
UNIVERSITAT POLITECNICA DE CATALUNYA

MASTER THESIS

RePlan: Release Planning for Agile

development

Author:

Guillem RUFIÁN-TORRELL

Supervisors:

Dr. David AMELLER

Dr. Carles FARRÉ

A thesis submitted in fulfillment of the requirements

for the degree of Master of Science in Innovation and Research in

Informatics

in the

Facultat d’Informatica de Barcelona

June 27, 2016

http://www.upc.edu
http://www.fib.upc.edu

iii

Declaration of Authorship
I, Guillem RUFIÁN-TORRELL, declare that this thesis titled, “RePlan: Re-

lease Planning for Agile development” and most of its contents are original

and produced during the master thesis period. However, in some chapters

I collaborated with other researchers. Below I explain for each chapter what

was my contribution.

All thesis chapters

Dr. David Ameller and Dr. Carles Farré, as supervisors, have contributed to

the research described in this study. Both, with the guidance of Dr. Xavier

Franch, have been active and involved in the research being conducted,

discussing, and writing each paper. Their supervision and global direction

has been fundamental for the selection of papers and studies to take ideas

to carry this project on.

Chapter 2

This chapter has been co-authorized by Dr. David Ameller, Dr. Carles Farré

and Dr. Xavier Franch, all of them professors of the UPC and members of

the GESSI team. All three participated in the creation of the State of the Art

of this project. Mainly, the first iteration is of their own. Afterwards, the

author continued with the following iterations and the final analysis and

discussion.

v

“It had long since come to my attention that people of accomplishment rarely sat

back and let things happen to them. They went out and happened to things.”

Leonardo da Vinci

vii

Abstract

RePlan: Release Planning for Agile development

by Guillem RUFIÁN-TORRELL

Release Planning methodologies have made possible that project man-

agers and users in general can plan project’s releases. These methods try

to automatize the human-based planning processes. Currently they are a

few web-based and stand-alone tools about release planning, but not all of

them offer the same functionalities, like the update of an already planned

release or a detailed plan expressed in a timeline. Moreover, these systems

are oriented to stakeholders criteria, without taking enough consideration

to the available resources. This becomes a limitation, because in many oc-

casions it is vital to have a temporal planning of a release. It also affects key

aspects like the planning efficiency or the speed at which it is executed.

In this project a web-based release planning tool has been developed.

In this tool, users can create a release with different entities in an easy and

simple way. The tool is based in a mathematical model that generates an

scheduled plan as tight as possible to the available time and resources. On

the other hand, the tool also guarantees the priority fulfillment of features,

by respecting the temporal criteria that the user could establish.

The system is also modular, as it can be integrated with other possible

different visualizations. Its development in a cloud server also provides

public access and scalability.

The tests performed to the system show that the presented mathemat-

ical model guarantees the scheduled and efficient planning of a project’s

release.

ix

Acknowledgements

No voldria continuar endavant en aquesta memòria sense haver mostrat el

meu agraïment a un seguit de persones que han contribuït d’una manera o

altra en aquesta tesi.

Voldria començar per donar les gràcies al Dr David Ameller i al Dr. Carles

Farré, que m’han codirigit aquest projecte i, més que dos directors, hem for-

mat un sòlid equip de treball per a poder sol·lucionar totes les dificultats.

No obstant, també li vull dedicar més que les gràcies al Dr. Xavier Franch,

que va confiar en mí en tot moment i em va animar a començar, seguir i

finalitzar aquesta aventura, l’última de la meva carrera universitària. He

d’agrair també tot el suport de l’equip del projecte SUPERSEDE (Euro-

pean Union’s ICT 2014 - Information and Communications Technologies

Programme), que és l’embrió d’aquesta idea que ha aconseguit sortir enda-

vant.

També vull mostrar el meu reconeixement a les amistats que he mantingut

aquests anys, i que he conservat fins al final de la meva educació. Amb

especial estima al Roger Jardí, i totes les confidències que ens hem inter-

canviat aquests últims anys, i al Rodrigo Cueva, company infatigable de

batalles fins al final.

Se merecen también todo mi profundo agradecimiento los profesores Anto-

nio J. Nebro y Francisco Chicano, así como Rubén Saboredo, de la Univer-

sidad de Málaga. Su puntual pero inestimable ayuda ha sido esencial para

poder sacar este proyecto adelante.

Als meus pares, Guillem i Ma Carme, el seu suport, tants dies i tantes nits

units davant el cansament, la fatiga i el desig d’abandonar. I tants moments

d’unió que ens esperen. Sense ells no hagués tret tota l’energia que tinc per

a arribar al final d’aquesta aventura. . .

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1

1.1 Outline . 1

1.2 Goals . 2

1.3 Motivation . 3

1.4 Methodology and thesis planning 3

1.5 Structure of the Thesis . 5

2 Background 7

2.1 State of the Art . 7

2.1.1 Research Questions . 8

2.1.2 Selection of studies . 10

2.1.3 Threats to validity . 15

2.2 Results . 16

2.2.1 RQ1. What release planning methods have been pre-

sented? . 16

2.2.2 RQ2. To what extent have the release planning meth-

ods surveyed in RQ1 been validated? 25

2.3 Discussion . 27

2.4 Study background . 27

2.4.1 Pareto-Optimal Solutions 27

2.4.2 Multi-objective optimization 28

2.4.3 NSGA-II . 29

xii

3 RePlan: Design and Architecture of the application 31

3.1 Requirements of the Project 31

3.1.1 Functional Requirements 32

3.1.2 Non-Functional Requirements 32

3.2 Analysis of RePlan’s model 33

3.2.1 Problem’s requirements 33

3.2.2 Natural approach of the model 34

3.2.3 Proposal for RePlan model 36

3.3 Architecture of RePlan . 40

3.3.1 Physical architecture 41

3.3.2 Logical architecture . 42

3.3.3 Domain model . 43

3.3.4 Controller . 45

3.3.5 Views . 46

3.4 Functionalities. Operations to perform 47

3.4.1 Set-up of the Project 48

3.4.2 Release Planning . 49

3.4.3 Features Scheduling 49

3.5 Rationale of the Design . 50

4 Implementation of the RePlan tool 53

4.1 Implementation of the planning engine 53

4.1.1 Representation of data into main entities 55

4.1.2 Implementation of the problem 55

4.1.3 Representation of the solution 58

4.1.4 Final encapsulation . 59

4.2 Structure of RePlan application 59

4.2.1 Domain model . 59

4.2.2 Controller - Web Service in Spring Framework 60

4.2.3 Views . 61

4.3 Application operations and communication 63

4.3.1 Set-up of the tool . 63

xiii

4.3.2 Login of the user . 64

4.3.3 Project creation . 64

4.3.4 Main screen . 65

4.3.5 Planning view . 67

4.3.6 Releases creation and edition 68

4.3.7 Resources management 69

4.3.8 Features edition . 71

4.4 Compilation and upload application to the cloud 71

5 Evaluation 73

5.1 Basic tests . 73

5.1.1 Priority dominance tests 74

5.1.2 Dependency restriction tests 75

5.1.3 Capability restrictions 76

5.1.4 Testing all three restrictions. Real cases. 78

5.2 Efficiency evaluation . 82

5.2.1 Instance tests . 82

5.3 Integration tests . 83

5.3.1 Operations inside the RePlan tool 84

5.3.2 User and project registration 84

5.3.3 User login . 85

5.3.4 Main dashboard of RePlan 85

5.3.5 Project features management 86

5.3.6 Project resources management 87

5.3.7 Scheduled planning 87

5.4 Discussion . 87

6 Conclusions 89

Bibliography 91

A Replan Tool API 101

xv

List of Figures

1.1 Backlog of tasks in Trello tool 5

3.1 Physical Architecture of the tool 42

3.2 Structure of the Replan Tool’s MVC design 43

3.3 UML Class Diagram for the RePlan’s Domain Model 44

3.4 Sequence diagram of the view’s Request/Response pattern . 47

4.1 RePlan tool’s registration view 63

4.2 RePlan tool’s login view . 64

4.3 Replan’s tool creation of a project 65

4.4 RePlan tool’s Main Screen . 66

4.5 RePlan Tool’s example of a Release Plan 68

4.6 RePlan tool’s release setup view 68

4.7 RePlan tool’s release’s employee addition modal 69

4.8 RePlan tool’s resources setup view 70

4.9 RePlan tool’s skills setup view 70

4.10 RePlan tool’s feature’s setup view 71

5.1 Priority dominance test results 75

5.2 Graph of dependencies for dependency restriction test . . . 76

5.3 Replan’s Dependencies test results 76

5.4 Replan’s Skill test results . 77

5.5 Replan’s Skill test results . 79

5.6 Replan’s Unfeasibility Real Case Test 1 80

5.7 Graph of dependencies for Real Case Test 2 81

5.8 Release Planning for Real Case Test 2 82

5.9 Test of invalid registration form at RePlan tool 84

xvi

5.10 Test of incorrect login at RePlan tool 85

5.11 Intent to remove a feature with successors in a release at Re-

Plan’s main screen . 86

xvii

List of Tables

1.1 Scheduled milestones for the RePlan project 4

2.1 Papers selected from the forward-snowballing iteration. . . . 12

2.2 Papers selected from the backward-snowballing iteration. . 14

2.3 Papers selected from the board of expertsśelection. 15

2.4 Requirements selection factors per new RP method 19

3.1 Definitions for the Knapsack Problem variables in the RePlan

tool . 37

3.2 Definitions for the Scheduling Problem variables in the Re-

Plan tool . 39

5.1 Definition of features for the priority dominance test 74

5.2 Definition of dependencies graph for subsequent test 75

5.3 Features skill definition for the capabilities restriction test . . 77

5.4 Resources definition for the capabilities restriction test 77

5.5 Features skill definition for Real Case Test 1 78

5.6 Resources definition for Real Case Test 1 78

5.7 Features feasibility for Real Case Test 1 79

5.8 Features skill definition for Real Case Test 2 80

5.9 Resources definition for Real Case Test 2 81

5.10 Relation of generated instances 83

5.11 Execution times of generated instances 83

xix

Als meus pares, i al Liam.
Que les seves estrelles marquin el meu camí.

1

Chapter 1

Introduction

1.1 Outline

The amount of available software services and applications such as mobile

apps, web services, etc. has increased exponentially over the past decades

[1]. The newest software systems present a higher complexity that the tra-

ditional desktop applications, just because they now can be accessed from

many devices, and provide smarter features.

Nowadays, the high complexity of real-world software projects justi-

fies the research into computer-assisted tools to properly plan the project

development and the flow of its releases. Deciding on the features for an

upcoming software release is a high complicated process [2][3]. Moreover,

there are time pressures and a limited availability of resources. This ends

in having features that are not feasible to implement in a release.

In order to solve these issues, many release planning models have been

provided. A strong trend consists in deciding which tasks can be per-

formed in a hypothetical next release [4], without considering the schedul-

ing. However, in [5] the authors provide some scheduling techniques with-

out considering the selection of tasks to be done.

Some of the main ideas in this topic have been provided by Ruhe et al.

[6][7] in many studies, and also in [8], with an online application.

The main issue of the aforementioned ideas is that they do not combine

the automation of tasks choice in the next releases and their future schedul-

ing in the timeline. Moreover, the user cannot have control in the process of

2 Chapter 1. Introduction

selecting which tasks can be performed in a release, and also the resources

assigned to each task.

Thus, it is necessary to explore another approach to the problem, in or-

der to give the user more control in the process of making decisions. The

system should plan the features feasible to be performed taking into ac-

count the employees assigned to a concrete project for the upcoming re-

leases.

Moreover, the user should be able to decide which features does she want

to appear in a concrete release. Up to this point, the decision control is

completely transferred to the decision-maker.

The tool should be available for many users to decide in different projects,

so it is also required to be published on-line. Therefore, the tool requires of

simplicity, usability and classical rules applicable to an on-line application

user interface.

Finally, it is required that the tool should be scalable. As a project’s input

can grow gradually over the time, the performance must not be affected

dramatically.

1.2 Goals

This study is framed into the SUPERSEDE project [9], whose main objec-

tive is to provide tools to support decision-making in the evolution and

adaption of software services. One of these tools consists in demonstrating

the feasibility to perform the release planning of a software project in the

context of agile development using a support system.

Thus, the main outcome of this thesis is to design and implement an

on-line release planning system, with the capacity to select and schedule the

features that will appear in the future releases of a project.

This system must provide the decision-maker a set of planning and

scheduling operations with her project, by allowing to adjust the desired

level of automation.

1.3. Motivation 3

Moreover, the application must satisfy front-end requirements such as

usability and effectiveness.

1.3 Motivation

The main motivation for the realization of this project is to make a novel

contribution to the topic of release planning. Although there is a trending

topic in the literature for the last 10 years, we propose a novel alternative

which combines both release planning and scheduling algorithms. Finally,

the resulting tool has to cover a set of functional and non-functional re-

quirements that make it a public and usable tool.

This contribution is just one among different alternatives that are grow-

ing up in the topic of Release Planning, with the objective to make easier

the work of project management. In this context, the research and testing

of new software adapted to user’s decisions should be one the new hypes

in the following years.

This study is motivated by the necessity of companies, universities and

entities that manage projects to minimize the workload of project manage-

ment. Thus, the goal is to provide a user-customized tool that plans the

different stages of a project in a clear and efficient way.

1.4 Methodology and thesis planning

This thesis has been scheduled to be developed in 18 weeks. The method-

ology used is based in the Agile paradigms [10]. The main reason of choos-

ing this methodology against others (eg. Waterfalling [11] or Critical Path

Method [12]) is the flexibility it offers for both the project managers and the

developers.

Moreover, the Agile methodology is specialized in increasing produc-

tivity and efficiency of software development efforts. In order to build a

public tool as in this case, these characteristics are quite desirable.

4 Chapter 1. Introduction

Taking as basis this methodology, this project has been structured in

three main milestones, which frame the main functionalities of the tool and

allow to run different sprints and iterations during the project’s fulfillment.

These three milestones are the following ones:

• Milestone 1: State of the Art. Research and discussion over the differ-

ent topics in which this study is framed.

• Milestone 2: Deliver of Plan version. The tool considers dependencies

between features and it can schedule them to the different resources.

• Milestone 3: Deliver of RePlan version. The tool allows to modify a

plan once it is done with new features. It also considers the features

priority as main criteria to make the project’s schedule.

The different deliverables where scheduled in the following time inter-

vals:

Milestone Deadline Day

Milestone 1 Week 2 February 15th
Milestone 2 Week 8 March 31st
Milestone 3 Week 18 May 31st

TABLE 1.1: Scheduled milestones for the RePlan project

Unfortunately, these dates have been prolonged in time for several rea-

sons. The definitive realization of the model or the unbalanced amount

of work in Milestones 2 and 3 have been decisive to expand few days the

planning of this study.

In any case, the tracking of the whole study has been done by the project

managers via Trello [13]. Every task has got different states, depending on

the state of fulfillment (see Figure 1.1).

1.5. Structure of the Thesis 5

FIGURE 1.1: Backlog of tasks in Trello tool

1.5 Structure of the Thesis

In the following chapters it is explained in-detail the Plan and RePlan sys-

tem and how have they been implemented. Moreover, this study provides

also some case tests applied over the products, and some extracted conclu-

sions. Finally, some future research outlines are also specified.

Section 2 discusses over the existing approaches for Release Planning,

by presenting a complete State of the Art. Some iterations are performed

in order to take into account all the methodologies presented in this topic.

Besides, a background of the topics used is also provided.

The purpose of Section 3 is to define the methodology used in order to

accomplish the stated goals of the project. It describes deeply the formula-

tion and converts the requirements into a complete product structure with

different layers. The architecture is deeply commented and justified.

Section 4 deals with the implementation of the application products.

It gives a complete overview of the technologies performed and describes

how to connect all modules and layers in order to convert RePlan into a

real-world solution.

6 Chapter 1. Introduction

The evaluation of the RePlan tool is performed in Section 5. A complete

experimentation with the effectiveness of the algorithms is provided, and a

sort different real-world case studies are reported. The main goal consists

in checking the validity in terms of time-response, usability and clearness

of the solutions.

Finally, this study concludes in Section 6 with a short summary of the

accomplished objectives, and an outlook for future research.

7

Chapter 2

Background

2.1 State of the Art

The main objective of this State of the Art is to design a Systematic Lit-

erature Mapping with the aim of identifying the main relevant published

studies on the topic under consideration. In this case, let us remind that

the core of the work is related to Release Planning and software evolution

methodologies.

During the experimentation with the possible research queries, a similar

study was found in the Literature: the Systematic Literature Review (SLR)

by Svahnberg et al. (2010) [14] that investigates the strategic release plan-

ning models proposed until 2008, with an particular stress in discussing to

what extend they have been validated both in academia and industry. After

examining carefully this SLR, the conclusions were that its aims, research

questions and results matched the basic needs of this project. Therefore,

some decisions in this process have been taken:

1. To use Svahnberg et al. (2010) as a primary source of knowledge about

the relevant studies on RP published until 2008. This can be comple-

mented with additional data from Saleem & Shafique (2008), which is

the Master Thesis behind the journal version of the SLR.

2. To use Svahnberg et al. (2010) as starting point to find the relevant

studies on RP published after 2010, the year of publication of the SLR.

The hypothesis that is stated here is that any relevant study on RP

published after 2010 should cite the SLR.

8 Chapter 2. Background

3. To use Svanhberg et. al (2010) as a citation reference point. The goal

is to find relevant references from other studies that cite explicitly

Svahnberg et. al (2010). Those references must cover the period of

time from 2008 on. The hypothesis stated here is to find any relevant

study on RP in that period of time.

4. To consult a board of experts in release planning. The goal is to find

relevant references and books published in the last few years. The fi-

nal hypothesis here is to find any relevant study or information about

RP missed in the other points.

2.1.1 Research Questions

In this study, we formulate the following research questions:

RQ1. What release planning methods have been presented?

This is the most fundamental question of the state of the art. The main

goal is to know exactly which are the methodologies in release planning

proposed previously in the literature. Still, this question is very broad and

then it is decomposed into sub-questions:

• RQ1.1. What are the main motivations for the methods? Every method

that is formulated may be motivated by different driver(s). It may be

related to the quality of the plans, to the effectiveness of the process,

etc. With this subquestion the purpose is to identify these factors to

be able to check whether they can be applicable to the context of the

presented products.

• RQ1.2. What are the inputs considered by the methods? Several possible

factors may affect the behavior of the method. Typically, any method

will need the set of system features to be scheduled with some indi-

cation of priority, and some description of available resources, but the

details may change.

2.1. State of the Art 9

• RQ1.3. What are the outputs considered by the method? Being release

planning methods, the primary output should be a planning of re-

leases, being the first possibility the production of just the next release

or the update of an existing plan. The attributes bound to releases are

also subject of this investigation.

Moreover, another interest in this study is to know the insights of the

methods, which motivates the next two research sub-questions.

• RQ1.4. What are the models managed by the methods? The definition of

models is a central aspect of every method, as it has been reported

that expert-based methods are still prevalent over model-based ones

(Benestad & Hannay, 2011). This hypothesis must be confirmed in

order to learn whether there are some models recurrently used in the

surveyed methods.

• RQ1.5. Which are the algorithms or techniques applied by the methods?

