
Master in Innovation and Research in Informatics

High Performance Computing Specialisation

On the Analysis of the Timing Behaviour

of Time Randomised Caches

Author: Pedro Benedicte

Advisors: Francisco J. Cazorla

Barcelona Supercomputing Center

Spanish National Research Council

Jaume Abella

Barcelona Supercomputing Center

Tutor: Mateo Valero

Computer Architecture Department, UPC

Barcelona Supercomputing Center

July 7, 2016

Acknowledgements

First of all, I want to deeply thank my advisors Fran and Jaume for their guidance

and mentoring through the development of this thesis.

I also want to thank the rest of the people of the CAOS group at BSC who always

offer help when is most needed.

Furthermore, I would like to acknowledge BSC for financially supporting my mas-

ter studies through the Severo Ochoa scholarship.

Finally, I would like to thank my parents for their unconditional support both in

my studies and in my life.

Abstract

Time Randomised caches (TRc), which can be implemented at hardware level or with

software means on conventional deterministic cache designs, have been proposed for

real-time systems as key enablers for Probabilistic Timing Analysis (PTA) and in

particular its measurement-based variant: Measurement-Based Probabilistic Timing

Analysis (MBPTA). A key parameter of MBPTA is the number of runs required to

ensure representativity of the execution time measurements taken at analysis time

with respect to execution times that can occur during system deployment, so that

MBPTA can trustworthily be applied.

In this thesis, we propose several methods to determine whether the number of

observations taken at analysis, as part of the normal MBPTA application process,

capture the cache events significantly impacting execution time and Worst-Case Exe-

cution Time (WCET). If this is not the case, our techniques provide the user with the

number of extra runs required so that cache events are captured ensuring trustwor-

thiness on MBPTA provided WCET estimates. Our techniques have been evaluated

using a set of synthetic benchmarks and a real avionics application.

Contents

List of Figures 7

List of Tables 8

1 Introduction 9

1.1 Motivation . 9

1.2 Contribution . 12

1.3 Structure of the Thesis . 13

2 Background 15

2.1 Timing analysis techniques . 15

2.1.1 MBPTA . 18

2.2 Cache memories . 19

2.2.1 Cache organisation . 20

2.2.2 Cache management . 23

2.2.3 Time randomised caches . 25

3 Problem statement 27

3.1 MBPTA representativity requirements 27

3.1.1 Cache representativity challenges 29

3.2 Relating exceedance probabilities and safety standards 31

3.3 Definitions and notation to derive Peoi 32

3.4 Heart of Gold . 34

4 Hardware time randomised single-level caches 35

4.1 Behaviour . 35

4.2 Models . 36

4.2.1 Probability tree . 36

4.2.2 Multinomial coefficient . 37

4.2.3 Monte Carlo simulations . 39

4.3 Increasing the number of runs . 41

4.4 Experimental setup . 41

5

4.4.1 Comparison . 42

4.4.2 Synthetic benchmarks . 43

4.4.3 Avionics benchmarks . 45

4.5 Conclusions . 46

5 Software time randomised single-level caches 47

5.1 Behaviour . 47

5.2 Models . 49

5.2.1 Probability tree . 49

5.2.2 Multinomial coefficient . 50

5.2.3 Monte Carlo simulations . 52

5.3 Experimental setup . 53

5.3.1 Synthetic benchmarks . 53

5.3.2 Avionics benchmarks . 54

5.4 Conclusions . 57

6 Related work 59

7 Conclusions and future work 61

7.1 Conclusions . 61

7.2 Future work . 61

Appendices 63

A Published work 64

Glossary 66

Bibliography 67

6

List of Figures

1 Execution time distribution . 16

2 Example of PDF, CDF, 1-CDF and pWCET curve 18

3 Evolution of the performance gap between the processor and memory 19

4 Basic cache structures . 20

5 Memory address line . 21

6 Set associative cache . 22

7 Cache with random placement . 24

8 Software randomisation on top of conventional cache 26

9 Range of probabilities of interest for MBPTA 28

10 Miss rates for different number of addresses 30

11 Probability tree for hardware randomisation 37

12 Peoi confidence interval for the Monte Carlo simulations 40

13 Comparison of all the methods proposed to compute the P hTRc
eoi 42

14 Results for different synthetic object sequences 44

15 Results for the avionics case study . 45

16 Probability tree for software randomisation with 3 2-line objects in a

3 set cache . 48

17 Probability tree for software randomisation 49

18 Results for different synthetic object sequences 53

19 Scheduling of functions, processes, time partitions and MIF within a

MAF . 54

20 Results for the avionics case study . 55

21 Results for the avionics case study for different object allocations . . 55

7

List of Tables

1 Basic notation . 32

2 Confidence interval width. 40

3 Small and big cache configurations. 41

4 Object sizes . 44

5 Impact of the number of objects on Peoi. 56

8

1 Introduction

This chapter serves as an introduction to the reader to the work performed in this

thesis. We start in Section 1.1 by explaining the increasing need for guaranteed com-

putation of the real-time system industry. We further introduce how the techniques

proposed in this thesis help accomplish the increasing performance requirements. Sec-

tion 1.2 lists the main contributions of the thesis. We finish the chapter in Section 1.3

by presenting the structure of the rest of this document.

1.1 Motivation

Nowadays, the Real-Time Embedded Systems (RTES) industry represents an impor-

tant part of the global chip market. Some predictions point out that it will drive

the global chip demand in the following years [2]. RTES comprise a wide range of

commercial products: from low cost commodity appliances such as microwaves to

expensive and critical systems like cars or planes.

In all these systems, in addition to functional correctness, timing correctness plays

a key part for the systems to function properly. Programs running on RTES must be

completed in a limited amount of time called deadline. In order to know whether a

specific program will fit in its assigned budget, a WCET estimate for the application

is computed.

To that end, depending on how critical if not to miss the deadline, real-time

systems can be classified into 3 categories:

• Hard real-time systems: this systems control the most critical operations, usu-

ally where a failure of the system can result in a fatality, e.g. Anti-lock Braking

System (ABS) of a car, flight control system in planes... Frequent deadline

misses are not desirable because of the consequences. This systems are also

known as Critical Real-Time Embedded Systems (CRTES).

• Soft real-time systems: the system can miss several deadlines, since it will not

result in a critical outcome. An example is a video decoding processor. If the

processing of a frame of the video does not meet the deadline probably will not

be noticeable for the final user. Even if some group of consecutive frames miss

9

the deadline, the user will see some distortion that, although undesirable, does

not cause the whole system to stop working (the user can continue watching

the movie).

• Firm real-time systems: the system can miss an occasional deadline and it will

not cause a critical outcome, but the results will be discarded since they are of

no use after the deadline. An example of this is Software-defined radio (SDR),

where a missed deadline will result in some part of the audio stream not being

heard by the user.

Critical Real-Time Embedded Systems is a fertile research as testified by the High-

Performance Embedded Architecture and Compilation (HiPEAC) 2013’s roadmap [13]

that presents the relevance of the CRTES industry in Europe. It is highlighted the

need for an increase in the guaranteed performance in these systems. This is so be-

cause newer functionalities require future CRTES systems that have a guaranteed

performance higher than that of the current systems. As an example in the auto-

motive industry cars are increasingly introducing more Advanced Driver Assistance

Systems (ADAS) with high performance requirements.

The industry solution used until recently to increase guaranteed performance is

to add more than one embedded processor per device (e.g. car, plane...), increasing

significantly the number of processors per generation. For instance, a modern car

contains up to 70 Electronic Control Units (ECUs) while in the following generations

this number is predicted to grow half an order of magnitude [11]. When more tasks

need to be implemented, the use of more individual systems is a possible solution.

However, for a single task that requires a lot of single-thread performance this is not

a valid solution, so a single more powerful processor must be used.

Most of the processors used until recently in CRTES are simple 8-bit and 16-

bit [11] without any aggressive hardware acceleration components like pipelines, mem-

ory hierarchies, memory prefetchers or branch predictors. These hardware features

are not being used because their complex behaviour complicates timing analysis,

making increasingly complex to derive tight WCET estimates and providing evidence

about their reliability. There are currently two timing analysis technique approaches:

Static Timing Analysis (STA) and Measurement-Based Timing Analysis (MBTA):

10

• Static Timing Analysis: creates a mathematical model of the timing behaviour

of the processor architecture. This model takes into consideration the latencies

of each operation, the possible architectural components that could make this

latencies change (pipeline stages, dependencies between instructions...). This is

becoming increasingly difficult with new, more complex processor designs. Also

some manufacturers do not provide all the implementation details, so there is

some uncertainty in the mathematical model. This translates into more pes-

simistic assumptions to cover the uncertainty created by the lack of implemen-

tation details that are unclear or too complex, resulting in a longer (degraded)

WCET.

• Measurement-Based Timing Analysis: computes the WCET by observing dif-

ferent execution time outcomes of the system. This phase is called analysis,

while the later operational phase is called deployment. At the analysis phase

several runs (R) are done changing the input sets so the timing changes. Using

these timing observations and applying some statistical methods, the WCET is

computed. However, with Measurement-Based Timing Analysis the conditions

of the system at analysis time have to be the same of the ones at operation.

Furthermore, the events that can significantly impact the execution time at

operation must be captured in the analysis runs.

MBPTA [12, 33] is a variant of Measurement-Based Timing Analysis that allows

to alleviate this problem. MBPTA introduces randomisation in certain architecture

components that can generate different timing outcomes. This way, since the different

timing outcomes will be seen with a certain probability (due to their randomness), it

is possible to compute the probability that the worst case will be seen in the analysis

runs.

For instance, this is a problem when trying to use a cache in a CRTES: the

mapping of the objects in memory will impact the mapping of these objects in the

different cache sets. The possible conflicts can affect the number of misses that the

cache will have, having a noticeable impact on the program execution time. Thus, it

is critical that this scenario (cache conflicts) is seen in the analysis runs for MBTA

to be reliable.

11

However, often the mapping of the objects in memory is not easily controllable by

the user, but done automatically by the operating system. Furthermore, assuming

that the mapping can be specified, the task of manually forcing the scenario where

cache conflicts are seen relies on the tester’s skill.

To address this problem, in the context of MBPTA, time randomised caches have

been proposed [26] to deal with this representativity problem. These caches introduce

randomisation, by either software or hardware means, to the mapping of the objects

in the cache. This means that the set where a certain object will be mapped has a

specific and known probability.

1.2 Contribution

In this thesis we tackle the proposed problem of computing the probability that a

cache conflict will occur with a specific cache configuration when allocating a specific

number of objects of different sizes, for both software and hardware time randomised

caches. The correct resolution of this problem will enable MBPTA to produce reliable

WCET from the analysis runs.

For computing this probability, we propose 3 different mechanisms:

• The first consists in developing a probability tree with all the possible outcomes

of the object allocation in the different sets.

• Since the previous method does not scale with the number of objects or sets,

we propose a second model based on the mathematical interpretation of the

multinomial coefficient. This method also has some computation restrictions

when the number of objects to allocate is high.

• Finally, we use a method based on Monte Carlo simulations, which gives results

in reasonable time with any number of objects or sets.

Furthermore, since increasing the number of analysis runs increases the probability

of a cache conflict to be seen, we propose a method to derive the increased number of

runs needed for the MBPTA analysis runs to be representative of those at operation

time.

12

We used this methods to test both hardware and software time randomised caches.

For each of these cache types, we tested them using synthetic object sequences as well

as object sizes from a real avionics application.

Our models for computing the probability that a cache conflict will occur assume

that all objects allocated in the cache are equally important, that is, will be actively

requested by the processor.

