704·10−8 

 

The Nusselt number of Kuehn and Goldstein [117] has been used for the horizontal cylindrical 

surfaces of the connectors and the conductors. 

In addition, for model B, due to the testing loop was placed at short distance to the floor (hwall = 50 

mm), the effect of the plane on heat transfer (considered as an adiabatic wall) has been taken into 

account. Two-dimensional simulation of natural convection around an isothermal cylinder of diameter d 

= 27 mm, placed above an adiabatic wall, has been studied by solving the Navier-Stokes equations for 

conservation of momentum and the continuity equation for conservation of mass, coupled to heat 

transfer equations.  

The results indicate the effect of weakened natural convection flow in the near-wall cylinder, 

causing a decline in heat transfer and, consequently, a reduced Nusselt number. 

𝑁𝑢𝑛𝑒𝑎𝑟−𝑤𝑎𝑙𝑙 = 0.8 · 𝑁𝑢𝑢𝑛𝑜𝑏𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑    (5.26) 

The ratio between the Nu number of the unobstructed free convection and the Nu number with the 

presence of the adiabatic wall has been calculated and implemented in the heat-transfer equation for 

model B. 



Emissivity values considered in this thesis are summarized in Table 5.6. 

Table 5.6. Emissivity Values Considered In the Model 

Part Emissivity 

AA-8030 AL conductor [123] 0.50 

AAC conductor [123] 0.50 

Connectors’ surfaces [144] 0.46 

 

5.4.5 Simulation and experimental results 

Simulations were carried out by using as input the experimental current acquired during the short-

circuit tests conducted in two high power laboratories. 

5.4.5.1 Model A. Short-time and peak withstand current tests according to the IEC-

62271-1:2007 standard. 

The prescribed parameters of the short-time and peak withstand current tests are summarized in 

Table 5.7.  

Table 5.7. Prescribed and achieved parameters for peak withstand current and short-time withstand current tests. 

Test Highest current 

(kApeak) 

RMS value of the ac 

component (kA) 

Joule-integral (kA2·s) Test 

duration 

(ms) 

 Prescribed Achieved Prescribed Achieved  

Peak withstand 

current 

125 126.6 55.1 - 939 307 

Short-time 

withstand 

current 

- 80.55 51.6 2500 2686 1009 

 

Figs. 5.5 and 5.6 show the experimental values of the voltage and current during the peak withstand 

current test and the short-time withstand current test, respectively. The experimental values of the 

currents are used as input in the simulations. 
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Figure 5.5. Experimental voltage and current values during the peak withstand current test. 
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 (b) 

Figure 5.6. Experimental voltage and current values during the short-time withstand current test. 

Figs. 5.7 show the temperature distribution at the surfaces of the connector and conductors upon 

completion of the peak withstand current test and the short-time withstand current test. 

 
(a) 

 
 (b) 

Figure 5.7. Model A. a) Simulated temperature distribution (°C) upon completion of the peak withstand current test (t = 

0.3 s) according to the IEC-62271-1:2007 standard. a) Simulated temperature distribution (°C) upon completion of the short-

time withstand current test. 

To verify the simulation results by means of experimental data, short-time and peak withstand 

current tests in accordance to the IEC-62271-1:2007 standard were carried out in Veiki laboratory 

(Budapest, Hungary). As shown in Fig. 5.8a, test loop included two J33SPK couplers and Hawthorn AAC 

conductors. 

The tests were carried out at atmospheric conditions (15 °C). The experimental setup includes two 

three-phase regulating transformers, two three-phase short-circuit transformers, two reactor sets, a 

protective circuit breaker and a synchronized making switch. Output current and voltage were measured 

with a calibrated DCM-1 Rogowski coil (uncertainty 0.59%) and a calibrated 1kV/100V R-C-R voltage 

divider (uncertainty 0.26%), respectively, as shown in Fig. 5.8b. Temperature measurements were 

performed by means of a set of calibrated K-type thermocouples placed in the connectors’ bodies and 

the central points of each conductor. The output signals of the thermocouples were connected to an 

acquisition card through an analog converter. Temperature measures were registered every 100 ms. 
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(b) 

Figure 5.8. a) Tested loop. b) Test circuit to perform the short-time withstand current test and peak withstand current 

test. 

Fig. 5.9 shows a comparison between simulation results and the experimental peak withstand 

current test, until reaching thermal equilibrium. Note that the current shown in Fig. 5.5b is only applied 

during the first 307 ms, so afterwards there is no current flowing through the tested loop.  

 

Figure 5.9. Temperature evolution during the peak withstand current test until reaching the equilibrium temperature. 

Bottom part of the J33SPK coupler substation connector (connector’s body) and AAC conductor. Experimental versus 3D-FEM 

simulation results. 

Fig. 5.10 shows a comparison between simulation and experimental results of the short-time 

withstand current test, until reaching thermal equilibrium. The current displayed in Fig. 5.6b is only 

applied during the first 1009 ms, after that moment there is not current flowing through the tested loop.  



 

Figure 5.10. Temperature evolution during the short-time withstand current test until reaching thermal equilibrium. 

Bottom part of J33SPK coupler substation connector (connector’s body) and AAC conductor. Experimental versus 3D-FEM 

simulation results. 

As shown in Figs. 5.9 and 5.10, the temperature distribution in the conductors and connectors in 

both transient and steady state conditions provided by the proposed simulation method shows good 

agreement with experimental data. Table 5.8 compares measured and simulated maximum 

temperatures reached during the tests. Results from Table 5.8 clearly indicate that differences between 

experimental and simulation results are always below 2.7%.  

Table 5.8. Maximum temperature reached during the test for model a. Experimental versus simulation results. 

Test Part Tmeasured 

(ºC) 

Tsimulated 

(ºC) 

Difference 

(%) 

Peak withstand 

current test 

AAC Conductor 23.9 23.8 0.4% 

J33SPK Connector 18.8 18.3 2.7% 

Short-time withstand 

current test 

AAC Conductor 40.7 40.4 0.7% 

J33SPK Connector 27.8 28.1 1.0% 

 

5.4.5.2 Model B. Simulation of the short-circuit test according to IEC-61238-1:2003 

standard 

A second conductor-connector loop intended for low- and medium-voltage systems was tested in 

order to validate the accuracy and performance of the proposed simulation method. According to the 

IEC-61238-1:2003 standard [145] which regulates short-circuit tests for low- and medium-voltage 

connectors, the short-circuit current must raise the temperature of the reference conductors from an 

initial value of 35 °C or below to 250-270 °C. The duration of the short-circuit current shall be in the 

range [0.9, 1.05] s when applying a maximum current of 25 kA. If the required short-circuit current 

exceeds this value, a longer duration up to 5 s with a current level between 25 kA and 45 kA can be 

applied to reach the 250-270 °C. For the Model B conductor-connector configuration, these 

requirements are fulfilled under the conditions shown in Table 5.9. 



Table 5.9. Values Achieved During The Short-Circuit Test Conducted According To The IEC-61238-1:2003 Standard. 

Highest peak 

current (kA) 

Current 

(kARMS) 

Voltage 

(VRMS) 

Joule-integral 

(kA2·s) 

Test duration 

(ms) 

57.12 36.06 158.89 2960 2275 

Figs. 5.11a and 5.11b show the experimental values of the voltage and current during the short-

circuit test, which are used as input in the simulations. 
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 (b) 

Figure 5.11.  Test voltage and current measured during the short-circuit test. 

 

Figs. 5.12a and 5.12b show the temperature distribution at the conductors’ and connector‘s surfaces 

obtained. 

 

 
(a) 

 
 (b) 

Figure 5.12. Model B. a) Simulated temperature distribution (°C) upon completion of the short-circuit test (t = 2.275 s) 

according to the IEC-61238-1:2003 standard. Conductors and YAT450AM20C bimetallic compression connector. b) ) 

Simulated temperature distribution (°C) of the YAT450AM20C bimetallic compression connector at equilibrium temperature 

(t = 450 s). 

As aforementioned, with the aim to further verify the accuracy of the proposed simulation method, 

a bimetallic YAT450AM20C terminal for low- and medium-voltage applications was also tested according 

to the requirements of the IEC-61238-1:2003 standard [145]. The test was conducted in Tecnalia 

laboratory (Burtzeña-Barakaldo, Spain). In this case, the test object was a closed loop composed of three 

pairs of terminal connectors (including M20 bolt composed of A4 CL70 stainless steel) joining 450 mm2 

AA-8030 AL conductors, as shown in Fig 5.13. The experimental test was performed indoors at 

atmospheric conditions (20 °C). The experimental setup consists of two three-phase short-circuit 



transformers, a set of variable resistors and reactors, a synchronized making switch and a protective 

circuit breaker. Output voltage and current were measured, respectively, with a calibrated voltage 

divider and a calibrated shunt, as shown in Fig. 5.13c. Temperature was recorded with an acquisition 

card connected to a set of thermocouples placed in the connectors’ bodies and the middle points of the 

conductors.  
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 (c) 

Figure 5.13.  a) Experimental setup. Tested loop composed of an AA-8030 AL conductor and class-A YAT450AM20C 

terminals. b) Bimetallic YAT450AM20C terminals. Thermocouples are placed at the barrel's surface. c) Test circuit to perform 

the short-circuit test. 

