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Figure 6. SEM images at x100 magnification of specimens fractured by the tension test of: a) Alloy-A,  
241x180mm (75 x 68 DPI)  
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ABSTRACT 

 

The effect on the mechanical properties at room temperature of Li and Ag additions to the Fe-Al 

(40 at.%)-based alloy produced by conventional casting were evaluated in this work. 

Microalloying elements were added into a previously molted Fe-(40 at.%) aluminium-based alloy, 

stirred, and then cast into sand moulds to directly produce tensile specimens. In order to 

determine the mechanical properties, tensile tests and hardness measurements were performed. 

The additions of both Ag and Li showed an increase in ductility and tensile strength of the 

intermetallic alloys. In addition, micro-hardness was substantially increased with the Li addition. 

Lithium additions promoted a solid solution hardening, whereas Ag additions promoted ductility 

due to a microstructural modification and to the formation of a soft Ag3Al phase. 

Characterization by both optical and electronic microscopy, EDS microanalysis, and X-ray 

diffraction supported the mechanical characterization. 
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Keywords: A Iron aluminides; B Microalloying; F Mechanical properties at room temperature; F 

Fracture mode. 

 

1. INTRODUCTION 

 

In the past, the Fe-Al-based intermetallic alloys had been studied with interest due to their 

excellent corrosion resistance and their potential application in the energy conversion industries 

as structured materials [1-7]. However, the use of those alloys as structural components had been 

limited due to their brittle fracture behavior and low ductility properties at room temperatures 

resulting from environmental embrittlement, weak grain boundaries, vacancy hardening, and 

embrittlement [7]. Environmental embrittlement involves moisture in air, which is the major 

cause of low tensile ductility. Such environmental embrittlement is the consequence of a 

chemical reaction involving the reaction of Al with oxygen from moisture, releasing hydrogen 

atoms that could be adsorbed [8]. However, there are other factors that can modify mechanical 

behavior at room temperature, such as grain size, improving ductility as the grain size is reduced 

[9]. The quantity of Al in the FeAl alloy systems also has an important effect on both the 

mechanical properties [10] and corrosion resistance at high temperature applications [7]. By 

reason of this, a best condition for those properties for high temperature applications has been 

reported for Al concentrations between 35 and 45 at.%  [7,10-12]. This has become the baseline 

for the production of those alloys. 

 

Hence, the production of alloys by the abovementioned conventional methods is of industrial 

interest due to its low cost. In this sense, the induction melting and casting processing is one of 
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the procedures that is also used for producing these FeAl alloys [7,10-13] and it could be 

sequenced by work-hardening [10,12] and/or heat treatment [11,13] processes in order to change 

the mechanical properties of the base alloy. In addition, microalloying with ternary elements is 

also useful for improving mechanical properties and hot corrosion resistance. The microalloying 

process during melting is a very easy way to incorporate a third alloying element, which can be 

done as a solid solution [14] or segregated phases. The effect of alloying Fe-Al by third elements 

on the mechanical properties at room temperature has been studied before [4,5,13-21] with 

different results. Furthermore, the alloying effects on those mechanical properties of both the 

grain refinement and the environmental interaction have been evaluated [15,16,20-23].  

 

In this way, the alloying effect on the mechanical properties at room temperature of materials 

produced by the induction melting process becomes very interesting. Hamana et al. [13] reported 

that the increase of Cr additions to a Fe-28 at.% Al stabilized the B2 phase of the microstructure, 

which, in turn, increased its microhardness when a heat treatment was applied, due to the 

modification of the B2 to D03 transition rate. Similarly, grain size modification [17], third phase 

formations, and carbide precipitation [16,18] are important factors for improving mechanical 

properties. Salazar et al. [19] observed a notable increase in ductility under compression tests at 

room temperature when Li was added to an FeAl intermetallic. Rosas et al [15] have also 

reported an increase in ductility when adding Li to an Fe3Al-based alloy, but under tensile loads. 