1.3 Structure of the Thesis

The rest of this thesis is organised as follows:

Chapter 2 presents the background about timing analysis techniques and cache

memories needed to understand the thesis.

Chapter 3 explains the main problem and the current solution for hardware time

randomised caches, as well as explaining its limitations.

Chapters 4 and 5 analyse hardware time randomised caches and software time

randomised caches respectively. For each one, we propose a solution based on a prob-

ability tree generation, a mathematical solution based on the multinomial coefficient

and a statistical solution based on Monte Carlo simulations.

Chapter 6 presents the related work.

Finally, chapter 7 presents the main conclusions and the future work to be done

in this area.

The work done in this thesis has been published in 3 international conferences,

two as a research manuscript and one poster, found in the Appendix A: Published

work.

13

14

2 Background

In this section we introduce the background of the two main topics needed to under-

stand the contributions of this thesis: timing analysis techniques and cache memories.

2.1 Timing analysis techniques

In the hard real-time systems domain, the system (that is the specific hardware and

software to be deployed) must pass some strict certification tests, for both functional

validation as well as timing validation. Depending on the specific industry domain,

a different certification process is applied, such as the DO-178B [36] in the aerospace

industry or ISO 26262 [17] in the automotive industry.

Timing analysis techniques are used in order to verify if the applications that run

on real-time systems fulfill their timing constraints. Since both the hardware and

the software of these systems is increasing in complexity, it is getting more and more

difficult to correctly – and in a time and cost efficient manner – verify that these

constraints are being met.

This section explains the concept of timing analysis and introduces the two most

used techniques in the industry: Static Timing Analysis (STA) and Measurement-

Based Timing Analysis (MBTA), as well as an emerging variant of the latter: Measurement-

Based Probabilistic Timing Analysis (MBPTA).

The execution time of a program is affected by various components, such as the

hardware where it is executed. As the hardware becomes more complex, executing

the same program in different hardware increases the variability in the execution time.

The input set of the application also affects the execution time of a program. The

input data may change the control flow of a program, with each path taking a different

execution time. This can happen because the execution paths have a different length

or execute different instructions that take different time in the processor to execute.

Furthermore, in a system with other programs running at the same time, those

other programs can affect the execution time since the resources are being shared.

Multicore contention is the subject of intense study [15].

In Figure 1 we can see that the execution time of a task running on isolation can

vary. Actually, it is really difficult to derive the complete execution time distribution

15

of a specific task on a specific hardware since all the possible factors that could have

an impact on the execution time should be explored, which is unfeasible.

Figure 1: Execution time distribution [30].

On the left we have the Best-Case Execution Time (BCET), which is the minimum

execution time of the task. On the right, we find the Worst-Case Execution Time

(WCET), which is the highest execution time the task can have. Trying to obtain

these values by just running the task many times does not result in satisfactory results.

This is so because usually corner scenarios are quite uncommon and probably will not

be seen in the number of runs performed. Moreover, it is hard for the end user to make

worst-case scenario experiments. However, by observing the execution time we can

find a minimum and maximum execution time (Observed BCET and WCETMEAS

in Figure 1), that may or may not be close enough to the real BCET and WCET

depending on various factors like the number of runs made, the type of distribution

or the input sets selected.

Between the BCET and the WCET we find the execution time distribution. Given

a specific execution time distribution, different industries have different goals. For

instance, the high-performance computing industry has as a goal to move the whole

execution time distribution to the left, because they want to reduce the average

execution time. However, in the real-time systems industry, the main objective is

to reduce the WCET, since is the critical time that makes the program successfully

execute in its time frame or not.

Research on timing analysis techniques for real-time systems has two main goals:

reducing the WCET and increasing reliability on derived WCET bounds under strict

16

time and cost constraints. The first one seeks to improve the worst-case performance

of the system, allowing for longer and more complex tasks to execute while guaran-

teeing that they will finish in time. The second one tries to precisely compute the

WCET. This is crucial since the wrong upper-bounding of the WCET can lead to a

task believed to be trustworthy, taking more time and missing a deadline. On the

other hand, if the WCET estimation is way over the actual WCET the system will be

wasting resources and we will probably use more expensive hardware than the really

needed.

The two most used analysis techniques to compute the Worst-Case Execution

Time are Static Timing Analysis (STA) and Measurement-Based Timing Analysis

(MBTA) [40]. In addition to these, recently some new techniques are based on the

theory of probabilities. All these techniques have as a purpose to safely and tightly

estimate WCET bounds.

On Static Timing Analysis the WCET is computed through analytic methods,

without the need of actually executing the program on the real hardware. The possible

execution paths that the application can take are analysed and then put into an

abstract model of the real hardware. Using this information, the model computes an

execution time for each execution path, and the final WCET is derived using these

execution times.

Measurement-Based Timing Analysis techniques compute the WCET by executing

the program on the real hardware or a simulator and measuring the time it takes

to finish. After several executions, a WCET bound is computed depending on the

execution time distribution and the proper statistical methods.

Finally, Measurement-Based Probabilistic Timing Analysis techniques are based

on MBTA, but use the probabilistic timing behaviour of the hardware to ensure that

the WCET estimates are representative.

If timing analysis techniques can be successfully used to derive the WCET of

an application in a specific system, we say that the application and the system are

analysable. However, all the applications and systems cannot be analysed by all the

timing analysis techniques. In the following sections we explain how the different

methods compute the WCET and the limitations they present.

17

2.1.1 MBPTA

Measurement-Based Probabilistic Timing Analysis (MBPTA) is a new timing analysis

methodology that has been actively researched in the recent years [5, 9, 10]. The

main advantage of MBPTA is that it requires less information about the hardware

specification than the other timing techniques, so that instead of making pessimistic

estimations because of the lack of information, MBPTA can give tight and reliable

guarantees of the WCET. In order to achieve this, some hardware components are

changed to have a random behaviour instead of a deterministic one. Since true

random behaviour has the independent and identically distributed (i.i.d.) properties,

probabilistic analysis techniques can be used. For instance in a shared bus, the arbiter

that decides what contender gets the bus could make this selection randomly, so that

we do not need to know the previous state of the shared bus in order to know how it

will behave, and the probability of each requester to use the bus can be computed.

(a) Probability distribution (b) CDF and 1-CDF (c) Example of

function (PDF) (logarithmic scale) pWCET curve

Figure 2: Example of PDF, CDF, 1-CDF and pWCET curve.

Instead of giving a single WCET, MBPTA produces a Probability Distribution

Function (PDF), which is a set of execution times each one with a given probability

(Figure 2 a). These probabilities are obtained from a number of analysis runs, since

it is a measurement-based timing analysis technique. The Cumulative Distribution

Function (CFD) shown in Figure 2 b, and its inverse (1-CFD) are the same distri-

bution but cumulative. In Figure 2 c, we see the inverse of the CFD in a dotted

purple line (actual measurements). Once this curve is obtained, and using statistical

analysis (such as Extreme Value Theory (EVT) [14, 29]), we compute the projection

that this curve will have. This projection (shown as a black line in Figure 2 c) gives

the probabilistic Worst-Case Execution Time (pWCET) for a given probability. For

18

instance in the example of Figure 2 c, the pWCET will be safely upper-bounded at

4 ms with a probability of 10−15 (blue dotted line).

2.2 Cache memories

Figure 3: Evolution of the performance gap between the processor and memory [18].

In recent years the processor and the memory clock speed have been increasing at

different rates (shown in Figure 3). This clock speed gap makes memory accesses

to be the main performance bottleneck in processors. In order to hide this latency

difference, cache memories are used. Caches are small SRAM memories that have

lower access latencies than main memory (tipically implemented in DRAM). For in-

stance, a cache access can have a latency between 4 and 50 processor cycles [3], while

a memory access can have a latency of at least 50ns [3] (80,000 cycles at 1.6GHz).

This difference in access latency usually results in an increased average CPU per-

formance, so most commercial systems use caches. Since SRAM is more expensive

to manufacture than DRAM, cache memories are smaller than main memory, only

containing a subset of all the data in memory. Because of this, all data does not

fit in the cache, meaning that is important to carefully select the data that will be

stored in it, since choosing data that will not be reused will result in accesses going

through cache to main memory, resulting in even higher latencies than that of systems

without a cache. Caches are based on two principles that most computer programs

follow: locality and temporality of data. Data locality implies that when a particular

data object is accessed in a program, in the next cycles some adjacent data will be

19

accessed. Temporal locality happens when some data accessed is then accessed again

in a brief period of time.

The way a cache typically works is the following: when a program is running, data

accesses are issued by the processor. The cache is the first place where the processor

requests the data. If the requested data is not in cache (cache miss), then the request

is made to main memory. However, if the requested data is in the cache (cache hit),

the data is just sent to the CPU from the cache, without a need of accessing the

memory. The latency of a cache hit is significantly smaller than the latency of a

cache miss (called miss penalty). The hit rate (cache hits
total accesses

) is used to measure the

performance.

2.2.1 Cache organisation

Main memory can be abstracted as a continuous chunk of data, where the position of

the data in this chunk is the address. Even if main memory cannot store the whole

data of the system, in this thesis we will suppose it can. Since a cache memory cannot

store the whole data of the system, a subset of this data will be stored there. Since

we want to take advantage of the data locality property of programs, when the cache

requests some data to main memory, that data and some more continuous data will

be brought to the cache. The total amount of data brought in every access is called

a cache line or cache block, and it is a fixed size for the whole system execution. For

organisation purposes, inside a cache every cache line will be treated as an atomic

entity.

TAG DATA FLAG

Figure 4: Basic cache structures.

A cache is formed by several cache entries, each entry containing the following

20

information (Figure 4):

• Tag: bits that allow to identify the cache line. Some bits of the accessed address

are stored in order to compare with future data requests. If the tag bits match,

the cache line stored is the same, and the access hits in cache. If the tag bits

do not match, the cache line stores is not the same, and the access misses in

cache.

• Data block: actual cache line stored in this cache entry. This usually occupies

several bytes (common sizes are 32, 64 or 128 bytes).

• Flag bits: extra bits added to control the state of the cache entry. The number

of bits depends on the features implemented in the cache. The most basic flag

bit is the Valid bit, which informs if the cache entry contains valid data or not.

Some other flag bits can be in charge of tracking how recently a cache line has

been needed, for replacement purposes (explained later in Section 2.2.2).

OffsetIndexTag

6 4 6

16

Figure 5: Memory address line.

The memory address is logically divided into 3 parts (as seen in Figure 5):

• Offset: bits that allow to identify the requested byte inside a cache line. The

number of offset bits are the logarithm to the base 2 of the cache line size

in bytes. For instance if the cache line is 64B, the number of offset bits is

log264 = 6.

• Index: bits used to know to what cache entry is assigned a cache block. The

number of index bits are the logarithm to the base 2 of the number of cache

entries. For example, if there are 16 cache entries, the number of index bits is

log216 = 4

• Tag: bits that allow to identify the cache line. It is formed by the remaining

bits in the address #tagbits = #addressbits −#offsetbits −#indexbits.

21

TAG DATA FLAG

=

OffsetIndexTag

6 4 6

TAG DATA FLAG

=

Hit Data

Figure 6: Set associative cache.

Cache entries are organised into sets and ways (see Figure 6). Cache sets (seen

as rows in the figure are accessed using the index bits. This index bits are passed

through a mapping function (usually a modulo function). Cache ways (seen next to

each other in the figure) can store any cache entry that belongs to that set. If we

want to store more cache lines than ways a set has, the replacement function decides

which cache line is evicted (victim) in order to make space for the new cache line.