Measured and simulated maximum temperature values are compared in Table 5.10. 

Table 5.10. Maximum temperature reached during the test for Model B. Experimental versus FEM simulation results. 

Part T measured  (°C) T simulated (°C) Difference (%) 

AA-8030 AL conductor 259.6 258.8 0.3% 

YAT450AM20C terminal (barrel) 84.5 85.6 1.3% 

 

Results from Table 5.10 show that temperature differences between experimental and simulation 

results are lower than 1.3% for both the conductor and connector. Thus, the experimental results 

validate the feasibility and accuracy of the simulation method. 

Fig. 5.14 compares simulation results and experimental short-circuit test results for both the AA-

8030 AL conductor and YAT450AM20C terminal.  



 

 

Figure 5.14. Temperature evolution during the short-circuit test according to the IEC 61238-1standard and until reaching 

thermal equilibrium. Experimental versus 3D-FEM simulation results. 

5.5 3D-Finite element analysis of the temperature rise test in substation 

connectors 

5.5.1 Introduction 

The new families of high-capacity substation connectors compatible with HTLS technology have to 

be designed to withstand, under rated operating conditions, temperatures higher than those found in 

the traditional application, to prevent failures that could have serious consequences on the power 

transmission system. Therefore, service temperature is a key design variable in high-capacity substation 

connectors. Moreover, before their installation, substation connectors have to be tested in accordance 

to the international standards. The ANSI/NEMA CC1-2009 standard [146] describes the procedures to 

carry out standardized temperature rise tests. The temperature rise test allows determining the 

substation connector’s thermal behavior under both transient and steady state conditions and thus, 

evaluating if its size and design is compatible with the electromagnetic-thermal stress at which it is 

subjected during normal operational conditions. According to the ANSI/NEMA CC1-2009, the 

temperature rise must be performed at 100%, 125%, and 150% of the rated current, until attaining the 

equilibrium temperatures at each current level. The standard describes the equilibrium temperature as 

a constant temperature with +/-2ºC accuracy among three successive temperature measurements taken 

every five minutes. The rated current considered for this test must be obtained from tabulated values 

which establish the testing current as a function of the conductor size. The ANSI/NEMA CC1-2009 

standard requires that under rated current conditions, the temperature of the tested connector does 

not exceed the temperature of reference conductors [146].  

Temperature rise tests usually last a long time, are very power consuming and therefore, expensive. 

Thus, the development of a realistic simulation tool is essential for anticipating the results of the 

mandatory laboratory temperature rise tests in a fast way, which is especially useful during the design 



and optimization phases of substation connectors [105]. Generally, the temperature rise in power 

devices is primarily resulting from Joule’s losses due to the electrical current. In the technical 

bibliography, it has been developed coupled electric and thermal models to evaluate the temperature 

rise in power devices, including busbars, power conductors and cables [101]–[103], [131], [133], [147]–

[149], although most of the references are based on 1D or 2D formulations or do not take into account 

radiative cooling effects. A realistic transient 3D simulation method for predicting the temperature rise 

in complex-shaped electrical connectors has not been studied and developed yet.  

In this work a numerical method based on FEM simulations is presented to model the temperature 

rise in high-capacity substation connectors, although this approach is also useful to simulate the 

temperature rise of other types of connectors and power devices. The proposed coupled electric-

thermal 3D-FEM transient analysis allows calculating the temperature distribution in both the connector 

and the conductors for a given test current profile. 

5.5.2 The 3D-FEM model 

The modeling method applied in this paper is based on coupled electric-thermal physics. Power 

losses calculated in the electric field analysis are used as the input data for the thermal analysis to 

predict the temperature rise in the analyzed geometry. The wide range of substation connectors’ 

geometries and the need to solve coupled electric and thermal equations requires suitable calculation 

tools.  

Complete 3D-FEM simulations together with the computation of the partial differential equations 

required to analyze in detail the studied phenomenon may become highly time demanding due to their 

computational burden when increasing the number of elements and equations to be solved 

simultaneously. Thus, the 3D geometric models dealt with have been prepared and simplified with the 

aim to reduce its complexity. Figs. 15.5 show the meshes of the analyzed domains for models I and II, 

respectively.  

Moreover, the electromagnetic model has been simplified with the aim to reduce the computational 

time to solve the problem. A purely electric analysis is sufficient to accurately describe the behavior of 

the analyzed model.  

a)  b) 

 

Figure 5.15. a) Model I. Mesh of the analyzed S210ZTLS high-capacity substation connector. b) Model II used to validate 

the simulation system proposed in this paper. Mesh of the analyzed ICAUL185 low-voltage bimetallic terminal connector. 



Under the hypothesis that at the operating frequency (50 Hz) the inductive effects such as eddy 

currents are almost negligible, and therefore it is possible to calculate resistive power loss only by 

solving the electric field. 

Electromagnetic analysis described in section 5.3.1 can be simplified by neglecting magnetic field 

calculations. 

The main electric and magnetic parameters used in the 3D-FEM simulations are shown in Table 5.11. 

Table 5.11. Main Electric and Magnetic Parameters 

Parameter Symbol Units Value 

Free-space permittivity ε0 F m-1 8.85×10-12 

Aluminum relative permittivity εr,Al - 1 

A356 alloy relative permittivity εr,A356 - 1 

Steel relative permittivity εr,Fe - 1 

Copper relative permittivity εr,Cu - 1 

Air relative permittivity εr,air - 1 

Aluminum reference resistivity ρAl Ω m 2.77×10-8 

A356 alloy reference resistivity ρA356 Ω m 4.44×10-8 

Steel core reference resistivity ρFe Ω m 7.96×10-6 

Steel bolts reference resistivity ρBo Ω m 6.90×10-7 

Copper reference resistivity ρCu Ω m 1.68·10-8 

Aluminum temp. coefficient αAl K-1 0.0041 

A356 alloy temp. coefficient αA356 K-1 0.004 

Steel core temp. coefficient αFe K-1 0.0041 

Copper temp. coefficient αCu K-1 0.0039 

Contact resistance factor (substation connector)1 - - 2 

Contact resistance factor (bimetallic connector) 1 - - 0.5 
1Ratio between the contact resistance and the bulk resistance of the connector [151] 

 

The main thermal parameters used in the 3D-FEM simulations are listed in Table 5.12. 

Table 5.12. Main Thermal Parameters. 

Parameter Symbol Units Value 

Aluminum density ρAl kg m-3 2700 

A356.0 alloy density ρA356 kg m-3 2685 

Steel density ρFe kg m-3 7850 

Copper density ρCu kg m-3 8700 

Aluminum specific heat capacity Cp,Al J kg-1K-1 900 

A356.0 alloy specific heat capacity Cp,A356 J kg-1K-1 900 



Steel specific heat capacity Cp,Fe J kg-1K-1 475 

Copper specific heat capacity Cp,Cu J kg-1K-1 385 

Aluminum thermal conductivity kAl W m-1K-1 160 

A356 alloy thermal conductivity kA356 W m-1K-1 151 

Steel thermal conductivity kFe W m-1K-1 44.5 

Copper thermal conductivity kCu W m-1K-1 400 

Stefan–Boltzmann constant 𝜎 W m−2 K−4 5.670373 ×10−8 

 

The Nusselt number defined by Churchill and Chu’s correlation [104] has been used in the 

conductors’ surfaces and cylindrical parts of the connectors, which have been modelled as 

horizontal cylinders, 

𝑁𝑢𝐿𝑐 = {0.60 +
0.387 𝑅𝑎𝐿𝑐

1/6

[1+(
0.559

𝑃𝑟
)9/16]

8/27}

2

  (5.32) 

RaLc being the Rayleigh number, with10−5 < 𝑅𝑎𝐿𝑐 < 1012.  

Connectors’ surface emissivity values that have been considered in this analysis are 

summarized in Table 5.13. 

Table 5.13. Emissivity values used in 3D-FEM simulation. 

Part Emissivity 

1. ACSR conductors 0.45 

2. AAAC conductors; 0.50 

3. Connectors’ surfaces [35] 0.46 

4. Steel bolts [152] 0.35 

     

 

5.5.3 The analyzed high-capacity and bimetallic connectors 

The main object of this analysis is a high-capacity substation T-connector prototype from 

SBI Connectors, which is shown in Fig. 5.16a (Model I). It connects two ACSS (Aluminum 

Conductor Steel Supported) LARK conductors of 20.5 mm diameter each. The connector is 

made of A356.0 cast aluminum alloy with T6 heat treatment.  

