TRABAJO DE FINAL DE GRADO

“OPTIMIZACIÓN DE LA OPERACIÓN DE PLANTAS FOTOVOLTAICAS HÍBRIDAS AISLADAS”

TFG presentado para optar al GRADO en INGENIERÍA de la ENERGÍA
Por Marc Galceran Feixas

Barcelona, 8 de Junio de 2016

Director: Mònica Aragüés Peñalba
Departamento de Ingeniería Eléctrica (EE)
Universitat Politècnica de Catalunya (UPC)
ÍNDICE MEMORIA

Índice memoria ... 1
Índice de figuras .. 4
Índice de tablas... 6
Agradecimientos ... 7
Resumen ... 8
Abstract .. 8
Glosario ... 9

Capítulo 1: Introducción... 13
 1.1. Motivación .. 14
 1.2. Objetivos y alcance del proyecto ... 14

Capítulo 2: Estado del arte de las microredes.. 17
 2.1. Definición de microred ... 17
 2.1.1. Definición de red de distribución activa ... 18
 2.1.2. La generación distribuida .. 18
 2.2. Control de la microred ... 19
 2.2.1. Control central .. 19
 2.2.2. Control de la microfuente ... 20
 2.2.3. Control de supervisión y adquisición de datos 20
 2.3. Sistema de gestión energética .. 20
 2.3.1. EMS centralizado .. 20
 2.3.2. EMS descentralizado .. 21
 2.4. Control de frecuencia de la red ... 22
 2.5. Estado actual de las microredes ... 23

Capítulo 3: Descripción de la microred ... 25
 3.1. Topología de la microred ... 25
 3.2. Arquitectura del EMS ... 26
 3.3. Perfil de consumo .. 28
 3.4. Perfil de irradiancia ... 30
 3.5. Definición de parámetros y variables ... 32
 3.5.1. Planta fotovoltaica ... 33
 3.5.2. Generadores diésel ... 33
Capítulo 4: Optimización convexa ... 39
 4.1. Introducción ... 39
 4.2. Programación lineal .. 40
 4.3. Modelo de resolución en GAMS® 42

Capítulo 5: Formulación matemática .. 43
 5.1. Optimización del flujo de potencia activa 43
 5.1.1. Ecuaciones .. 43
 5.1.2. Restricciones de las variables 45
 5.1.3. Restricción de la frecuencia 47
 5.2. Función objetivo .. 48
 5.2.1. Optimización de la potencia fotovoltaica 49
 5.2.2. Optimización de la operación de las baterías 49
 5.2.3. Optimización de la potencia de los generadores diésel ... 53
 5.3. Simplificaciones del modelo .. 55

Capítulo 6: Simulaciones y resultados ... 57
 6.1. Introducción ... 57
 6.2. Definición de la función objetivo 57
 6.2.1. Potencia de la planta fotovoltaica 58
 6.2.2. Uso de las baterías ... 58
 6.2.3. Potencia de los generadores diésel 60
 6.3. Escenario con perfil fotovoltaico 3 61
 6.3.1. Operación de la planta fotovoltaica 63
 6.3.2. Operación de las baterías 64
 6.3.3. Operación de los generadores diésel 65
 6.4. Escenario con perfil fotovoltaico 2 65
 6.4.1. Operación de la planta fotovoltaica 67
 6.4.2. Operación de las baterías 67
 6.4.3. Operación de los generadores diésel 68
 6.5. Escenario con perfil fotovoltaico 1 69
 6.5.1. Operación de la planta fotovoltaica 71
 6.5.2. Operación de las baterías 72
 6.5.3. Operación de los generadores diésel 72

Capítulo 7: Conclusiones .. 75
7.1. Conclusiones del proyecto...75
7.2. Trabajos futuros ...76
Presupuesto..79

Capítulo 8: Bibliografía...81
8.1. Referencias bibliográficas ...81
8.2. Bibliografía de consulta ...84