A given address can only go to one possible set (the one specified by the mapping

function), but can be in any of the ways of that set. This means that on a cache

access, once the specific set where that access has to go has been determined, all ways

have to be checked in case they contain the data. This check is done using the tag of

the cache entry, as well as the valid bit.

Depending on the number of sets and ways a cache has, we can distinguish three

cache types:

• Directly mapped: in a direct mapped cache there is only 1 way. In a cache with

22

n cache entries, there would be n sets of 1 way each one. This configuration has

the lowest cost and latency, but results in higher miss rates.

• Fully associative: in this type of cache there is only 1 set. This means that if

there are n cache entries, the cache will have 1 set with n ways. This configu-

ration gives the highest possible hit rate of the three, but has a higher latency

and implementation cost.

• Set associative: in a set associative cache there is a number of ways higher than

1, and a number of sets higher than 1. If there are n sets, we say it is n-way

associative. These caches offer a trade-off between latency, cost and hit rate.

Usually, all caches are set associative.

In Figure 6 we show an example of set associative cache comprising 2 ways and 8

sets.

2.2.2 Cache management

Placement functions On a cache with more than one set, the placement function

is the one used to relate a cache address with a set. Some used placement functions

are the following:

• Modulo placement: uses the index bits to directly map to a set. In an 8 set

cache, if the index bits of an address are 010, the cache line corresponding to

that address will be mapped to the set 2 of the cache. This implementation

is simple, but has some drawbacks. For instance, in strided memory accesses

if the stride is an even number, the cache lines are not regularly distributed

through the cache sets. This generates conflict misses even though the whole

dataset could fit in the array if another placement function was used.

• Prime modulo placement [22]: similar to the normal modulo function but the

divisor is a prime number instead a power of two. This way better placement

is achieved at the cost of increasing the hardware complexity.

• Random placement: a random placement policy uses a hash function that ran-

domises the set where a cache line will be placed. However, even if randomisa-

tion is used, there is a need to be able to retrieve the same cache line we stored

23

in the cache. Using this hash function we guarantee that with the same RII

number, a given address will always map to the same set. A cache that uses

random placement can be seen in Figure 7.

seed

@

PRNG H
a
sh

0

1

S-1

...

Figure 7: Cache with random placement.

Replacement policies On a cache with more than 1 way, once all the cache entries

of a set are occupied and we want to allocate a new one, we must decide which cache

entry to evict. This policy can have a significant impact in execution time since it

will result in a higher or lower hit rate. Some examples of replacement policies are:

• LRU: the Least Recently Used replacement policy evicts the least recently used

items first. Using the flag bits, it orders the different entries in a set with respect

to when they were brought to the cache. It is a widely used algorithm because

of its good performance and moderate cost.

• NRU: the Non Recently Used replacement policy distinguishes between two

groups: recently used lines and non-recently used. The last cache lines added

to the set have the recently used tag. When there is an eviction, an address

from the non-recently used group is evicted. With this method, the cost of the

flag bits is reduced to one bit per cache line, although some performance is lost

compared to LRU.

• Random replacement [26, 33]: the random replacement policy randomly evicts

a cache line. Although it does not give the best average performance, it enables

PTA techniques to be used.

Currently, replacement policies are a hot topic in high-performance computer

systems with several cache levels [20, 21, 34].

24

2.2.3 Time randomised caches

As explained in Section 2.1.1, MBPTA introduces randomisation into certain elements

of the processor architecture so that pWCET can be obtained. One of the elements

that introduces more time variability is the cache. Several consecutive accesses to a

cache can produce all hits, all misses or a mix of both, depending on the previous

instructions executed and the placement and replacement policies implemented by

the cache, resulting in significantly different execution times.

Time Randomised caches (TRc) [33] introduce a random component on the place-

ment and/or replacement policies. By randomising the cache behaviour, there is no

longer need for the previous cache state in the timing analysis, allowing for MBPTA

to be used. The two time randomised caches used in this thesis are hardware Time

Randomised caches (hTRc) and software Time Randomised caches (sTRc), depending

if the randomisation is done by hardware or software means.

Hardware Time Randomised Caches Hardware Time Randomised caches [33]

(hTRc) introduce randomisation by implementing in their hardware a random place-

ment and a random replacement function. The random placement function (Figure 7)

is implemented hashing the memory address with a random seed. The output of the

hash will indicate to what cache set the address is mapped. This seed is the same

through the program execution, but it changes across different program executions.

Since the hash is the same in a program execution, the same address can be retrieved

when accessed multiple times. However, since we want to have the same address

mapped to different sets through different runs, the seed is changed in between runs.

Software Time Randomised Caches Although hTRc enable Probabilistic Tim-

ing Analysis, most current commercial systems do not yet implement the placement

and replacement policies needed for hTRc to be used. Software Time Randomised

caches (sTRc) [26] use software randomization on top of COTS caches (modulo place-

ment and LRU replacement). Software randomization (as seen in Figure 8) is a

software layer that allocates objects in memory randomly. This random memory al-

location is done between executions, so that in different executions the allocations of

the same object will probably be different.

25

Original
memory

Random
shuffle

Suffled
memory

Modulo
placement

Cache

Figure 8: Software randomisation on top of conventional cache.

26

3 Problem statement

In this Section we introduce the problem addressed in this thesis: the representativity

issue related with MBPTA when using Time Randomised caches. We explain the

main problem in Section 3.1, then we comment on the impact this has on the safety

standards in Section 3.2 and finally we explain the approximation previously proposed

in Section 3.4.

3.1 MBPTA representativity requirements

As explained previously in Section 2.1.1, MBPTA provides a pWCET function that

relates different execution times with the probability that they will be exceeded.

These pWCET estimates obtained at analysis time remain valid at operation time

only if the conditions in analysis time are the same or better than the ones later

found on operation. The conditions that have to remain the same are the ones whose

impact can significatively affect the execution time, for instance memory layout or

arbitration in shared resources. Hence, for a correct application of MBPTA it is

critically important to capture in the analysis-time measurements those events that

can increase execution time meaningfully for a reliable application of MBPTA. These

events are called Event of Interest (eoi).

In particular MBPTA imposes several requirements beyond those of EVT [10,

12], which, as used in MBPTA [12], requires a data sample of a random variable

so that each execution time observation is independent and identically distributed.

Additionally, MBPTA defines representativeness as the requirement in which the

impact of any relevant event (eoi) affecting execution time is properly upper-bounded

at analysis time, where a relevant event corresponds to any event occurring with a

probability above a cutoff threshold (e.g. 10−9 per hour of operation). We relate

such threshold to the assurance/integrity level of the task and the probability of

hardware random failures allowed under such assurance/integrity level as dictated by

the corresponding functional safety standards in the domain. In particular, in the

context of MBPTA the cutoff threshold upper bounds the residual risk under which

evidence of reliable operation is not had as detailed later in Section 3.1.1. While those

events occurring with overly low probability become irrelevant for pWCET estimation

27

purposes, events occurring with higher probability need to be accounted for, and this

requires that their effect is captured in the measurements taken at analysis time.

This occurs because, while EVT predicts the combined impact and the probability of

observed events, EVT cannot predict in general those events that are never observed

and whose impact in execution time is larger than that of the observed ones [7].

Figure 9: Range of probabilities of interest for MBPTA.

MBPTA representativeness (Figure 9) on the Event of Interest relates to two

specific probabilities.

• The exceedance probability (Pexc) defines the lowest relevant probability for

events occurring during operation. Events with smaller probability than Pexc

are considered not relevant. Pexc is a function of the safety standards in the

application domain and the criticality (integrity) level of the program. For

instance, for commercial airborne systems at the highest assurance/integrity

level (DAL-A), the maximum allowed random hardware failure rate in a system

component is 10−9 per hour of operation [36]. Thus, we use the same threshold

to upper bound the residual risk in the software verification process.

• The observable probability (Pobs) determines the lowest probability of occur-

rence of an event such that the probability of not observing it in the execution

time measurements collected at analysis time is below a cutoff probability, e.g.

Pcoff = 10−9. Pobs is a function of the probability of occurrence per run of the

Event of Interest, Peoi, and the number of runs R (observations) collected by

MBPTA at analysis time:

Pobs = 1− (1− PR
eoi) (1)

28

For instance, for a cutoff probability of Pcoff = 10−9 and R = 1, 000 runs, events

with Peoi = 0.021 will not be observed with a probability below Pcoff , that is, 10−9 ≥
(1 − 0.021)1000. It also follows that the higher the number of runs, the lower the

Peoi that can be captured. Similar to Pexc, Pcoff is a function of the applicable safety

standard and criticality level. Pexc and Pobs define (Figure 9) three probability ranges:

• r1 is the probability interval for which a probabilistic argument can be provided

on the fact that events with a probability in this range are captured in R runs,

i.e. the probability of not observing them is irrelevant.

• r2 corresponds to the probability interval for which events may not be observed,

yet they are considered relevant for the correctness (i.e. non-optimism) of the

pWCET estimate.

• r3 corresponds to the probability interval below the exceedance threshold. Events

occurring during operation with such a low (or smaller) probability are regarded

as irrelevant in relation with the corresponding safety standard and criticality

of the function.

This thesis aims to determine Peoi, taking different actions depending on its value:

If Peoi ∈ r1 or Peoi ∈ r3 MBPTA is deemed as reliable as described above. However,

when Peoi ∈ r2 it is required to determine the increase in the number of runs (∆R) to

carry out. Increasing the number of runs to R = R + ∆R increases Pobs to P ′obs such

that events with lower probability can be observed, making that P ′eoi ∈ r1. Hence,

our proposed approach is vital to maintain confidence on MBPTA-provided pWCET

estimates.

3.1.1 Cache representativity challenges

The Heart of Gold (HoG) approach [7] is the first attempt to address representa-

tiveness issues of cache related events for hardware Time Randomised caches. HoG,

whose representativeness findings for hTRc were also identified in [32, 35], addresses

the scenario in which the execution times, obtained from a MBPTA-compliant archi-

tecture deploying TRc [23] cause MBPTA to yield optimistic pWCET estimates. It

29

is noted [7] that the number of addresses competing for a set is the critical parameter

affecting execution time noticeably. If competing addresses fit in the cache set – so

there are up to W addresses where W is the cache associativity – then they will end

up fitting in the cache set after some random evictions. Conversely, if there are more

than W cache line addresses competing for the cache set space, then they do not fit

and evictions will occur often, if all those cache lines are accessed often and in an

interleaved fashion. This scenario where more than W cache line addresses compete

for the space in a cache set is therefore the cache event of interest. We illustrate

this scenario by performing an experiment where we access a number of addresses,

between 1 and 17, in a loop iterating 1, 000, 000 times and accessing a cache set with

W = 8, as seen in Figure 10. Miss rates are very low when the number of addresses

does not exceed the space in the set. However, the miss rate increases abruptly (4

orders of magnitude) when 9 or more contending addresses are accessed.

Figure 10: Miss rates for different number of addresses accessed in a round-robin fashion
competing in an 8-way cache set.

Overall, for the sanity of the MBPTA results, it is crucial to determine whether

execution times resulting from W + 1 addresses competing for the same cache set can

occur with a sufficiently high probability to be relevant and, in that case, make sure

they are included in the observations, which defines our event of interest for the cache.

In HoG authors provided an approximate formula to derive Peoi on hTRc. However,

its inaccuracy can be significant in some cases, since their estimation may say the

analysis runs are representative when in reality they are not, so we provide means to

compute the exact value of Peoi in hTRc, as well as in software Time Randomised

caches, where no value has been previously derived.