With the aim to validate the model, the same simulation method has been applied to a 

low-voltage bimetallic terminal connector ICAUL185 that connects an AAAC (All Aluminum Alloy 



Conductor) of 16.5 mm diameter to a terminal (Model II). The connector, shown in Fig. 5.16b is 

composed of Al 99.5 % (barrel), and Cu 99.9 % (palm). 

a)  b) 

Figure 5.16. a) 2-D plot of the analyzed substation T-connector (Model I). b) 2-D plot of the analyzed bimetallic 

connector (Model II). 

Table 5.14 summarizes the main characteristics of the analyzed connectors. 

Table 5.14. Summary of the main characteristics of the analyzed connectors. 

Model Connector Conductor Parts Material 

Model I Substation 

T-Connector 

ACSS LARK 

d=20.5 mm 

ACSS Conductor Aluminum/Steel 

T-connector A356.0 alloy 

Bolts Steel 

Model II Bimetallic 

Connector 

AAAC d=16.5 

mm 

ACCC Conductor Aluminum 

Connector’s Barrel Aluminum 99.5% 

Connector’s Palm Copper 99.9% 

5.5.4 Simulation and Experimental Results 

5.5.4.1 Model I. Substation connectors: Temperature rise test according to the 

ANSI/NEMA CC1-2009 standard  

When performing standard temperature rise tests, the rated current must be in accordance with the 

values suggested by the ANSI/NEMA CC1-2009, which depend on the conductor size. Since the analyzed 

connector is joined to two ACSS LARK conductors (d = 20.5 mm), the rated testing current must be 986 

Arms.  

With the aim to verify the simulation results, a temperature rise test according to the 

requirements of the NEMA CC1-2009 [4] was conducted in the AMBER-UPC laboratory, with Model I 

connectors. The test object was a closed loop circuit of three connectors, as shown in Fig. 5.17. The loop 

was composed of a S210ZTLST-connector, two S210ZA4P23LS terminal connectors and an ACSS LARK 



conductor with diameter d = 20.5 mm. A torque of 35 N·m was applied to the M10 bolts of the 

connectors by means of a calibrated torque wrench, which allows maintaining the connection integrity 

and ensuring an adequate contact resistance. 

a)  b) 

Figure 5.17. Experimental test setup. a) Test loop composed of an ACSS conductor, a T-connector S210ZTLS and two 

terminal connectors S210ZA4P23LS. b) T-connector S210ZTLS. The five thermocouples placed in the different parts of the 

connector. 

Experimental tests were performed at atmospheric conditions (28 °C, 982.7 hPa and 52.3% 

relative humidity). The experimental setup is the same described in section 4.2.2.1. 

Figs. 5.18 show the temperature and time evolution of the convective coefficient h of the connector 

and the conductor in Model I. 
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Figure 5.18. Model I. Evolution of the convective coefficients h a) with temperature and b) with time. 

 

Figs. 5.19a and 5.19b show the temperature distribution under steady-state condition (t = 9000 s) 

on the conductors’ and connector’s surfaces. Fig. 5.19c compares simulation and experimental 

temperature-rise test results, for both the ACSS conductor and a point of the T-connector (cap 3). 
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Figure 5.19. Model I. Three-dimensional plot of the simulated temperature distribution (°C) under steady-state 

conditions (t = 9000 s) when circulating a total current of 986 Arms. a) Conductors and T-connector. b) T-connector. c) 

Temperature rise test according to 

As shown in Fig. 5.19c, the temperature distribution in conductors and connectors in both transient 

and steady state conditions provided by the proposed simulation method shows a good agreement with 

the experimental data. It should be pointed out that the difference between experimental and 

simulation results during the transient part of the temperature rise test is because the simulation 

assumes a constant current of 986 ARMS whereas the current delivered by the power transformer was 

not stable during the transient part as indicated in Fig. 5.19c. 

Table 5.15 compares measured and simulated steady state temperatures for the connector and the 

conductors in Model I. 



Table 5.15. Steady state temperature for Model I. Experimental versus FEM simulation results. 

Part1 T measured 

(°C) 

T simulated 

(°C) 

Difference 

(%) 

Conductor 1 226.6 227.5 0.4% 

Conductor 2 226.8 227.6 0.3% 

Cap 1 112.2 112.2 < 0.1% 

Cap 2 107.5 110.9 3.1% 

Cap 3 112.0 111.4 0.5% 

Cap 4 115.2 112.2 2.6% 

Body 111.5 111.8 0.3% 
1See Fig. 5.19b 

 

Results presented in Table 5.15 show that differences between experimental and simulation results 

are below 3.1% in all simulated points of the geometry.  

5.5.4.2 Model II. Medium voltage connector: Current cycle test according to the ANSI 

C119.4 standard 

A second conductor-connector loop was tested in order to validate the accuracy and performance 

of the proposed simulation system.  

According to the ANSI C119.4 standard, which regulates thermal cycling tests for low-voltage 

connectors, this test current must be adjusted to obtain a steady-state temperature increase on the 

control conductor surface of 100-105°C with respect to the ambient temperature [28]. For the 

conductor-connector dealt with in Model II, the steady-state condition is attained when applying a 

current of 517 Arms. However, to accelerate the transient conditions, the current applied during the 

initial transient phase (first 1000 s) was set to 587 Arms.  

Whit the aim to verify the proposed simulation method, a thermal cycling test according to the 

requirements of the ANSI C119.4 standard [28] was conducted in AMBER-UPC laboratory, using Model II 

connectors.  

The test object was a closed loop of five pairs of terminal connectors, joined by means of a steel 

bolt, as shown in Fig 5.20. The loop was composed of ten ICAUL185 terminals and an AAAC conductor 

with diameter d = 16.5 mm.  

 

a)    b) 



Figure 5.20. a) Experimental setup. Tested loop composed of an AAAC conductor and twelve bimetallic connectors 

ICAUL185. b) Bimetallic connector ICAU185. Thermocouples are placed at the barrel's surface. 

The tests were performed at atmospheric conditions (20 °C). The experimental setup consisted of 

a single-phase transformer (10 kVA, 0-2.5 kA, 50 Hz) connected to the outer loop, which included the 

connectors described above. A calibrated Rogowski coil probe (Fluke i6000s Flex) was used to measure 

the output current provided by the transformer. To measure the temperature in steady state condition, 

sixteen K-type thermocouples with an AISI 316 external sheath of 1 mm diameter were placed on the 

terminal’s barrel and on the top points of each conductor. An extra K-type thermocouple was used to 

measure the room temperature.  

Figs. 5.21a and 5.21b show the temperature and time evolution of the convective coefficient h of 

the connector and the conductor in Model II. 
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Figure 5.21. Model I. Evolution of the convective coefficients h a) with temperature and b) with time. 

Figs. 5.22a and 5.22b show the temperature distribution at the conductors’ and connector‘s 

surfaces obtained from FEM simulations, whereas Fig. 5.22c compares simulation results and 

experimental temperature rise test results for both the AAAC conductor and connector (cap 3).  
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Figure 5.22. Model II. Three-dimensional plot of the simulated temperature distribution (°C) under steady-state 

conditions (t = 3000 s) when circulating a current of 517 Arms. a) Conductors and bimetallic connector. b) Bimetallic 

connector. c) Thermal cycling test according to ANSI C119.4.Bimetallic connector nº4 (barrel).  Experimental versus FEM 

simulation results when circulating a current of 517 Arms. 

Measured and simulated steady state temperature values are compared in Table 5.16. 

Table 5.16. Steady state temperature for model ii. Experimental versus fem simulation results. 

Part T measured (°C) T simulated (°C) Difference (%) 

Conductor 1 120.8 120.76 < 0.1% 

Barrel 1 88.4 87.3 1.5% 

 

Results from Table 5.16 show that differences between experimental and simulation are lower 

than 1.5% for both conductor’s and connector’s temperatures. Thus, the experimental results validated 

the feasibility and accuracy of the simulation method. 

A variable time-step solver has been used to solve the problem to increase computation speed. It 

is noted that the elapsed time required to run a complete simulation is about 90 minutes for the T-

connector S210ZTLS and about 30 minutes for the bimetallic connector ICAUL185 using an Intel Xeon 

CPU E5-2626 processor with 32 GB of RAM. 

  



6. Testing and validation of High-Capacity 

substation connectors 

In this chapter the experimental short-circuit and temperature rise tests carried out to validate the 

final product developed in this thesis are described. 

International standards must be considered in order to evaluate substation connectors’ 

performance. The ANSI/NEMA CC1 standard [7] provides standard test methods and performance 

requirements to evaluate the electrical and mechanical characteristics of substation connectors under 

normal operating conditions.  However, this standard does not apply directly to HTLS connectors, for 

which there is no specific standard.  