However, the effect on the mechanical properties by adding Ag to an FeAl-based alloy has not 

been reported. As a first step for a future high temperature assessment, the effects on the 

mechanical properties at room temperature of Li and Ag additions to an Fe-40 at.% Al-based 

alloy, produced by conventional casting, were evaluated in this work. The alloys were 
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metallographic and chemically characterized by light microscopy, scanning electronic 

microscopy (SEM), X-ray diffraction, and energy dispersive spectroscopy (EDS). 

 

2. EXPERIMENTAL PROCEDURE 

 

The experimental alloys were produced in an induction furnace by using a silicon carbide 

crucible [24]. In order to produce Fe-40 at.%Al-based intermetallic alloys with additions of 1 and 

3 at.% of Li and Ag, high purity raw materials were used (99.9% of purity). Table 1 summarizes 

the designed atomic chemical composition of the intermetallic cast alloys. An Inductotherm 

induction furnace using an argon protection atmosphere was employed to cover the liquid iron 

and aluminum was then added and mechanically stirred. Finally, the microalloying element was 

added, followed by a stirring for full dissolution and homogenization. To avoid losses by 

evaporation, the addition of Li was realized using an aluminum capsule in order to minimizing 

the spontaneous reaction of Li in the casting. The melt was cast into sand moulds to produce 

next-to-shape tensile specimens directly from casting. Mechanical properties were measured by 

tensile tests according to the ASTM E8 standard [25]. They were carried out on a Shimadzu (UH-

300kNI) universal testing machine at a strain rate of 0.4 mm/min. Hardness was measured in a 

Shimadzu (HMV-2) hardness tester by applying 100 g of load for 20 s with a diamond indenter 

[26]. Prior to the mechanical characterization, intermetallic alloys were isothermally heat-treated 

at 800 °C for 48 hours in order to reduce the adsorbed hydrogen contents. 

 

Samples with a size close to 10 mm x 10 mm x 5 mm were cut from the castings, grinded, 

polished up to 0.5 µm, and then etched for metallographic characterization. Chemical etching was 

performed using Keller’s etchant (HCl, HNO3, HF, and H2O) [27]. Stoichiometric 
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characterization of the phases present in each alloy was determined by x-ray diffraction patterns, 

using Cu-kα radiation in a two-theta range from 20 to 100° in a SIEMENS 5000 diffractometer. 

Optical microscope observation was done using a Nikon Epiphot 300 equipped with a digital 

camera for imaging. Scanning electron microscopy was performed for imaging characterization 

and microanalysis by energy dispersive spectroscopy (EDS) in a Phillips ESEM-XL30 equipped 

with an EDAX. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Microstructural and chemical characterization 

 

The macrostructure of the as-cast Fe-(40%at.Al)-based alloys was modified with the addition of a 

third alloying element. Figure 1 shows the optical image of metallographies at low 

magnifications of the base alloy and FeAl with 3 %at.Li and 3 %at.Ag (Alloy-A, Alloy-C, and 

Alloy-E). The base FeAl intermetallic showed a columnar grain distribution from the periphery 

towards the center bar in the opposite direction of the heat flow (Fig.1a). This characteristic 

morphology was identified (and described further ahead) with a low amount of the Fe3Al phase 

homogeneously distributed into the FeAl matrix. The addition of Li to the base alloy improved a 

change in the appearance of the solidified macrostructure. The main observation was the 

modification of macro-grains: they changed from a columnar to an equiaxial shape; it is 

suggested that they form due to a higher nucleation process during solidification. Thus, it was to 

be expected when equiaxed grains formed at the end of the solidification (in the center of the bar) 

and the percentage of this solidification mode was proportional to the quantities of Li addition 
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(Fig.1b). A similar behavior was shown by the alloys with Ag addition (1, 3 at. %) (Fig.1c). 