30

Let U be the number of addresses accessed by the program under analysis. In

this thesis we assume that the impact on execution time of mapping any arbitrary

group of K addresses to the same set – with K ∈ [W + 1, U] – is similar. This

is the case, for instance, for the instruction addresses for many programs that may

access them homogeneously inside a main control loop. In this case our method

would require identifying those relevant addresses. In other cases where addresses

are accessed heterogeneously (e.g., data accesses for control applications) a different

solution would be required. Such a solution will likely require analysing program’s

access patterns. This problem is more complex and does not fit in the scope of this

thesis, so it will be done in future work.

3.2 Relating exceedance probabilities and safety standards

Functional safety standards such as DO178B/C [36] in avionics and ISO26262 [17] in

automotive relate assurance (integrity) levels with failure rates, either absolute or per

hour of operation. However, software verification and testing is not explicitly related

to those failure rates.

In any software verification process in the context of certification there is a quali-

tative step to collect “enough” evidence about software not failing during operation,

where standards describe appropriate means to collect sufficient evidence for the dif-

ferent assurance (integrity) levels. In the context of MBPTA, pWCET estimates

come along with an exceedance threshold. Such threshold upper bounds the risk of

one instance of the task to overrun its assigned budget, i.e. suffering a timing viola-

tion (failure). The purpose of the exceedance threshold is not truly upper-bounding

software failure rates which, in principle, are not allowed, but upper-bounding the

residual risk of the software verification process.

For instance, with deterministic caches the placement of objects in memory deter-

mines which cache set each object is assigned to (e.g. based on modulo placement)

resulting in a given cache layout. Conventional measurement-based practice on deter-

ministic caches relies on the user ability to reduce the risk of not evaluating memory

placements leading to bad cache layouts that produce high execution times, which can

occur during operation. Such (residual) risk is only assessed qualitatively given that

the user, despite making many tests, does not have a way to determine whether the

31

space of potential memory mappings (and the corresponding cache layouts) is truly

covered. This occurs because for complex software it is hard to force a particular

placement in a test run.

In the context of MBPTA and time randomised caches, the space of potential cache

layouts and their impact is randomly explored: in each run, a random cache layout

(mapping of objects to sets) is explored. In this way, the risk brought by unexplored

placements is no longer to be controlled by the end user but it is transferred to the

confidence had on the pWCET estimate obtained based on a given number of runs.

As we present in this thesis, it is possible to assess the probability of a particular

mapping not to be observed.

Thus, while end users need to argue qualitatively on the non-existence of unob-

served placements when using non-probabilistic measurement-based methods, MBPTA

allows to argue quantitatively on the fact that evidence shows that pWCET estimates

are not exceeded with extremely high probabilities, and the residual risk (a.k.a. ex-

ceedance threshold), which can be made arbitrarily low, indicates that beyond that

probability (e.g., 10−15 per program run) evidence is not had and so there is some

residual risk of failure.

Interestingly, the certification process is the same as for conventional (non-probabilistic)

practice, but replacing user’s ability and unquantified residual risk by a systematic

and sound approach and a quantitatively upper-bounded residual risk.

3.3 Definitions and notation to derive Peoi

Basic notation
O Sequence of memory objects to allocate
R Number of runs carried out by MBPTA at analysis
S Number of sets in cache
W Number of ways in cache
clb Size in bytes of a cache line
mb Memory size in bytes
setl Number of memory lines mapped to a set

Table 1: Basic notation

In order to explain the current approximation solution (HoG) and the precise

methods proposed, we introduce some basic notation. Apart from the notation in

32

Table 1, we also build on the following definitions:

Definition 1 (Allocation Scenario) An allocation scenario defines how allocated

objects are mapped to sets. We denote allocation scenarios as ai, with ai = (a1i , a
2
i , ..., a

S
i).

aji is the number of objects allocated to set sj under ai.

Definition 2 (Cardinality of an allocation scenario) The cardinality of an al-

location scenario |ai| is given by the number of objects allocated under it.

Definition 3 (Maximum of an allocation scenario) The maximum of an allo-

cation scenario amax
i , is given by the maximum number of objects allocated to any set

in that allocation scenario.

Definition 4 (Cache event of interest) The cache event of interest is defined by

those scenarios, called scenarios of interest, that have a set where the number of

allocated objects is higher than W , i.e. ai|amax
i > W .

For instance, for a 3-set 2-way cache (S=3, W=2) and a sequence with 3 single-line

objects (|O| = 3), the allocation scenarios areA = {(0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2),

(1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0), (3, 0, 0)}. From those, the scenarios of interest are

(3, 0, 0), (0, 3, 0) and (0, 0, 3).

Definition 5 (Probability of the event of interest) The probability of the event

of interest (Peoi) is given by the addition of the probabilities for the allocation of

scenarios of interest.

Definition 6 (Path of allocation scenarios leading to ai) Given an allocation

scenario ai, each of the successions of allocations in the probability tree leading to ai

is called path to ai. Each path leading to ai is represented as pth(ai) ∈ PTH(ai),

where PTH(ai) is the set of all paths leading to ai.

For instance, in the example in Figure 11 the path leading to a = (2, 0, 0) is

PTH(2, 0, 0) = {(0, 0, 0), (1, 0, 0), (2, 0, 0)}

33

3.4 Heart of Gold

Determining whether at least W + 1 objects out of the |O| under consideration are

mapped into the same cache set requires deriving all potential mappings of the |O|
objects into the S cache sets and the fraction of those mappings in which at least one

cache set has W + 1 objects allocated.

As shown in [7] these values can be approximated in hTRc by means of weak

compositions theory. A weak composition of an integer n is a way of writing n as

the sum of a sequence of non-negative integers [16]. We are interested in all the weak

compositions of |O| made of exactly S parts where at least one part is higher than W

and the total number of weak compositions of |O| is exactly S sets. When no limit is

put on the values of the parts we have WComp(|O|, S,−). If we impose that no part

can have more than W objects we have WComp(|O|, S,≤W). The probability of the

mappings of all objects such that one part is greater than W can be approximated

as:

P hTRc
eoi (|O|, S,W) = 1− WComp(|O|, S,≤ W)

WComp(|O|, S,−)
(2)

The problem of this approach is that it considers that all potential allocation

scenarios have the same probability. However, in reality two scenarios can have

different probabilities. For instance, Figure 11 shows all possible allocation scenarios

(10) resulting from allocating 3 objects in a 3-set cache. Edges represent how scenarios

are allocated while nodes show each allocation scenario. The nodes in the same level

have the same number of allocated objects. In this example, the event of interest for

a 2-way cache is computed with weak compositions as P hTRc
eoi (3, 3, 2) = 1 − 7

10
= 3

10
,

while in reality it is 3
27

, as we present in Section 4.2.1.

34

4 Hardware time randomised single-level caches

In the previous section, we have presented an approximation of P hTRc
eoi using the HoG

method. In this section, we propose three other methods for exactly computing the

P hTRc
eoi : one based on the probability tree generation, one based on the multinomial

coefficient and another based on Monte Carlo simulations. Then, we compare all the

techniques (including the previously existing HoG), and perform some experiments

using different cache sizes with synthetic object mixes and a real avionics application.

4.1 Behaviour

Before introducing the models for computing the P hTRc
eoi , first we analyse the behaviour

of hardware Time Randomised caches.

As previously explained, hTRc (Figure 7) map a cache line randomly to a set.

The set where a cache line is mapped will be the same for the same run, but different

between runs. In a certain run, the probability of a memory address to be mapped

to a specific set is 1
S

(Equation 3). This is because the hash function homogeneously

distributes the address space into the possible S sets, so any address has the same

possibility to be mapped to the any set.

P hTRc
set =

1

S
(3)

Multi-line memory objects So far we have assumed that objects occupy a single

cache line. However, in reality objects can be larger than a cache line. With hTRc,

each memory element of a multi-line object is randomly assigned to a cache line.

That is, hTRc assigns different elements to different sets regardless of whether those

addresses belong to the same object. As a result, the allocation of a multi-line object

of size l lines is equivalent to the allocation of l objects of size 1 line. Hence, the

allocation of n objects i = 0..n − 1 with sizes {li} is equivalent to the allocation of

sum({li}) objects of size 1. This is not the case for sTRc as presented in the next

section.

35

Order of objects Furthermore, as mentioned before, since in hTRc the probabil-

ity of an object to be placed in a given set (1/S) does not depend on past object

allocations, the order of the object allocations is irrelevant. Since multi-line memory

objects are equivalent to multiple single line objects, the permutation of multi-line

objects does not affect the outcome either.

4.2 Models

We propose three different exact models for computing P hTRc
eoi : probability tree, multi-

nomial coefficient and Monte Carlo method.

4.2.1 Probability tree

In order to compute the Peoi, we first need to know the possible allocation scenarios

which its corresponding probabilities of happening, and then select the allocation

scenarios of interest and add their probabilities. A simple method for generating all

the possible allocation scenarios with its probabilities is generate a probability tree

with all the possibilities.

In Figure 11 we can see a graphical representation of this probability tree sup-

posing a cache with 3 sets and allocating 3 objects of size 1 for hTRc. Each node

represents a cache allocation scenario, with each vertical level containing all the pos-

sible allocation scenarios with a different number of objects allocated. For instance,

in the first level at the top we only find one allocation scenario, the empty cache,

since no objects have yet been allocated. In the second level just below the previ-

ous one, we find the three possible allocation scenarios when allocating one object in

cache: (1, 0, 0), (0, 1, 0), (0, 0, 1). The probability that each scenario has in this level

is computed using as an input the probability the previous state of the cache had.

We repeat this process until all the objects have been allocated, and we reach the

final state: in this example the forth level with 10 possible allocation scenarios. Once

in this level, we select the allocation scenarios of interest (max(ai) > W) and we add

their probabilities to derive the Peoi. In this example, supposing a cache with W = 2,

the allocation scenarios of interest would be (3, 0, 0), (0, 3, 0), (0, 0, 3).

As previously explained, the probability that a specific object will be mapped in a

36

given set is the same for all the sets, regardless of past object allocations. This means

that given a specific allocation scenario, when allocating an object all the resulting

allocation scenarios will have the same probability Pai+1 =
Pai

S
. For instance in the

example of Figure 11, given the first empty allocation scenario with Pa0 = 1, the three

allocation scenarios generated from it will have the same probability Pa1 =
Pa0

S
= 1

3
.

Figure 11: Probability tree for hardware randomisation with 3 objects allocated in a 3-set
cache.

Although this technique gives exact results, it requires the whole probability tree

to be build. The probability tree grows with the number of sets S and objects O to

allocate (with a complexity of O(SO)), having both an impact in the processor load

and the memory space. Hence, if we want to compute Peoi using this method for a

relatively large cache (8 sets) and with a large number of objects (100 objects) it will

be unfeasible in reasonable time because of the explosion of the number of allocation

scenarios.

4.2.2 Multinomial coefficient

With hTRc, all the paths reaching any of the allocation scenarios with the same

cardinality have the same probability. This is so because for every new allocated

object the probability of being mapped to any set does not vary with the allocation

of more objects. After all objects in O have been allocated (represented by the leaves

in Figure 11), the cardinality of any of the potential resulting allocation scenarios

ai equals to the number of allocated objects, i.e. |ai| = |O|, and the probability of

reaching any of them through one path is:

37

P hTRc
pth(|ai|) =

(
1

S

)|ai|
∀ai (4)

It is worth noting that not all allocation scenarios with the same cardinality are

reached the same number of times, i.e. the number of paths leading to each scenario

varies. For instance, in the example in Figure 11, from all those scenarios with

cardinality three, PTH(ai) for ai = (3, 0, 0) comprises 1 path, while PTH(aj) for

aj = (1, 1, 1) comprises 6 paths.