6.1 Short time and peak withstand current test 

6.1.1 Requirements  

According to IEC 62271-1:2007 [29] standard, depending on the capacity of the laboratory facilities 

where the test is to be carried out, it is possible to: 

 Perform a single short-circuit where the transient (peak withstand current test) and stationary 

(short-time withstand current test) phase are combined. 

 Perform two short-circuits, the first with the transient part of duration t = 0.3 s (peak withstand 

current test) and the second (short-time withstand current test) where the stationary short-

circuit current is applied during the normal test time. 

 

Due to the test current value chosen to validate high-capacity substation connectors, and the 

characteristics of the laboratory facilities, the test was performed in two stages. The current value and 

duration of each short-circuit are shown trough Table 6.1. 

Table 6.1. Prescribed and achieved Parameters for Peak Withstand Current and Short-Time Withstand Current Tests 

Test Highest current 

(kApeak) 

RMS value of the ac 

component (kA) 

Joule-integral (kA2·s) Test 

duration 

(ms) 

 Prescribed Achieved Prescribed Achieved  

Peak withstand 

current 

125 128.2 60.05 - 1140.8 303 

Short-time 

withstand current 

- 78.5 52.62 2500 2831.6 1009 

 



To verify that the connector has not suffered significant damage due to the peak and short-time 

withstand current tests, it has to accomplish a main requirement:  the connector must not have suffered 

visible damages. Moreover, the measured resistance of the connectors must not increase by more than 

20 % after the test. 

6.1.2 Test Setup 

With the aim to validate the high capacity substation connector,  short-time and peak withstand 

current tests according to the requirements of the IEC 62271-1:2007 [29] standard was conducted in the 

VNL-Veiki laboratory (Budapest, Hungary). The test object was a closed loop circuit of 8 connectors, as 

shown in Fig. 6.1. The loop was composed of four S285TLS T-connectors, four S285A4P23LS terminal 

connectors and a GTACSR-464 CONDOR-GREELEY conductor with diameter d = 27.6 mm.  

The connectors have been manufactured with A356.0 Sr-modified aluminum alloy. Moreover, 

connectors have been assembled with the new installation procedure for high capacity substation 

connectors described in section 4.1 (Installation procedure No. 3 in Table 4.1). A torque of 35 N·m was 

applied to the M10 bolts of the connectors by means of a calibrated torque wrench, which allows 

maintaining the connection integrity and ensuring an adequate contact resistance.  

 

 

Figure 6.1. Experimental setup for Peak Withstand Current and Short-Time Withstand Current Tests  

The tests were carried out at atmospheric conditions (17 ˚C). The experimental setup includes two 

three-phase regulating transformers, two three-phase short-circuit transformers, two reactor sets, a 

protective circuit breaker and a synchronized making switch. Output current and voltage were measured 

with a calibrated DCM-1 Rogowski coil (uncertainty 0.59%) and a calibrated 1kV/100V R-C-R voltage 

divider (uncertainty 0.26%), respectively. 

 Temperature measurements were performed by means of a set of calibrated K-type thermocouples 

placed in the connectors’ bodies and the central points of each conductor. The output signals of the 



thermocouples were connected to an acquisition card through an analog converter. Temperature 

measures were registered every 100 microseconds. 

6.1.3 Results 

Figs. 6.2 and 6.3 show the mean value of the temperature evolution for HTLS conductors (in blue), 

T285A4P23LS terminals (in red) and S285TLS (in green), for peak and short-time withstand current test, 

respectively.  

 

Figure 6.2. Peak withstand current test. Temperature evolution for HTLS conductors and high capacity substation 

connectors (mean values). 

 

Figure 6.3. Short-time withstand current test. Temperature evolution for HTLS conductors and high capacity substation 

connectors (mean values). 

As shown in Figs. 6.2 and 6.3, the thermal behavior of high-capacity connectors is very good, since 

their temperature is much lower than that reached from the cable. 

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

0 500 1000 1500 2000

Te
m

p
e

ra
tu

re
 [º

C
]

Time [s]

T conductor

T S285A4P23LS_ácido

T S285TLS_ácido

0,00

25,00

50,00

75,00

100,00

125,00

150,00

175,00

200,00

225,00

250,00

0 20 40 60 80 100

Te
m

p
e

ra
tu

re
 [º

c]

Time [s]

T conductor

T S285A4P23LS_ácido

T S285TLS_ácido



Table 6.2 shows the resistance values of each connector before and after the short-time and peak 

withstand current test. It can be observed that the resistance variation between measurements taken 

before and after the test is small and that, in all cases, it decreases. 

Moreover, through the visual inspection of the connectors after the test, no damage has been 

experienced from the high-capacity substation connectors. 

 

 

Table 6.2. Measured resistance of each connector before and after the short-time and peak withstand current test. 

      Calculated resistance ( at reference 

temperature 20 °C) 

Measuring 

point 

Connector R 

before 

the test 

(µOhm) 

R after the 

test 

(µOhm) 

Temperature 

of connector 

before the 

test (°C) 

Temperature 

of connector 

after the test 

(°C) 

R before the test 

(µOhm) 

R after the test  

(µOhm) 

Final/Initi

al value 

R01 S285A4P23LS 19.29 18.41 16.50 29.50 19.56 17.74 90.66% 

R02 S285TLS 13.55 11.90 17.00 30.00 13.71 11.44 83.43% 

R03 S285TLS 17.12 16.03 17.70 29.50 17.28 15.44 89.38% 

R04 S285TLS 14.18 14.43 17.40 29.50 14.33 13.90 97.02% 

R05 S285TLS 15.02 15.03 17.00 30.20 15.20 14.44 94.99% 

R06 S285A4P23LS 20.34 20.00 16.40 27.80 20.64 19.39 93.98% 

 

Therefore, the requirements of the IEC 62271-1:2007 [29] standard are accomplished, so it can be 

stated that the high-capacity substation connectors are well designed to withstand an electrodynamic 

and thermal stress caused by short-time and peak currents. Therefore, after the test, the connection 

integrity and an adequate contact resistance are ensured. 

 

6.2 Temperature rise test  

6.2.1 Thermal requirements 

As already explained, the temperature rise test according to the ANSI NEMA CC1- 2009 standard [4], 

has to be determined at 100%, 125%, and 150% of the rated current until reaching thermal equilibrium. 

During the first steps of the design phase of high-capacity substation connectors, a FEM simulation of 

temperature rise test was carried out following the specifications of NEMA-CC1standard. It was found 



that the equilibrium temperature at the third level of current (i.e. 150% of the rated current) exceeded 

300 °C for the reference conductor. This temperature value is higher than twice the maximum operating 

temperature of the conductor and therefore, testing high capacity substation connector at this current 

level has no sense. In addition to the obvious deterioration of the mechanical properties of the 

conductor, no contact aid compound (grease) used to install connectors is able to withstand this 

temperature level. 

Therefore, due to the lack of specific regulations for HTLS connectors, it has been suggested to 

perform the temperature rise test at 100%, 110% and 120% of the nominal current for conductor. 

6.2.2 Test Setup 

With the aim to validate the high capacity substation connector, a temperature rise test according 

to the requirements of the NEMA CC1-2009 [4] was conducted in the AMBER-UPC laboratory. The test 

object was a closed loop circuit of three connectors, as shown in Fig. 6.4. The loop was composed of a 

S285TLS T-connector, two S285A4P23LS terminal connectors and a GTACSR-464 CONDOR-GREELEY 

conductor with diameter d = 27.6 mm.  

The connectors have been manufactured with A356.0 Sr-modified aluminum alloy. Moreover, 

connectors were assembled with the new installation procedure for high capacity substation connectors 

described in section 4.1 (Installation procedure No. 3 in Table 4.1). A torque of 35 N·m was applied to 

the M10 bolts of the connectors by means of a calibrated torque wrench, which allows maintaining the 

connection integrity and ensuring an adequate contact resistance.  

 

  

Figure 6.4. Experimental setup of the proposed temperature rise test performed to validate high-capacity substation 

connectors. The terminals placed at both the extremities of testing loop are making the connection with the power 

transformer and are not object of the test. 

Table 6.3 describes the main characteristics of the conductor. The length of the conductors is such 

that it ensures that the temperature of one connector does not affect that of the adjacent connector or 

that of the conductor away from the connectors. 

Table 6.3. Main characteristics of the HTLS conductor used to perform the test. 

Name 

Nominal 

diameter 

(mm) 

Nominal 

section 

(mm2) 

Resistance 

@ 20ºC 

(Ω/km) 

Length (m) 

Maximum 

operating 

temperature 

(ºC) 

Ampacity @ 

150 ºC (A) 



Trefinasa 

GTACSR-464 

CONDOR-

GREELEY 

27.6 464.60 0.0708 3.00 150 1275 

 

Experimental tests were performed indoor, at atmospheric conditions (Troom=22ºC). The 

experimental setup to conduct the temperature rise test is the same described in section 4.2.2.1. 

Table 6.4. Three current levels settled to perform the temperature rise test. 