However, those alloys showed a third phase formation, a singular phase containing high amounts 

of Ag and Al, almost at 3:1 ratio. This third phase increased with the addition of Ag (Fig.1c). 

 

Figure 2 shows the detailed microstructure of all alloys observed by SEM at higher 

magnifications. Figure 2a displays the morphologies of the structural phases of the base FeAl. 

The base alloy was composed of two phases: the small amount of the Fe3Al phase 

homogeneously dispersed into the major phase of FeAl, as described above, and in agreement 

with the X-Ray diffraction results and EDS (Fig 2b) [24]. The minor phase showed size 

variations, up to 20 µm in length and an average width of 3 to 7 µm. The minor phase solidified 

as a dendritic mode with primary and secondary arms of around 5 µm in diameter. Li additions 

promoted the modification of such a type of morphology and decreased the amount of the Fe3Al 

minor phase (Fig.2c and Fig.2d). It was suggested that this decrease was caused by an 

incorporation of solid solution, according to the X-ray diffraction results [24]. On the other hand, 

Ag additions promoted the formation of a third phase, identified as an Ag3Al intermetallic 

compound. Similarly to the Li additions, the Ag alloying promoted the modification of the 

microstructural morphology by decreasing the amount of Fe3Al (Fig.2e, Fig.2f) and, in turn, 

increasing the amount of Ag3Al. 

 

The EDS analysis carried out for all the observed phases showed the semi-quantitative 

stoichiometry of the compounds. Those analyses corresponded to the atomic ratio of the FeAl, 

Fe3Al, and Ag3Al intermetallic compounds verified by x-ray diffraction (described further ahead). 

The SEM characterization showed that the second phases in the base FeAl alloy presented a 
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quasi-regular distribution (Fig.2a). Additions of Li led to a refinement of the minor phase, 

showing a uniformly distributed needle shape (Fig.2c). X-ray diffraction results did not present 

patters of Li or Li compounds; we suggest Li remains in solid solution into the base alloy. Also, 

close to 0.5 at.% of Ag was incorporated in solid solution in the FeAl+Ag(1,3 at.%) alloys. In 

those alloys, the excess of Ag concentration segregated towards the solidification front, as Ag3Al 

(Fig.2e, Fig.2f). Similarly, the Fe3Al phase was refined and showed a needle shape, as did the 

FeAl+ Li alloy. The effect of the third alloying element (Li and Ag) on the refinement of the 

Fe3Al phase could be due to the ability of iron to occupy sublattice sites, originally occupied by 

aluminum, through an excess of iron atoms. This is known as the antisite defect [6]. It is 

suggested that microalloying may promote a decrease in the occupied sites by Fe in the FeAl B2 

lattice, hence decreasing the Fe contents for Fe3Al formation, which, in turn, decreases the 

amount of this later phase. 

 

Figure 3 shows the x-ray diffraction patterns obtained for the FeAl-based alloys according to 

PCPDF based data patterns: 28-0034 (Ag3Al), 65-6132 (FeAl) and 65-5188 (Fe3Al). Alloy-A 

showed the FeAl and Fe3Al phases; see the microstructure of Alloy-A (Fig.2a). Similarly, Alloy-

B and Alloy-C showed those phases with no other phase formation when Li was added, since it 

suggested this element entered into the solid solution, and its effect was only reflected on the 

microstructure and mechanical properties, as will be discussed later. On the other hand, Ag 

additions to the base FeAl (Alloy-D and Alloy-E) did indeed promote a third phase formation 

during the solidification process, identified as Ag3Al (Fig.3). Figure 4, shows the EDS spectra of 

the FeAl+Ag matrix and the segregated particles of the Ag rich phase. The matrix showed limited 

Ag solubility, between a 0.4 to 0.6 Ag at.% content (fig.4a), whereas the segregated phase 

showed a much higher amount of Ag. The Ag additions had two types of interaction with the 
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base FeAl alloy. An amount of approximately 0.5 at.% Ag atoms entered into the B2 crystalline 

lattice through the substitutional solid solution (Fig.4a), and the remaining amount of Ag was 

segregated towards the solidification front, forming the Ag3Al phase (Fig.4b). A similar effect 

has been observed with Mo addition to a FeAl due to the Mo3Al phase formation [4]. 