We approach the problem of computing the number of times a specific allocation

scenario can be reached – which determines the number of paths leading to it – using

the combinatorial interpretation of the multinomial coefficient [37]. The multinomial

coefficient defines the possible combinations of distributing n elements over k con-

tainers, each containing exactly y = (y1, y2, ..., yk) elements. By replacing n by |O|, k
by S and yj by aji , the multinomial coefficient provides the number of times ai can be

reached, i.e. the number of paths from the original empty allocation scenario leading

to ai, which we call Npai. Npai is computed as follows:

Npai =

 n

ai

 =
n!

a1i !a
2
i ! · · · aSi !

(5)

For instance, in the example in Figure 11 (3-sets cache and 3 objects) the number

of times that the possible combinations give the outcome ai = (1, 1, 1) is given by

Npai =
(

3
1,1,1

)
= 6.

We derive the probability of a specific allocation scenario by multiplying the num-

ber of paths leading to it by the probability of a single path:

P hTRc
ai

= Npai × P hTRc
pth(|ai|) =

 |ai|
ai

 · (1

S

)|ai|
(6)

In the previous example, P hTRc
ai

for ai = (1, 1, 1) is 6 ·
(
1
3

)3
= 6

27
.

Overall, P hTRc
eoi is computed by adding P hTRc

ai
for those allocation scenarios of

interest ai|max(ai) > W .

38

P hTRc
eoi (|O|, S,W) =

∑
∀ai|max(ai)>W

P hTRc
ai

(7)

For instance in the example in Figure 11 (3-sets cache and 3 objects) and assuming

that the cache has W = 2 ways, the allocation scenarios where the event of interest

occurs are: ai = (3, 0, 0), aj = (0, 3, 0) and ak = (0, 0, 3). Adding the probabilities of

each one of this scenarios gives the total probability P hTRc
eoi = 1

27
+ 1

27
+ 1

27
= 3

27
.

When implementing this method, there are two main computationally intensive

tasks. One is enumerating all the possible scenarios and selecting the ones that are

scenarios of interest. The other is computing the probability of each of those scenarios.

The probability computing task can be made efficient by using memoisation with the

factorial values 0 to |O|, which is the most expensive computation. However, the

enumeration of all the scenarios can be significantly time consuming when the number

of sets and objects increases. Although it allows the computation of a bigger number

of sets and objects than the previous method did (probability tree generation), it still

has limitations on certain cases with big caches and lots of objects to allocate.

4.2.3 Monte Carlo simulations

The two previous presented methods for the exact computation of the P hTRc
eoi (prob-

ability tree generation and multinomial coefficient) generated precise although not

scalable results. In order to find a scalable solution, we use a method based on Monte

Carlo simulations.

The main approach we follow to derive P hTRc
eoi is based on Monte Carlo simula-

tions using an algorithm that processes the object sequence several times allocating

each object in a random location in each simulation. Each run in which objects are

randomly allocated to memory addresses (and hence sets) represents a Monte Carlo

simulation. This allows deriving the probability of each allocation scenario and hence

P hTRc
eoi , for both single and multi-line objects.

While the Monte Carlo method does not provide an exact result, we can statis-

tically derive the confidence and accuracy of the result depending on the number

of simulations performed. In particular, for each estimate obtained we compute the

39

confidence interval (value± variation) assuming a certain degree of confidence. De-

termining this narrow confidence interval allows us making worst case assumptions,

with little impact. That is, if any value in the range determined by the confidence

interval is in r2 we assume that the value is not safe, and we compute the number

of extra runs needed to guarantee that all values in the confidence interval fall in r1

with a sufficiently high probability.

Confidence 10,000 runs 1M runs 100M runs
0.99 0.013 0.0013 0.00013
1− 10−9 0.030 0.0030 0.00030

Table 2: Confidence interval width.

As an example, for an arbitrary cache event whose actual probability is Peoi =

0.5172, Table 2 shows the width of the confidence interval for different confidence

values (0.99 and 1−10−9) as we increase the number of Monte Carlo simulations. We

observe that for 1− 10−9 with 10, 000 runs is 0.030, which is ±0.058%.

Based on this analysis, we perform 100 million simulations that require less than

15 minutes in a regular laptop and provide narrow confidence intervals.

Figure 12: Peoi confidence interval for the Monte Carlo simulations.

In Figure 12 we can see the Peoi range given by the Monte Carlo simulations. For

this example the confidence level is set to 1 − 10−9 and we have made 100 million

40

simulations. Since the Peoi range is really small (less than 2% variation at any point),

in Figure 12 we can see the three lines defining the interval overlapping graphically.

4.3 Increasing the number of runs

Given a sequence of objects O and a number of runs carried out at analysis time R,

the probability of the event of interest P hTRc
eoi , as computed in Equation 7 might be

below Pobs and above Pexc, shown in Figure 9 as range r2, which challenges MBPTA

reliability. With R runs done by default by MBPTA, the lowest probability of an

event such that the probability of not observing it in the R runs is below a given

cutoff probability Pcoff , is given by: (1 − P hTRc
eoi)R ≤ Pcoff . If we work out R we

obtain R ≤ log(1−PeoihTRc)Pcoff hence R ≤ log(Pcoff)

log(1−PhTRc
eoi)

. The minimum number of

runs R′ is:

R′ =
log(Pcoff)

log(1− P hTRc
eoi)

(8)

With R′ it can be guaranteed that for the specified level of confidence Pcoff the

event of interest, whose probability is P hTRc
eoi , will be observed at analysis time.

4.4 Experimental setup

We evaluate our empirical model to obtain Peoi and we compare it against the the-

oretical model. For that purpose we use i) synthetic object sequences and ii) object

sequences coming from a real avionics case study [39].

Small Cache Big Cache
Size 2KB 128KB
Ways 4 8
Sets 8 256
Line size 64B 64

Table 3: Small and big cache configurations.

In our experiments we use two cache sizes, a small one (sCache) and a big one

(bCache). sCache has been chosen to be particularly small to deploy all the proposed

models for comparison purposes. As the cache size and/or the number of objects

41

increases, the probability tree generation and the multinomial coefficient models be-

come intractable as explained before.

The sCache is a 2KB 4-way 64B/line cache (so with 8 sets), whereas the bCache

size is 128KB 8-way 64B/line cache (so with 256 sets). These values are representative

of first and second-level caches. For instance, caches of the Cobham Gaisler NGMP [4]

or the ARM Cortex A7 [1] are within this range.

4.4.1 Comparison

5 10 15 20 25 30
Number of allocated objects

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
 e

v
e
n
t

o
f

in
te

re
st

R=1000 Pobs=0.021

R= 300 Pobs=0.067

Heart of Gold
Probability tree generation
Multinomial coefficient
Monte Carlo simulations

Figure 13: Comparison of all the methods proposed to compute the P hTRc
eoi .

In this experiment we focus on a sCache setup and single-line objects. Figure 13

shows how the probability of the cache eoi varies as more objects are allocated. We

implement all 4 techniques: the previously proposed approximation (HoG), and our 3

exact methods (probability tree generation, multinomial coefficient and Monte Carlo

simulations). In Figure 13 we represent with horizontal lines Pobs for two different

numbers of runs: R = 300 and R = 1, 000. The former is the lowest number of

runs required by the method [12] and the latter is a typical value used for many

programs [12]. In the figure we can see two clearly different lines: a red one and a

blue one. The red one represents the Heart of Gold approximation, while the blue

one represents the three other precise techniques.

With the HoG method the probability of the eoi is higher than the exact one

42

obtained with the precise methods for a range of object counts. This can lead to

pessimistic/optimistic results in terms of the number of runs to carry out:

1. P hTRc
eoi ∈ r3 and P hTRc

eoi−HoG ∈ r3: In this case both approaches conclude that the

probability of the eoi is irrelevant.

2. P hTRc
eoi ∈ r3 and P hTRc

eoi−HoG ∈ r2: In reality the probability of the eoi is irrelevant

and with HoG the user may be required to increase the number of runs.

3. P hTRc
eoi ∈ r2 and P hTRc

eoi−HoG ∈ r2: The user is asked to carry out, as a result of

applying HoG, fewer experiments than required to ensure that the cache eoi is

captured, since P hTRc
eoi−HoG > P hTRc

eoi .

4. P hTRc
eoi ∈ r2 and P hTRc

eoi−HoG ∈ r1: As in the previous case.

5. P hTRc
eoi ∈ r1 and P hTRc

eoi−HoG ∈ r1: Both approaches indicate that the probability

of the eoi is captured with the runs carried out by the user.

Under cases 3) and 4) MBPTA may lead to optimistic pWCET estimates if it is

applied with the Heart of Gold approach since the user is requested to perform fewer

runs than needed due to an overestimated P hTRc
eoi . For instance, when 8 objects are

allocated, the HoG estimate puts the P hTRc
eoi−HoG on the safe region r1, while in reality

P hTRc
eoi is found in the unsafe region r2.

We observe no noticeable difference between the exact three methods, thus provid-

ing evidence of the accuracy of our analytical and empirical methods. As expected,

the higher the number of allocated objects the higher the probability of the eoi. In-

terestingly for sequences smaller than 5 objects the probability of the cache eoi is

below 10−9 that we use as the reference exceedance probability, Pexc. Meanwhile,

when 12 objects are allocated the probability of the eoi is above Pexc. Despite the

probability tree generation and multinomial coefficient methods provide exact results,

its memory and execution time requirements prevent using it in the general case. We

rather use it in this small example to show the accuracy of the Monte Carlo method.

4.4.2 Synthetic benchmarks

We consider randomly-generated sequences of objects of two types regarding their

size. Small objects whose size is in the range [8B, 16B, 32B, 64B, 128B] and big

43

objects whose size ranges [256B, 1KB, 2KB, 8KB]. By mixing objects of these two

types we generate 3 types of object sequences. The smallSeq comprises 75% of small

objects and 25% big objects, the balSeq comprises 50% of small objects and 50% big

objects and the bigSeq comprises 75% of big objects and the rest of small objects. All

object sequences have a size of |O| = 50.

Small objects 32B, 64B, 128B, 256B, 512B
Big objects 1KB, 2KB, 4KB, 8KB

Table 4: Sizes for big and small objects

10 20 30 40 50
Number of allocated objects

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
 e

v
e
n
t

o
f

in
te

re
st

R=1000 Pobs=0.021

R= 300 Pobs=0.067

smallSeq sCache
balSeq sCache
bigSeq sCache
smallSeq bCache
balSeq bCache
bigSeq bCache

Figure 14: Results for different synthetic object sequences.

In Figure 14 we use the different object mixes previously described and show P hTRc
eoi

(obtained with the Monte Carlo simulations method) in each case as we increase

the number of objects allocated. For the scache, with balSeq, when allocating 1

to 3 objects the P hTRc
eoi is in range r3, not shown in the figure because it is below

Pexc = 10−9. If the number of objects allocated is within 2 and 4, P hTRc
eoi is in the

range r2, which can lead to a relevant event being missed in the analysis runs. When

more than 5 objects are allocated, P hTRc
eoi is in r1 so it is observable. Similar trends

are observed for the rest of the mixes, with the rule of thumb that the higher the

allocated object count, the higher the cache occupancy, and hence the higher P hTRc
eoi

is and the faster it converges to r1.

44

Number of runs. In Figure 14 we observe that with bCache, when less than 30

objects are allocated P hTRc
eoi is in r2. In this scenario, in order to ensure that P hTRc

eoi

lies in r1, we use Equation 8 to increase R. For instance, if we allocate 27 objects in

the balSeq we have that P hTRc
eoi = 0.0111685 and R′ = 1, 846 runs would be needed to

make sure that the event of interest is captured (i.e. lies in r1).