I1 - 100% of the 

nominal current 

(Arms) 

I2 - 110% of 

the Nominal 

current 

(Arms) 

I3 - 120% of 

the nominal 

current 

(Arms) 

1275 1402 1530 

Table 6.4 shows the three current levels settled to perform the temperature rise test, calculated 

according to the IEEE 738-2006 standard [93]. 

6.2.3 Results 

From collected temperature data, an equilibrium temperature of 163.2, 198.6 and 239.8 °C were 

obtained for step one, two and three, respectively. Table 6.5 summarizes the mean equilibrium 

temperatures for the different types of tested connectors. 

Table 6.5. Test results and evaluation of the condition of the high-capacity substation connectors after the test. 

Part Picture Mean Equilibrium 
Temperature (ºC)  

Observations 

  Step 1 Step 2 Step 3  

Conductor  
GTACSR-464 
CONDOR-
GREELEY 

 

163.2 198.6 239.8 There are not significant changes in 
the conductor. 

S285TLS 
connector 

 

97.4 114.3 134.7 There are no significant changes in 
the connector. 

The contact aid compound has not 
reached its melting point. 

The connection integrity is 
maintained after the thermal 
stress. 

 



S285A4P23LS 

connector  

 

94.3 110.1 129.6 There are no significant changes in 
the connector. 

The contact aid compound has not 
reached its melting point. 

The connection integrity is 
maintained after the thermal 
stress. 

 

As can be observed trough Table 6.5, the requirements of the ANSI/NEMA CC1 are accomplished.  

All the high-capacity substation connectors pass the test because their temperature is always lower 

than reference conductor’s temperature. 

Therefore, it can be concluded that the new material and installation procedure (described in 

section 0) proposed for the high-capacity substation connector allow ensuring a proper electromagnetic 

and thermal behavior when operating at conditions imposed by HTLS conductors.  

Moreover, it is important to observe that in normal operating conditions (100% of nominal current) 

high-capacity connectors reach the maximum temperature of 97.6 ºC. This operating temperature 

allows ensuring that also its mechanical performance remains good and stable, as can be observed by 

means of the following picture(source [35]) where main mechanical properties (UTS and Yield strength) 

are plotted as function of temperature. 

 

Figure 6.5. Ultimate tensile strength and Yield Strength as function of temperature for standard A356.0 Aluminum alloy. 

As shown in Fig. 6.5, at 100 ºC A356.0 aluminum alloy approximately maintains the same properties 

shown at room temperature.   

In conclusion, it can be stated that high-capacity substation connector is able to maintain a good electro-

magnetic, thermal and also mechanical behavior during normal operating conditions, when installed 

with HTLS conductors.  
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7. Conclusions 

HTLS conductors, with an almost identical section that that of the conventional ones, allow 

increasing the nominal current capacity [2], with an allowable increase in operating temperature. 

However, the increase of power lines capacity imposes more severe operating conditions on devices 

such as substation connectors, involved in transmission and distribution systems, which are subjected to 

higher loads and have to operate at higher temperatures.  

The main objective of this thesis is to contribute to the development of a new family of high-

capacity substation connectors compatible with HTLS technology. 

The first aspect that has been analyzed to develop the high-capacity substation connectors is the 

selection of the base material. At present, substation connectors are manufactured by using A356 cast 

aluminum alloy due to its good castability and physical properties. It has been explained that aluminum 

alloy in as-cast conditions cannot be used in high-voltage applications because it exhibits relatively poor 

mechanical properties and, as consequence, has to be exposed to heat or chemical treatments. Heat 

treatments are very common processes in foundry to obtain higher mechanical properties. Currently, it 

is a common practice to expose substation connectors to T6 heat treatment, which consists of a solution 

heat treatment, water quenching and artificial aging [7],  before their installation.  

However, due to the new operating conditions introduced by HTLS technology, A356 alloy needs to 

be further improved to accomplish the requirements of high-capacity substation connectors.  In this 

thesis, a chemical treatment, also known as modification, which consists in the addition of small 

quantities of a modifier element to the melt, has been proposed. Modification allows changing the 

morphology of the eutectic silicon phase from flake-like to fine fibrous [8]. 

Chemical treatment, as abovementioned, is not currently used to manufacture substation 

connectors, therefore, the introduction of the chemical modification in the manufacturing process of 

substation connector is one of the contributions of this thesis. 

With the aim to characterize the microstructure and main physical properties of the A356 Sr-

modified alloy, some specimens of material have been melted in Giga Foundry (Santpedor, Barcelona) 

and subsequently the T4 and T6 heat treatment were applied. Moreover, some specimens have not 

been treated with the aim to characterize also material in as-cast condition.  Strontium was chosen as 

modifier agent, due to the strong modifying action at low concentrations. The modification has been 

performed with the addition of 0.03% of Strontium.  

To validate the effectiveness of the proposed chemical cleaning, main physical properties of the 

traditional and the improved material have been characterized in order to ensure the reliability of the 

high-capacity substation connectors.  

Mechanical properties (ultimate tensile strength and elongation to failure) of the improved material 

have been evaluated through a tensile test performed with a universal tensile testing machine. From the 

results it can be stated that the Sr-modified alloy presents better mechanical properties than the 

standard alloy, especially for the thermal treatments T0 and T4.  

 

 



Electrical resistivity measurements have been performed at room temperature to compare 

electrical properties of both un-modified and Sr-modified alloys. Results obtained show that for both 

alloys the T6 heat treatment is the one that allows obtaining a lower resistivity, whereas the T0 (as cast) 

is the one that provides a higher resistivity. Comparing the electrical resistivity values of the un-modified 

A356.0 alloy and the A356.0-Sr0.03 modified alloy at 20 °C, a decrease of more than 15% of the 

resistivity can be observed in the case of the modified alloy for the three analyzed heat treatments. For 

the T6 heat treatment the decrease of electrical resistivity is of 18%. This fact is very important as it will 

allow a better thermal behavior of the high-capacity substation connector. 

Moreover, electrical resistivity, which is the main parameter that affects the operating temperature 

of the connector, has been evaluated in a wide range of temperatures, from cryogenic up to 200 ºC, 

with the aim to find out the temperature coefficient of resistivity in the temperature range where high-

capacity connector will operate.  

Finally, a novel experimental method to measure thermal conductivity coupled with 3D-FEM 

thermal simulations has been proposed in this thesis to characterize thermal conductivity of un-

modified and Sr-modified alloys.  Obtained results show that for both alloys the T6 heat treatment is the 

one that allows obtaining a higher thermal conductivity.  Analyzing thermal conductivity values of the 

un-modified A356.0 alloy and the A356.0-Sr0.03 modified alloy at room temperature, it can be observed 

that thermal conductivity in modified alloy slightly increases for the three analyzed heat treatments, 

compared with the un-modified alloy. Higher thermal conductivity will allow a better thermal behavior 

of the high-capacity substation connector. 

 

The contact resistance is the main variable which defines the energy-efficiency, the stable 

performance and the long-term service of an electrical connection. 

It has been explained that the contact surface preparation is essential to guarantee proper contact 

between connector and conductor since the contact resistance can notably degrade substation 

connectors’ performance. Many studies demonstrated that if HTLS cables will replace traditional 

conductors, the installed population of connectors will age more rapidly and the number of connector 

failures will increase due to the increased aging effects of higher temperature and current density. 

Therefore, with the aim to reduce the contact resistance and, therefore, improve the thermal behavior 

of high capacity substation connectors, a new installation procedure has been proposed in this thesis. It 

consists on a chemical cleaning on coupling parts between conductor and connector’s surfaces, before 

conventional installation. The chemical cleaning treatment proposed in this thesis allows a reduction of 

the contact resistance of substation connectors of about 50%, which allows an important improvement 

in the thermal performance of such device. 

The thermal behavior of connectors installed with the new installation procedure has been 

compared with the traditional one. To this end, temperature rise, thermal cycle and short-time 

withstand current tests has been performed in the AMBER-UPC laboratory with connectors installed 

with both traditional and new installation procedure. Obtained results shows a lower operating 

temperature and lower degradation for connectors installed with the new installation procedure, 

proposed in this thesis.  Moreover, the temperature coefficient of contact resistance has been 

determined through an experimental test. 



To accurately predict the thermal behavior of high-capacity substation connectors in operating 

conditions imposed by HTLS conductors, it is important to be able to estimate the electrical constriction 

resistance. Different ECR models available in the technical bibliography (Holm-Greenwood, Cooper-

Mikic-Yovanovich and Kogut and Komvopoulos models) have been analyzed and compared with 

experimental room temperature resistance measurements, to find out the most suitable model for 

substation connectors. The model that shows the better agreement with experimental data is the Kogut 

and Komvopoulos fractal model for conductive rough surfaces, which assumes fractal geometry, elastic-

plastic asperities and size-dependent micro-contacts ECR to estimate ECR. However, fractal models are 

based on several parameters dependent on the nature of the contacting surface and specifically on the 

surface roughness, whose values need to be tuned for each particular application.  