 

3.2. Mechanical characterization 

 

The addition of both Ag and Li to the FeAl-based alloy promoted some changes in the 

mechanical properties.  Both elements increased the ductility and tensile strength of the base 

alloy, as well as the microhardness. A previous report on the mechanical evaluation of an FeAl 

(36.5% Al) alloy showed brittle cleavage fracture and only 2.2% tensile elongation when tested 

in air at room temperature, but the same alloy tested in a conventional vacuum had a ductility of 

about 8% [7]. The addition of Li to the base FeAl improved the solid solution hardening effect, 

which is suggested to be due to the small size of this atom that promotes a similar effect as 

carbon or Mo [4,28]. Our work shows no evidence of the precipitation of hard Fe-Al-carbides and 

Mo3Al, as reported elsewhere [4,28]. Tensile and microhardness results of the FeAl-based alloy 

are shown in Figure 5 and summarized in Table 2. Yield strength of a brittle material was 

calculated with the ultimate tensile strength (UTS), as recommended by the ASTM E8 standard 

[25]. 

 

The FeAl-based alloy presented a UTS value of 390 MPa in air at room temperature (Table 1). 

Morris et al [10] have reported that yield stress increases with Al content up to 25%, and it 

decreases rapidly in the 25-28% Al range, but shows little increase over the 30-40% Al range. 

They described ductility as an inverse relationship to the yield stress, with a rapid fall in ductility 

Page 9 of 24 Journal of Materials Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

up to 25% Al, a slight maximum at 28% Al, and a steady, slow fall thereafter.  The yield stress 

and ductility of the base FeAl in the present work is in agreement with the observations of Morris 

et al. [10]. Furthermore, Kupta [11] reports a 360 MPa strength value at room temperature, but it 

was tested in an argon atmosphere for the B2 structured Fe-45Al-4Cr-0.1Zr-0.02B alloy and this 

alloy was melted in a vacuum induction furnace, with casting and homogenizing at 1000 °C/72 h. 

In our work, the additions of Li to the FeAl-based alloy improved the mechanical properties, 

showing UTS values of 448 and 568 MPa (Fig.5) and elongation increasing between 25 % and 

30 % for Alloy-B and Alloy-C, respectively. Similar increases of UTS values of FeAl alloys have 

been obtained with additions of carbon [28] or molybdenum [4]. Salazar et al. [19] reported 

similar effects when adding Li to a similar alloy, but tested under compressive stress.  The effects 

of Ag additions were more meaningful in the elongation results, increasing from 20% to 50% for 

1 and 3 (at.%) of Ag, respectively. However, a small increase in UTS values was observed, 

around 366 and 433 MPa (Fig.5; alloy-4 and Alloy-5). Ductility of the FeAl-based alloy was 

increased with Ag % addition. 

 

3.3. Fractographic characterization 

 

The results of mechanical strength and hardness showed a direct correlation with Li addition 

contents, but this was not seen in relation to elongation, which was similar at the 1 and 3 % Li 

content. On the other hand, Ag additions did not significantly improve strength. However, 

elongation was higher than in the alloys with Li additions, particularly the alloy with 3 at.% of 

Ag. Ductility in the FeAl+Ag systems was increased in proportion to the Ag addition. This effect 

is explained in terms of the third phase formed in the alloys, which allowed the plastic 

displacement among the grain faces of both the FeAl and Ag3Al phases (Fig.2). In this sense, 
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fracture morphology of the tensile tests provided more evidence of the plasticity or hardening 

effect of the Li and Ag additions. Figure 6 shows the SEM images of the resulting fractographs of 

the tensile tests of the FeAl-based alloys. 