4.4.3 Avionics benchmarks

We applied our technique to an industrial-size avionics application [39] consisting of

around 5,000 functions varying from few bytes to 300KB each. The total size of those

functions is 4.7MB if they are enforced to be aligned with cache line boundaries. In

this experiment the focus is on code randomization, i.e. on the instruction cache.

With instruction hTRc the cache set assigned to instructions is randomised across

runs by hardware means.

20 40 60 80 100
Number of allocated objects

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
 e

v
e
n
t

o
f

in
te

re
st

R=1000 Pobs=0.021

R= 300 Pobs=0.067

sCache
bCache

Figure 15: Results for the avionics case study.

Figure 15 shows the probability of the eoi for the allocation of these objects in

both the sCache and the bCache setups. For the sCache we can see that with as low

as 4 objects allocated, the probability of the eoi is above Pobs. For the bCache setup,

we need around 40 objects to reach Pobs. Hence, for this particular application, the

number of runs carried out R = 1, 000 with MBPTA standard process was enough to

ensure representativeness of the instruction cache events of interest.

45

It is also worth noting that this real case requires more object allocations than the

synthetic object mixes because the average function size is smaller than the smaller

objects considered in our synthetic sequences. However, even with objects this small,

the number of objects that must be allocated so that the event of interest is shown

in the analysis runs is largely below the total number of objects in the application.

4.5 Conclusions

In this section we have analysed the problem of computing the Peoi for hTRc. We

have proposed three different and precise methods for computing this probability, one

of which is computationally feasible with any cache size and object sequence. Further,

we have compared these precise models with the previous approximative model and

we have obtained the results of computing the Peoi with both synthetic benchmarks

and an avionics application.

46

5 Software time randomised single-level caches

In this section we will propose three methods for the exact computation of the Peoi

for sTRc. These methods will be the same three methods already used with hTRc

but adapted to the behaviour of sTRc. We also perform experiments with synthetic

object mixes and a real avionics application.

5.1 Behaviour

Software Time Randomised caches (Figure 8) use a randomisation software to ran-

domly allocate memory objects into their memory positions. On sTRc, if the memory

size would be infinite, the probability of an object to be mapped to a specific set would

be 1
S

, since the number of memory positions leading to a specific set would be the

same (infinite), hence behaving like hTRc. However, in reality memory size is finite,

and if an object has been allocated to a specific memory location, another object

cannot be allocated there. After several objects have been mapped, the probability

that an object is mapped to a set is different, since some memory addresses that

mapped to some sets have already been occupied.

The number of cache lines that memory can allocate is ml = mb

clb
lines. The number

of lines mapped to each set is set l = ml

S
. If a first object is mapped to memory, has the

same probability to be mapped anywhere in memory, and hence the same probability

to be mapped to any set. After this allocation, the number of memory lines where

the second object can be allocated is li = setl − 1, since a memory space has been

occupied by the first object. Also it has a smaller probability setl−1
ml−1

of being mapped

to the same set, since one memory slot that mapped to this set has already been

occupied.

P sTRc
set (k, l) =

setl − l

ml − k
(9)

The final probability of an object being mapped to a specific set (Equation 9)

depends on what sets the previous objects where allocated.

47

Multi-line memory objects With sTRc multi-line objects are randomized atomi-

cally, that is, the first element1 of the object is assigned a random location in memory

while the rest of the elements occupy consecutive memory positions. When modulo

placement is used, multi-line objects are allocated into consecutive sets in cache.

Multi-line objects challenge the computation of whether several objects or part of

them are mapped to the same set. We assume that there is always space to allocate

objects in any set, that is, that the space allocated to a set is not fully consumed

by allocated objects. In this scenario, the problem can be reduced to tracking the

allocation scenarios and the associated probability of the first element of the object.

Figure 16: Probability tree for software randomisation with 3 2-line objects in a 3 set
cache.

As an illustrative example, Figure 16 shows the probability tree when allocating

three 2-line objects into a 3-set cache. We observe that the probability of going from

an allocation scenario to another is given by the probability that the first element of

the object goes to a particular line. For instance, starting from ai = (0, 1, 1) there is

a probability Pset0,2 that the second object is allocated in sets s0, s1, hence ending

up in aj1 = (1, 2, 1). Meanwhile there is a probability Pset1,2 of allocating object two

to s1, s2 and the same probability to s2, s0 respectively leading to aj2 = (0, 2, 2) and

aj3 = (1, 1, 2). Note that in Psetl,k, l counts the number of elements (lines) allocated

to a given set i and k the total number of elements (lines) already allocated.

Order of objects In sTRc the order of allocation does not matter in the case

of single line objects, but it does matter when allocating multiple line objects. For

instance, let us assume a memory size of 30 cache lines, a 3-set cache and objects

1Note that an i-th element of an object is the i-th cache line it occupies.

48

O1 of size 2 lines and O2 of size 3 lines. We want to compute the probability of the

allocation scenario ai = (2, 2, 1) happening.

When o1 is allocated first, the resulting allocation scenarios are (1, 1, 0) and then

(2, 2, 1). In this case the probability of ai = (2, 2, 1) is 10
30
· 9

28
= 0.107. If o2 is

allocated first we have the scenarios (1, 1, 1) and then (2, 2, 1). In this case, the

probability of ai is 10
30
· 9

27
= 0.111. Hence, the probability of the same allocation

scenario is different depending on the order of allocation of objects. Furthermore,

we observe that allocating first the big object leads to a higher probability of the

allocation scenario. This happens because in the case of sTRc, allocating first the

biggest objects means having less space remaining in memory, i.e. fewer memory

lines available, so there is higher probability for subsequent objects to be mapped to

any of them. For instance, in the previous example, when o2 is allocated first, the

denominators are 30 and 27, instead of 30 and 28, resulting in a higher probability

for the same numerators.

5.2 Models

The models used for computing the P sTRc
eoi are the probability tree, multinomial coef-

ficient and Monte Carlo simulations.

5.2.1 Probability tree

The main idea is the same previously used with hTRc: develop the tree with all the

possible object allocations on all the different sets. However, with sTRc we must take

into consideration that the previous objects allocated influence the P sTRC
eoi .

Figure 17: Probability tree for software randomisation with 3 objects allocated in a 3-set
cache.

49

As an example, in Figure 17 we can see the probability tree when allocating 3

objects in a 3 set cache. When allocating the first object, all allocation scenarios

have the same probability of happening (1
3
), since no objects have been allocated.

However, after the first object has been allocated, the probability that the next object

will be allocated in the same set where the previous object was is smaller. This is

represented in the Figure by using a different line style where the probability would

be different.

As with hTRc, the probability tree generation method proposed previously does

not scale with a large number of objects or sets.

5.2.2 Multinomial coefficient

With sTRc the computation of the probability of a given allocation scenario is more

complex than with hTRc. This is better illustrated in Figure 17 that shows the

allocation scenarios for 3 objects allocated into a 3-set cache. With hTRc, the ratio

among the number of paths leading to a given ai and the total number of paths in the

tree gives the probability of that si. Consider the case of allocation (3, 0, 0). It has a

probability of occurrence of 1/27 where 27 is the number of possible allocations.

Similar to hTRc, with sTRc we can use the multinomial coefficient to compute

the number of times a specific allocation scenario occurs as well, since all possible

outcomes also occur the same number of times. However, the probability of occurrence

of each single scenario changes since it behaves differently from hTRc.

With sTRc each edge in the probability tree is weighed with Psetk,l to catch the

dependence among object allocations. For a given ai its probability of occurrence

is given by the probability of all the paths leading to it, pathi. That is, prob(ai) =∑
j∈pth(ai) Ppthj

. For each path, after k objects are allocated, prob(as → at) defines the

probability of going from a given allocation scenario as (which has k = |as| allocated

objects) to another at after allocating object ok+1. This probability is given by:

prob(as → at) = Pset|as|,a
l
s (10)

where |as| = k is the number of objects already allocated; sl is the set where

50

the object is allocated and als is the number of objects in sl before object ok+1

is allocated. For ai = (3, 0, 0), its probability can be derived as: prob(3, 0, 0) =

prob((0, 0, 0) → (1, 0, 0))× prob((1, 0, 0) → (2, 0, 0)) ×prob((2, 0, 0) → (3, 0, 0)) that

is given by: Pset0,0 × Pset1,1 × Pset2,2.

Interestingly, the probability of getting to a given allocation scenario is the same

regardless of the path followed to get to it. That is, the paths, which define the

order in which objects are allocated, do not impact the probability to get to a given

allocation scenario.

For instance, let us assume a cache with 3 sets and a memory comprising 30

cache lines. Further let us assume that the allocation scenario we want to ana-

lyze is (1, 2, 0). We analyze two of the paths leading to this scenario. The first

path comprises the allocations pth1 = {(0, 0, 0)(1, 0, 0)(1, 1, 0)(1, 2, 0)} and the sec-

ond pth2 = {(0, 0, 0)(0, 1, 0)(0, 2, 0)(1, 2, 0)}.
The probabilities through pth1, computed using Equation 10, are as follows:

P sTRc
pth1 = 10

30
10
29

9
28

. Each multiplicand respectively corresponds to the transition for

the i allocation scenario to the i + 1 one. Through pth2 the probabilities are as fol-

lows P sTRc
pth2 = 10

30
9
29

10
28

. As it can be seen, both the numerators and denominators are

the same for both paths, just the multipliers appear in different order. Hence, for

a given scenario, the order of allocations is irrelevant since all orders have the same

occurrence probability. Based on this appreciation, we compute the probability of a

given path leading to an allocation scenario ai as shown in Equation 11.

P sTRc
pth(ai)

=

s∏
i=1

aki∏
k=1

(lps− aki + k)

|ai|−1∏
j=0

(lpm− j)

(11)

To better understand this equation, we use the previous example of the allocation

scenario (1, 2, 0).

The denominator is a product of the number of remaining memory addresses

before each object allocation. In the example, the denominator before the first object

allocation is 30 since all memory is available. Before the second object allocation, since

one object has already been allocated, only 29 cache lines are available in memory.

51

The final product in the denominator will be 30 · 29 · 28 = 24, 360.

The numerator depends on the number of objects already allocated in the same

set. In the example, before the first object allocation in any of the sets will be 10

since no objects have been allocated on that set. The next object allocated will be

a 9 or a 10, depending if the set where this object has been allocated is the same

where the previous object was allocated or not. Since the order of allocation does

not matter, the final numerator for our example will be 10 · 10 · 9 = 900. The

final probability of occurrence of this specific scenario for one of its possible paths is

P sTRc
path(ai)

= 900
24,360

= 0.0369.

As for the case of hTRc, we can derive the probability of a specific allocation

scenario by multiplying the number of paths leading to it, as shown in Equation 5 –

which is the same for hTRc and sTRc – times the probability of each path, which for

the case of software is as shown in Equation 11. Overall P sTRc
ai

is defined as:

P sTRc
ai

= Npai · P sTRc
path(|ai|) (12)

Following the same example, since the allocation scenario (1, 2, 0) has 3 different

paths, the probability of occurrence of the allocation scenario is P sTRc
ai

= 3 · 0.0369 =

0.1107.