In this thesis a software tool based on a fractal model of the rough surfaces and a genetic algorithm 

approach to determine the optimum values of the parameters of the fractal model have been 

developed to obtain an accurate prediction of the contact resistance. Experimental results have proved 

the suitability of the proposed method, which can be applied to other electrical equipment. 

 

In this thesis advanced 3D-FEM modelling tools to perform realistic simulations to determine the 

thermal stresses at which substation connectors are subjected during short-time and peak withstand 

current and temperature rise tests have been developed. 

Substation connectors must pass compulsory short-time withstand current test and peak withstand 

current test, which require very high-power laboratory facilities since they consume huge amounts of 

electrical power. Such tests are destructive and expensive and the customers frequently have to face 

long waiting times to do the tests. Therefore there is the need to develop specific software tools to 

simulate such tests in a realistic and economical manner. To this end, in this thesis an electromagnetic-

thermal multiphysics 3D-FEM tool to simulate the transient thermal behavior of substation connectors 

during the standard short-circuit tests has been developed. Experimental results from standard short-

circuit tests conducted in high-current laboratories have proved the suitability and accuracy of the 

proposed 3D-FEM model.  

Moreover, temperature rise tests are time consuming, require the use of high-power-test-

laboratory facilities, which are very expensive and consume large amounts of power. Therefore, it is 

crucial to dispose of a reliable tool also for predicting temperature rise tests results for substation 

connectors, especially during their design and improvement stages. In this thesis a transient numerical-

FEM approach to simulate the temperature rise in high-capacity substation connectors has been 

presented, which shows accurate solution and allows avoiding the realization of preliminary factory 

tests, thus saving energy-related costs and time involved in planning and performing such tests. 

Experimental results have validated the feasibility and usefulness of the proposed methodology. 

The realistic multiphysics methods proposed in this thesis to simulate short-time and peak 

withstand current and temperature rise tests allows satisfying the electrical and thermal requirements 

imposed by the compulsory standard tests, thus ensuring an adequate electromagnetic and thermal 

behavior of the connectors under study. These methods are also applicable to other connector types 

and power devices, which may be a valuable tool to assist the design process of substation connectors 

including those compatible with the HTLS technology.  

 



Finally the thesis deals with the loop inductance, as reported in Appendix A. The inductance of the 

round nonmagnetic conductor forming a circular loop, which corresponds to the most typical testing 

loop configuration, has been analyzed under alternating current. The estimation of the loop inductance 

is very important since it determines voltage drop in conductors. Thus an increase of reactive power 

consumption limits conductor’s ampacity and the current output capacity of the power transformers 

used to perform the tests. In addition an initial estimation of the loop inductance is required to 

determine the voltage set-point during the short-time withstand current and peak withstand current 

tests. The inductance estimated through formulas has been compared with FEM simulations and 

experimental measurements. Moreover, a simple setup to minimize the power requirements when 

conducting short-circuit tests, based on the reduction of reactive power consumption has been 

proposed in this thesis.  

The device is based on placing a wired conductor forming a closed inner loop concentric with the testing 

loop. The decrease of reactive power is related to the effect of the mutual inductance between the 

inner and outer loops. Three-dimensional finite element method (3D-FEM) has been applied to optimize 

this problem, allowing changing the geometric and material properties of the inner loop. 
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Appendix 

A. Inductance of the testing loop 

 

One of the main problems that arise when performing short-circuit tests to large loops involving 

substation connectors is the inductive component of the loop impedance. Transformers used to perform 

short-circuit tests have a secondary winding with very few turns, producing a very low output voltage. 

The increase in the reactive component of the impedance, which is related to loop size, limits the 

current output capacity, because the reactive component tends to saturate the output of the 

transformer and absorbs large amounts of reactive power.  

In this thesis the inductance of the most typical testing loop configuration (round nonmagnetic 

conductor forming circular loop) under alternating current (AC) supply has been analyzed, since it 

significantly determines the voltage drop in conductors, thus increasing reactive power consumption, 

limiting conductor’s ampacity and the current output capacity of the power transformers used to 

perform the tests. 

Moreover, a simple method to minimize the power requirements when conducting short-circuit 

tests, based on the reduction of reactive power consumption has been studied. It is based on placing a 

round conductor forming a closed inner loop concentric with the testing loop. The decrease of reactive 

power is related to the effect of the mutual inductance between the inner and outer loops.  

Calculation of the inductance of conductive nonmagnetic conductors: round conductor 

forming a circular loop 

The most common shape of testing loops involving substation connectors is almost circular. 

Therefore this configuration (see Fig. A-1) has been considered to estimate the inductance of the testing 

loops involving substation connectors.  

In the technical literature there is not an exact closed-form solution for the inductance of a round 

conductor forming a circular loop which takes into account the eddy currents induced.  

 

Figure 0.1. Round conductor forming a circular loop  

However, an approximate formula for the total self-inductance in H/m which assumes an azimuthal 

current in a ring of major radius R with circular cross-section of radius a is given by: 
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where y = 0 for uniform current distribution, that is, low frequency operation, whereas y = 1 

corresponds to the natural current distribution. 

The results provided by formula (A.1) have been compared with those attained through two-

dimensional finite element method (FEM) simulation and experimental measurements on a loop 

composed by substation connectors and HTLS conductor. 

Results 

Comparison with 2D-FEM simulations 

In this section FEM simulations are taken as the reference method due to the flexibility and accuracy 

they provide and because in the technical literature is difficult to find internationally recognized 

experimental inductance measurements of the simple geometries analyzed in this work. Therefore, the 

results provided by the analytical formula are compared with the results obtained from FEM simulations 

at different frequencies. 

The inductance of a circular loop of round conductor is analyzed for a particular geometry in which 

a= 5 mm, R = 20 mm as detailed in Figs A-2, where results provided by analytical formula and FEM 

simulations are shown. 

 

Figure 0.2.  a) Total inductance obtained from the analytical formula (6.1) and FEM simulations of a circular loop of 

round conductor. a = 5 mm, R = 20 mm. b) External and internal partial-self inductances. 



As shown in Figs. 6.7, the analytical formula given by Eq. (6.1) doesn’t take into account eddy 

currents effects and, therefore, the average difference between FEM results and Eq. (6.1) at higher 

frequencies (f= 1MHz) is 9.2% for the total inductance At low frequencies, where inductive effects are 

almost negligible, the formula shows good agreement with FEM results. 

Comparison with experimental data 

With the aim to validate the accuracy and the usefulness of formula (6.1) in practical application, 

inductance estimation provided by formula has been compared with result provided by experimental 

measurements.  

Inductance measurements have been performed on a closed loop circuit of four substation 

connectors, as shown in Fig. A-3. The elements that compose the loop are: 

 T-connector: S210ZTLS; 

 Terminals: S210ZA4P23LS; 

 Conductor ACSS LARK, with rated diameter d = 20.5 mm.  

The substation connectors are from the SBI Connectors’ catalogue. They connect ACSS LARK 

conductors of 20.5 mm diameter and 3 m length each one. The connectors are made of A356 cast 

aluminum alloy. 

 

Figure 0.3. Experimental loop used to measure the conductor’s inductance. 

Inductance L (H/m) has been calculated as: 

𝐿 =
𝑋

2𝜋𝑓
 (A.2) 

Where f is the frequency of the power supply (50 Hz) and X is the total reactance of the testing loop, 

calculated from voltage V, current I and resistance R measurements of the loop, as shown in the 

following equation: 

𝑍 =
𝑉

𝐼
= √𝑅2 + 𝑋2   (A.3) 

The AC waveform acquisitions of currents and voltages have been performed with an oscilloscope 

(Tektronix TPS 2024), whereas 4-wires resistance measurements by means of a micro-ohmmeter 

(Raytech Micro-Centurion). 

For low-frequency application, the hypothesis of uniform current distribution is done. 

Therefore equation A.1 becomes: 
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Inductance measurements and estimation through eq. (A.4) are summarized and compared through 

Table A-1. 

Table 0.1. Experimental and estimated values of loop inductance. 

 Conductor radius 
a (m) 

Loop radius R (m) Inductance L 
(H/m) 

Formula (6.1) 0.0102 4/π 8.28 µH/m 

Experimental - - 8.11 µH/m 

 

It can be observed that approximate formula for the total self-inductance (A.1) allows estimating 

with a great accuracy the loop impedance of testing loops and, therefore, the power requirements to 

perform the short-circuit test. 

Conclusion 

In conclusion, it can be stated that the theoretical derivation of analytical formulas to calculate the 

inductance of different conductors ’  configurations offers technical difficulties even for simple 

geometries, especially when considering eddy currents effects. Although textbooks and lectures related 

to this topic usually include examples based on simple geometries, the theoretical analysis of variations 

of these examples is not trivial. Therefore a simulation system which allows obtaining accurate solutions 

have a great interest to estimate the inductance of the testing loop, and therefore the power 

requirements to perform short-circuit tests.  