Complementing the former subquestion, the identification of algo-

rithms and techniques used in the methods found is considered of

interest given the project aims.

In addition to this first question, it is important to know what has been

the relevance of the surveyed approaches and their maturity.

RQ2. To what extent have the release planning methods surveyed in RQ1 been

validated?

Similarly as above, this research question has been recomposed into sev-

eral subquestions:

• RQ2.1. Are the methods supported by tools? A fundamental issue about

these kind of methods is to know whether they provide a method-

ological or conceptual framework or instead (or additionally) they

are supported by some analysis engine. In particular, the degree of

interaction with the analyst (user interaction) needs to be discerned.

10 Chapter 2. Background

• RQ2.2. How has been industry involved in the methods? Several fac-

tors will be explored in the following sections. For instance, having

some practitioners involved in the definition of the methods (by co-

authoring publications) is a way to give evidence of industry involve-

ment. Going further, several levels of involvement could be envis-

aged, being the extreme the case in which a method is effectively used

in an industrial process.

• RQ2.3. What are the major threats identified on the methods? The main

threats reported by each one of the studied methods will be summa-

rized and classified using Wohlin et al.ś classification (2012). A special

focus will be taken to generalization, by analyzing possible restric-

tions of the methods in terms of software process (e.g., Agile), type of

organization (e.g., large) or scope (e.g., for commercial package plan-

ning, for bespoke systems. . .).

2.1.2 Selection of studies

In order to find the relevant Release Planning methods proposed in the lit-

erature since the publication of the SLR of Svahnberg et al. (2010), both for-

ward snowballing and backward snowballing studies have been performed

using that SLR as starting point. Snowballing refers to using the reference

list of a given paper (backward snowballing) or the citations to the paper

(forward snowballing) to identify additional literature (Wohlin, 2014).

It is important to mention that the forward snowballing (first iteration)

it is not from the author’s own, but for Dr. David Ameller, Dr. Carles Farré

and Dr. Xavier Franch, members of the SUPERSEDE project at UPC.

The first forward-snowballing iteration consisted in looking for refer-

ences citing directly Svahnberg et al. (2010). Since that SLR ends its analysis

in 2008, a second backward-snowballing iteration is performed, that is, an

analysis of the selected papers references in the first iteration. The goal is to

find more RP methods published from 2008 onwards.

2.1. State of the Art 11

For this iteration, both Scopus and Google Scholar were used to find

the references that cite directly Svahnberg et al. (2010). 56 references with

Scopus, while Google Scholar provided 101. All the references returned by

Scopus, except two, were also in the set provided by Google Scholar. Most

of the 47 Google Scholar references not included in Scopus were excluded

later on (see inclusion/exclusion criteria below), but a few of them were

considered. These ones were references to papers published in major jour-

nals as online first, without being assigned yet to a concrete journal issue.

The following inclusion criteria is defined, in order to select the rele-

vant studies from the 103 (56+47) papers obtained from Scopus and Google

Scholar:

1. The paper is published in:

• JCR-indexed journal belonging to Q1-Q3 quartiles.

• Proceedings of one of the following conferences: ICSE, ESEC/FSE,

ESEM, HICSS, ICSM, ICSME, and CSMR.

• Any JCR-indexed journal, CORE A or B conference/workshop

proceedings, or book chapter if at least one of the authors has an

industry affiliation.

2. The paper describes a release planning method.

A very basic exclusion criterion to simplify the selection of papers has

been also defined: all the papers that do not match the 2 inclusion criteria

were excluded.

The rationale about the restricted selection of venues in the first criterion

is as follows. In this first, and so far only one, iteration of the snowballing

procedure, the working hypothesis is that the most relevant studies will be

found published in the most renowned journals and venues. The reason

for which the selection of journals and venues is relaxed for those studies

with authors having an industrial affiliation is that it is desired to find as

12 Chapter 2. Background

many as possible studies where a full-scale industrial validation of the pro-

posed RP method is conducted. In the line with the conclusions and recom-

mendations given in Svahnberg et al. (2010), the thought is that industrial

validation is a key issue when assessing a RP method.

From the grand total of 103 studies, 81 studies were excluded because

they do not match the first inclusion criterion. The titles and abstracts of the

remaining 22 studies were read to apply the second inclusion criterion. In

the cases where that information was not sufficient to make a decision, the

place and context in which Svahnberg et al. (2010) was cited and the full

text were also considered (Wohlin, 2014). This resulted in the selection of 9

relevant papers listed in Table 2.1.

Ref Year Paper Title

M1 2012 A hybrid release planning method and its em-
pirical justification.

M2 2011 Quantitative release planning in extreme pro-
gramming.

M3 2013 Multi-sprint planning and smooth replanning:
An optimization model.

M4 2012 Solving the Large Scale Next Release Problem
with a Backbone-Based Multilevel Algorithm.

M5 2013 Analyzing an industrial strategic release plan-
ning process - A case study at Roche diagnos-
tics.

M6 2013 Continuous release planning in a large-scale
scrum development organization at Ericsson.

M7 2015 Software requirements prioritization and se-
lection using linguistic tools and constraint
solvers-a controlled experiment.

M8 2014 Industrial evaluation of the impact of quality-
driven release planning.

M9 2014 Theme-based product release planning: An an-
alytical approach.

TABLE 2.1: Papers selected from the forward-snowballing
iteration.

For the second iteration, the papers from the forward-snowballing pre-

vious iteration were taken as the starting point and used both Scopus and

Google Scholar to find all the references apart from Svahnberg et al. (2010).

A total of 647 references were overall selected, without taking into account

2.1. State of the Art 13

any inclusion criteria. These references include papers, books, manifestos

and programs.

In order to discern the relevant studies from the 647 references, a dif-

ferent inclusion criteria has been established in comparison to the forward

snowballing iteration.

1. The reference is a paper or a book published after 2008.

2. The paper is published in:

• JCR-indexed journal belonging to Q1-Q3 quartiles.

• Proceedings of one of the following conferences: ICSE, ESEC/FSE,

ESEM, HICSS, ICSM, ICSME, and CSMR.

• Any JCR-indexed journal, CORE A or B conference/workshop

proceedings, or book chapter if at least one of the authors has an

industry affiliation.

3. The paper describes a release planning method.

The exclusion criterion to simplify the selection of papers consists in the

following statement: all the papers that do not match the 3 inclusion criteria

should be excluded.

The rationale about the restricted selection in terms of publishing year

and venues is as follows. In this second iteration of the snowballing pro-

cedure, the working hypothesis is that the most relevant studies from 2008

will be found published in the most renowned journals and venues. In

line with the conclusions and recommendations given in Svahnberg et al.

(2010), industrial validation is a key issue when assessing a release planning

method.

From the grand total of 647 studies, 407 studies were excluded because

they do not match the first inclusion criterion. The venues and their re-

spective quartiles in which the remaining 240 titles were read to apply the

second inclusion criterion. Thus, 115 studies were excluded in this phase of

the selection. Finally, the titles and abstracts on the remaining papers were

read to apply the third exclusion criterion.

14 Chapter 2. Background

This procedure resulted in the selection of 9 relevant papers listed in

Table 2.2.

Ref Year Paper Title

M10 2009 Software project planning for robustness and
completion time in the presence of uncertainty
using multi-objective search based software en-
gineering

M11 2010 Studying the impact of uncertainty in opera-
tional release planning - an integrated method
and its initial evaluation

M12 2010 Rigorous support for flexible planning of prod-
uct release - a stakeholder centric approach and
its initial evaluation

M13 2010 Reinforcement learning based approach for
adaptive release planning in an agile environ-
ment

M14 2011 Conceptual scheduling model and optimized
release scheduling for agile environments

M15 2013 The software project scheduling problem: a
scalability analysis of multi-objective meta-
heuristics

M16 2015 Differential evolution with Pareto tournament
for the multi-objective next release problem

M17 2010 An integrated approach for requirement selec-
tion and scheduling in software release plan-
ning

M18 2014 Bi-objective Genetic Search for Release Plan-
ning in Support of Themes

TABLE 2.2: Papers selected from the backward-snowballing
iteration.

For the third iteration, we included few papers indicated by a board of

experts in Software Engineering and Release Planning fields. We contacted

with recognized authors of the mentioned fields, and after explaining the

objectives of our study we asked them to provide valuable references to be

included in the study. For the third iteration, a board of experts in Software

Engineering and Release Planning fields selected a range of studies about

the topic. The experts selected 5 references overall, and all of them were

included in this study.

All of them are shown in Table 2.3.

2.1. State of the Art 15

Ref Year Paper Title

M19 2016 Risk-aware Multi-Stakeholder Next Release
Planning using Multi-Objective Optimization

M20 2015 Next Release Tool
M21 2010 Analytical Product Release Planning (Review)
M22 2010 Product Release Planning - Methods, Tools and

Applications (Book)
M23 2010 A study of the bi-objective next release problem

TABLE 2.3: Papers selected from the board of expertsśelec-
tion.

2.1.3 Threats to validity

Construct Validity. Selection of primary studies. The selected primary stud-

ies have followed a strict protocol. However, the snowballing methodol-

ogy performed has got some inherent limitations. The most important one

is that it narrows the search scope to the referenced papers, therefore many

papers may be left out. As a mitigation, the study used as a departing paper

is a Systematic Literature Review (SLR), because they are normally cited by

many researchers.

The method used is not robust. The protocol may be incomplete, or pro-

vide insufficient details. As mitigation we used our experiences in similar

studies to provide a detailed protocol.

Internal Validity. Researcher bias. Each paper has been analyzed by the

author of this study, however, it is known that it is easy to have different

views or interpretations on the same paper depending, e.g., on the research

background or past experiences in similar studies. For this reason, the pa-

pers were checked by the study’s directors when necessary.

External Validity. Results not generalizable. The main purpose of the

study is not to be exhaustive, instead it is focused on identifying the most

important works on release planning. Therefore, any claim made in this

study is limited to the set of studied papers. There may be other release

planning methods that were not found in the first iteration. To mitigate

this situation, a second iteration using backward snowballing and a third

iteration are performed.

16 Chapter 2. Background

Conclusion Validity. Replicability of this study. To allow the replicability

of this study it has been defined a precise protocol of the followed steps.

However, when using the forward snowballing methodology, search engines

such as Google Scholar may offer different results in the near future. There-

fore, a replication of this study could lead to different selection of primary

studies, and in consequence to different results. For the second iteration,

the backward snowballing methodology has been used, which does not rely

on search engines.

2.2 Results

This section summarizes the results of the analysis of the 23 RP references

that we have selected (see Tables 2.1 tab:bsnowtab:expertssnow), in relation

to the RQs formulated in section 2.2.

2.2.1 RQ1. What release planning methods have been presented?

Sixteen [M2, M3, M4, M6, M7, M10, M11, M13, M14, M15, M16, M17, M18,

M19, M20, M23] out of the 23 methods that we have examined propose new

methods. The 7 remaining methods [M1, M5, M8, M9, M12, M21 and M22]

are extensions to the EVOLVE II method (an extension of EVOLVE) and its

implementation as a commercial tool, ReleasePlanner. This latter fact is not

surprising due to the high prevalence of the RP methods of the EVOLVE

family before 2010 as it is reported in Svahnberg et al. (2010).

RQ1.1. What are the main motivations for the methods?

Among the sixteen new methods, we have identified a first group [M2, M3,

M13, M14, M17] whose main concern is to address RP in agile contexts,

and then focusing on either tailoring its proposal for eXtreme Programming

[M2], or supporting multi-sprint plans [M3, M14, M17], or taking into ac-

count previous project’s iterations [M13]. A second group of new methods

seems more concerned in proposing solutions that scale up in the presence

2.2. Results 17

of large sets of requirements. That is the case of [M4, M6, M7, M10, M15,

M16].

For the remaining new methods, the motivations differ: addressing the

impact of uncertainty with time constraints [M11], supporting weighted cri-

teria from stakeholders [M18], considering different sorts of dependencies

between requirements [M19], taking into account the requirements inherent

risks [M20] or adding a resource scheduling planning for teams [M23].

For the 7 methods that extend EVOLVE II/ReleasePlanner, the motiva-

tions are also different in each case. The resulting extensions, thus, are or-

thogonal and complementary with respect to the others. In [M1], for exam-

ple, there is the need of dealing with requirements selection constraints that

are more complex and richer than the ones that ReleasePlanner accepted as

input. In [M5], the original motivation is to apply ReleasePlanner in an in-

dustrial case study and, as a result, a new extension is proposed to address

the problem of feature generation. In [M8, M9] the proposed extension of

EVOLVE II is driven by the need of dealing with quality aspects and fea-

tures grouped into themes, respectively. In [M12] there is the necessity to

adapt specific stakeholder requirements and constraints and use Release-

Planner to assign features to different release options. In [M21] the motiva-

tion is to define a generic layer to solve different sorts of release planning

problems by extracting knowledge and make predictions from large and

small datasets. Finally, [M22] is indeed the book in which a complete intro-

duction about release planning and the EVOLVE II method is presented.

RQ1.2. What are the inputs considered by the methods?

In the case of the new methods, the papers provide the necessary infor-

mation to replicate the analysis of requirements selection factors done in

Svahnberg et al. (2010). In Table 2.4 below we present the requirements

selection factors addressed by each new RP method. The factors appear in

their original formulation and, in parenthesis, their mapping to the taxon-

omy of requirements selection factors defined in Svahnberg et al. (2010):

18 Chapter 2. Background

• Hard Constraints:

– Technical Constraints:

∗ Requirements Dependencies (RD)

∗ Quality Constraints (QC)

∗ Other Technical Constraints (TeC)

– Budget & Cost Constraints (BCC)

– Resource Constraints (RC)

– Effort Constraints (EC)

– Time Constraints (TiC)

• Soft Factors:

– Stakeholders? Influence Factors (SiF)

– Value Factors (VF)

– Risk Factors (RF)

– Resource Consumption Factors (RCF)

Such constraints, in terms of deadlines for the features, could be re-

quired in the Plan and RePlan use cases.

Some of the methods that extend EVOLVE II/ReleasePlanner do not re-

quire extra input [M5, M9]. [M1], apart from the inputs that ReleasePlanner

requires, is able of accept as input any constraint that can be also expressed

as an input of a Constraint Programming Solver. For example, constraint

expressing mutual exclusion between features, additive synergy of features,

or productivity investments can be considered in [M1]. In the case of [M8],

some quality aspects are added to the method. In [M12], the method adds

a previous criteria selection from stakeholders.

RQ1.3. What are the outputs considered by the method?

In the case of the new RP methods, ten of them [M2, M4, M6, M13, M16,

M17, M18, M19, M20, M23] produce as output the list of stories/requirements/features

to be included in the next release. Moreover, in [M2] this list is divided into

2.2. Results 19

Hard Constraints Soft Constraints
Tech. Constrs.

Ref Factors in method RD QC TeC BCC RC EC TiC SiF VF RF RCF Sum

M2

• Story & theme values.
• Story sizes + Velocity estimate.
• Preference (customers wish) precedences.
• Technical precedences.

1 1 1 1 4

M3

• Story value.
• Development effort for a story.
• Story risk.
• Correlation & Precedence among stories.

1 1 1 1 4

M4
• Requirement costs.
• Dependencies between requirements.
• Which requirements will satisfy the next release to which customers.

1 1 1 3

M6
• Feasibility.
• Profitability.
• Risk.

1 1 1 3

M7
• Keyword prioritization by user.
• Pairwise comparisons between requirements by user.

1 2 3

M10
• Set of available resources/staff.
• Set of dependencies between tasks.
• Set of different skills.

1 2 3

M11

• Set of efforts for each task.
• Set of dependencies between feature’s tasks.
• Set of developers able to develop release’s features.
• Set of productivities for a developer to perform tasks.

1 2 1 4

M13
• Set of stakeholders’ factors.
• Set of requirements dependencies.
• Set of effort resources.

1 1 1 3

M14

• Set of resource capacities.
• Set of requirements’ priorities.
• Set of delivery times (for iterations).
• Dependencies between features.
• Business priorities and efforts (in person/days).

1 1 1 1 1 5

M15
• Salary and maximum dedication of the available employees.
• Precedence Graph (TPG) of task dependencies.
• Set of different skills.

1 2 3

M16
• Set of weight factor for each client.
• Set of costs per requirement.
• Set of importance values of reqs for each client.

1 2 3

M17
• Set of available employees organized in teams. • Salary and maximum dedication.
• Task dependencies.
• Deadline of the project.

1 1 1 1 4

M18

• Set of themes & values per groups of features.
• Set of efforts for each task.
• Set of dependencies between feature’s tasks.
• Set of weighted criteria per release and stakeholder.
• Set of available resources per release.

1 1 1 1 1 5

M19

• Set of existence dependencies.
• Set of cost contributions.
• Set of customer value contributions.
• Set of temporal precedences.
• Set of exclusions.

3 1 1 5

M20
• Set of stakeholders.
• Set of requirements’ costs.
• Set of importances (numeric) that a req has for a stakeholder.

1 1 1 3

M23
• Set of priorities of requirements.
• Set of dependencies between requirements.
• Set of customers’ (stakeholders) weighted relevance.

1 1 1 3

TABLE 2.4: Requirements selection factors per new RP
method

20 Chapter 2. Background

three groups with different priority: must-have stories, should-have sto-

ries, and could-have stories. In [M17] the output combines the list of next-

released requirements with a schedule of the relative time at which these

tasks should be performed by the development teams. [M3, M14] produces

a multi-sprint plan, i.e. an assignment of stories to consecutive sprints. In

[M7], the result is a list of k requirements totally ordered according to their

priority (top-k ranked requirements).

On the other hand, other models like [M10, M15] assign different tasks

to different developers taking into account the specified constraints. Con-

cretely, in [M11] a time-constraint is added to this output.

The methods that extend EVOLVE II/ReleasePlanner produce the same

output than the original method/tool: an assignment of features to the re-

leases in which they have to be implemented.

RQ1.4. What are the models managed by the methods?

A close look to the surveyed approaches show a great diversity of models.

First, several approaches adopt a formal approach based on some mathe-

matical formulation [M1, M2, M3, M4, M10, M11, M13, M14, M15, M16,

M17, M18, M20, M23]. All of them follow a similar approach to tackle the

release planning problem: calculate an assignment from a feature set f1, . . . ,

fN to a release plan x = (x1, . . . , xN) such xj = k means that fj is offered at

release k. The solution is required to maximize the value of some utility or

objective function. The approaches differ on the details, usually by adding

additional information to the utility function.

[M1], [M4], [M10], [M11] and [M15] apply basically this idea. [M1],

[M11] and [M15] add a set C of constraints which puts together all possi-

ble conditions, e.g. feature priority. [M4] is simpler at this respect since

the only constraint explicitly considered in the utility function is budget.

In addition, a directed graph records the dependencies between features.

[M10] is quite similar to [M1], but it uses a constraint based in the set of

developers’ skills.

In [M2], due to its application to XP, features are converted into stories

2.2. Results 21

and themes that have a business and size (only stories). In order to compute

the solution, project velocity is also part of the model. Finally, some decision

variables are included. [M13] is quite similar, but it takes as reference the

previous iterations and creates a machine learning algorithm to preview the

next release.

[M3] is also framed into agile release planning. User stories have utility

(business value) and complexity (story points). In addition, velocity, rela-

tionships among user stories (coupling, meaning affinity; and precedence)

and a measure of risks are added into the function. These factors are mod-

eled using a UML class diagram.