In order to calculate the probability of the events of interest occurring (a single set

having more than W objects allocated), we add the probabilities of all the possible

scenarios where this happens. With this P sTRc
eoi is computed as follows:

P sTRc
eoi (|O|, S,W) =

∑
∀ai|max(ai)>W

P sTRc
ai

(13)

5.2.3 Monte Carlo simulations

As with hTRc, the multinomial coefficient method has limitations due to the enumer-

ation of all the possible cases. Hence, we also propose a method based on Monte Carlo

simulations that behaves like the one in hTRc but computing the Peoi for software

Time Randomised caches.

52

5.3 Experimental setup

We use the same setup described in Section 4.4, with a small cache and a big cache

(Table 3). We have used a 20MB memory size for our experiments. Our results

evidence negligible Peoi variance for different memory sizes, so we do not report results

for different memory sizes.

5.3.1 Synthetic benchmarks

The same synthetic object mixes generated for hTRc will be used in these experiments

(small, medium and big object mixes).

10 20 30 40 50
Number of allocated objects

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
 e

v
e
n
t

o
f

in
te

re
st

R=1000 Pobs=0.021

R= 300 Pobs=0.067

smallSeq sCache
balSeq sCache
bigSeq sCache
smallSeq bCache
balSeq bCache
bigSeq bCache

Figure 18: Results for different synthetic object sequences.

In the synthetic simulations, shown in Figure 18, we analyze the impact of cache

size (sCache and bCache) and the sequence size (small, bal and big). For the sCache

setup the probability of the eoi reaches Pobs for both values of R (300 and 1,000) with

less than 5 allocated objects in all 3 object sequence types. This occurs because the

sCache is small compared to the object sizes used, and with few objects the entire

cache is filled. It can also be observed that, as expected, the bigger the objects are,

the fewer objects are needed to reach Pobs. For the bCache setup, instead, we observe

that more objects are needed in order to reach Pobs. Anyway, as soon as 30-60 objects

are allocated MBPTA provides reliable results with its default number of runs.

Let assume the bCache setup, R = 1, 000 as the number of runs under MBPTA,

53

an object sequence of |O| = 25 and the sequence object bigSeq. For this scenario, the

increased number of runs R′ needed would be R′ = 1, 297.

5.3.2 Avionics benchmarks

Figure 19: Scheduling of functions, processes, time partitions and MIF within a MAF.

Many avionics systems build upon the Integrated Modular Avionics (IMA) con-

cept [8], which defines how different subsystems can be integrated onto the same

hardware platform, so that size, weight and power costs can be reduced. In the con-

text of IMA, the system architecture implements temporal and spatial partitioning

to avoid undesired functional and temporal interferences across different applications

– especially in the context of mixed-criticalities. Temporal partitioning is generally

implemented by partitioning time into scheduling units and using a static schedule

generated offline. The Major Frame (MAF) is the hyper-period of all partitions. Each

MAF is divided into a number of Minor Frame (MIF) whose duration and period is

identical. Time partitions are scheduled inside those MIF. Those time partitions con-

tain processes, and each process contains a number of functions, that are the smallest

unit of analysis possible. This is illustrated in Figure 19.

We analyze two different applicability approaches of our model to the avionics

application. When software randomization (and so pWCET estimation) is applied

(1) at MAF (full application) granularity and (2) at finer granularity i.e. at MIF,

partition, process or function level.

54

Full application granularity

20 40 60 80 100
Number of allocated objects

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

P
ro

b
a
b
ili

ty
 e

v
e
n
t

o
f

in
te

re
st

R=1000 Pobs=0.021

R= 300 Pobs=0.067

sCache
bCache

Figure 20: Results for the avionics case study.

In this case the avionics case study is analyzed with its 5,000 functions. Figure 20

shows that for the sCache setup with as low as 2 objects allocated, the probability of

the eoi is higher than Pobs. In the bCache we observe that between 45 and 60 object

allocations are needed to reach Pobs.

Analysis at fine granularity

Figure 21: Results for the avionics case study for different object allocations.

Finer granularity than the full MAF may be used by end users to analyze the

55

timing of their applications. However, there is not a strict rule on what the right

granularity is. The finer the granularity is, the higher the control exercised on the

execution paths traversed, on the execution time cost of each function or process, etc.

On the other hand, finer granularity also implies adding more instrumentation and

exercising a stronger control on the process to collect execution time measurements.

Thus, there is a tradeoff between the amount of information that can be retrieved

and the cost to obtain it.

These experiments evaluate the impact of the analysis granularity on Peoi to allow

the users find the most convenient granularity from a software randomization point

of view. For that purpose we incrementally pick functions from the case study (ran-

domly) and compute Peoi and the number of runs needed to apply MBPTA reliably

(R′).

First, for the sake of illustration we have sorted the 5,000 functions randomly 100

times. Then, we have obtained Peoi as objects are allocated. The value of Peoi for

the first 5 sortings is shown in Figure 21. In general, although some differences exist

depending on the objects that form the unit of analysis, we observe that all sortings

reach r1 (so Peoi ≥ Pobs) with around 50 objects.

Functions 10 20 30 40 50 60
Peoi 0.0000 0.0100 0.0105 0.0165 0.0549 0.1606
Range r3 r2 r2 r2 r2 r1
R′ - 2,061 1,959 1,243 367 -

Table 5: Impact of the number of objects on Peoi.

In Table 5 we summarize the average value of Peoi across all 100 sortings, the

range (i.e. r1, r2 or r3) where that probability belongs to, and the number of runs R′

that would be needed for different object counts if Peoi falls in r2. If we assume that,

for instance, Pexc = 10−9 and R = 300, Pobs will be around 0.067.

As shown in the table, Peoi is virtually 0 with 10 objects, meaning that the prob-

ability of the eoi is so low that is not relevant (r3). Then, from R = 20 to R = 50,

Peoi falls in r2, thus meaning that the number of runs R′ needs to be higher than 300.

In this example R′ must be between 2, 061 (20 objects) and 367 (50 objects). Finally,

Peoi falls in r1 with 60 objects or more, so 300 runs suffice to guarantee a reliable

application of MBPTA.

56

5.4 Conclusions

As we did in the previous section with hTRc, we have proposed three techniques

to exactly compute the Peoi with sTRc. These techniques have also been evaluated

with the synthetic benchmarks and the real avionics application, but with the avionics

application we have distinguished between two different granularities: MAF and MIF.

57

58

6 Related work

In this Section we present the related work both with Time Randomised caches as

well as Measurement-Based Probabilistic Timing Analysis.

Time Randomised caches have been object of intense study in the last years. Their

level of maturity has raised until they have been already prototyped in FPGA [19].

Several studies already compare the performance of measurement-based timing anal-

ysis on top of TRc and static timing analysis [6, 40], on top of time-deterministic

caches. In terms of WCET, results show that MBPTA provides competitive results

with respect to static timing analysis [28].

MBPTA also presents the advantage of being a measurement-based approach that

can be faster adapted to new processors (systems) [40]. In terms of average perfor-

mance, TRc have slight worse behaviour than deterministic caches, 12% on aver-

age [28]. Although this is not the focus of this thesis it is worth mentioning several

works on Static Probabilistic Timing Analysis (SPTA) for TRc [23, 24]. In general,

SPTA is in a much more immature state than MBPTA that has been evaluated with

avionics and automotive case studies [27, 38, 39]. Further, an important difference

with respect to SPTA is that, while SPTA requires deriving or upper-bounding the

hit/miss probability of every cache access, MBPTA only requires that the probability

exists.

A set of techniques in the literature shows how MBPTA handles control flow

dependences and data dependences [28]. For control flow dependences, the techniques

in [25, 41] show how MBPTA can be adapted to provide a pWCET estimate that

upper bounds the execution time of all the execution paths of the program, even when

the user-provided input vectors only exercise a subset of the paths.

Although EVT can be used with time-deterministic architectures [31], there is no

guarantee that EVT captures the representative events that can occur at operation.

This is possible with MBPTA [10] and is the object of this work.

Several academic works have identified the issue of representativeness of the event

of interest [7, 32, 35]. Although some authors indicated that representativeness can

be a risk [35], solutions have been provided later to mitigate the risk [7, 32] for TRc.

For instance, HoG [7] – explained in Section 3.4 – is the first approach to solve this

59

representativeness issue in TRc. However, HoG relies on an approximate method to

obtain Peoi and so the number of runs needed, thus not removing the risk completely.

Our approach solves this issue by providing an exact method to obtain Peoi and so

the minimum number of runs to use MBPTA.

60

7 Conclusions and future work

In this section we present the conclusions and the future work derived from this thesis.

7.1 Conclusions

Time Randomised caches are proposed to increase the performance of Critical Real-

Time Embedded Systems. However, the use of TRc in Measurement-Based Prob-

abilistic Timing Analysis is challenged by the fact that the execution time obser-

vations used for the prediction are those obtained at analysis time, while the pre-

dicted pWCET estimate must provide a trustworthy upper bound of deployment

time. Therefore, evidence is required proving that execution time observations ob-

tained at analysis time capture the impact of relevant events affecting execution time

and that can arise at deployment.

Given the objects to be allocated for an application, we have proposed several

methods to compute the probability of observing cache related events of interest in

the analysis runs, for both hardware and software TRc. Whenever that probability

is high enough to be relevant and low enough so that high confidence on observing

the event cannot be had, our method computes the extra number of runs needed to

regain confidence on pWCET estimates provided by MBPTA.

All the proposed techniques have been evaluated using both synthetic object mixes

and a real avionics application. The presented results allow the user to know if the

analysis runs will be representative of those at operation.

7.2 Future work

Although current Critical Real-Time Embedded Systems use a single level of cache

memory or no cache memory at all, in future designs they may include multi-level

cache hierarchies in order to further improve performance. If that is the case, an

interesting work would be the computation of Peoi for multi-level caches.

In this work we have supposed that all the memory objects are accessed the same

number of times and in the same order. The methods presented in this thesis can

be used in early design stages, when we still do not know the access patterns of the

software. In later stages, more complex and time consuming techniques must be used

61

to have intro consideration the access pattern of the objects. These techniques are

left as part of the future work.

Also, this work focuses on TRc as a high-performance hardware used in real-time

systems to increase performance. As part of out future work, we intend to bring

other high-performance architecture features to the real-time systems domain, such

as prefetching.

62

Appendices

63

A Published work

Based on the work done for this master thesis, the following papers and posters have

been published:

• Modeling the Confidence of Timing Analysis for Time Randomised

Caches

P. Benedicte, L. Kosmidis, E. Quiñones, J. Abella and F. J. Cazorla

11th IEEE International Symposium on Industrial Embedded Systems

Krakow (Poland), May 23-25 2016

• Poster: On the Analysis of the Confidence on WCET Estimates for

Software Randomized Caches

P. Benedicte, L. Kosmidis, E. Quiñones, J. Abella and F. J. Cazorla

53rd Design Automation Conference

Austin (United States of America), June 5-9

• A Confidence Assessment of WCET Extimates for Software Time

Randomized Caches

P. Benedicte, L. Kosmidis, E. Quiñones, J. Abella and F. J. Cazorla

14th IEEE International Conference on Industrial Informatics

Poitiers (France), July 18-21 2016

64

Glossary

ADAS Advanced Driver Assistance Systems. 9

BCET Best-Case Execution Time. 15

CFD Cumulative Distribution Function. 17

COTS Commercial off-the-shelf. 24

CRTES Critical Real-Time Embedded Systems. 8–10, 60

eoi Event of Interest. 26, 27, 41, 52

EVT Extreme Value Theory. 17, 26, 27, 58

HoG Heart of Gold. 28, 29, 32, 34, 41, 42, 58

hTRc hardware Time Randomised caches. 24, 28–30, 33–36, 44–46, 48, 49, 51, 52,

56

i.i.d. independent and identically distributed. 17

IMA Integrated Modular Avionics. 53

LRU Least Recently Used. 23

MAF Major Frame. 53, 54, 56

MBPTA Measurement-Based Probabilistic Timing Analysis. 3, 10, 11, 14, 16, 17,

24, 26–31, 40, 52, 58–60

MBTA Measurement-Based Timing Analysis. 9, 10, 14, 16

MIF Minor Frame. 53, 56

NRU Non Recently Used. 23

PDF Probability Distribution Function. 17

65

PTA Probabilistic Timing Analysis. 3, 23, 24

pWCET probabilistic Worst-Case Execution Time. 17, 18, 24, 26, 28–31, 53, 58, 60

RTES Real-Time Embedded Systems. 8

SPTA Static Probabilistic Timing Analysis. 58

STA Static Timing Analysis. 9, 10, 14, 16

sTRc software Time Randomised caches. 24, 30, 46–49, 51, 56

TRc Time Randomised caches. 3, 24, 26, 29, 58, 60, 61

WCET Worst-Case Execution Time. 3, 8–11, 15–17, 58

66

Bibliography

[1] ARM Cortex-A7 Processor Specification. http://www.arm.com/products/

processors/cortex-a/cortex-a7.php. Accessed: 2016-05-01.