However, at low supply frequency (50 Hz) the comparison of the results provided by the formula 

with experimental data, shows that, when it is necessary a rough estimation of the loop inductance, the 

results provided by formula (A.1) is enough. It can predict the loop inductance in a rapid and effective 

manner, which results very useful in high power laboratories when rapid calculations on testing loops 

are needed.  FEM simulations are usually computationally-intensive and time-consuming, thus being 

expensive and unpractical in the above mentioned application. 

  



Optimization of short-circuit test based on finite-element analysis 

Power systems have to be designed and tested to guarantee that devices involved can withstand the 

short-circuit current. Short-circuits produce both electromechanical and thermal effects, so when 

analyzing short-circuit consequences both effects must be considered [153]. Thus, power devices have 

to be tested and certified in accordance with IECs standards  [154], which refer to the short-circuit tests 

as short-time withstand current and peak withstand current tests. However, short-circuit tests require 

the use of high-power-test-laboratory facilities, which are very expensive and consume large amounts of 

power [155]. Therefore, power requirements minimization in short-circuit tests is a challenging problem 

of great interest since it can help to reduce the cost of these expensive tests. 

A simple setup to minimize the power requirements when conducting short-circuit tests for 

substation connectors is analyzed. Specifically, it is based on the reduction of the reactive power 

consumed during the test. One of the problems faced when performing short-circuit tests to large loops 

involving substation connectors is the inductive component of the impedance, which greatly increases 

with the loop size. Transformers specially designed to perform short-circuit tests usually have a 

secondary winding with very few turns, producing a very low output voltage. This increase in the 

reactive component of the impedance tends to saturate the output of the transformer used to perform 

these tests, therefore limiting the current output capacity of such transformer. The device is based on 

placing a wired conductor forming a closed inner loop (secondary or inner loop) concentric with the 

testing loop (primary or outer loop). The decrease of reactive power is related to the effect of the 

mutual inductance between the inner and outer loops, which can be considered as coaxial coils. The 

magnetic field produced by the testing loop interacts with the inner circuit, thus inducing a current 

flowing through the inner loop. Therefore there is a mutual induction between both circuits, which 

results in a reduction of the loop inductance and therefore in the reactive power demanded by the 

whole setup during the short-circuit test.   

In the technical literature there are many studies analyzing the problem of mutual inductance 

calculation for coaxial circular coils [156]–[159][156], [157]. These contributions are based on the 

application of Maxwell’s equations, Neumann’s formula, and the Biot–Savart law. Moreover, many 

studies about the electrodynamics forces caused by short-circuit in busbars and conductors have been 

conducted [160]–[162]. However, no works dealing with the topic of this chapter are found. 

Due to the testing loop, as well as the inner loop, are well-fastened to the ground, as recommended 

by IEC testing standards [2], it is ensured that, although high electromechanical forces are produced by 

short circuit currents, the clamps do not permit conductors’ displacement. Thus, it can be asserted that, 

if electromechanical effects of short-circuit have to be evaluated, the presence of the inner loop would 

not influence test results.  

Three-dimensional finite element method (3D-FEM) simulations are applied to optimize this 

problem, which allows changing the geometric and material properties of the inner loop and evaluating 

results for each case. The optimization process shows the potential of this method as a design tool to 

minimize the power requirements of short-circuits tests by optimizing the geometry of the experimental 

setup. Simulations allow minimizing the number of required experimental tests and the associated 

economic costs.  

 



Testing Loop Setup 

The object of this study is a closed loop circuit of four substation connectors, as shown in Fig. A-4. 

The elements that compose the loop are: 

 T-connector: S210ZTLS; 

 Terminals: S210ZA4P23LS; 

 Conductor ACSS LARK, with rated diameter d = 20.5 mm.  

The substation connectors are from the SBI Connectors’ catalogue. They connect ACSS LARK 

conductors of 20.5 mm diameter and 3 m length each one. The connectors are made of A356 cast 

aluminum alloy. 

With the aim to minimize the power requirements during the short-circuit test, by reducing the 

inductive load, a second closed loop, formed by a stranded cable, is placed concentric with the main 

loop as shown in Fig. A-4. The inner loop properties that determine its inductance and resistance 

(material, radius R, and wire diameter d) have been modified during the optimization process, with the 

aim to find optimal values. 

d
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Figure 0.4. Optimization of short-circuit test. Testing loop setup. 

The Fem Model 

The finite element method is a versatile technique to solve partial differential equations over 

complex domains. The following subsection describes the electromagnetic equations applied in the FEM 

model to simulate the test loops.  

Electromagnetic equations 

The electromagnetic model used to solve the problem is the same described in section 5.3.1. 

The main electric and magnetic parameters used in the 3D-FEM simulations are shown in Table A-2. 

Table 0.2. Optimization of short-circuit test. Main Electric and Magnetic Parameters used in FEM simulations. 

Parameter Symbol Units Value 

Free-space permeability µ0 NA-2 4π·10-7 

Aluminum relative permeability µr,Al - 1 



Steel Core relative permeability µr,Fe - 1 

Copper relative permeability µr,Fe - 1 

Air relative permeability µr,air - 1 

Free-space permittivity ε0 F m-1 8.85 ·10-12 

Aluminum relative permittivity εr,Al - 1 

Steel Core relative permittivity εr,Fe - 1 

Copper relative permittivity εr,Cu - 1 

Air relative permittivity εr,air - 1 

Aluminum reference resistivity ρAl Ωm 2.74·10-8 

Steel core reference resistivity ρFe Ωm 7.96·10-6 

Copper reference resistivity ρCu Ωm 1.68·10-8 

Reference Temperature T0 K 293.15 

Aluminum temp. coefficient αAl - 0.0041 

Steel core temp. coefficient αFe - 0.0041 

Copper temp. coefficient αCu - 0.0039 

 

The 3D geometric model has been prepared and simplified to reduce its complexity and to minimize 

the computational burden without compromising results accuracy. The 3D geometry used in the FEM 

model doesn’t consider the connectors since the electrical resistance of the connectors is way inferior to 

that of the conductor, so it can be considered negligible without affecting model accuracy. This 

assumption is supported by experimental measurements of the electrical resistance across the T-

connector and along a length of one meter of the conductor. Resistance measurements were done by 

applying the 4-wires method between the points shown in Fig. A-5. 
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Figure 0.5. Reference scheme to measure the resistance of the T-connector and the ACSS Lark Conductor. 



Table A-3 summarizes the results of the resistance measurements. The cable resistance has been 

measured along 1 m length; however the ACSS conductor has a total length of 12 m, so the connector 

resistance is negligible compared to the conductor resistance. 

Table 0.3. Resistance measurements 

Resistance Measurement 

Part Reference points Value Unit 

T-Connector 1-2 29.9 µΩ 

Lark Conductor 2-3 + 1-4 316 µΩ 

 

Thus, the external loop has been modeled as a single-turn conductor with circular cross-section and 

a total length of 12 m. It is composed by two materials, the steel core and the outer conductive part of 

aluminum. The inner loop has been modeled as a single-turn, whose radius, wire cross-section and wire 

material can be changed for optimization purposes. 

The loops are considered, for simulations, a single-turn primary coil and single-turn secondary coil in 

a concentric coplanar arrangement. A three-dimensional sphere with radius of 2.5 m was used to model 

the surroundings air domain. The 3D geometry and mesh for simulation #5 are shown in Fig. A-6 and A-

7, respectively.  

 

Figure 0.6. 3D modeled domain. 

The external loop is modeled using the Single Turn Coil Domain feature of the Comsol® FEM 

package. A fixed voltage excites the outer single-turn coil, at a frequency of 50 Hz. The inner loop is also 

modeled using the Single Turn Coil Domain feature. To model the inner closed loop, the voltage drop 

across the coil is fixed at 0 V.  

A full 3D model of the tested setup has been avoided due to the high computational resources 

required to perform the simulation. Therefore it was only simulated one-half of the model, taking 



advantage of the existence of a planar symmetry (YZ axis) in the geometry, as shown in Fig. ¡Error! No se 

encuentra el origen de la referencia.A-7. 

 

 

Figure 0.7. 3D mesh applied to the modeled domain. 

  

Simulation Results 

Different FEM simulations have been carried out to determine the most suitable configuration in 

order to minimize the inductive component of the impedance. For this purpose different loop 

configurations have been analyzed, which are summarized in Table A-4. 

Table 0.4.Different loop configuration simulated. 