Some similarities are shown in [M14], where features are assigned to the

next iteration in an Agile environment. All features are packed in different

iterations taking into account requirements dependencies. These factors are

modeled using a UML class diagram. In [M16], the model deals completely

with stakeholders’ criteria, and the main goal is to maximize the value that

stakeholders give to different features. Moreover, budget and interactions

between task constraints are considered.

[M17] deals with different models, as the goal is to create a scheduled

release plan. Anyway, the final model is based on maximizing the revenue

provided by each one of the features, considering the time constraints and

the available resources.

[M18] is quite similar to other approaches, as the model deals with

weighted scores provided by stakeholders to different features. Moreover,

the particularity comes with the synergy between features, as the goal is to

maximize the appearance of features in the next release that belong to the

same generic topic.

In [M19] is framed into the next release problem, with the particular-

ity of applying the satisfiability modulo theorem. The model is based on

minimizing cost penalties and maximizing rewards, considering also the

contributions of the customer.

22 Chapter 2. Background

[M20] is also framed into the next release problem theory, but the ap-

proach is completely different. It deals with a multi-objective model consid-

ering the risks provided by the stakeholders and obtaining the least-risky

release, taking into account the inputs.

[M23] takes the next release problem with a different perspective, as it

uses two objective functions. The goals are to minimize the requirements’

cost and maximize the selection of the most critical requirements.

Other model-based approaches are presented in [M5, M9, M12, M21].

In all four cases, they use the ReleasePlanner tool as baseline, therefore

it can be said that the underlying model of ReleasePlanner is present in

these approaches. In addition, [M5] proposes an extension of Gorschek and

Wohlin’s RAM model, RAML, that allows linking business strategies with

solution planning and development. At its turn, [M9] builds a directed

graph to represent feature dependencies (similarly to [M4]). On the other

hand, [M12] creates a framework that uses as core the ReleasePlanner tool.

The output is not being altered in this case.

[M6], which is based in a large-scale industrial case at Ericsson for ag-

ile processes, presents a method which does not use any particular model.

In fact, one of the motivations of the case study (in fact, it seems more an

action-research initiative) is to overcome the limitations posed by model-

based approaches, especially in relation with the assumptions for their ap-

plication. Therefore, all the release planning is integrated in the traditional

agile lightweight agile process.

Finally, two of the approaches, [M7, M8], do not provide much detail on

the models used. Both of them share the characteristic that are highly tool-

oriented, using some logic-based solvers [M7] and ReleasePlanner [M8],

respectively.

RQ1.5. Which are the algorithms or techniques applied by the methods?

Contrary to the previous RQ, we found only two categories of techniques

and algorithms applied to the release planning problem.

On the one hand, several approaches [M1, M5, M6, M8, M9, M12, M21,

2.2. Results 23

M22] use the ReleasePlanner tool to conduct the release planning problem,

therefore the algorithms used are those provided by this tool. The reason

for this dominance has clearly to be with the authorship of papers: the eight

cited papers are involving Guenther Ruhe, who is the researcher behind the

formulation of the EVOLVE family of methods and the ReleasePlanner tool.

From these eight approaches, three of them [M5, M6, M8] use the tool only.

In the cases [M9, M12, M19], the tool is complemented with some extra

functionalities. In [M1], ReleasePlanner is used to generate a first solution

that feeds a constraint programming solver to find the best solution with

an enlarged set of constraints. Conversely, [M9] uses the output of a graph

clustering algorithm to feed ReleasePlanner. In detail, the graph is used,

through the interactive Chinese Whispers algorithm, to discover themes by

clustering into subgraphs of features (nodes). This is processed by Release-

Planner which considers themes as a new kind of relationship, looking for

releases that are theme-cohesive. In [M12], Release-Planner is used as the

core tool to process the different influences that stakeholders have in the

iteration’s requirements. Finally, in [M21] ReleasePlanner is also used as a

tool inside a 4-layer platform based on maximizing a utility function.

The rest of approaches [M2, M3, M4, M7, M10, M11, M13, M14, M15,

M16, M17, M18, M19, M20, M23] build specific solutions by applying pow-

erful algorithms. In [M2], the authors apply a "nested knapsack problem"

(which is known to be NP-complete) solver. Releases are considered knap-

sacks, that are nested because every release includes the preceding one. The

problem is to maximize the value that fits into these knapsacks without ex-

ceeding their size limits. The concepts and variables mentioned in the pre-

vious RQ for [M2] are used by the technique. In their implementation, the

solver uses a branch-and-bound algorithm. Somehow similarly, [M4] uses

the notion of backbone which is known in algorithm design in constraint

solving and combinatorial optimization. The backbone is an ideal structure

to model common characteristics of optimal solutions. Given its NP-nature,

the authors propose relaxed polynomial forms (approximate backbone and

24 Chapter 2. Background

soft backbone; details in [M4]) and blend them into the final combined back-

bone algorithm proposed in the paper. In [M3], the planning problem is

initially converted into a generalized assignment problem, given a linear

programming formulation, and solved using a branch-and-cut-based opti-

mizer. In addition, the proposal provides an advanced optimization model

that uses a minimum perturbation strategy to ensure stability in case of

changes. In [M7], the authors combine several techniques. First, they pro-

pose natural language processing in assisting the user in identifying inter-

dependencies and constraints be-tween requirements (this could be con-

sidered pre-release planning). The output acts as input for a satisfiability

modulo theories solver which produces a first proposal of identification of

requirements for the next release, together with a summary of disagree-

ments. These results are used by an analytic hierarchy process to improve

the accuracy of the results with human guidance.

In [M10], the authors propose a multi-objective algorithm with a Pareto

tournament model, combined with the SPEA II metaheuristic. This means

that all the solutions obtained in the population must accomplish a tuple

of three objectives to be considered as a solution. The ranking of the best

solutions is performed with the Pare-to tournament procedure.

In [M11], the authors combined a Monte-Carlo simulation (to model

uncertainty in the operational release planning (ORP) process) with process

simulation, as well as an associated optimization heuristic. The method

allows for evaluating the impact of uncertainty on make-span.

In [M13], the authors propose a machine learning algorithm that keeps

track of the previous iterations, and uses this previous information to pre-

dict the next release of the project.

In [M14], the authors developed a multiple knapsack scheduling algo-

rithm, based on several binary knapsack sub-problems. It has similarities

with [M2]. It is a branch & bound algorithm, which iteratively selects and

schedules an item (feature) for each knapsack sub-problem.

In [M15], the authors apply a multi-objective algorithm and create ex-

periments with different known meta-heuristics in order to compare their

2.2. Results 25

performance and results. Then, the approximations obtained from all meth-

ods are evaluated with different indicators.

In [M16, M18], the authors use a classical multi-objective algorithm,

such as in [M10] or [M15], but they orient it into the Next Release Prob-

lem (NRP). The proposal is a new algorithm (Multi-Objective NRP) based

in population evolution. All solutions obtained are sorted and evaluated,

and the goal is to keep executing the heuristic until all the population mem-

bers are considered as target solutions.

In [M17], the authors apply a knapsack problem to solve the release

planning issue. On the other hand, the authors create a resource-constrained

project scheduling problem (RCPSP) in order to schedule the different tasks

on time. Then, a combination of both models (in terms of applying more

constraints to the formulation) is performed in order to mix both the ideas

of release planning with a schedule of the assigned tasks to the developers.

The [M19, M20, M23] cases are also oriented into the Next Release Prob-

lem. However, the algorithms are completely different, as the first one uses

satisfiability modulo theories to configure their model. The second one uses

a more classic multi-objective Pareto front algorithm, just like in [M16] and

[M23]. All solutions are evaluated taking into account possible risks.

2.2.2 RQ2. To what extent have the release planning methods sur-

veyed in RQ1 been validated?

To answer RQ2, following we summarize our findings for the three sub-

RQs.

RQ2.1. Are the methods supported by tools?

Nearly half of the works found in the state of the art mention some kind of

tool, but is worth to differentiate those works that use a tool just to validate

their approach (i.e. a prototype or just an ad-hoc solution specific for the pa-

per) from those that are presenting a ready-to-use tool; in this second case,

the most remarkable case is Release Planner (this tool was mentioned in

26 Chapter 2. Background

[M1, M5, M8, M9, M12, M21, M22], i.e. all the methods based on EVOLVE-

II).

The papers that use a prototype or ad-hoc solution mention the follow-

ing technologies: CP-Solver [M1], LP-Solve (an OSS linear programming)

[M2], and CPLEX [M3]. In general, we can see that all the academic con-

tributions use problem solvers to determine what features will be imple-

mented in the next release.

The rest of papers ([M4, M6, M10, M11, M13, M14, M15, M16, M17, M18,

M19, M20]) did not present any kind of tool.

RQ2.2. How has been industry involved in the methods?

All selected papers are academic works (i.e., all or most authors have an

academic affiliation). In 5 cases [M5, M6, M8, M10, M11] there was one au-

thor from the industry. It’s worth noting that these works were the unique

that provide real case studies as part of their contribution. The rest of works

were validated using experiments with the exception of [M9], which had a

case study (using students).

All the proposed methods (except one) were originated in academic re-

search. The exception is an approach proposed by Ericsson [M6], which is

also the only one that is being adopted by the industry (by the same com-

pany).

RQ2.3. What are the major threats identified on the methods?

We found 5 papers [M5, M6, M7, M8, M10] with a wide analysis of the

threats to validity (i.e., including internal, external, construct and conclu-

sion validity threats). In 6 cases [M1, M4, M9, M11, M12, M18] there were

some threats explained but only the ones that the authors considered rele-

vant (without organization) and in 11 cases [M2, M3, M13, M14, M15, M16,

M17, M19, M20, M21, M22] there was no mention of threats to validity.

2.3. Discussion 27

2.3 Discussion

A three-phased analysis about Release Planning has been performed in this

State of the Art, in order to check the different methods and techniques

used during the years. A total of approximately 650 references have been

evaluated and either selected or discarded, to come up with the summary

table above shown (see Table 2.4).

Thanks to this analysis, we have concluded that the use of the EVOLVE

method (and its variants) [M23] is one of the strongest trends in the litera-

ture. However, this methodology does not contemplate the scheduling of

the release’s features assigned to resources.

Moreover, another tendency that can be taken into account is the use of

NP-hard problems (such as the Knapsack Problem) to create a Next Release

Planning adapted to our necessities.

Finally, the use of original frameworks has also been detected as a way

to do, but it can be discarded easily as its design and implementation is too

narrow for the RePlan tool’s requirements.

However, the first two trends (i.e. the EVOLVE variants and the NP-

hard problems) are all implemented with heuristic or metaheuristic algo-

rithms, which is one of the main requirements of our application.

2.4 Study background

2.4.1 Pareto-Optimal Solutions

In order to solve a multi-objective algorithm, many methodologies such

as the Multiple Criteria Decision Making (MCDM) and the Evolutionary

Multi-Objective Optimization have provided many techniques to solve real

problems.

The Evolutionary Multi-Objective Optimization methods (EMO from

now on) do not provide a unique solution that optimizes each one of the

objective functions. Then, their behaviors affect each other subsequently,

and there exists a number of Pareto optimal solutions. Since the decade of

28 Chapter 2. Background

2000 [15] , there has been an increasing tendency to mix the MCDM algo-

rithms and the EMO techniques, in order to introduce the external action of

the user (say a project manager) into the EMO methods. The main goal is to

safe unnecessary efforts and centralize the focus on the desired solutions,

by avoiding the useless ones. There have been lots of approaches of EMO

algorithms based on preferences. Some of them modify methods like the

Non-Dominated Sorting Genetic Algorithm (NSGAII) to incorporate pref-

erences [16][17] or complement the dominance relationship between the

Pareto Solutions.

The planning of software projects has become one of the most intrin-

sic challenges in the software-developing management. In the last years,

with the use of meta-heuristics, the complexity of these problems has ac-

complished to be affordable.

In this section, some concepts about multi-objective optimization and

preferences-based algorithms are introduced.

2.4.2 Multi-objective optimization

A multi-objective optimization problem is mathematically defined as:

In this section, we provide the definition of some concepts for a better

understanding of this work. In particular, we define the concept of multi-

objective optimization problem (MOP), Pareto dominance and Pareto front.

In these definitions we are assuming, without loss of generality, that mini-

mization is the goal for all the objectives.

A general MOP can be formally defined as follows: find a vector x? =

[x?1, x
?
2, ..., x

?
n] which satisfies the m inequality constraints gi(x) ≥ 0, i =

1, 2, ...,m, the p equality constraints hi(x) = 0, i = 1, 2, ..., p, and minimizes

the vector function f(x) = [f1(x), f2(x), ..., fk(x)]
T , where x = [x1, x2, ..., xn]

T

is the vector of decision variables.

The set of all values satisfying the constraints defines the feasible region

ω and any point x ∈ ω is a feasible solution.

Taking into account this definition of a MOP, a solution x1 = [x1, x12, ..., x1n]

is said to dominate a solution x2 = [x21, x2, ..., x2n] if and only if fi(x1) ≤

2.4. Study background 29

fi(x2) for i = 1, 2, ...,m, and there exist at least one j(1 ≤ j ≤ m) such

that fi(x1) < fi(x2). Conversely, two points are said to be non-dominated

whenever none of them dominates the other. Fig. 1 depicts some examples

of dominated and non-dominated solutions.

The solution of a given MOP is usually a set of solutions (referred as

Pareto optimal set) satisfying:

• Every two solutions into the set are non-dominated.

• Any other solution, y, is dominated by at least one solution in the set.

The representation of this set in the objective space is referred as Pareto

front. Generating Pareto front is the main goal of multi-objective optimiza-

tion techniques.

In theory, a Pareto front could contain a large number (or even infinitely

many) points. In practice, a usable approximate solution will only contain

a limited number of them; thus, an important goal is that they should be as

close as possible to the exact Pareto front and uniformly spread, otherwise,

they would not be very useful to the decision maker. Closeness to the Pareto

front ensures that we are dealing with optimal solutions, while a uniform

spread of the solutions means that we have made a good exploration of the

search space and no regions are left unexplored.

2.4.3 NSGA-II

NSGA-II belongs to the Evolutionary Multi-Objective Algorithms (EMO)

[7]. In several studies, such as Zhang et al. [18] and Durillo et al. [4] it

is demonstrated that shows better performance and a higher number of

obtained Pareto solutions contained in the best fronts in comparison with

other similar techniques.

The NSGA-II procedure is shown in Fig. 1. NSGA-II uses an start pop-

ulation P of N candidate solutions (also known as individuals. In this algo-

rithm, a combined population Rt = Pt ∪Qt, of size 2N is created, where Pt

is the original population, and Qt is the population generated by applying

crossover and mutation procedures on the first one. Initially, the original

30 Chapter 2. Background

population Pt is generated randomly. Once the two populations are com-

bined, Rt is sorted according to non-domination criteria. Then, solutions

belonging to the best non-dominating Pareto-front F1 in the combined pop-

ulation are chosen. If the size of F1 is smaller than the number of individu-

als M , then the remaining members of the new population Pt+1 are chosen

from the subsequent non-dominating fronts. The new population Pt+1 of

size N is now used for selection, crossover and mutation to create a new

population Qt+1.

The criteria used to rank the different individuals is very variable and

depends on the kind of model used, and the structure of the individuals

(or chromosomes). In NSGA-II, the crowded-distance operator evaluates

the solutions with highest quality (fitness to the model) and sorts them in

descendant order. to select one individual from multiple individuals with

differing non-domination ranks, the solution with the lower (better) rank

is given preference. If both solutions have the same non-dominating ranks,

the one located in a less crowded region has preference.

Algorithm 1 Pseudocode of NSGA-II

1: procedure STEPS UP(NSGA-II)
2: P ← Initialize Population()
3: Q← ∅
4: while not Termination Condition() do
5: for i← 1 tonsga-II.popSize / 2 do
6: parents← Selection(P)
7: offspring← Recombination(nsga− II.Pc, parents)
8: offspring←Mutation(nsga− II.Pm, offspring)
9: Evaluate Fitness(offspring)

10: Insert(offspring,Q)

11: R← P ∪Q
12: Ranking And Crowding(nsga− II,R)
13: P ← Select Best Individuals(nsga− II,R)

The process explained in the previous figure can be done as many times

as it is desired (i.e. iterations). When the maximum number of iterations is

reached, the non-termination condition is fulfilled and the algorithm finishes.

Moreover, other parameters, like the size of the population (i.e. the number

of generated solutions) can also be set-up.

31

Chapter 3

RePlan: Design and

Architecture of the application

In this chapter there are presented the functional and technical require-

ments that the scheduled release planner must fulfill in order to work inside

the desired environment.

Afterwards, a brief description of the architecture is presented, and a

complete formalization of the basic algebraic model of this study. In this

model, all the intervening entities and their relationships among them are

also introduced.

Then, the different operations that a user can perform in the RePlan tool

are introduced and explained: create and manage a plan, and schedule it

manually or automatically.

Finally, an in-depth rationale about the RePlan’s mathematical model is

presented. The goal is to explain the assumed decisions and the process

that end up with the main ideas of this model.

3.1 Requirements of the Project

The basic requirements that the application must accomplish are based on

the ones established at the beginning of this study. However, some other

technical features have been added, in spite of the fact that they affect the

structure and implementation of the architecture.

The RePlan’s tool requirements are divided into functional and non-functional.

32 Chapter 3. RePlan: Design and Architecture of the application

3.1.1 Functional Requirements

The functional requirements the on-line release planning system must ful-

fill are based on the smart planning of the project’s features inside the sub-

sequent releases. Moreover, it is tempted in any case that all the planned

features are the most prioritized ones.

Another fact to remark is that the planning system considers that the

projects are following an Agile methodology [10]. Following up this con-

text, all resources assigned to each release are optimized, in order to avoid

overtaking the availability of any employee.

Apart from these requirements, the capacity of decision of the project

manager has to be guaranteed. Thus, a release can be re-planned at any

moment by adding or removing either resources or features.

3.1.2 Non-Functional Requirements

In contrast to the aforementioned functional requirements, the non-functional

ones are more dedicated to the criteria used to evaluate the implementation

and the final use of the RePlan tool.

These criteria is divided into usability and technological requirements.

Usability Requirements

These requirements are oriented to the usability of the front-end part of the

application by the user, which is the final consumer and the main stake-

holder of the available operations.

Firstly, all the internal processes performed during the operations should

be almost automatic and transparent to the user, executed in the less pos-

sible time. The goal is that the user will not notice the complexity of the

system by providing her an easy-to-user application.

Moreover, the application’s views must be as intuitive as possible, with

enough options to guarantee that the user has a complete control about

what is she doing with the project.

3.2. Analysis of RePlan’s model 33

Technological Requirements

The implementation of an application of this complexity, with such a great

amount of entities, requires from a modular language, where different sorts

of functions can be engaged. In this case, Java has been chosen because of

the main amount of libraries offered, most of them open-source [19].

This programming language allows the implementation of many sorts

of algorithms and frameworks. A sub-class of them are the metaheuristic

algorithms, necessary to implement the core of this project. Concretely, the

jMetal framework [20] has been the election for this thesis. Its open imple-

mentation, variety of algorithms and easiness to create new models have

been the main reasons of this choice.