[2] Automotive Industry Drives Chip Demand. http://www.eetimes.com/

document.asp?doc_id=1324718. Accessed: 2016-05-01.

[3] LZMA Benchmark Intel Haswell. http://http://www.7-cpu.com/cpu/

Haswell.html. Accessed: 2016-05-01.

[4] Quad Core LEON4 SPARC V8 Processor - LEON4-NGMP-DRAFT -

Data Sheet and Users Manual. http://microelectronics.esa.int/ngmp/

LEON4-NGMP-DRAFT-2-1.pdf. Accessed: 2016-05-01.

[5] J. Abella, J. Castillo, F. J. Cazorla, and M. Padilla. Extreme value theory in

computer sciences: The case of embedded safety-critical systems. In International

Conference on Risk Analysis, pages 579–586. FUNDACIÓN MAPFRE, 2015.

[6] J. Abella, C. Hernandez, E. Quiñones, F. J. Cazorla, P. R. Conmy, M. Azkarate-

asakasua, J. Perez, E. Mezzetti, and T. Vardanega. WCET analysis methods:

Pitfalls and challenges on their trustworthiness. In International Symposium on

Industrial Embedded Systems, pages 1–10. IEEE, 2015.

[7] J. Abella, E. Quiñones, F. Wartel, T. Vardanega, and F. J. Cazorla. Heart of

Gold: Making the Improbable Happen to Increase Confidence in MBPTA. In

Euromicro Conference on Real-Time Systems, pages 255–265. IEEE, 2014.

[8] Inc Aeronautical Radio. Specification 651: Design Guide for Integrated Modular

Avionics. 1997.

[9] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,

E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo,

and D. Maxim. PROARTIS: Probabilistically Analysable Real-Time Systems.

ACM Transactions on Embedded Computing Systems, 12(2):z1–25, 2013.

67

http://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://www.arm.com/products/processors/cortex-a/cortex-a7.php
http://www.eetimes.com/document.asp?doc_id=1324718
http://www.eetimes.com/document.asp?doc_id=1324718
http://http://www.7-cpu.com/cpu/Haswell.html
http://http://www.7-cpu.com/cpu/Haswell.html
http://microelectronics.esa.int/ngmp/LEON4-NGMP-DRAFT-2-1.pdf
http://microelectronics.esa.int/ngmp/LEON4-NGMP-DRAFT-2-1.pdf

[10] F. J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella. Upper-bounding Pro-

gram Execution Time with Extreme Value Theory. In International Workshop

on Worst-Case Execution Time Analysis, pages 61–70. OASIcs, 2013.

[11] R. Charette. This Car Runs on Code. IEEE Spectrum, 1st edition, 2009.

[12] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis,

J. Abella, E. Mezzetti, E. Quiñones, and F. J. Cazorla. Measurement-Based

Probabilistic Timing Analysis for Multi-path Programs. In Euromicro Confer-

ence on Real-Time Systems, pages 91–101. IEEE, 2012.

[13] M. Duranton, D. Black-Schaffer, K. De Bosschere, and J. Maebe. The HiPEAC

vision for advanced computing in Horizon 2020. HiPEAC, 2013.

[14] W. Feller. An Introduction to Probability Theory and Its Applications. Proba-

bility and Mathematical Statistics. Wiley, 3rd edition, 1968.

[15] G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and F. J.

Cazorla. Contention in Multicore Hardware Shared Resources: Understanding

of the State of the Art. In 14th International Workshop on Worst-Case Execution

Time Analysis, 2014.

[16] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University

Press, 1st edition, 2009.

[17] International Organization for Standardization. ISO/DIS 26262. Road Vehicles

– Functional Safety. 2011.

[18] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.

Series in Computer Architecture and Design. Morgan Kaufmann, 5th edition,

2006.

[19] C. Hernandez, J. Abella, F. J. Cazorla, J. Andersson, and A. Gianarro. Towards

Making a LEON3 Multicore Compatible with Probabilistic Timing Analysis. In

Data Systems In Aerospace Conference, 2015.

[20] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely, and J. Emer. Adap-

tive insertion policies for managing shared caches. In Proceedings of the 17th

68

International Conference on Parallel Architectures and Compilation Techniques,

pages 208–219. ACM, 2008.

[21] A. Jaleel, K. Theobald, S. Steely, and J. Emer. High performance cache replace-

ment using re-reference interval prediction (RRIP). In International Symposium

on Computer Architecture, pages 60–71. ACM, 2010.

[22] M. Kharbutli, K. Iwrin, Y. Solihin, and J. Lee. Using Prime Numbers for Cache

Indexing to Eliminate Conflict Misses. In Proceedings of the 10th International

Symposium on High Performance Computer Architecture, pages 288–299. ACM,

2004.

[23] L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla. A Cache Design for

Probabilistically Analysable Real-Time Systems. In Design, Automation and

Test in Europe Conference, pages 513–518. IEEE, 2013.

[24] L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla. Multi-level Unified

Caches for Probabilistically Time Analysable Real-Time Systems. In Real-Time

Systems Symposium, pages 360–371. IEEE, 2013.

[25] L. Kosmidis, J. Abella, F. Wartel, E. Quiñones, A. Colin, and F. J. Cazorla. PUB:

Path Upper-Bounding for Measurement-Based Probabilistic Timing Analysis. In

Euromicro Conference on Real-Time Systems, pages 276–287. IEEE, 2014.

[26] L. Kosmidis, C. Curtsinger, E. Quiñones, J. Abella, E. Berger, and F. J. Ca-

zorla. Probabilistic timing analysis on conventional cache designs. In Design,

Automation and Test in Europe Conference, pages 603–606. IEEE, 2013.

[27] L. Kosmidis, E. Quiñones, J. Abella, G. Farrall, F. Wartel, and F. J. Cazorla.

Containing Timing-Related Certification Cost in Automotive Systems Deploying

Complex Hardware. In Design Automation Conference, pages 1–6. ACM, 2014.

[28] L. Kosmidis, E. Quiñones, J. Abella, T. Vardanega, I. Broster, and F. J. Cazorla.

Measurement-Based Probabilistic Timing Analysis and Its Impact on Processor

Architecture. In Euromicro Conference on Digital System Design. IEEE, 2014.

69

[29] S. Kotz and S. Nadarajah. Extreme Value Distributions. Theory and Applica-

tions. Imperial College Press, 1st edition, 2000.

[30] P. Lokuciejewski and P. Marwedel. Worst-Case Execution Time Aware Compi-

lation Techniques for Real-Time Systems. Embedded Systems. Springer Nether-

lands, 1st edition, 2011.

[31] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean. A New Way About Using

Statistical Analysis of Worst-Case Execution Times. In Euromicro Conference

on Real-Time Systems, pages 11–14. ACM, 2011.

[32] E. Mezzetti, M. Ziccardi, T. Vardanega, J. Abella, E. Quiñones, and F. J. Ca-

zorla. Randomized Caches Can Be Pretty Useful to Hard Real-Time Systems.

Leibniz Transactions on Embedded Systems, 2(1):1–10, 2015.

[33] E. Quiñones, E. Berger, G. Bernat, and F. J. Cazorla. Using Randomized Caches

in Probabilistic Real-Time Systems. In Euromicro Conference on Real-Time

Systems, pages 129–138. IEEE, 2009.

[34] M. Qureshi, A. Jaleel, Y. Patt, S. Steely, and J. Emer. Set-Dueling-Controlled

Adaptive Insertion for High-Performance Caching. IEEE Micro, 28(1):91–98,

2008.

[35] J. Reineke. Randomized Caches Considered Harmful in Hard Real-Time Systems.

Leibniz Transactions on Embedded Systems, 1(1):1–13, 2014.

[36] RTCA and EUROCAE. DO-178B / ED-12B, Software Considerations in Air-

borne Systems and Equipment Certification. 1992.

[37] C. Wagner. Basic Combinatronics. CreateSpace Independent Publishing Plat-

form, 1st edition, 2014.

[38] F. Wartel, L. Kosmidis, A. Gogonel, A. Baldovin, Z. Stephenson, B. Triquet,

E. Quiñones, C. Lo, E. Mezzetti, I. Broster, J. Abella, L. Cucu-Grosjean, T. Var-

danega, and F. J. Cazorla. Timing Analysis of an Avionics Case Study on Com-

plex Hardware/Software Platforms. In Design, Automation and Test in Europe

Conference, pages 397–402. ACM, 2015.

70

[39] F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quiñones, J. Abella, A. Gogonel,

A. Baldovin, E. Mezzetti, L. Cucu-Grosjean, T. Vardanega, and F. J. Cazorla.

Measurement-Based Probabilistic Timing Analysis: Lessons from an Integrated-

Modular Avionics Case Study. In International Symposium on Industrial Em-

bedded Systems, pages 241–248. IEEE, 2013.

[40] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, S. Whalley,

G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,

P. Puschner, J. Stachulat, and P. Stenstrom. The Worst-Case Execution Time

Problem — Overview of Methods and Survey of Tools. ACM Transactions on

Embedded Computing Systems, 7(3):36–89, 2008.

[41] M. Ziccardi, E. Mezzetti, T. Vardanega, J. Abella, and F. J. Cazorla. EPC:

Extended Path Coverage for Measurement-Based Probabilistic Timing Analysis.

In Real-Time Systems Symposium, pages 338–349. IEEE, 2015.

71

	List of Figures
	List of Tables
	Introduction
	Motivation
	Contribution
	Structure of the Thesis

	Background
	Timing analysis techniques
	MBPTA

	Cache memories
	Cache organisation
	Cache management
	Time randomised caches

	Problem statement
	MBPTA representativity requirements
	Cache representativity challenges

	Relating exceedance probabilities and safety standards
	Definitions and notation to derive Peoi
	Heart of Gold

	Hardware time randomised single-level caches
	Behaviour
	Models
	Probability tree
	Multinomial coefficient
	Monte Carlo simulations

	Increasing the number of runs
	Experimental setup
	Comparison
	Synthetic benchmarks
	Avionics benchmarks

	Conclusions

	Software time randomised single-level caches
	Behaviour
	Models
	Probability tree
	Multinomial coefficient
	Monte Carlo simulations

	Experimental setup
	Synthetic benchmarks
	Avionics benchmarks

	Conclusions

	Related work
	Conclusions and future work
	Conclusions
	Future work

	Appendices
	Published work
	Glossary
	Bibliography