Anexos a la memoria
ÍNDICE DE FIGURAS

Figura 1. Configuración típica de una microred. ... 18
Figura 2. Esquema del control de una microred conectada a una red. 21
Figura 3. Microred de estudio. .. 26
Figura 4. Diagrama del programa de optimización (EMS). 27
Figura 5. Optimizador del rendimiento en el EMS. .. 29
Figura 6. Curva de consumo diaria real e interpolada. 30
Figura 7. Curva de potencia de consumo diaria. .. 31
Figura 8. Función de transferencia para la planta fotovoltaica. 31
Figura 9. a) Irradiancia global diaria. b) Potencia fotovoltaica generada. 32
Figura 10. Potencia de la planta fotovoltaica de tres días característicos. 32
Figura 11. Esquema del flujo de potencia entre la microred y las baterías. 45
Figura 12. Frecuencia de la microred para una variación P_{max} con 3 diésel. 48
Figura 13. Servicios auxiliares de los sistemas de almacenaje. 52
Figura 14. Curva de rendimiento y función a trozos de los generadores. 54
Figura 15. Potencia fotovoltaica para distintos valores de ϕ_1. 59
Figura 16. Análisis del SoC de las baterías para distintos ϕ_2. 59
Figura 17. Histograma de potencia de los diésel normalizado para distintos ψ. 60
Figura 18. Balance de potencias de la microred ($P_{\text{PV}}^{\text{max}}$). 62
Figura 19. a) Energía entregada a la red ($P_{\text{PV}}^{\text{max}}$). b) Energía entregada por los diésel ($P_{\text{PV}}^{\text{max}}$). ... 63
Figura 20. Potencia fotovoltaica útil y disponible ($P_{\text{PV}}^{\text{max}}$) 64
Figura 21. a) Estado de carga de la batería ($P_{\text{PV}}^{\text{max}}$). b) Potencia carga/descarga de la batería ($P_{\text{PV}}^{\text{max}}$). ... 64
Figura 22. Potencia de cada generador diésel ($P_{\text{PV}}^{\text{max}}$). 65
Figura 23. Histograma de potencia de los generadores diésel ($P_{\text{PV}}^{\text{max}}$). 66
Figura 24. Balance de potencias de la microred ($P_{\text{PV}}^{\text{max}}$) 66
Figura 25. a) Energía entregada a la red ($P_{\text{PV}}^{\text{max}}$). b) Energía entregada por los diésel ($P_{\text{PV}}^{\text{max}}$). ... 67
Figura 26. Potencia fotovoltaica útil y disponible para $P_{\text{PV}}^{\text{max}}$ 67
Figura 27. a) Estado de carga de la batería ($P_{\text{PV}}^{\text{max}}$). b) Potencia carga/descarga de la batería ($P_{\text{PV}}^{\text{max}}$). ... 68
Figura 28. Potencia de cada generador diésel ($P_{\text{PV}}^{\text{max}}$). 68
Figura 29. Histograma de potencia de los generadores diésel (P_{PV}^{max}).69
Figura 30. Balance de potencias de la microred (P_{PV}^{max}).70
Figura 31. a) Energía entregada a la red (P_{PV}^{max}). b) Energía entregada por los diésel (P_{PV}^{max}). ..71
Figura 32. Potencia fotovoltaica útil y disponible para P_{PV}^{max}.71
Figura 33. a) Estado de carga de la batería (P_{PV}^{max}). b) Potencia carga/descarga de la batería (P_{PV}^{max}). ...72
Figura 34. Potencia de cada generador diésel (P_{PV}^{max}). ..73
Figura 35. Histograma de potencia de los generadores diésel (P_{PV}^{max}).73
ÍNDICE DE TABLAS

Tabla 1. Parámetros de referentes a la planta fotovoltaica.................................33
Tabla 2. Variables de la planta fotovoltaica...33
Tabla 3. Parámetros de los generadores diésel. ...34
Tabla 4. Variables de los generadores diésel..34
Tabla 5. Parámetros del banco de baterías. ...35
Tabla 6. Variables del banco de baterías. ...35
Tabla 7. Otros parámetros de la microred y el modelo de optimización.36
Tabla 8. Datos de los parámetros de los generadores diésel síncronos..............36
Tabla 9. Datos de los parámetros de la planta fotovoltaica.37
Tabla 10. Datos de los parámetros de las baterías..37
Tabla 11. Tipos de problemas en GAMS®. ...41
Tabla 12. Afectación de la frecuencia por variaciones en la potencia de la red...47
Tabla 13. Parámetros para linealizar la curva de rendimiento de los diésel.54
Tabla 14. Parámetros de la potencia fotovoltaica para distintos Φ1.58
Tabla 15. Parámetros de la función multi-objetivo...61
AGRADECIMIENTOS

En primer lugar quiero expresar mi agradecimiento a la directora de este proyecto, Dra. Mònica Aragüés, por la enorme dedicación y apoyo que me ha dado en todo momento. Asimismo, agradezco su confianza depositada en mí, sus sugerencias y su dirección que han hecho llegar este trabajo a buen puerto.

En segundo lugar quiero agradecer al codirector de este proyecto, Dr. Oriol Gomis Bellmunt, la oportunidad de poder realizar el trabajo en CITCEA-UPC como también la confianza y orientación que me ha dado.