Sim 
# 

Inner loop configuration Outer loop configuration 

Loop 
radius 

(m) 

Wire 
diameter 
d (mm) 

Material Applied 
voltage 
V2 (Vrms) 

Wire diameter 
(mm) 

Material Applied 
voltage 
V1(Vrms) 

1 1.24 32 Aluminum 0 20.5 Aluminum/ 
Steel 

127.3 

2 1.24 36 Aluminum 0 20.5 Aluminum/ 
Steel 

127.3 

3 1.24 40 Aluminum 0 20.5 Aluminum 
/Steel 

127.3 

4 1.28 32 Aluminum 0 20.5 Aluminum/ 
Steel 

127.3 

5 1.28 36 Aluminum 0 20.5 Aluminum/ 
Steel 

127.3 

6 1.28 40 Aluminum 0 20.5 Aluminum/ 127.3 



Steel 

7 1.24 32 Copper 0 20.5 Aluminum/ 
Steel 

127.3 

8 1.24 36 Copper 0 20.5 Aluminum/ 
Steel 

127.3 

9 1.24 30 Copper 0 20.5 Aluminum/ 
Steel 

127.3 

10 1.28 32 Copper 0 20.5 Aluminum/ 
Steel 

127.3 

11 1.28 36 Copper 0 20.5 Aluminum/ 
Steel 

127.3 

12 1.28 40 Copper 0 20.5 Aluminum/ 
Steel 

127.3 

13 Without inner loop 20.5 Aluminum/ 
Steel 

127.3 

14 Without inner loop 20.5 Aluminum/ 
Steel 

147.1 

In this section the results attained from the FEM electromagnetic simulations are presented.  

 

Figure 0.8. Distribution of the magnetic flux density B (T) around the outer active conductor (1) and the inner conductor 

(2). 

Figure A-8 shows the magnetic flux distribution (B, T) distribution generated by both the inner and 

the active in the YZ symmetry plane where the coils are closer (simulation #5). 

Figure A-9 shows the normal electrical current density in Amm-2 within both the outer active 

conductor and the inner conductor. 



 

Figure 0.9. Normal current density distribution in A/mm2 in the outer conductor. b) Current density distribution in the 

inner conductor. 

Although the conductors’ materials are assumed to be isotropic and the geometry perfectly 

symmetric, it can be observed that the current density distribution is not symmetrical across the 

conductors’ cross-section. This phenomenon is due to the proximity effect [163], which is a consequence 

of electromagnetic interaction between both conductors, since the ac magnetic flux density generated 

by each conductor induces eddy currents in the other, thus affecting the current density. When the 

currents of the two nearby conductors have opposite directions, the current density is concentrated in 

the conductors’ side closer to the nearby conductor and it is reduced in the opposite side [164], as 

shown in Fig. A-9. 

Table A-5  summarizes the results of the FEM simulations of the fourteen analyzed loop 

configurations detailed in Table A-4. It shows the current I1 in the outer active coil, the current induced in 

the inner coil I2, as well as the total apparent, active and reactive power absorbed by both loops. Note 

that the total apparent power in VA has been calculated as: 

𝑆 = 𝑉1,𝑟𝑚𝑠 · 𝐼1,𝑟𝑚𝑠   (A.5) 

where V1,rms is the root-mean-square voltage in V and I1,rms the root-mean-square current in A of the 

outer active loop. The total active power P (W) was obtained by integrating the electromagnetic power 

loss along the analyzed volume (inner and outer loops). The total reactive power and the phase shift 

have been calculated as follows, 

𝑄 = √𝑆2 − 𝑃2  (A.6) 

𝜑 = 𝑐𝑜𝑠−1(𝑃/𝑆)  (A.7) 

Table 0.5. Simulation Results 

Sim # Voltage Current Power 

Exc. 
Volt. 

V1 
(Vrms) 

I1 

(kArms) 
I2 

(kArms) 
Apparent 

Power 
(MVA) 

Active 
Power 
(MW) 

Reactive 
Power 
(MVAr) 

Phase 
Shift 
(º) 

1 127.3 38.68 19.19 4.9237 3.3068 3.6480 47.81 

2 127.3 38.94 19.84 4.9559 3.3326 3.6681 47.74 

3 127.3 39.07 21.26 4.9724 3.3566 3.6685 47.54 

4 127.3 40.05 23.17 5.0980 3.5950 3.6146 45.16 



5 127.3 40.42 24.68 5.1453 3.6358 3.6408 45.04 

6 127.3 40.66 26.09 5.1756 3.6746 3.6448 44.77 

7 127.3 38.92 19.96 4.9540 3.3142 3.6822 48.01 

8 127.3 39.11 20.93 4.9780 3.3340 3.6966 47.95 

9 127.3 39.24 22.44 4.9948 3.3646 3.6915 47.65 

10 127.3 40.37 24.36 5.1391 3.6118 3.6557 45.35 

11 127.3 40.64 25.95 5.1732 3.6536 3.6624 45.07 

12 127.3 40.92 27.51 5.2087 3.6932 3.6730 44.84 

13 127.3 35.05 - 4.4608 2.6336 3.6004 51.36 

14 147.1 40.46 - 5.9501 3.5168 4.8996 51.37 

 

Simulation results presented in Table A-5 prove that the effect of the inner loop (# 1-12) is to lower 

the phase shift between the voltage and current in the active loop, a clear prove that the inductive 

component of the impedance has been reduced when compared to cases #13 and #14, in which there is 

no inner loop. This tendency is more accentuated when the resistance of the inner loop decreases and 

the distance between the inner and outer loops lowers.  

Comparing simulations #10 and #14, it is also important to note that, although the value of current 

flowing through the outer loop is the same, in the case #10 (with inner loop), the voltage applied is 

considerably lower, that is, to obtain a current of 40 kA, a typical value of short-circuit current for this 

kind of loop, it is necessary to apply 147.1 Vrms without internal loop (#14), whereas with inner loop only 

127.3 Vrms (#10) are required. This behavior also involves a reduction of the reactive power and apparent 

power for the execution of the test. The reduction of the reactive power is about 25.4 %, from 4.8996 

MVAr (#14) to 3.6557 MVAr (#10).  

Experimental Results 

In this section an experimental measurement is carried out to validate the simulation method. To 

this end, experimental rise temperature tests, according to the ANSI NEMA CC1 substation connectors’ 

standard [4] are carried out, whose experimental setup is shown in Figs. A-10 and A-11. 

 



 

Figure 0.10. Experimental test setup. Outer loop composed of an ACSS conductor, a T-connector S210ZTLS and four 

terminals S210ZA4P23LS. The internal loop is made of an aluminum stranded conductor with diameter of 32 mm. 
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Figure 0.11. Electric diagram of the test setup. 

The loop configuration is summarized in Table A-6. Therefore, an inner loop with 1.24 m radius using 

an aluminum wired conductor of 32 mm was tested. 

Table 0.6. Test Setup. Loop Configuration. 

Test # Inner loop configuration Outer loop configuration 

 Loop radius 
(m) 

Wire diameter 
d (mm) 

Mat. Applied 
voltage 
V2 (Vrms) 

Wire 
diameter 

(mm) 

Mat. Applied 
voltage 
V1 (Vrms) 

A 1.24 32 Al 0 20.5 Al/ 
Steel 

3.20 

 



 The experimental tests were performed at atmospheric conditions (28 ºC, 982.7 hPa and 52.3% 

relative humidity). The experimental setup to conduct the temperature rise test is the same described in 

section 4.2.2.1. 

The AC waveform acquisitions of currents and voltages have been performed with an oscilloscope 

(Tektronix TPS 2024). The phase shift between current and voltage in the active loop has been 

calculated by comparing both voltage and currents acquisitions of the oscilloscope during the test. The 

apparent power has been calculated by applying (A.5), and the total active and reactive powers have 

been calculated by applying (A.8) and (A.9). 

𝑃 = 𝑆 · 𝑐𝑜𝑠𝜑   (A.8) 

𝑄 = 𝑆 · 𝑠𝑖𝑛𝜑                (A.9) 

𝜑 being the phase shift in º. 

To measure the temperature in steady state condition, K-type thermocouples with an AISI 316 

external sheath of 1 mm diameter were placed on the connectors’ bodies and on the top points of each 

wire.  

The loop configuration shown in Table A-6 was simulated with the same method detailed in section  

Comparing values presented in Table A-7, it can be observed that differences between experimental 

and simulation results are lower than 3.7% for all variables simulated. Thus, the experimental results 

validated the feasibility and usefulness of the simulation method. 

Table 0.7. Comparative results between simulations and the experimental test. 

  Voltage Current Power 

 V1 

(Vrms) 
I1 
(A rms) 

I2 

(A rms) 
Apparent 
power 
(VA) 

Active 
power 
(W) 

Reactive 
power 
(VAr) 

Phase 
shift (º) 

Simul 
Test A 

 3.20 964 458 3088 2082 2280 47.6 

Exp. 
Test. A 

 3.20 962 449 3078 2007 2335 49.3 

Error 
Test A 

 - 0.2% 2% 0.3% 3.7% 2.4% 3.6% 

 

 