Apart from the core, Java also provides libraries for implementing on-

line applications, such as Spring Framework [21], with a high use in the IT

industries [22].

3.2 Analysis of RePlan’s model

In order to tackle with the requirements of this study, we have designed

a problem (i.e. a mathematical model) based on the conclusions extracted

from the different proposals provided in Section 2. The goal of this problem

is to find solutions that express which features are going to be launched in

a release and which resources are dedicated to their fulfillment.

3.2.1 Problem’s requirements

The solutions that the appropriate model must find are restricted to a con-

crete criteria:

• The problem tries to minimize the duration of the release as much as

possible, to avoid deadline issues.

• The first features to be launched in the release are the most urgent

ones.

34 Chapter 3. RePlan: Design and Architecture of the application

• Avoid resources free time as much as possible, i.e. all resources must

be occupied as much time as possible during the release time.

Moreover, as it has been mentioned before, many features have got de-

pendencies between them. We define these dependencies as pairs (Ri, Rj) ∈

A, where A defines a graph of precedence or succession relationships.

There are different sorts of dependencies that can be dealt into the Re-

Plan tool.

• Combination: Feature Fi needs the appearance of feature Fj into the

next release, and Fj requires Fi as well. Thus, both features, or none

of them, should be included in the next release. This can be expressed

as follows in Equations 3.1, 3.2:

(Fi, Fj) ∈ A (3.1)

(Fj , Fi) ∈ A (3.2)

• Implication: Feature Fi needs Fj to be performed. Thus, Fi is only

eligible when Fj is also included. This relationship can be expressed

in the following way:

(Fi, Fj) ∈ A (3.3)

It is assumed that the implication dependency concerns the logical re-

lationship between two features and also their corresponding precedence

relation in time. In this study, only these sort of constraints are considered.

3.2.2 Natural approach of the model

In order to create a suitable mathematical model that achieves the previous

criteria, two kinds of problems recurrent in the literature are considered:

decision and scheduling problems.

3.2. Analysis of RePlan’s model 35

It is necessary to remark that the complexity of both problems is NP-

hard [23, 24]. Therefore, their execution time is very dependent on the input

size (e.g. the set of features, dependencies between them, and scheduled

resources).

A first approach to recreate this problem is presented by Li et al. in [25].

In this case, their consider the Knapsack Problem [26] as a Next-Release

Problem (NRP), and the RCPSP (Resource-Constraint Project Scheduling

Problem) [27, 28] to schedule the features launched in the release. A short

explanation of the model is explained in the following lines.

For each feature Fj , a binary decision variable xj is defined, where xj =

1 if and only if the corresponding feature is selected to be launched in the

following release. The authors define also vi as the economical revenue of

the feature.

Moreover, the authors consider a job entity Jk as the assignation of a

feature to a concrete resource. Therefore, each feature Fj could have a set

of assigned jobs Jk, defined as X(Fj). Finally, for every single job Jk, a

group of binary decision variables ζkt is defined. The possible time interval

is t ∈ [esk, lsk], where ζkt = 1 if and only if job Jk starts at time t.

The objective of Li’s model consists in maximizing the revenue of the

features included in the release (3.4).

Constraint (3.5) expresses that a feature is selected if and only if all its

jobs are planned. Constraints (3.6) and (3.7) deal with the precedence con-

straints. Constraint (3.6) ensures that a requirement is only selected when

its predecessors are selected. Constraint (3.7) guarantees that the jobs for

the successor feature can only start after all the jobs for its preceding fea-

tures are finished. Constraint (3.8) is the resource constraint that one em-

ployee is only able to develop one feature at a time. Constraint (3.9) is the

binary constraint for all the variables.

max
n∑
j=1

vjxj (3.4)

Subject to:

36 Chapter 3. RePlan: Design and Architecture of the application

t=lsk∑
t=esk

ζkt = xj ,∀Jk ∈ X(Fj), j = 1, ..., n (3.5)

xj∗ ≤ xj∀(Fj , Fj∗) ∈ A (3.6)

t=lsk∑
t=esk

t · ζkt + dk ≤
t=lsk∗∑
t=esk

t · ζtk∗ + (1− xj∗ · d(T)∀(Jk, Jk∗ ∈ H,Jk∗ ∈ X(Rj∗))

(3.7)

∑
Jk∈X(Gi)

∑
τ=σ(t,k)

tζkτ ≤ 1∀t ∈ 0, 1, ..., Tmax, i ∈ 1, ...,m (3.8)

ζkt, xj ∈ 0, 1∀t ∈ [esk, lsk], Jk ∈ X ′′, j ∈ 1, ..., n (3.9)

As this model could fulfill a great part of the aforementioned require-

ment, its main drawback is that it is considered as an Integer Lineal Prob-

lem (ILP). Therefore, as the problem’s input size grows, the time to find an

optimal solution increments at exponential level. As it has been told be-

fore, the main reason for this phenomena is the NP-Hard complexity of this

problem.

Moreover, this approach is not able to follow the requirements exposed

in Subsection 3.2.1, as this model only deals with a single objective function.

3.2.3 Proposal for RePlan model

In order to avoid these drawbacks, the focus of the study goes to divide

this problem into two separated iterations. The first one deals with de-

ciding which features are included in the next release, and the second one

schedules the selected features into the project’s available resources. More-

over, both problems are multi-objective, so they are able to fulfill the criteria

exposed in Subsection 3.2.1.

3.2. Analysis of RePlan’s model 37

The selection of features to be launched in a release is accomplished via

the Knapsack Problem, which is an optimization problem very present in

the literature.

The Knapsack Problem consists in a set of boolean items xi and numer-

ical weights pi, so an item is related to a weight. Moreover, every item has

also a cost di. In the problem that concerns this study, we can extrapolate

these variables to the following definitions (see Table 3.1):

Variable Definition

xi Boolean variable. Decides the feature’s selection.
pi Priority of a feature Fi
di Duration of a feature Fi in the timeline.

TABLE 3.1: Definitions for the Knapsack Problem variables
in the RePlan tool

The objective consists in selecting the most urgent features to be launched

in the release (see Equation 3.10). However, the problem is restricted by

limiting the total features duration to the release deadline (Equation 3.11).

Moreover, the features appearing in the next release must obey their depen-

dency relationships: a feature cannot appear in a release if its predecessors

are not appearing (Equation 3.12).

Thus, considering also the dependencies constraints, the problem can

be written as follows:

max

n∑
x=1

pi ∗ xi (3.10)

Subject to:

n∑
x=1

di ∗ xi ≤ deadline (3.11)

xi ≤ xj ∀(i, j) ∈ A (3.12)

38 Chapter 3. RePlan: Design and Architecture of the application

On the other hand, the schedule of the selected features is in charge

of the Project Scheduling Problem (PSP) [29]. It is related to the Resource-

Constrained Project Scheduling (RCPS), an existing problem which has been

extensively tackled in the literature using both exact techniques [30] and

metaheuristic ones [31].

The release’s resources are considered as employees with different skills

(i.e. capabilities). The employees have a maximum degree of dedication to

the project. Formally, each employee is denoted with ei, where i ranges

from 1 to E (number of employees). Let SK be the set of skills, and si the

ith skill with i going from 1 to the cardinality of SK.

The skills of employee ei are denoted with eskillsi ⊆ SK, and the maxi-

mum dedication to the project with emaxdedi . The maximum dedication is a

real percentage, which is the ratio between number of hours dedicated to

the project and the length of the employee’s working day.

Something to remark about the previous lines is that if the skills of a

requirement do not match the available employees skills, the feature will

not be scheduled.

Taking into account the definition of the resources information, and the

previously selected release’s features Fj (j = 1, ..., F), we can define the

variables of the scheduling problem.

A solution can be represented with a matrix X = (xij) of size E x F

where xij ≥ 0. The element xij is the degree of dedication of employee ei

to the feature Fj .

The objectives of this problem consist in minimizing the duration of the

release, reduce the employee’s overwork and maximize the effort of the

employees in the most urgent feature (see Equations 3.18, 3.19 and 3.20).

Before going on with the expression of all these concepts into equations,

we summarize all the variables and information in the following table:

On the right hand, in order to compute the project duration, denoted

with pdur, it is essential to calculate the duration of each individual feature

Fj (see Equation 3.13). Taking into account that every feature Fj has a start

3.2. Analysis of RePlan’s model 39

Variable Definition

E Representation of the entire set of employees ei in the project.
SK Set of skills (or capabilities) of any employee or feature
si Representation of a single skill.
ei Representation of a single employee.
eskillsi Set of employee’s skills si ⊆ SK
emaxdedi Availability of the employee in the project.
Fj Representation of a single feature.
F priorj Priority of feature Fj .
F startj Start time of feature Fj in the timeline.
F endj Finish time of feature Fj in the timeline.
X Matrix E x F of dedications xij from employees to features.
xij Dedication of an employee ei to a feature Fj .

TABLE 3.2: Definitions for the Scheduling Problem vari-
ables in the RePlan tool

(F startj) and finish (F endj) time, we can define the project duration pdur as the

maximum finishing time F endj found (Equation 3.14).

F durj =
F effortj∑E
i=1 xij

(3.13)

pdur = max(F endj) ∀j ∈ 1, ..., R (3.14)

On the other hand, in order to maximize the effort of the employees

in the most critical features, we compute the employee’s time spent on the

project as the sum of the dedication multiplied by the duration of each fea-

ture (Equation 3.15).

eworki (t) =
∑

j|tstartj ≤t≤tend
j

xij (3.15)

Finally, the overwork of each employee can be calculated using the time

schedule of the features and the dedication matrix X , with the following

equations:

eoveri =

∫ t=pdur

t=0
ramp(eworki (t)− emaxdedi)dt (3.16)

40 Chapter 3. RePlan: Design and Architecture of the application

ramp(x) =

 x if x > 0

0 if x ≤ 0
(3.17)

The problem’s objectives are finally expressed in Equations 3.18, 3.19

and 3.20. The constraints express that each feature must be performed by, at

least, one employee (see Equation 3.21). The set of required feature’s skills

must be included in the union of the skills of the employees performing the

feature (Equation 3.22), and no employee must exceed her/his maximum

dedication to the project.

To sum up all these concepts, let us formalize the problem in the follow-

ing way:

minimize

pdur = max(F endj) ∀j ∈ 1, ..., F (3.18)

pover =
E∑
i=1

eoveri ∀i ∈ 1, ..., E (3.19)

maximize

xi,j ∗ (F priorj)∀i ∈ 1, ..., E, j ∈ 1, ..., F (3.20)

Subject to:

E∑
i=1

xij > 0 ∀j ∈ 1, 2, . . . , T (3.21)

tskillsj ⊆
⋃

i|xij<0

eskillsi ∀j ∈ 1, 2, . . . , T (3.22)

3.3 Architecture of RePlan

The planning system consists into an structure divided into parts, where

every one takes responsibility of concrete functionalities. The main goal is

to achieve all the functional and non-functional requirements exposed in

Section 3.1.1.

3.3. Architecture of RePlan 41

The architecture of the RePlan tool can be interpreted in two different

ways:

• Physical architecture: Definition of the main layers of the application.

• Logical architecture: Translation of the physical architecture into a de-

sign pattern and the different entities that make the application work.

3.3.1 Physical architecture

The main layers that compose the RePlan tool can be summarized as fol-

lows:

• Planning Engine: Set of libraries that take charge of the plan in the

timeline of a set of project’s features and resources. Its modularity

makes it available to be used in any environment, either on-line or

off-line, by providing a set of operations with their signatures.

• Database: Provides persistence to the different entities that interact in

the tool.

• Back-end Server: WebService in charge of receiving requests from the

views, it performs internal and external operations to the database.

Moreover, it uses the external engine to generate plans and allows the

user to modify them arbitrarialy.

• Front-end application: Set of views and underlying logic that translates

the information thrown by the Back-end server into visual figures.

It is the environment in which the user can interact freely and take

decisions over the different entities in her project.

Finally, these components are all connected between them in the follow-

ing way:

42 Chapter 3. RePlan: Design and Architecture of the application

FIGURE 3.1: Physical Architecture of the tool

3.3.2 Logical architecture

The above mentioned components of the RePlan tool can be extended into

a more concrete design pattern. Concretely, this tool consists in a web ap-

plication that is built over the Model-View-Controller (MVC from now on)

pattern [32]. The main goal is to have a clear differentiation between the

front-end part and the back-end implementation. Moreover, the use of the

MVC pattern has been one the most used in both Graphical User Interfaces

and Web applications.

As with other software patterns, MVC expresses the "core of the solu-

tion" to a problem while allowing it to be adapted for each system. This

makes that the different components of the tool are uncoupled, so different

models, controllers or views can be implemented and extended with rela-

tive facility.

The Model-View-Controller structure of the tool is shown in Figure 3.2.

In the following lines, a brief explanation for each part of the pattern is

provided:

3.3. Architecture of RePlan 43

FIGURE 3.2: Structure of the Replan Tool’s MVC design

3.3.3 Domain model

The RePlan tool’s model is mainly based on the entities mainly described

in the different sections of this study. On the right hand, the basic entities

necessary to run the planning engine must be included:

• Release: Contains a set of features and resources.

• Feature: Encapsulates ancestor and successor dependencies, capabili-

ties and textual data.

• Resource: It has a set of different Skills and availability.

• Skill: Represents a capability for both features and resources.

Moreover, in order to allow the user to interact properly with the online

tool and make the experience more realistic, some other entities have also

been created:

44 Chapter 3. RePlan: Design and Architecture of the application

• User: Contains basic information about the different users (i.e. user-

name and password). This allows to create properly all the authenti-

cation process

• Project: A user is able to manage different projects at a certain mo-

ment. Thus, also this entity was necessary to be included. It contains

a set of releases that can be scheduled.

• Plan: The key entity of the tool. It contains a set of assignments of

features to resources and the starting and ending date for each feature.

The distribution and relationships between all these entities is shown in

the UML diagram in Figure 3.3.

FIGURE 3.3: UML Class Diagram for the RePlan’s Domain
Model

3.3. Architecture of RePlan 45

3.3.4 Controller

The Controller part of the MVC pattern is in charge of all the routing pro-

cedures, serialization of data and execution of operations.

As it can be shown in Figure 3.2, the Controller part is actually com-

posed by three sub-layers: the request-response controllers, the services and

the repositories.

The set of controllers of RePlan tool are in charge of receiving all the

requests from the views and returning adequate response. Among different

options to implement this part (i.e. RESTful API, SOAP or other WSDL

contracts), the most suitable one is a RESTful API [33].

A RESTful API consists in an architecture of different entities (in this

case, controllers), where the focus is on component roles and a specific set

of interactions between data elements rather than implementation details

[34][35]. Its purpose is to induce performance, scalability, simplicity, modi-

fiability, visibility, portability, and reliability.

An API that adheres to the principles of REST does not require the client

to know anything about the structure of the API. Rather, the server needs to

provide whatever information the client needs to interact with the service.

At the moment of performing a request by a view, the browser does not

know in advance where to submit the information, and it does not know in

advance what information to submit. Both forms of information are entirely

supplied by the server. This principle can be also referred as HATEOAS

[36].

The different operations that can be requested to the RePlan controllers

are the classical HTTP ones [37]:

• GET: Retrieval of information identified by the parameters.

• POST: Send serialized information to be saved in the persistence enti-

ties.

• DELETE: Deletes the information identified by the parameters.

46 Chapter 3. RePlan: Design and Architecture of the application

In order to fulfill the Single Responsibility Principle [38], each one of

the running controllers at RePlan takes care of one of the aforementioned

entities.

The RePlan tool provides an external RESTful API that offers flexibility

to the views to obtain the different entities that compose the application.

Each one of the API controllers is defined and described in Appendix

A.

When a request is sent to a controller, it automatically receives the pa-

rameters and sends them to the Services layer.

The Services layer is responsible for converting the information received

from the controller into entities that can be manageable both for the database

and the internal operations of the tool. All entities have got an associated

service which performs different conversions depending on the controller’s

operation (i.e. save an entity, retrieve information, etc.).

In many occasions, the services have to interact with the database. In

order to follow a logical decoupling of the tool, it is also necessary to create

another layer that is capable to run punctual queries or operations to the

database. This is the Repository layer.

This layer is in charge of performing all the operations to the database,

no matter which kind of controller or API is calling them underneath. Thus,

for every one of the main entities acting in the tool there is one repository

that calls the Create, Retrieve, Update or Delete (CRUD) operations to the

database when it is convenient.

3.3.5 Views

This part contains all the visual content that is displayed to the user’s browser.

Concretely, in the design of the views we define a intermediate layer be-

tween the visual document (implemented in a mark-up language) and the

RESTful API defined in the previous section.

This layer is composed by a set of services. Each one of the services is

dedicated to an entity, just in the case of the controllers. The function of each

service is to send requests to the API and receive subsequent responses.

3.4. Functionalities. Operations to perform 47

Moreover, this layer is accessed from the different views thanks to a set

of associated modules.

When the user triggers a module’s event defined in a view, an operation

has to be called inside the module. This module imports different services

necessary to process the requests. Thus, it can call to the functionality de-

fined in each service.

Once the service has received the request, depending on the entity it is

in charge, it generates the request to the API with the given information.

In order to provide more flexibility to the system, the call is done asyn-

chronously, so the module can do other operations concurrently. When the

call is performed, it receives from the API a set of results, that might be

either the design ones or an error message.

The module receives the result from the service, and it performs the

convenient operations to pass the data to the view document.

This behavior can be exemplifies in a more technical way via the follow-

ing sequence UML diagram (Figure 3.4), in which a simulation of a login

operation is performed.

FIGURE 3.4: Sequence diagram of the view’s Re-
quest/Response pattern

3.4 Functionalities. Operations to perform

The RePlan application consists in a complete application capable to de-

cide and schedule automatically which features are going to be executed

48 Chapter 3. RePlan: Design and Architecture of the application

in a concrete release. Moreover, it also decides how many resources (i.e.

employees) are dedicated to deal with these features.

In the following lines the operations that the user can perform in the Re-

Plan application are described. These operations are able to be performed

thanks to the basic engine described in the previous chapter.

First of all, the users should introduce a different sets of project’s infor-

mation into the application. Afterwards, they are few decisions that can be

taken depending on the modality of planning desired.

3.4.1 Set-up of the Project

The user is allowed to introduce different sorts of information in order to

allow the RePlan engine to create a scheduled planning of the project.

First of all, in order to guarantee security in the project manager’s oper-

ations, the user has to register into the application, and then create a project.

This operation does not present technical complexities, as it is only neces-

sary to introduce some basic data to go forward. The reason of these first

steps consists in differentiating information among different projects, as it

is more suitable that a company runs several at the same time.

Once in a project, the project manager is able to create different release

entities reli with an optional deadline date, in order to restrict which features

can be planned inside each of them.

For every release reli inserted in the project, the user can assign two

different entities:

• A feature Fj with a set of dependencies and a set of abilities. As it has

been introduced in the previous section, each feature differentiates

from others depending on their technical characteristics. In the case it

has none, a "General" ability is inserted.

• A resource Rk, that can be consider as a company’s employee, a client

or even external stakeholders. Each resource has also different abilities

in order to be in charge of different features.