 

The effect of the third element addition on the increase of elongation was more evident when Ag 

rather than Li was added. Namely, the maximum elongation % at strain condition was increased 

by Alloy-E (around 50% vs base FeAl, table 2), whereas (1, 3 at.%) Li addition promoted an 

increasing change of around 30 %. However, characteristic brittle fractures were observed on all 

alloys (Fig.6). Alloy-A showed intergranular failure mode by grain decohesion (Fig.6a), 

associated with 111 or 100  slips [6], but it was modified by the third alloying additions, 

particularly with the Ag additions. Due to the plasticity improvement of the Ag additions, the 

fracture mode was changed from only intergranular to a mixture of intergranular and 

transgranular fracture (Fig.6d and Fig.6e). On a minor level, Li additions promoted a fraction of 

transgranular fracture mode mixed with intergranular decohesion of the strongly anchored 

columnar grains, as an effect of the increase in strength (Fig.6b and Fig.6c). This long 

intergranular failure mode occurred parallel to the columnar grain length. 

 

FeAl intermetallic alloys did not show an apparent yield point discontinuity on the tensile tests, 

(Fig.5). This behavior is typical of brittle alloys. However, some level of ductility was evidenced 

by the increase in the percent of elongation at strain condition with the Ag addition (Fig.6) and 

the characteristic fracture mode. The change in the fracture mode for these alloys showed a 

transition from intergranular to transgranular and cleavage fracture, as previously reported [21]. 

That fracture mode was caused by the addition of ternary elements, and in this way the effect of 

Page 11 of 24 Journal of Materials Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Li represented an increase of around 44 % in the ultimate tensile strength (UTS). Although 

tensile tests were not carried out in a controlled environmental atmosphere, the results could be 

comparable to those obtained when studying the effect of the environment and the strain rate on 

tensile properties of FeAl crystals by Wu and Baker [23]. In addition, those results also concur 

with the results obtained by Pike and Liu [20], who studied the effect of vacancies on the 

environmental yield strength dependence of boron-free and boron-doped Fe-40Al. They reported 

an increase of almost 200 MPa of UTS on tests carried out in a vacuum, compared with the same 

alloys tested in air. The UTS values of the vacuum tests are similar to the UTS value shown by 

the Alloy-C in the present work. A lower effect on UTS behavior was shown by the other Ag 

addition alloys (Alloy-D and E) and the increase in the percentage of transgranular fracture, 

which evidences cleavage facets promoted by the presence of the Ag3Al ductile phase, has also 

been previously observed [21]. 

 

The change in the ductility of the base FeAl alloy represented by an increase in the elongation 

percentage is attributed to the modification of the microstructures. Similar results were reported 

by Huang [16] and Chao et al. [22]. The former studied the influence of microstructure and test 

conditions on the tensile behavior of FeAl-based alloys with Mo, Nb, Zr, and C, which 

effectively increased the strength properties [16]. The latter analyzed that influence with Y2O3 

particles (18 and 150 nm) and found that the major changes of strength were obtained by the 

grain refinement. They reported an increase of ductility of about 10% associated with grain size 

ranging from 1 to 100 µm [22]. Of course, the environmental control and surface finishing of the 

samples were very closely controlled. In the present work, the strengthening modification was 

attributed to the microstructure refinement in the base FeAl by the Li addition through 

redistribution and shape modification of the Fe3Al phase (Fig.2). The increase in hardness was 
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associated with the microstructural modifications by means of the combined contributions of 

vacancy hardening into an ordered and disordered domain/particle between grain borders and 

phases generated by the Li addition [29]. On the other hand, the softening effects due to the Ag 

additions were associated with the decreased Fe3Al phase and the formation of the third Ag3Al 

phase. In that case, the ordered and disordered vacancy hardening was not associated with the 

decrease of hardening, but was related to the third soft phase, which enhanced the plastic 