3.4. Functionalities. Operations to perform 49

3.4.2 Release Planning

Once the information is set up inside the project, the user is able to decide

the modality of release planning. The planning of the features inside the

releases can be performed in two different ways:

• Automatic : The application is able to assign automatically the sets

features in all the releases. It respects also the dependencies between

features. This way of execution is simple and fast, as the user can-

not do any selection of features or resources. However, it might not

produce the desired schedules nor the most effective ones.

• Manual : The application gives complete capacity of decision to the

user, as she is allowed to select which resources and which features

are performed in every release. The set-up process is slightly slow in

time, as the decisor must indicate the organization of the features in

the releases. However, the plans and schedules produced are com-

pletely personalized and dedicated to the user’s decisions. This is

called the RePlanning process.

3.4.3 Features Scheduling

Another point of view for the decisor to take into account is the way she

can schedule the features in the different releases.

On the right hand, the RePlan application allows to select multiple fea-

tures and schedule them to a release that has not generated a plan yet. In

this case, the user can interact and add or remove features, always respect-

ing the possible dependencies of precedence and succession that might exist

between them.

On the other hand, as it has been told before, the user is also able to

perform the RePlanning process, by adding new features to the release or

substracting features that are not in progress to an already scheduled plan.

As the projects are running in a real world environment, it is time-illegal

to modify any feature that is being executed at the moment or it has been

already performed.

50 Chapter 3. RePlan: Design and Architecture of the application

3.5 Rationale of the Design

This section is dedicated to give justification to some of the taken decisions

in the design of the RePlan application. The following lines mainly deal

with the discussion of the chosen model among other many options in the

literature.

The selection of a model that suits the necessities of the RePlan appli-

cation has been one of the most intricate issues of this study. As it is com-

mented in Section 3, the initial idea of the study was to use the problem of

Li et al. [25], which combine the Resource-Constrained Project Scheduling

Problem (aka. RCPSP) and a classic NP-Hard problem like the Knapsack

Problem. However, its impossibility to convert it into a metaheuristic prob-

lem and its performance were two major drawbacks to go forward in that

direction.

Moreover, an extended analysis was also done over [39], in which Karim

et al. present a meta-heuristic multi-objective method to decide which fea-

tures are going to be released in a hypothetical next release. However, there

was no scheduling procedures regarding the algorithm. In order to gener-

alize it, the EVOLVE algorithm (and its derivative improves) presented by

Ruhe et al [6] do not present a scheduling proposal (eg. RCPSP) to assign

features to resources.

Thus, the model turned out into a two-iteration procedure, with the

goal to supply response to all the study’s requirements. In any case, a

multi-objective metaheuristic must be chosen, as the number of objectives

to achieve might be variable. In the case of this study, the requirements to

fulfill are to minimize the duration of the project, and prioritize the plan-

ning of features with more urgency.

The main advantage of a multi-objective metaheuristic is its flexibility

to add more objective functions to the model in case of future implementa-

tions.

The decision to choose the Project Scheduling Problem among RCPSP

or other proposals is based on different reasons.

3.5. Rationale of the Design 51

Firstly, the PSP algorithm can be associated to each one of the employ-

ees different attributes that can contribute to the algorithm’s objective func-

tions.

Additionally, PSP simplifies the type of resources (in this case, employ-

ees) and becomes more suitable to a release planning project. The problem

as defined here is more realistic as in other algorithms because it includes

the concept of an employee personal skills, also capable of performing sev-

eral features during a regular working day.

53

Chapter 4

Implementation of the RePlan

tool

In this chapter it is explained, step by step, how all the entities and func-

tionalities in the RePlan tool have been implemented.

First of all, we are going in depth with the implementation of the plan-

ning and scheduling engine. This is the base on which the rest of the tool is

constructed.

Afterwards, all the entities that take part in the tool are explained. In

this case, we are talking about the structure of the RePlan application.

Once all the actors in the application are properly introduced, we are

going in depth about the operations performed in RePlan, and how data is

transferred between all the entities.

Finally, some comments about the upload of this project to the cloud are

provided.

Let us remind that the tool (except the front-end part) is written in JAVA

and the libraries used are also developed in this programming language.

All the implementation (both back-end and front-end parts) are avail-

able in BitBucket via the URL http://www.bitbucket.org/guillemon13/

replan_website

4.1 Implementation of the planning engine

The goal of the planning engine is the implementation of a problem that

returns a set of solutions. These solutions are scheduled plans for a concrete

http://www.bitbucket.org/guillemon13/replan_website
http://www.bitbucket.org/guillemon13/replan_website

54 Chapter 4. Implementation of the RePlan tool

release.

In order to develop all this process, it is necessary to consider an algo-

rithm capable to evaluate the different solutions of this problem and return

the most suitable ones with the criteria expressed in Section 3.2. Moreover,

it is necessary for this algorithm to be metaheuristic in order to avoid over-

loads of time or efficiency.

As it has been introduced in Section 2.4.3, one of the most used and

suitable algorithms to solve this sort of problems is NSGA-II [16], which is

included in many metaheuristic frameworks in JAVA [40].

One of the most developed frameworks for the implementation of meta-

heuristic problems is jMetal [20], presented in 2011 by Durillo et al. JMetal

contains a set of algorithms (including NSGA-II, PAES [41] among others).

One of the main advantages of jMetal is that it encapsulates the imple-

mentation of all metaheuristic algorithms, so the developer is only required

to implement the problem and the criteria to evaluate it.

They are different sorts of problems, depending on the type of the solu-

tion variables we want to return:

• Solutions with double variables: All the variables are real numbers.

• Solutions with integer variables. All variables are natural numbers.

• Solutions with boolean variables. All variables can take only binary

values (i.e. 0 or 1).

For the solution of this model, the variables are expressed in integer

form, as an employee can be occupied in only one feature at a certain mo-

ment of time.

The following subsections of this chapter explain in-detail the represen-

tation of the data into entities, the implementation of the model and its con-

figuration and the conversion of a feasible solution into a legible scheduled

plan.

4.1. Implementation of the planning engine 55

4.1.1 Representation of data into main entities

As it has been explained in Chapter 3, in this problem we contemplate dif-

ferent entities that contains all the necessary data to be evaluated in order

to create feasible solutions.

Let us remind the main attributes that contains each entity:

• Feature: It contains a list of ancestor dependent features and succes-

sors. Moreover, every feature has a set of capabilities (i.e. skills) incor-

porated. Every feature has got also a deadline attribute, which restricts

its appearance in the plan.

• Resource : It contains a list of capabilities (i.e. skills) and a degree of

availability. Depending on the availability a feature can be developed

in more or less time.

• Skill : It contains basic identifying data (i.e. name, description, etc.).

Moreover, for the implementation of this problem, it is also essential to

consider a new entity, in order to take advantage of the JAVA modularity

and capacity to encapsulate.

Let us consider an entity Assignation, which represents that a resource

has been assigned to a concrete feature. Logically, it might exist the possi-

bility that a feature contains many assignations. This idea, taken from [25],

contributes to an easy and more efficient implementation of the subsequent

model.

4.1.2 Implementation of the problem

As it has been commented before, one of the main facilities that the jMetal

library offers is the possibility to implement different problem (represented

as Problem classes in JAVA) independently from the algorithm used.

In this study, we take profit from this advantage and we implement two

iterative (but independent) problems for this model.

56 Chapter 4. Implementation of the RePlan tool

As a problem is composed by multiple objective functions and different

constraints that must be fulfilled, the implementation in code follows a sim-

ilar paradigm. A problem in jMetal evaluates independently the objective

functions and the constraints of a possible solution.

The RePlan model’s is really composed by two iterative problems (the

Knapsack Problem and the Project Scheduling Problem). Thus, the imple-

mentation of both of them has to be independent.

On the right hand, the Knapsack Problem is composed by an objec-

tive function (maximize the priority of selected features) and different con-

straints (the planning of features must not overpass the release’s deadline

and all features must obey their dependencies).

In order to implement that, the problem receives a set of features as

parameter, with the release’s deadline. Thus, all evaluations have got the

same initial data and no replication is performed.

At the moment of evaluating a solution, the problem computes in the

objective function evaluation the total priority of the solution’s selected at-

tributes. On the other hand, the constraints evaluation determine whether

there is any feature dependency broken or the duration of the whole release

surpasses the deadline.

If one or more constraints have been violated, the problem adds a penalty

value to the evaluated solution. Thus, a quality criteria can be established

and we allow the NSGA-II metaheuristic to select the best solutions and

mutate the worst ones.

When the process has finished, a set of one or more solutions are se-

lected as the best ones. As the underlying algorithm is meta-heuristic, there

might be the case that the solution is not the most optimal one. Let us re-

mind that the result of the Knapsack Problem is a set of features feasible to

be scheduled in a release.

Now it is the moment to set-up and start the scheduling problem, which

presents more complexity in both objective functions and constraints.

Firstly, the set of loaded data is larger, as in this moment we consider

both features and resources. Moreover, in order gain efficiency and save

4.1. Implementation of the planning engine 57

replication of operations, before starting the process all the possible assig-

nations between features and resources are already created. This is crucial

in order to evaluate the solutions, as every one contains as many variables

as possible assignations between features and resources.

The reason for this implementation decision is based on gaining effi-

ciency and facility to develop.

The implementation of both problems is based in the same principle:

develop both the objective and constraints evaluation function, taking ad-

vantage from the facilities that jMetal offers.

On the right hand, the Knapsack Problem creates solutions in which

each variable corresponds to the possibility that a feature is selected or not

for a release. Its maximization function is developed accumulating the pri-

orities of the selected variables.

Afterwards, the solution is also evaluated in terms of constraints, by

detecting whether there is any selected feature with not selected predeces-

sors or if there are features that are surpassing the deadline. In negative

case, we apply a penalty equal to the number of features violating these two

conditions.

On the other hand, the Scheduling Problem creates solutions in which

each variable corresponds to the dedication of each resource to the previ-

ously selected features.

In this case, the evaluation function presents more complexity, as it min-

imizes the duration of the release as much as possible. Moreover, it also

maximizes the most critical selected features execution.

In order to fulfill these conditions, the development is based on working

directly with the assignations between features and resources. Let us remind

that an assignation between a resource and a feature is only considered if

the resource’s skills contain the totality of the feature’s ones.

During the evaluation of the solution, the duration of each one of the

features is adapted to the resources degree of dedication provided by the

solution variables.

58 Chapter 4. Implementation of the RePlan tool

Once all the features duration are adapted, the duration of the release is

considered as the maximum end time found over all the selected features.

At the moment of evaluating the constraints, there might be the case that

a feature that is feasible to do has no dedication from any of the resources.

This is punished with a penalty to the solution.

We have also to consider that there might be the case that an employee is

overloaded of work. In that case, the duration of the project might be altered

as we have to postpone the features that cannot be executed at a certain time

for this reason. Moreover, for every overloading case, we also add a penalty

to the solution.

As we can see, the implementation of all the evaluations follows always

the same principles.

4.1.3 Representation of the solution

In the following sections, it has been commented that a solution consists in

a set of numerical variables. However, these values are not able to express

a planning solution as it is shown in the tool.

Each one of the solution variables expresses the degree of dedication of a

resource in a concrete feature. In other words, the duration of this feature’s

development is dependent on the dedication of their assigned resources.

Moreover, the start time of a feature’s development is logically dependent

on its ancestors and the availability of the resources.

Thus, the idea is to encapsulate in the solution the set of assigned features

to the different resources in the release, with the start and end time of each

one in the timeline. The most feasible solutions returned from the NSGA-II

algorithm contain all the selected features with their timings, and the only

operation left to do is expressing them in the most suitable format (e.g a

diagram, textually, etc.).

4.2. Structure of RePlan application 59

4.1.4 Final encapsulation

Once all the classes with the planning and scheduling procedures have been

implemented, the next step consists in encapsulate it in a unique JAVA li-

brary. With this decision, two goals are chased. The library can be imported

from any external entity, but without accessing the internal implementa-

tion.

Additionally, the jMetal library is also included in order to avoid possi-

ble compilation errors.

4.2 Structure of RePlan application

As it has been told in Section 3.1, the RePlan tool consists in a web application

that is built over the Model-View-Controller pattern [32]. The main goal is

to have a clear differentiation between the front-end part and the back-end

implementation.

In the following lines, we will explain how are the different parts of the

logical architecture implemented (see Figure 3.2).

4.2.1 Domain model

Taking into account the entities defined in Section 3.3.3, it is clear that in

order to persist the information that all the entities contain, some kind of

database is needed. For this project, the PostgreSQL Database Management

System (DBMS) has been chosen [42] among many other available options.

The main reasons to go ahead with this DBMS are a very high availabil-

ity and its capacity to be extensible and scalable. These last two features are

critical in a tool like RePlan, as the amount of data existing in all projects is

incremental.

The library used in JAVA to implement the different entities and persist

them in the PostgreSQL database is the Hibernate implementation of the

Java Persistance API (JPA).

The use of Hibernate obeys to one strong premise: simplicity. Hiber-

nate is based on the JPA main operations, but it also adds useful retrieve

60 Chapter 4. Implementation of the RePlan tool

operations that gain in efficiency in time and simplicity at the implementa-

tion time. Moreover, the fact that JPA is also based in Java Annotations [43]

allows to define easily complex relationships between entities (eg. depen-

dencies between features).

Thanks to JPA, any external entity can access easily to any of the enti-

ties of the database without writing a SQL query nor performing difficult

operations.

4.2.2 Controller - Web Service in Spring Framework

The Controller part of the MVC pattern consists in a Web Service that im-

plements the Spring Framework, which is in charge of all the routing pro-

cedures, serialization of data and execution of operations.

Among other functionalities, the Spring Framework features its own

requested-based MVC web application framework.

Like Struts, Spring MVC is a request-based framework. The framework

defines strategy interfaces for all of the responsibilities that must be han-

dled (e.g. controllers, request-mapping, view resolvers, etc.). The goal of

each interface is to be simple and clear, in order to be easy to develop and

extensible.

The most important interfaces defined in RePlan and managed by the

Spring Framework come as follows:

• Controller: comes between Model and View to manage incoming re-

quests and redirect to proper response. It acts as a gate that directs

the incoming information. It switches between going into Model or

View.

• HandlerAdapter: execution of objects that handle incoming requests

• HandlerMapping: selecting objects that handle incoming requests based

on any attribute or condition.

Among the three interfaces pre-defined by Spring, the key one that cen-

ters our attention is the Controller layer. In this layer, we define a set of

4.2. Structure of RePlan application 61

controllers that are in charge of receiving all the requests from the views

and returning adequate response. As it has been defined in Section 3.3.4,

all controllers are implemented to a RESTful API design.

Thus, all the operations present in Appendix 1 are implemented fol-

lowing the same structure and signatures. In all cases, when a request is

received from an entity’s controller, it automatically calls to the service as-

sociated, in order to perform the necessary operations to create an appro-

priate response.

The majority of operations performed by the service are related to Cre-

ate, Retrieve, Update or Delete (CRUD) operations, which require from an

uplying implementation of a model. These operations are all called via the

appropriate entity’s repositories. These repositories are the ones that con-

nect to the DBMS implementation (in this case, a PostgreSQL schema), and

perform the necessary operations.

However, there are a set of operations that are the core of the RePlan

tool, and they are all associated to the generation of scheduled plans. As it has

been mentioned before, the RePlan tool extends a set of libraries capable of

scheduling and a set of features to a set of resources. This results into a Plan

entity, which has to be also saved in the model and converted in a suitable

way to be redirected in to the appropriate view.

To sum up, Spring framework offers a set of capabilities that manage

to handle and map all the request performed by the views, and also all

the operations performed to the model, without taking into account their

implementation. Thus, we accomplish to follow the Single Responsibility

Principle and, what is more important, the cohesion and decoupling from

the elements is guaranteed [44], so a new controller, service or repository

can be easily extended.

4.2.3 Views

Finally, once explained all the back-end server, it is the moment to comment

the implementation of the front-end application.

62 Chapter 4. Implementation of the RePlan tool

In general terms, all the views are implemented in HTML5 [45], and

contain a main stylesheet (programmed in CSS) with the element’s com-

mon styles. Moreover, some views punctually include other stylesheet (eg.

Bootstrap [46]) in order to set up and organize the views with a usable struc-

ture.

However, the most important part of the views are the underlying mod-

ules and services that are running behind. They are in charge of performing

the requests to the controllers and retrieve data to feed the different view’s

elements.

All scripts are written in JavaScript, and implement the AngularJS Frame-

work [47]. AngularJS is capable to extend the HTML tags by adding person-

alized ones, it encapsulates great part of HTML communication and bind

the response’s data automatically and asynchronously. Its popularity in the

last few years is evident, and it has become one of the most used frame-

works in front-end programming [48].

Taking into account the combination of these three technologies, all the

different views can be implemented with customized functionalities de-

pending on the necessities at each case.

Doing a quick reminder on the design of the views in Section 3.3.5, the

election of AngularJS to develop this part of the tool is essential. AngularJS

is based on a set of applications (i.e. modules) that can be associated to each

one of the implemented views.

One of these applications can be represented as a service layer. This layer

implements a set of services, each of them capable to perform calls to the

RESTful API and the Spring controllers. Each service is dedicated to each

one of the entities, and each call creates a request based on an HTTP oper-

ation. As it has been told before, each HTTP call is done asynchronously, so

different requests can be performed to different services concurrently. The

main drawback of this configuration are the dependencies between informa-

tion (e.g. features and releases), but it can be solved with a sequential call

of the services in some points of the implementation.

Moreover, the rest of the modules implement the necessary services to

4.3. Application operations and communication 63

retrieve the information to show in the views. They perform associated

operations that can be callable from the views, acting as an intermediary

between them and the front-end’s service layer.

4.3 Application operations and communication

The main goal of this chapter is to join and complete the concepts provided

in the previous chapter. Moreover, we are dealing with the implementation

of the main features of the RePlan tool and the communication between all

the entities that take part into every operation.

A very recurrent element in the communications between the controllers

and the views are the Data Transfer Objects (DTO). [49]. A DTO consists in

a group of different typed attributes that can be transferred from the view

to the controller and viceversa. The libraries running in both Spring Frame-

work controllers and the views programmed in Angular parse those DTOs

into JSON [50] and in the opposite way.

Thus, we explain in the coming subsections how all the operations in the

RePlan application work internally, by following the Model-View-Controller

pattern.

4.3.1 Set-up of the tool

The first operation the user has to do in the RePlan tool is the registration, as

it is necessary to have authorization to run the different features of RePlan.

The registration’s view can be seen in Figure 4.1

FIGURE 4.1: RePlan tool’s registration view

64 Chapter 4. Implementation of the RePlan tool

The information (including password) is sent by the user via a DTO to

the controller, which sends the data to the service, and reconverts it into a

transactional user entity. Finally this entity is saved to the database thanks to

the repository.

The user automatically is assigned an ID and she can access the tool

without doing a login operation.

On the other hand, if the user is already registered, she can login to the

tool via a completely different procedure.

4.3.2 Login of the user

The login of the user consists in introducing the username and the password

into the view and submit it to the controller.

FIGURE 4.2: RePlan tool’s login view

The authentication is performed via a secure asynchronous connection to

an special controller that contrasts the authentication data with the user’s

information. In case the authentication is successful, the server returns a

session cookie [51] that allows the user to navigate inside the RePlan’s tool.

4.3.3 Project creation

Once the user has accessed to the RePlan tool, the user is obliged to have at

least one project in her account. If not, she has to create one in the following

form:

4.3. Application operations and communication 65

FIGURE 4.3: Replan’s tool creation of a project

The view imports an AngularJS script, which is activated with the Cre-

ate Project button. This script mainly collects all the data and creates an

appropriate DTO, which is sent to the controller. Internally, the controller

dedicated to the projects sends the data to the project’s service.

At this point of the operations, two tasks are performed. First of all,

the user is updated with the addition of a new project, and, what is more

important, the mentioned project is saved via the convenient repository.

As a new project is created, the user now is able to access the Main

Screen of the RePlan tool, in order to start managing the available projects.

4.3.4 Main screen

The main screen of RePlan is essentially a two-sided view where the user

can drag and drop the project’s features into the different releases of the

project.

As an example situation, we suppose the user has already created some

requirements and releases in a new project:

66 Chapter 4. Implementation of the RePlan tool

FIGURE 4.4: RePlan tool’s Main Screen

Before mentioning all the functionalities of this view, it is important to

indicate that many different Angular libraries are imported. The most re-

markable ones are angular-drag-and-drop, [52] and angular-messages [53]. The

AngularJS module that this view imports is also extending these libraries.

In the left-side of the view, all the available features (i.e. features that

have not been planned in any release) are shown. The user is able to drag

as many features as she wants from this side to any of the releases created

in the right-side of the screen.

Moreover, the user can remove not-planned features from any release

and drag them to the left side of the view or to another release.

One special case to be considered is that if one feature is dragged to the

available features section, the user will be warned about that fact, and all its

successors are also moved.

The implementation behind this functionality is based in the angular-

drag-and-drop library. It provides both a CSS stylesheet and some methods

to allow dragging and dropping elements into different containers.

Moreover, the library also offers an event handling in order to manage

via the view’s AngularJS module the management of the features in the

different sections.

Let us notice that there is any connection to the controller running in

this process. Everything is executed via JavaScript and AngularJS scripts.

The main screen view is also the gateway to the rest of the views acces-

sible in this tool. In the left-view section, the user has the option to add or

4.3. Application operations and communication 67

edit a project’s feature by accessing the corresponding view. In the right-

view section, it is possible to add or edit a release (by accessing its view) or

to start the planning process.

Considering that the addition of a requirement consists in just a refer-

ence to another view, the release’s edition reference and the planning one

deserve an special mention.

Firstly, the release’s edition is a reference to a parametrized view, i.e., it

needs the ID of a release to make the underlying script to show its data.

In order to avoid showing the ID of the release in the URL for privacy rea-

sons [54], we have decided to implement the AngularJS routing [55] in the

view’s module. The routing library allows to asynchronously load different

templates without reloading the page nor changing the public URL.

On the other hand, the ’Confirm’ button recollects all the requirements

existing in the release’s container and updates them to the corresponding

controller via the main screen’s module.

Once the release is updated into the database, the module invokes the

planning controller in order to generate a plan (or set of plans) for the re-

lease’s requirements and resources.

While the RePlan engine is creating the plan solutions, the tool will stay

active. At the point everything is ready, the tool redirects automatically to

the planning view.

4.3.5 Planning view

In this view, a complete Gantt chart [56] represents the scheduled plan of

the release’s features and the resources assigned to their performance. This

chart is mostly implemented with the AngularJS Gantt Diagram [57].

68 Chapter 4. Implementation of the RePlan tool

FIGURE 4.5: RePlan Tool’s example of a Release Plan

As it can be seen, the diagram offers many options for the user to filter

the diagram’s data and adapt it to her necessities. Some of the filtering that

the user can do come as follows:

• Change the date scope to zoom data with more or less time precision.

• Get a subset of features from a date interval.

These functionalities are all encapsulated in the Angular-Gantt library,

which offers an internal API to be called when necessary.

4.3.6 Releases creation and edition

From the main screen, the user is also able to create or edit the data of a

release. At this point, a personalized view for every release is shown as

follows.

FIGURE 4.6: RePlan tool’s release setup view

4.3. Application operations and communication 69

As it can be seen, the user can enter different sorts of textual data (eg.

name, description, planned start and end). Moreover, the most important

feature of the view is the resources section.

The user can add a resource by clicking to the Add Resource button. Au-

tomatically, a modal dialog [cite:modaldialog] appears with the available

resources (i.e. employees) of the project that have not been inserted yet to

the release.

FIGURE 4.7: RePlan tool’s release’s employee addition
modal

Once the user selects and accepts a resource into the release, it can be

shown in the resources section. If at any moment the resource has to be

deleted from this release, we have only to drag it out from the list to any

point of the screen.

Let us remind that this resources drag-and-drop functionality is based

o the same principle as in the Main Screen’s view. In this case, the Angular

module only contemplates a list of resources that can be manipulated either

directly from the view or from other Angular methods.

Once all the changes have been done, the release can be saved and sent

to the appropriate controller.

4.3.7 Resources management

This view takes charge of the whole project’s resources (i.e. employees)

and their subsequent capabilities (i.e. skills). The resources are shown in

the following table:

70 Chapter 4. Implementation of the RePlan tool

FIGURE 4.8: RePlan tool’s resources setup view

As it can be seen, each row represents an employee, with a set of skills and

an availability percentage. The user has the option to either edit or delete any

of the resources in the table, or add new ones via the Add Resource button.

In any case, the edition of a resource is composed by two textual inputs

and one multi-selection input for the capabilities. This last input detects au-

tomatically which skills has every employee and shows a list of the still

available skills to choose. The changes can be either saved or canceled at

any moment.

All these operations call to underlying methods in the view’s AngularJS

module.

On the other hand, the available project skills can be modified in a

modal dialog. Moreover, also new skills can be added to the project.

FIGURE 4.9: RePlan tool’s skills setup view

4.4. Compilation and upload application to the cloud 71

4.3.8 Features edition

A feature can be created at any moment of the tool’s execution or edited

by selecting one from the Main Screen. Anyway, the feature’s edition view

come as follows.

FIGURE 4.10: RePlan tool’s feature’s setup view

It is composed by a set of textual fields and two multi-selection lists

[cite:multiselect] in the capabilities (i.e. skills) and the dependencies selection.

In both cases, it is more than probable that a feature has more than one

dependency and more than one skill to be loaded.

At the moment to be sent to the controller, these two attributes are con-

sidered as current lists of DTOs. The rest of textual data is encapsulated

directly to the feature’s DTO.

4.4 Compilation and upload application to the cloud

The compilation and testing of the application has been performed thanks

to Maven [58], which is a build manager from Apache. Maven is capable

to import external libraries and plug-ins and compile them to the project

automatically (eg. the Hibernate API or the own jMetal library).

Another of the crucial plugins to add to the project is the Tomcat 7 plug-

in. This allows to compile the whole application and publish it in a Tomcat

[59] container.

72 Chapter 4. Implementation of the RePlan tool

The Tomcat container can be local (for testing) or remote. In the second

case, we might choose a provider that allows us to publish both our tool

and the PostgreSQL database.

For this tool we chose Heroku [60] as our provider for both the applica-

tion and the database. Heroku offers a free plan adapted to our necessities.

The upload to this server is also done with maven, which builds and

pushes automatically the project to the Heroku repository.

The application can be accessible via the URL

http://replanupc.herokuapp.com

http://replanupc.herokuapp.com

73

Chapter 5

Evaluation

In order to evaluate the different functionalities that the RePlan tool pro-

vides to the user, a complete incremental evaluation has been performed.

The evaluation of this study is mainly divided into two parts:

• Basic tests, checking that the restrictions of the model are being ful-

filled.

• Instance tests with sets of resources, features and skills predefined for

the RePlan scheduler engine. In this case, the efficiency is the param-

eter to take into account.

• Global tests of the whole online tool with different execution alterna-

tives. Here, efficiency and usability meet to establish an objective

evaluation.

Finally, the discussion about the tool’s efficiency is provided, an com-

pared with other algorithms.

5.1 Basic tests

In order to evaluate the different restrictions that our model presents, let us

suppose a set of critical cases:

• Priority dominance: The first features to be executed are the most ur-

gent ones.

74 Chapter 5. Evaluation

• Dependency restrictions: Some features have precedence restrictions,

so they cannot be scheduled if any ancestor of them has not been se-

lected.

• Capability restrictions: A feature cannot be planned if there is no em-

ployee capable (i.e. with enough skills) to completely perform it.

It is important to remark that the planning is simulated as in the real

world. Thus, the duration of the features is dependent on the working daily

hours, so it might be the case that a feature can be extended up to more than

one day.

5.1.1 Priority dominance tests

For this test, we consider a release with a set of three features F1, F2 and F3,

with respective priorities and duration. Moreover, this release also has two

employees assigned (E1 and E2). In order to ensure that this test is only

priority-dedicated, we assign the same skills to all features and resources.

The definition of all three features is shown in Table 5.1

Feature Priority Duration

F1 2 5 hours
F2 3 7 hours
F3 1 7 hours

TABLE 5.1: Definition of features for the priority dominance
test

Taking into account the definition of the model, we are trying to mini-

mize as much as possible the duration of the release. Moreover, the realiza-

tion of the features must obey a priority order.

The results of this test can be shown in Figure 5.1

5.1. Basic tests 75

FIGURE 5.1: Priority dominance test results

As it can be shown, features F1 and F3 are executed firstly, as their pri-

orities are higher than F2. Thus, feature F2 is postponed until one of to

employees is free to carry it out.

5.1.2 Dependency restriction tests

In this test, let us define a 5-featured release, with 3 employees. As in the

other case, in order to avoid external influences, let us suppose all features

and resources have got the same capabilities.

The definition of the features and their dependencies is shown in Table

5.2 and in the following graph of dependencies (Figure 5.2).

Feature Ancestors Duration

F1 - 7 hours
F2 F1 5 hours
F3 F1, F2 4 hours
F4 - 5 hours
F5 F2 4 hour

TABLE 5.2: Definition of dependencies graph for subse-
quent test

76 Chapter 5. Evaluation

FIGURE 5.2: Graph of dependencies for dependency restric-
tion test

The scheduled plan is shown in Figure 5.3.

FIGURE 5.3: Replan’s Dependencies test results

As it can be seen clearly, all features obey their restrictions and are ex-

actly executed at the time their ancestors finish.

5.1.3 Capability restrictions

The last restriction of the model to test is the scheduling of features that are

feasible to do by any employee at any time inside the planned release dates.

In this case, it might occur that some features cannot be done because the

release’s resources do not have all the necessary skills to perform them.

In Tables 5.3 and 5.4 features and resources capabilities are defined.

5.1. Basic tests 77

Feature Skills Duration

F1 Sk1, Sk2, Sk3 8 hours
F2 SK1 4 hours
F3 SK2 3 hours
F4 SK2 SK3 6 hours
F5 SK1 2 hours

TABLE 5.3: Features skill definition for the capabilities re-
striction test

Resource Skills

R1 Sk1, Sk2, Sk3
R2 SK1

R3 SK3

R4 SK1, SK2

R5 SK1

TABLE 5.4: Resources definition for the capabilities restric-
tion test

The results of this scheduled plan are shown in Figure 5.4

FIGURE 5.4: Replan’s Skill test results

As it can be seen, features have been excluded from the planning as

their skills do not match with any of the selected resources’ ones. Therefore,

resources Alice and Bob do have to perform all features, as the rest are not

able to deal with them.

78 Chapter 5. Evaluation

5.1.4 Testing all three restrictions. Real cases.

Last but not least, we are going to show two more tests that are oriented to

show real instances of execution by mixing the three constraints analyzed

individually before.

Test 1.- Unfeasible plan

In Tables 5.5 and 5.6 we define a list features with different skills and dura-

tion, and a list of available resources with their corresponding skills. Taking

into account the amount of inputs and the complexity of the dependencies,

we can consider this a test as a proof for a real scenario.

Feature Skills Ancestors Priority Duration

F0 Sk3, Sk4, Sk5 - 1 9 hours
F1 Sk4, Sk3, Sk6 - 4 12 hours
F2 Sk0, Sk7, Sk3 F0 0 11 hours
F3 Sk7, Sk6, Sk0 F0, F1 3 12 hours
F4 Sk1, Sk0 F3 2 7 hours
F5 Sk0, Sk7, Sk5 F2, F3 1 4 hours
F6 Sk3, Sk5 F2 2 17 hours
F7 Sk6, Sk1, Sk4 F5 4 12 hours
F8 Sk6, Sk9, Sk2 F7, F1 2 5 hours
F9 Sk0, Sk4, Sk2 F4 2 9 hours

TABLE 5.5: Features skill definition for Real Case Test 1

Resource Skills Availability

R0 Sk2, Sk6, Sk7 100%
R1 Sk8, Sk0, Sk1 100%
R2 Sk5, Sk3, Sk9 100%
R3 Sk6, Sk0, Sk3 100%
R4 Sk5, Sk4 100%

TABLE 5.6: Resources definition for Real Case Test 1

Before going more in depth with this case, let us notice that there are

some features that cannot be performed by any employee as they do not match

in their capabilities (see Table 5.7).

Thus, as some unfeasible features have dependencies, their successors

also cannot be performed (see the graph in Figure 5.5).

5.1. Basic tests 79

Feature Skills Feasibility

F0 Sk3, Sk4, Sk5 Unfeasible
F1 Sk4, Sk3, Sk6 Unfeasible
F2 Sk0, Sk7, Sk3 Unfeasible
F3 Sk7, Sk6, Sk0 Unfeasible
F4 Sk1, Sk0 Feasible
F5 Sk0, Sk7, Sk5 Unfeasible
F6 Sk3, Sk5 Unfeasible
F7 Sk6, Sk1, Sk4 Unfeasible
F8 Sk6, Sk9, Sk2 Unfeasible
F9 Sk0, Sk4, Sk2 Unfeasible

TABLE 5.7: Features feasibility for Real Case Test 1

FIGURE 5.5: Replan’s Skill test results

RePlan will throw a message explaining there is no possibility to gener-

ate a plan with this combination of features, employees and capabilities.

80 Chapter 5. Evaluation

FIGURE 5.6: Replan’s Unfeasibility Real Case Test 1

Test 2.- Feasible Plan

Let us show now in Tables 5.8 and 5.9 a combination of features and

resources that do match in some features, so the RePlan generator can create

one or more release plans (see Figure 5.8)

Feature Skills Ancestors Priority Duration

F0 Sk7, Sk8 - 2 16 hours
F1 Sk2, Sk7 - 2 22 hours
F2 Sk3, Sk6 F1 2 8 hours
F3 Sk0, Sk7, Sk9 - 4 23 hours
F4 Sk5, Sk7 F0 1 11 hours
F5 Sk4, Sk5, Sk9 F2, F3 1 15 hours
F6 Sk4, Sk5 F2, F3 3 6 hours
F7 Sk3, Sk5 F0 4 4 hours
F8 Sk1, Sk9 F2, F3 1 12 hours
F9 Sk1, Sk3, Sk8 F1, F8 4 9 hours

TABLE 5.8: Features skill definition for Real Case Test 2

5.1. Basic tests 81

Resource Skills Availability

R0 Sk1, Sk3, Sk5, Sk8 100%
R1 Sk1, Sk5, Sk6, Sk8 100%
R2 Sk2, Sk3, Sk4, Sk7, Sk8 100%
R3 Sk3, Sk5, Sk6, Sk7, Sk8 100%
R4 Sk3, Sk4, Sk5, Sk9 100%
R5 Sk0, Sk1, Sk2, Sk5 100%
R6 Sk2, Sk5, Sk7, Sk8 100%
R7 Sk1, Sk2, Sk3, Sk6, Sk7 100%
R8 Sk1, Sk2, Sk3, Sk5, Sk7 100%
R9 Sk0, Sk2, Sk4, Sk5, Sk8 100%

TABLE 5.9: Resources definition for Real Case Test 2

FIGURE 5.7: Graph of dependencies for Real Case Test 2

The final release plan for this test is shown in Figure 5.8

82 Chapter 5. Evaluation

FIGURE 5.8: Release Planning for Real Case Test 2

5.2 Efficiency evaluation

5.2.1 Instance tests

In order to evaluate the efficiency of the RePlan engine, a set of instances

testi have been extracted from [61]. The components of an instance consist

in a set employees, features, skills, and the task precedence graph (TPG).

Each of these components have several parameters that have to be trans-

lated into the entities working in the model.

Moreover, Alba et al. provide in [29] also an instance generator in JAVA

capable of generating more instances randomly. In this case, a total of 36

different instances with different combinations of skills, features and re-

sources have been created and tested, in order to study the influence of

some parameters on the planning difficulty.

As the concepts of employees and features are clear in the context of this

study, there are two slight difference at the moment of selecting the skills

for each entity:

• The employee skill definition limits the amount of skills that an em-

ployee can have at a concrete moment. On the other hand, the amount

of skills required to fulfill a task is random.

5.3. Integration tests 83

• The general skill definition limits the amount of skills that a feature can

have at a concrete moment. On the other hand, the amount of each

employee’s skills is random.

To sum up, all the combinations that build this set of tests are expressed

in Table 5.9:

Employees Skills General Skills
4-5 Skills 6-7 Skills 5 Skills 10 Skills

Employees 5 10 15 5 10 15 5 10 15 5 10 15
Features
10
20
30

TABLE 5.10: Relation of generated instances

The next step is to execute each one of these tests into the RePlan engine,

taking into account the default configuration settings of the tool:

• Only one employee can perform the totality of the task.

• The tasks with major priority are executed at first instance.

• The start time is the release’s one. No replanning is performed.

Thus, the execution times (in seconds) of the different instances come as

follows:

Employees Skills General Skills
4-5 Skills 6-7 Skills 5 Skills 10 Skills

Employees 5 10 15 5 10 15 5 10 15 5 10 15
Features
10 0.8 2.4 2.6 1.85 2.08 2.4 2.6 1.2 2 0.5 0.5 1.36
20 1.56 2.24 2.82 2.25 2.84 2.9 2.1 2.05 1.36 2.2 2.4 2.6
30 2.03 2.05 2.5 2.4 3.2 3.3 3.5 2.4 3 3.6 4 3.8

TABLE 5.11: Execution times of generated instances

5.3 Integration tests

In order to check that the different functionalities of the RePlan tool func-

tion properly, a set of integrated tests have been performed. Once each

84 Chapter 5. Evaluation

operation accomplishes the goals and runs inside the website tool, the fol-

lowing ones keep going in order to follow the life cycle of a normal project

planning.

5.3.1 Operations inside the RePlan tool

The RePlan tool is based in a succession of basic operations that determine

the lifecycle of a project inside the web application. Inside every operation,

a set of tasks are performed and evaluated both in terms of completeness

and efficiency (they fulfill the planned objective).

5.3.2 User and project registration

In order to guarantee security inside the tool, the first step that any user

must perform at RePlan is registration. It is compulsory to guarantee that

any unregistered user cannot have access to any other functionality inside

the application, as she is not in possession of the adequate credentials (user

ID).

When the user is registered into the tool, she introduces her personal

data in an application view with different validators, as some fields are

compulsory. In case all the fields are properly filled, a confirmation message

appears. In any other case, the user will not be able to go forward.

FIGURE 5.9: Test of invalid registration form at RePlan tool

5.3. Integration tests 85

Once the user has been registered, she has the ability to create one or

more projects. The process of creation is similar to the user’s one: all fields

are compulsory. The validation process is also immediate.