behavior. These results are in agreement with those reported by Cielsar et al [18], who studied the 

influence of Cr and Ce additions on the mechanical properties of the Fe-(28 at.%)Al system, 

which promoted the precipitation of Cr–Fe–(C) particles, decreasing the hardness of the alloy 

with a Cr content. In summary, the additions of Li and Ag to the Fe-(40 at.%)Al-based alloys 

increased the tensile strength at room temperature, due to the contribution of both the solid 

solution hardening and the vacancy increasing in the microstructures. Additionally, the increase 

of ductile behavior was promoted by the microstructural changes, which had an important effect 

on slip plains, but the main contribution was attributed to the formation of the soft Ag3Al phase 

in the Ag content alloys. 

 

4. CONCLUSIONS 

 

The additions of both Ag and Li into the FeAl-based alloy led to increased ductility and tensile 

strength. Li promoted a direct increase on strength and hardness due to solid solution hardening 

effects, but it caused no significant changes in ductility. On the other hand, Ag additions did not 

significantly improve the strength properties. However, this addition promoted an elongation 

higher than that of the alloys with Li additions, particularly for the 3 at.% of Ag alloy. Ductility 

was observed to increase with the Ag content. 
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Changes in the fracture mode were also observed when alloying the FeAl. The change in the 

fracture mode for these alloys showed a transition from intergranular to transgranular and 

cleavage fracture. Li additions caused an approximately 50% increase in the UTS, whereas a 

lower effect was shown by the Ag addition. Additionally, Ag additions could increase the 

percentage of transgranular fracture due to the presence of the ductile phase. 

Additions of Li and Ag to the Fe-(40 at.%)Al based alloys increased the tensile strength at room 

temperature due to the contribution of both the solid solution hardening and the vacancy 

increasing in the microstructures. Additionally, the increase in ductility was promoted by the 

microstructural change, which had an important effect on slip planes, but the primary 

contribution was attributed to the formation of the soft Ag3Al phase in the Fe60Al40-(1,3)Ag 

alloys. 
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Tables and figure captions 

 

Table 1. Chemical composition of intermetallic alloys 

 

Table 2. Strength-strain parameters (σ, ε) and hardness measurements of FeAl-based alloys 

 

Figure 1. Metallographic images observed by light microscopy of a) Alloy-A, b) Alloy-C, and c) 

Alloy-E. 

 

Figure 2. SEM micrographs observed for a) Alloy-A, b) EDS chemical analysis of Alloy-A, c) 

Alloy-B, d) Alloy-C, e) Alloy-D, and f) Alloy-E. 

 

Figure 3. X-ray spectrums obtained on the FeAl-based and FeAl+(Li, Ag) intermetallic alloys 

(summarized in table 1). 

 

Figure 4. EDS chemical analysis of FeAl with Ag additions a) matrix phase and b) Ag rich 

segregated phase (segregated from Alloy-D). 

 

Figure 5. Strength-strain plots of tensile test from FeAl-based alloys. 

 

Figure 6. SEM images at x100 magnification of specimens fractured by the tension test of: a) 

Alloy-A, b) Alloy-B, c) Alloy- Alloy-C, d) Alloy-D, and e) Alloy-E. 
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Table 1 

Fe60Al40-based Alloy + at.% Li + at.% Ag 

Alloy-A - - 

Alloy-B 1 - 

Alloy-C 3 - 

Alloy-D - 1 

Alloy-E - 3 

 

 

 

Table 2 

Alloy 
Hardness (Hv), 

MPa 

E module 

MPa 

UTS,  

MPa 

Alloy-A 379.8 16703 390 

Alloy-B 432.6 15531 448 

Alloy-C 476.0 21773 568 

Alloy-D 323.8 13793 366 

Alloy-E 363.8 11569 433 
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Fig.1 
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Fig.2 
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Fig.3 

 
 

Fig.4 
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Fig.5 
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Fig.6 
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