5.3.3 User login

In case the user is already registered and has a project created, she can login

to the tool immediately.

If the validation process goes OK, the user can access immediately to

the main dashboard of RePlan. As there is the case that a user can manage

different projects, the default one will be the most recently created.

However, in the case there is any issue at the login, an error message must

appear (see Figure 5.10).

FIGURE 5.10: Test of incorrect login at RePlan tool

5.3.4 Main dashboard of RePlan

The dashboard of the RePlan tool is also the environment in which the user

can manage her available releases. In this view, one of the most important

points to validate is the proper execution of the features drag-and-drop se-

lection. It would be illogical to insert a feature into a release if its ancestors

are in subsequent releases or simply they are available. It is essential two

consider two main cases:

86 Chapter 5. Evaluation

• The feature has got successors and has to be deleted from a release.

All the features related in succession dependency from the initial one

must be also removed.

• The feature has got predecessors and is added to a releases. It would

be illogical to insert a feature into a release if its ancestors are in sub-

sequent releases or simply they are available. The tool has to indicate

the user these actions are considered illegal.

FIGURE 5.11: Intent to remove a feature with successors in
a release at RePlan’s main screen

Apart from this special validation, the rest of the validation respond to

a proper functioning of the different actions in the environment. It deserves

a special mention the creation of a scheduled plan, as it is the most complex

operation of all the project. In case there is any error, an appropriate alert

message indicates it to the user and rolls back the changes.

5.3.5 Project features management

The creation and edition of a feature has the same structure (in terms of

validation) as the registration or project creation forms.

In this case, the validation is only prevailing in some essential attributes.

A feature might not have any dependency nor specific skills. All features

with no skills are assigned to a skill called General by default.

5.4. Discussion 87

5.3.6 Project resources management

In this view of the tool, the user is able to add or delete as many resources

(i.e. employees) with different features. It is essential to validate that the

employees skills (i.e. capacities) can only be added from the corresponding

modal view.

Moreover, it is also checked that the user name and availability must be

fulfilled. In the case of skills, as it has been told in aforementioned sections,

there is no obligation in adding anyone. All employees with no skills are

assigned to a skill called General by default.

5.3.7 Scheduled planning

Once all the parameters have been set-up (i.e. releases, resources and fea-

tures), the scheduled planning can be generated. As in Section 5.1 a great

amount of planning tests have been performed, the goal is to check some of

the options of the configuration panel.

5.4 Discussion

This section will deal with both the discussion of the RePlan tool’s efficiency

in the different cases proposed in the previous sections. Moreover, an anal-

ysis of the integration tests is also provided.

In order to perform the evaluation of the scheduling plans library (im-

plemented in jMetal), we have decided to set-up the metaheuristic algo-

rithm with 150 iterations and a population of 150 solutions. These values

are modifiable up and down, in order to make the metaheuristic perform

the evaluation, selection and mutation of the population more or less times.

This total amount of iterations and the size of the population have been

selected due to the good approximations they provide in other studies like

[39] and [18]. Although in many occasions the metaheuristic will not pro-

vide the most optimal solution to a problem, these values (or even higher

ones) could give very close approximations to the best solution possible.

Moreover, as the metaheuristic keeps iterating, it might arrive to a moment

88 Chapter 5. Evaluation

in the execution in which all the solutions are identical. This means that the

process has come up to a point at which it cannot create new solutions and

it is performing unnecessary operations.

The different experiments done with the provided instances demon-

strate that, even in the worst cases, the average execution times are not

higher than 4 seconds. This time can be considered as acceptable, if we

take into account that the metaheuristic inner processing (i.e. selection and

mutation processing) takes out a good part of the total.

On the other hand, all the integration tests performed show that the

tool can perform all the required operations successfully. Moreover, taking

into account the different stress tests performed, the tool can recover from

different sorts of internal errors and rollback the state of the tool to avoid

losing the already done process.

89

Chapter 6

Conclusions

The RePlan tool covers two different well-known topics in the literature.

On the right hand, the decision of which features can appear in one (or

more) concrete releases. On the other hand, this decision is combined with

a resources planning efficient algorithm.

The result is a high-modular engine and essentially multi-objective. In

any moment more objective functions can be added to the problem, in order

to modify and diversify the desired results.

Moreover, the design and implementation of the tool extends from this

base. This guarantees good pairing from the engine to a great amount of

solutions and projects.

On the other hand, the RePlan tool provides to the decision-makers a

new focus on the project management environment. The combination be-

tween the front-end technologies and the efficiency of the back-end part

guarantee a complete user experience. Besides, this solution offers different

functionalities from the other options that exist nowadays in the market.

As a future work, the great flexibility of the metaheuristic algorithms

guarantee many uses and options in the RePlan problem. Among other

options the minimization of project risks can be added, or even sum multiple

criteria from different project stakeholders.

About the front-end part, it is always necessary to adapt the stylesheets

and underlying technologies (Angular and JavaScript) to new functionali-

ties (eg. drag and drop, among others).

91

Bibliography

[1] App Stats. App Usage Statistics: 2015 Roundup. 2015. URL: http://

www.businessofapps.com/app-usage-statistics-2015/

(visited on 06/16/2016).

[2] Björn Regnell and Sjaak Brinkkemper. “Market-driven requirements

engineering for software products”. In: (2005), pp. 287–308.

[3] Pär Carlshamre and Björn Regnell. “Requirements lifecycle manage-

ment and release planning in market-driven requirements engineer-

ing processes”. In: (2000), pp. 961–965.

[4] Juan J Durillo et al. “A study of the multi-objective next release prob-

lem”. In: 1st International Symposium on Search Based Software Engineer-

ing. IEEE. 2009, pp. 49–58.

[5] Zengqiang Jiang, Le Zuo, and E Mingcheng. “Study on multi-objective

flexible job-shop scheduling problem considering energy consump-

tion”. In: Journal of Industrial Engineering and Management 7.3 (2014),

p. 589.

[6] Günther Ruhe. Product release planning: methods, tools and applications.

CRC Press, 2010.

[7] Des Greer and Günther Ruhe. “Software release planning: an evolu-

tionary and iterative approach”. In: Information and Software Technol-

ogy 46.4 (2004), pp. 243–253.

[8] Expert Decisions. Release Planner. 2015. URL: http://rp2.releaseplanner.

com (visited on 06/16/2016).

[9] UPC. SUPERSEDE. 2014. URL: https://www.supersede.eu (vis-

ited on 05/17/2016).

http://www.businessofapps.com/app-usage-statistics-2015/
http://www.businessofapps.com/app-usage-statistics-2015/
http://rp2.releaseplanner.com
http://rp2.releaseplanner.com
https://www.supersede.eu

92 BIBLIOGRAPHY

[10] Martin Fowler and Jim Highsmith. “The agile manifesto”. In: Software

Development 9.8 (2001), pp. 28–35.

[11] Phillipe Kruchten. From Waterfall to Iterative Lifecycle-a tough transition

for project managers. 2000.

[12] James E Kelley. “The critical-path method: Resources planning and

scheduling”. In: Industrial scheduling 13 (1963), pp. 347–365.

[13] Mark Gammon and Viktoriya Oliynyk. “Trello”. In: (2015).

[14] Mikael Svahnberg et al. “A systematic review on strategic release

planning models”. In: Information and software technology 52.3 (2010),

pp. 237–248.

[15] Axel Van Lamsweerde. “Requirements engineering in the year 00: a

research perspective”. In: Proceedings of the 22nd international confer-

ence on Software engineering. ACM. 2000, pp. 5–19.

[16] Kalyanmoy Deb et al. “A fast and elitist multiobjective genetic algo-

rithm: NSGA-II”. In: Evolutionary Computation, IEEE Transactions on

6.2 (2002), pp. 182–197.

[17] Hui Li and Qingfu Zhang. “Multiobjective optimization problems

with complicated Pareto sets, MOEA/D and NSGA-II”. In: Evolution-

ary Computation, IEEE Transactions on 13.2 (2009), pp. 284–302.

[18] Yuanyuan Zhang, Mark Harman, and S Afshin Mansouri. “The multi-

objective next release problem”. In: Proceedings of the 9th annual con-

ference on Genetic and evolutionary computation. ACM. 2007, pp. 1129–

1137.

[19] Steven Haines. Open Source Java Projects. 2014. URL: http://www.

javaworld.com/blog/open-source-java-projects/ (vis-

ited on 05/22/2016).

[20] Juan J Durillo and Antonio J Nebro. “jMetal: A Java framework for

multi-objective optimization”. In: Advances in Engineering Software 42.10

(2011), pp. 760–771.

http://www.javaworld.com/blog/open-source-java-projects/
http://www.javaworld.com/blog/open-source-java-projects/

BIBLIOGRAPHY 93

[21] Pivotal. Spring Framework - Introduction. 2014. URL: http://docs.

spring.io/spring/docs/current/spring- framework-

reference/html/overview.html (visited on 05/22/2016).

[22] Oliver White. Top 4 Java Web Frameworks Revealed: Real Life Usage Data

of Spring MVC, Vaadin, GWT and JSF. 2015. URL: http://zeroturnaround.

com/rebellabs/top-4-java-web-frameworks-revealed-

real- life- usage- data- of- spring- mvc- vaadin- gwt-

and-jsf/ (visited on 05/22/2016).

[23] Anthony J. Bagnall, Victor J. Rayward-Smith, and Ian M Whittley.

“The next release problem”. In: Information and software technology 43.14

(2001), pp. 883–890.

[24] Arezou Mohammadi. Scheduling Algorithms for Real-Time Systems. Tech.

rep. 2005.

[25] Chen Li et al. “An integrated approach for requirement selection and

scheduling in software release planning”. In: Requirements engineering

15.4 (2010), pp. 375–396.

[26] Michail G Lagoudakis. “The 0–1 Knapsack Problem”. In: reason 2 (),

u2U0.

[27] Aristide Mingozzi et al. “An exact algorithm for the resource-constrained

project scheduling problem based on a new mathematical formula-

tion”. In: Management Science 44.5 (1998), pp. 714–729.

[28] Christian Artigues, Sophie Demassey, and Emmanuel Neron. Resource-

constrained project scheduling: models, algorithms, extensions and applica-

tions. John Wiley & Sons, 2013.

[29] Enrique Alba and J Francisco Chicano. “Software project manage-

ment with GAs”. In: Information Sciences 177.11 (2007), pp. 2380–2401.

[30] Erik Demeulemeester and Willy Herroelen. “A branch-and-bound pro-

cedure for the multiple resource-constrained project scheduling prob-

lem”. In: Management science 38.12 (1992), pp. 1803–1818.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/overview.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/overview.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/overview.html
http://zeroturnaround.com/rebellabs/top-4-java-web-frameworks-revealed-real-life-usage-data-of-spring-mvc-vaadin-gwt-and-jsf/
http://zeroturnaround.com/rebellabs/top-4-java-web-frameworks-revealed-real-life-usage-data-of-spring-mvc-vaadin-gwt-and-jsf/
http://zeroturnaround.com/rebellabs/top-4-java-web-frameworks-revealed-real-life-usage-data-of-spring-mvc-vaadin-gwt-and-jsf/
http://zeroturnaround.com/rebellabs/top-4-java-web-frameworks-revealed-real-life-usage-data-of-spring-mvc-vaadin-gwt-and-jsf/

94 BIBLIOGRAPHY

[31] Toni Frankola, Marin Golub, and Domagoj Jakobovic. “Evolutionary

algorithms for the resource constrained scheduling problem”. In: 30th

International Conference on Information Technology Interfaces, ITI 2008.

2008.

[32] Seth Ladd et al. Expert Spring MVC and Web Flow. Vol. 1. Springer,

2006.

[33] Leonard Richardson and Sam Ruby. RESTful web services. " O’Reilly

Media, Inc.", 2008.

[34] Roy Thomas Fielding. “Architectural styles and the design of network-

based software architectures”. PhD thesis. University of California,

Irvine, 2000.

[35] Roy T Fielding and Richard N Taylor. “Principled design of the mod-

ern Web architecture”. In: ACM Transactions on Internet Technology (TOIT)

2.2 (2002), pp. 115–150.

[36] Arnaud Cogoluègnes. “HATEOAS paging with Spring MVC and Spring

Data JPA”. In: (2012).

[37] Roy Fielding et al. Hypertext transfer protocol–HTTP/1.1. 1999.

[38] Robert C Martin. SRP: The Single Responsibility Principle. 1996.

[39] Muhammad Rezaul Karim and Guenther Ruhe. “Bi-objective genetic

search for release planning in support of themes”. In: Search-Based

Software Engineering. Springer, 2014, pp. 123–137.

[40] Qingfu Zhang and Hui Li. “MOEA/D: A multiobjective evolution-

ary algorithm based on decomposition”. In: Evolutionary Computation,

IEEE Transactions on 11.6 (2007), pp. 712–731.

[41] Joshua Knowles and David Corne. “The pareto archived evolution

strategy: A new baseline algorithm for pareto multiobjective optimi-

sation”. In: Evolutionary Computation, 1999. CEC 99. Proceedings of the

1999 Congress on. Vol. 1. IEEE. 1999.

[42] Bruce Momjian. PostgreSQL: introduction and concepts. Vol. 192. Addison-

Wesley New York, 2001.

BIBLIOGRAPHY 95

[43] Tim Downey. Web development with java: using hibernate, JSPs and Servlets.

Springer Science & Business Media, 2008.

[44] Tom Boyle. “Design principles for authoring dynamic, reusable learn-

ing objects”. In: Australian Journal of Educational Technology 19.1 (2003),

pp. 46–58.

[45] Mark Pilgrim. HTML5: up and running. " O’Reilly Media, Inc.", 2010.

[46] David Cochran. Twitter Bootstrap Web Development How-To. Packt Pub-

lishing Ltd, 2012.

[47] Brad Green and Shyam Seshadri. AngularJS. " O’Reilly Media, Inc.",

2013.

[48] Marcel Juenemann. Angular use statistics. 2016. URL: http://libscore.

com/?#angular (visited on 06/11/2016).

[49] Elizabeth J O’Neil. “Object/relational mapping 2008: hibernate and

the entity data model (edm)”. In: Proceedings of the 2008 ACM SIG-

MOD international conference on Management of data. ACM. 2008, pp. 1351–

1356.

[50] Masoud Kalali and Bhakti Mehta. Developing RESTful services with

JAX-RS 2.0, WebSockets, and JSON. Packt Publishing Ltd, 2013.

[51] Elie Feirouz et al. Method and system for storing a web browser application

session cookie from another client application program. US Patent App.

11/167,787. 2005.

[52] Marcel Juenemann. Angular Drag-and-Drop lists. 2016. URL: http://

marceljuenemann.github.io/angular-drag-and-drop-

lists (visited on 06/01/2016).

[53] Google Inc. Packaged Angular Messages. 2015. URL: https://github.

com/angular/bower-angular-messages (visited on 06/05/2016).

[54] Ashish Shukla. Routing in MVC. 2013. URL: http://www.codeproject.

com/Tips/573454/Routing-in-MVC (visited on 08/06/2016).

[55] Dan Wahlin. “AngularJS in 60 Minutes”. In: Wahlin Consulting 2014

(2013).

http://libscore.com/?#angular
http://libscore.com/?#angular
http://marceljuenemann.github.io/angular-drag-and-drop-lists
http://marceljuenemann.github.io/angular-drag-and-drop-lists
http://marceljuenemann.github.io/angular-drag-and-drop-lists
https://github.com/angular/bower-angular-messages
https://github.com/angular/bower-angular-messages
http://www.codeproject.com/Tips/573454/Routing-in-MVC
http://www.codeproject.com/Tips/573454/Routing-in-MVC

96 BIBLIOGRAPHY

[56] Creately. 5 Reasons to user Gantt charts. 2012. URL: http://creately.

com/blog/diagrams/5-reasons-to-use-gantt-charts/

(visited on 06/08/2016).

[57] Marco Schweighauser and Rémi Alvergnat. Angular-Gantt plug-in for

AngularJS. 2015. URL: http://www.angular-gantt.com (visited

on 05/20/2016).

[58] John Ferguson Smart et al. “An introduction to Maven 2”. In: Java-

World Magazine. Available at: http://www. javaworld. com/javaworld/jw-

12-2005/jw-1205-maven. html (2005).

[59] Aleksa Vukotic and James Goodwill. Apache Tomcat 7. Springer, 2011.

[60] Neil Middleton, Richard Schneeman, et al. Heroku: Up and Running. "

O’Reilly Media, Inc.", 2013.

[61] Francisco Chicano. An Instance Generator for the Project Scheduling Prob-

lem. 2005. URL: http://tracer.lcc.uma.es/problems/psp/

generator.html (visited on 03/23/2016).

http://creately.com/blog/diagrams/5-reasons-to-use-gantt-charts/
http://creately.com/blog/diagrams/5-reasons-to-use-gantt-charts/
http://www.angular-gantt.com
http://tracer.lcc.uma.es/problems/psp/generator.html
http://tracer.lcc.uma.es/problems/psp/generator.html

97

Primary studies for the

academic state of the art

[M1] Mark Przepiora, Reza Karimpour, and Guenther Ruhe. A hybrid re-

lease planning method and its empirical justification. ACM, 2012.

[M2] Gert van Valkenhoef et al. Quantitative release planning in extreme

programming. 2011.

[M3] Matteo Golfarelli, Stefano Rizzi, and Elisa Turricchia. Multi-sprint

planning and smooth replanning: An optimization model. 2013.

[M4] Jifeng Xuan et al. “Solving the large scale next release problem with

a backbone-based multilevel algorithm”. In: Software Engineering,

IEEE Transactions on 38.5 (2012), pp. 1195–1212.

[M5] Gabriele Zorn-Pauli et al. “Analyzing an industrial strategic release

planning process–a case study at Roche diagnostics”. In: Require-

ments Engineering: Foundation for Software Quality. Springer, 2013,

pp. 269–284.

[M6] Ville T Heikkilä et al. Continuous release planning in a large-scale scrum

development organization at Ericsson. Springer, 2013.

[M7] Jason McZara et al. “Software requirements prioritization and se-

lection using linguistic tools and constraint solvers—a controlled

experiment”. In: Empirical Software Engineering 20.6 (2015), pp. 1721–

1761.

[M8] Michael Felderer et al. “Industrial evaluation of the impact of quality-

driven release planning”. In: Proceedings of the 8th ACM/IEEE Inter-

national Symposium on Empirical Software Engineering and Measure-

ment. ACM. 2014, p. 62.

98 PRIMARY STUDIES FOR THE ACADEMIC STATE OF THE ART

[M9] Nishant Agarwal, Reza Karimpour, and Guenther Ruhe. “Theme-

based product release planning: An analytical approach”. In: Sys-

tem Sciences (HICSS), 2014 47th Hawaii International Conference on.

IEEE. 2014, pp. 4739–4748.

[M10] Stefan Gueorguiev, Mark Harman, and Giuliano Antoniol. “Soft-

ware project planning for robustness and completion time in the

presence of uncertainty using multi objective search based software

engineering”. In: Proceedings of the 11th Annual conference on Genetic

and evolutionary computation. ACM. 2009, pp. 1673–1680.

[M11] Ahmed Al-Emran et al. “Studying the impact of uncertainty in op-

erational release planning–An integrated method and its initial eval-

uation”. In: Information and Software Technology 52.4 (2010), pp. 446–

461.

[M12] Ville Heikkilä et al. “Rigorous support for flexible planning of prod-

uct releases-a stakeholder-centric approach and its initial evalu-

ation”. In: System Sciences (HICSS), 2010 43rd Hawaii International

Conference on. IEEE. 2010, pp. 1–10.

[M13] Parmeet Kaur. “Reinforcement learning based approach for adap-

tive release planning in an agile environment”. In: Computational

Intelligence and Software Engineering (CiSE), 2010 International Con-

ference on. IEEE. 2010, pp. 1–4.

[M14] Ákos Szőke. “Conceptual scheduling model and optimized release

scheduling for agile environments”. In: Information and software tech-

nology 53.6 (2011), pp. 574–591.

[M15] Francisco Luna et al. “The software project scheduling problem: A

scalability analysis of multi-objective metaheuristics”. In: Applied

Soft Computing 15 (2014), pp. 136–148.

[M16] José M Chaves-González and Miguel A Pérez-Toledano. “Differen-

tial evolution with Pareto tournament for the multi-objective next

release problem”. In: Applied Mathematics and Computation 252 (2015),

pp. 1–13.

PRIMARY STUDIES FOR THE ACADEMIC STATE OF THE ART 99

[M17] Chen Li et al. “An integrated approach for requirement selection

and scheduling in software release planning”. In: Requirements en-

gineering 15.4 (2010), pp. 375–396.

[M18] Muhammad Rezaul Karim and Guenther Ruhe. “Bi-objective ge-

netic search for release planning in support of themes”. In: Search-

Based Software Engineering. Springer, 2014, pp. 123–137.

[M19] Antonio Mauricio Pitangueira et al. “Risk-Aware Multi-stakeholder

Next Release Planning Using Multi-objective Optimization”. In: Re-

quirements Engineering: Foundation for Software Quality. Springer, 2016,

pp. 3–18.

[M20] Fatma Başak Aydemir et al. “Next Release Tool”. In: ().

[M21] Günther Ruhe. Product release planning: methods, tools and applica-

tions. CRC Press, 2010.

[M22] Juan J Durillo et al. “A study of the bi-objective next release prob-

lem”. In: Empirical Software Engineering 16.1 (2011), pp. 29–60.

101

Appendix A

Replan Tool API

Introduction

RePlan
Tool
API
Implement your planning tool using the RePlan Tool API

Version: 1.0.0

Host: replanupc.herokuapp.com

Base
Path: /v1

Scheme: https

Generated on: Mon Jun 20 2016 23:22:11 GMT+0200 (CEST)

Table
of
contents
1.
Definitions

1.1. UserLogin

1.2. UserInfoDTO

1.3. NewUserDTO

1.4. RequirementDTO

1.5. SkillDTO

1.6. EmployeeDTO

1.7. ReleaseDTO

1.8. PlanDTO

1.9. Error

2.
Paths
2.1. get /users

2.2. post /users

2.3. get /users/changeProject

2.4. get /requirements

2.5. post /requirements

2.6. delete /requirements

2.7. get /requirements/search

2.8. get /requirements/searchAvailable

2.9. get /employees

2.10. post /employees

2.11. delete /employees

2.12. post /skills

2.13. delete /skills

2.14. get /skills/search

2.15. get /releases

2.16. post /releases

2.17. delete /releases

2.18. get /releases/search

2.19. put /releases/updateRequirements

2.20. get /plans

2.21. delete /plans

2.22. get /plans/generatePlan

1.
Definitions

1.1.
UserLogin

Name Type Description Required

login_id string
Unique session identifier
representing the access
of a user into the RePlan
tool.

Yes

username string No

1.2.
UserInfoDTO

Name Type Description Required
username string Yes

projectId integer Yes

1.3.
NewUserDTO

Name Type Description Required
username string Yes

email string Yes

password string Yes

1.4.
RequirementDTO

Name Type Description Required
id integer Yes

internalId integer Yes

name string Yes

effort integer Yes

criteria integer Yes

maxEmployees integer Yes

deadline string Yes

successors array
See RequirementDTO
in the Definitions
section.

Yes

See RequirementDTO

predecessors array in the Definitions
section.

Yes

skills array See SkillDTO in the
Definitions section. Yes

state string Yes

isPlanned boolean Yes

1.5.
SkillDTO

Name Type Description Required
id integer No

name string Yes

abbr string Yes

description string Yes

1.6.
EmployeeDTO

Name Type Description Required
id integer No

name string Yes

effort integer Yes

skills array See SkillDTO in the
Definitions section. Yes

1.7.
ReleaseDTO

Name Type Description Required
id integer No

name string Yes

description string No

initialDate string Yes

deadline string Yes

hasPlans boolean No

resources array See EmployeeDTO in
the Definitions section. No

requirements array
See RequirementDTO
in the Definitions
section.

No

1.8.
PlanDTO

Name Type Description Required
id integer No

projectId integer Yes

name string Yes

releaseDate string Yes

objects string Yes

1.9.
Error

Name Type Description Required
code integer No

message string No

fields string No

2.
Paths

2.2 get /users

Summary User Information

Description The User endpoint returns information about the user. The response includes the display user name, the
project at which she is working and the list of her available projects.

Operation
Id

GetUserInfo

Produces

Consumes

Parameters
Name In Description Required Type Format Collection

Format

userLogin body Login information of the
user.
Name Type Required
login_id string Yes

username string No

Yes

Responses code description

200 The information of the user.
 See UserInfoDTO in the Definitions section.

Name Type Required
username string Yes

projectId integer Yes

204 No content

401 Unauthorized

501 Internal server error

2.2 post /users

Summary Save user information

Description The User endpoint saves the information from the new registered user.

Operation
Id

CreateUser

Produces application/json

Consumes application/json

Parameters Name In Description Required Type Format Collection
Format

user body New user to be added
Name Type Required
username string Yes

email string Yes

password string Yes

Yes

Responses code description

201 User Created"
 See UserInfoDTO in the Definitions section.

Name Type Required
username string Yes

projectId integer Yes

401 Unauthorized

501 Internal server error

2.3 get /users/changeProject

Summary Change user project

Description The User endpoint changes the current project to another one specified by parameter.

Operation
Id

changeUserProject

Produces

Consumes

Parameters
Name In Description Required Type Format Collection

Format Default

projectId query ID of the
project to
work on
right now.

Yes integer int64

Responses code description

200 The information of the user.
 See UserInfoDTO in the Definitions section.

Name Type Required
username string Yes

projectId integer Yes

default Unexpected error
 See Error in the Definitions section.

Name Type Required
code integer No

message string No

fields string No

2.4 get /requirements

Summary Search Requirement created by Requirement ID.

Description The Requirements endpoint retrieve the Requirement identified by requirementID.

Operation
Id

searchRequirementById

Produces

Consumes

Parameters
Name In Description Required Type Format Collection

Format Default

requirementId query ID of the
requirement.

Yes integer int64

Responses code description

200 Successful response
 See RequirementDTO in the Definitions section.

Name Type Required
id integer Yes

internalId integer Yes

name string Yes

effort integer Yes

criteria integer Yes

maxEmployees integer Yes

deadline string Yes

successors array Yes

predecessors array Yes

skills array Yes

state string Yes

isPlanned boolean Yes

default Unexpected error

 See Error in the Definitions section.

Name Type Required
code integer No

message string No

fields string No

2.4 post /requirements

Summary Save requirement information

Description The Requirements endpoint saves the information from the new created requirement.

Operation
Id

saveRequirement

Produces application/json

Consumes application/json

Parameters
Name In Description Required Type Format

requirement body New requirement to be added to
the Project
Name Type Required
id integer Yes

internalId integer Yes

name string Yes

effort integer Yes

criteria integer Yes

maxEmployees integer Yes

deadline string Yes

successors array Yes

predecessors array Yes

skills array Yes

state string Yes

isPlanned boolean Yes

Yes

Responses code description

201 Requirement Created"
 See RequirementDTO in the Definitions

Name Type
id integer

internalId integer

name string

effort integer

criteria integer

maxEmployees integer

deadline string

successors array

predecessors array

skills array

state string

isPlanned boolean

401 Unauthorized

501 Internal server error

2.4 delete /requirements

Summary Delete requirement information

Description The Requirements endpoint deletes the requirement identified by ID.

Operation
Id

deleteRequirement

Produces application/json

Consumes application/json

Parameters
Name In Description Required Type Format Collection

Format

deletedRequirementId query Requirement
to be
deleted.

Yes integer int64

Responses code description

200 "Requirement Deleted"

401 Unauthorized

501 Internal server error

2.5 get /requirements/search

Summary Search Requirements created inside a Project.

Description The Requirements endpoint retrieves all the requirements created in a project.

Operation searchRequirementsByProjectId

Id

Produces

Consumes

Parameters
Name In Description Required Type Format Collection

Format Default

projectId query ID of the
project.

Yes integer int64

Responses code description

200 Successful response
Schema
type array

 See RequirementDTO in the Definitions section.

Name Type Required
id integer Yes

internalId integer Yes

name string Yes

effort integer Yes

criteria integer Yes

maxEmployees integer Yes

deadline string Yes

successors array Yes

predecessors array Yes

skills array Yes

state string Yes

isPlanned boolean Yes

default Unexpected error
 See Error in the Definitions section.

Name Type Required
code integer No

message string No

fields string No

2.6 get /requirements/searchAvailable

Summary Search available Requirements created inside a Project.

Description The Requirements endpoint retrieves all the requirements created in a project that **have not

been included** in any release.

Operation
Id

searchAvailableRequirementsByProjectId

Produces

Consumes

Parameters
Name In Description Required Type Format Collection

Format Default

projectId query ID of the
project.

Yes integer int64

Responses code description

200 Successful response
Schema
type array

 See RequirementDTO in the Definitions section.

Name Type Required
id integer Yes

internalId integer Yes

name string Yes

effort integer Yes

criteria integer Yes

maxEmployees integer Yes

deadline string Yes

successors array Yes

predecessors array Yes

skills array Yes

state string Yes

isPlanned boolean Yes

default Unexpected error
 See Error in the Definitions section.

Name Type Required
code integer No

message string No

fields string No

2.7 get /employees

Summary Search Employee created by Employee ID.

Description The Employee endpoint retrieve the Employee identified by employeeID.

Operation
Id

searchEmployeeById

Produces

Consumes

Parameters
Name In Description Required Type Format Collection

Format Default

employeeId query ID of the
employee.

Yes integer int64

Responses code description

200 Successful response
 See EmployeeDTO in the Definitions section.

Name Type Required
id integer No

name string Yes

effort integer Yes

skills array Yes

default Unexpected error
 See Error in the Definitions section.

Name Type Required
code integer No

message string No

fields string No

2.7 post /employees

Summary Save employee information

Description The Employees endpoint saves the information from the new created employee.

Operation
Id

saveEmployee

Produces application/json

Consumes application/json

Parameters
Name In Description Required Type Format Collection

Format

employee body New employee to be Yes

added to the Project
Name Type Required
id integer No

name string Yes

effort integer Yes

skills array Yes

Responses code description

201 Employee Created"
 See EmployeeDTO in the Definitions section.

Name Type Required
id integer No

name string Yes

effort integer Yes

skills array Yes

401 Unauthorized

501 Internal server error

2.7 delete /employees

Summary Delete employee information

Description The Employees endpoint deletes the employee identified by ID.

Operation
Id

deleteEmployee

Produces application/json

Consumes application/json

Parameters
Name In Description Required Type Format Collection

Format

deletedEmployeeId query Employee
to be
deleted.

Yes integer int64

Responses code description

200 "Employee Deleted"

401 Unauthorized

501 Internal server error

2.8 post /skills

Summary Save skill information

Description The Skill endpoint saves the information from the new created skill.

Operation
Id

saveSkill

Produces application/json

Consumes application/json

Parameters
Name In Description Required Type Format Collection

Format

skill body New skill to be added
Name Type Required
id integer No

name string Yes

abbr string Yes

description string Yes

Yes

Responses code description

201 Skill Created"
 See SkillDTO in the Definitions section.

Name Type Required
id integer No

name string Yes

abbr string Yes

description string Yes

401 Unauthorized

501 Internal server error

2.8 delete /skills

Summary Delete skill information

Description The Skill endpoint deletes the skill identified by ID.

Operation
Id

deleteSkill

Produces application/json

Consumes application/json

Parameters
Name In Description Required Type Format Collection

Format Default

deletedSkillId query Skill to be Yes integer int64

deleted.

Responses code description

200 "Skill Deleted"

401 Unauthorized

501 Internal server error

2.9 get /skills/search

Summary Search Skills created inside a Project.

Description The Skills endpoint retrieves all the skills created in a project.

Operation
Id

searchSkillsByProjectId

Produces

Consumes

Parameters
Name In Description Required Type Format Collection

Format Default

projectId query ID of the
project.

Yes integer int64

Responses code description

200 Successful response
Schema
type array

 See SkillDTO in the Definitions section.

Name Type Required
id integer No

name string Yes

abbr string Yes

description string Yes

default Unexpected error
 See Error in the Definitions section.

Name Type Required
code integer No

message string No

fields string No

2.10 get /releases

Summary Search Release created by Release ID.

Description The Release endpoint retrieve the Release identified by releaseID.

Operation
Id

searchReleaseById

Produces

Consumes

Parameters
Name In Description Required Type Format Collection

Format Default

releaseId query ID of the
release.

Yes integer int64

Responses code description

200 Successful response
 See ReleaseDTO in the Definitions section.

Name Type Required
id integer No

name string Yes

description string No

initialDate string Yes

deadline string Yes

hasPlans boolean No

resources array No

requirements array No

default Unexpected error
 See Error in the Definitions section.

Name Type Required
code integer No

message string No

fields string No

2.10 post /releases

Summary Save release information

Description The Releases endpoint saves the information from the new created release.

Operation saveRelease

Id

Produces application/json

Consumes application/json

Parameters
Name In Description Required Type Format Collection

Format

release body New release to be added to the
Project
Name Type Required
id integer No

name string Yes

description string No

initialDate string Yes

deadline string Yes

hasPlans boolean No

resources array No

requirements array No

Yes

Responses code description

201 Release Created"
 See ReleaseDTO in the Definitions section.

Name Type Required
id integer No

name string Yes

description string No

initialDate string Yes

deadline string Yes

hasPlans boolean No

resources array No

requirements array No

401 Unauthorized

501 Internal server error

2.10 delete /releases

Summary Delete release information

Description The Releases endpoint deletes the release identified by ID.

Operation deleteRelease

Id

Produces application/json

Consumes application/json

Parameters
Name In Description Required Type Format Collection

Format Default

deletedReleaseId query Release to
be deleted.

Yes integer int64

Responses code description

200 "Release Deleted"

401 Unauthorized

501 Internal server error

2.11 get /releases/search

Summary Search Releases created inside a Project.

Description The Releases endpoint retrieves all the releases created in a project.

Operation
Id

searchReleasesByProjectId

Produces

Consumes

Parameters
Name In Description Required Type Format Collection

Format Default

projectId query ID of the
project.

Yes integer int64

Responses code description

200 Successful response
Schema
type array

 See ReleaseDTO in the Definitions section.

Name Type Required
id integer No

name string Yes

description string No

initialDate string Yes

deadline string Yes

hasPlans boolean No

resources array No

requirements array No

default Unexpected error
 See Error in the Definitions section.

Name Type Required
code integer No

message string No

fields string No

2.12 put /releases/updateRequirements

Summary Updates uniquely requirements from a Release.

Description The release identified by releaseID updates uniquely the requirements passed by parameter.

Operation
Id

updateReleaseRequirements

Produces

Consumes

Parameters
Name In Description Required Type Format

releaseId query ID of the release. Yes integer int64

requirements body ID of the release.
Name Type Required
id integer No

name string Yes

description string No

initialDate string Yes

deadline string Yes

hasPlans boolean No

resources array No

requirements array No

Yes

Responses code description

200 "Release updated"

default Unexpected error
 See Error in the Definitions section.

Name Type
code integer

message string

fields string

2.13 get /plans

Summary Search Plans created for a release

Description The Plans endpoint retrieves all the plans created for a release.

Operation
Id

searchPlansByReleaseId

Produces

Consumes

Parameters
Name In Description Required Type Format Collection

Format Default

releaseId query ID of the
release.

Yes integer int64

Responses code description

200 Successful response
Schema
type array

 See PlanDTO in the Definitions section.

Name Type Required
id integer No

projectId integer Yes

name string Yes

releaseDate string Yes

objects string Yes

default Unexpected error
 See Error in the Definitions section.

Name Type Required
code integer No

message string No

fields string No

2.13 delete /plans

Summary Delete scheduled plans from a release.

Description The Plans endpoint deletes all plans created for a release identified by release ID.

Operation
Id

deletePlans

Produces application/json

Consumes application/json

Parameters
Name In Description Required Type Format Collection

Format Default

releaseId query Release
whose
plans are
deleted.

Yes integer int64

Responses code description

200 "Plans Deleted"

401 Unauthorized

501 Internal server error

2.14 get /plans/generatePlan

Summary Generate plans for a Release.

Description The Plans endpoint creates scheduled plans for an identified Release.

Operation
Id

GeneratePlans

Produces

Consumes

Parameters
Name In Description Required Type Format Collection

Format Default

releaseId query ID of the
release.

Yes integer int64

Responses code description

200 "Plans Created"

default Unexpected error
 See Error in the Definitions section.

Name Type Required
code integer No

message string No

fields string No

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Outline
	Goals
	Motivation
	Methodology and thesis planning
	Structure of the Thesis

	Background
	State of the Art
	Research Questions
	Selection of studies
	Threats to validity

	Results
	RQ1. What release planning methods have been presented?
	RQ2. To what extent have the release planning methods surveyed in RQ1 been validated?

	Discussion
	Study background
	Pareto-Optimal Solutions
	Multi-objective optimization
	NSGA-II

	RePlan: Design and Architecture of the application
	Requirements of the Project
	Functional Requirements
	Non-Functional Requirements

	Analysis of RePlan's model
	Problem's requirements
	Natural approach of the model
	Proposal for RePlan model

	Architecture of RePlan
	Physical architecture
	Logical architecture
	Domain model
	Controller
	Views

	Functionalities. Operations to perform
	Set-up of the Project
	Release Planning
	Features Scheduling

	Rationale of the Design

	Implementation of the RePlan tool
	Implementation of the planning engine
	Representation of data into main entities
	Implementation of the problem
	Representation of the solution
	Final encapsulation

	Structure of RePlan application
	Domain model
	Controller - Web Service in Spring Framework
	Views

	Application operations and communication
	Set-up of the tool
	Login of the user
	Project creation
	Main screen
	Planning view
	Releases creation and edition
	Resources management
	Features edition

	Compilation and upload application to the cloud

	Evaluation
	Basic tests
	Priority dominance tests
	Dependency restriction tests
	Capability restrictions
	Testing all three restrictions. Real cases.

	Efficiency evaluation
	Instance tests

	Integration tests
	Operations inside the RePlan tool
	User and project registration
	User login
	Main dashboard of RePlan
	Project features management
	Project resources management
	Scheduled planning

	Discussion

	Conclusions
	Bibliography
	Replan Tool API