Quiero agradecer especialmente la gran ayuda, dedicación y esfuerzo desinteresado que me ha dado Eduard Bullich en este trabajo. Sin su tiempo, apoyo e ideas este proyecto no habría sido posible.

Un trabajo de estas dimensiones también es fruto del apoyo vital que nos ofrecen las personas que nos estiman por lo que agradezco a mi madre todo el apoyo moral y humano que me ha dado.

Por último agradezco a National Renewable Energy Laboratory el haberme facilitado de manera desinteresada los datos de irradiancia solar para este proyecto.
RESUMEN

En este proyecto se presenta la formulación, implementación y validación de un algoritmo de optimización de la operación de una microred eléctrica aislada. Una microred es un conjunto de generadores distribuidos controlables integrados en una red de distribución que dan suministro eléctrico y térmico en un ámbito local. Se ha realizado un modelo genérico para microredes aisladas en corriente alterna con plantas fotovoltaicas híbridas. La microred está constituida por una planta fotovoltaica, generadores diésel síncronos, baterías y cargas.

Se ha utilizado optimización lineal para desarrollar un algoritmo de optimización de la operación de la microred con el fin de maximizar la energía de las fuentes renovables, minimizar el consumo de los generadores diésel y optimizar la operación de las baterías. Este algoritmo se ha implementado en GAMS® y se ha aplicado a una microred para distintos escenarios de operación. El programa MATLAB® ha sido usado como nexo de conexión entre el software de optimización y el usuario.

El modelo genera referencias de potencia activa de los generadores y sistemas de almacenaje, consignas de encendido/apagado y carga/descarga de los generadores diésel y baterías, respectivamente. Además, garantiza que la desviación de frecuencia de la red esté dentro de los límites permitidos.

ABSTRACT

The basis of this project was to formulate, implement and validate the operation of an electrical isolated microgrid with an optimization algorithm. A microgrid is a set of distributed controllable generators integrated to a distribution network which gives electrical and thermal supply in a local area. A generic model is carried out for isolated AC microgrids with hybrid photovoltaic power stations. The microgrid is constituted by a photovoltaic power plant, synchronous diesel generators, energy storage capacity and loads.

A linear optimization is used to develop an optimization active power flow algorithm of a microgrid in order to maximize the utilization of the renewable sources, to minimize the diesel consumption of the generators and to optimize the operation of the batteries. This algorithm is implemented in GAMS® for multiple scenarios. MATLAB® is used as link between the optimization software and the user.

The model generates the active power values for the power plants and the energy storage system as well as it gives the switch on/off and charge/discharge command for the diesel generators and batteries, respectively. Finally, the model ensure the deviation network frequency is inside the allowed limits for each time step.
GLOSARIO

Símbolos

c
Constante de las rectas de rendimiento de los diésel.

C_t
Número de periodos de simulación.

d
Número de generadores diésel.

$E_{battery}$
Energía entregada a la red por la batería.

E_{diesel}
Energía del conjunto de generadores diésel.

E_{PV}
Energía fotovoltaica.

E_{loss}^{PV}
Pérdida de energía fotovoltaica.

E_{PV}^{max}
Máxima potencia fotovoltaica extraíble.

E_{tot}
Energía inyectada a la red por parte de la microred.

f
Función multi-objetivo a optimizar.

f_0
Valor inicial del rendimiento de los diésel.

f_c
Frecuencia de corte.

f_{max}
Frecuencia máxima admisible en la microred.

f_{min}
Frecuencia mínima admisible en la microred.

G
Irradiancia solar.

K
Constante de proporcionalidad.

M
Constante para linealizar el problema.

n
Número de generadores diésel.

n_{diesel}^{min}
Número de generadores diésel mínimos conectados.

r_{diesel}^{max}
Ramp Rate máximo de los generadores diésel.

r_{diesel}^{min}
Ramp Rate mínimo de los generadores diésel.

P_1
Potencia diésel referida al tramo 1 de la ecuación.

P_2
Potencia diésel referida al tramo 2 de la ecuación.

$P_{battery}$
Potencia de almacenamiento en las baterías.

$P_{max battery}$
Límite superior de almacenaje de las baterías.

P_{charge}
Potencia para almacenar en las baterías.

$P_{charged}$
Potencia almacenada en las baterías.

$P_{max charged}$
Potencia máxima de carga de las baterías.

p_{diesel}
Potencia de cada generador diésel.

$p_{max diesel}$
Límite de generación de cada generador diésel.
Potencia mínima de cada generador diésel.

Potencia nominal del generador diésel.

Potencia del conjunto de generadores diésel.

Potencia de descargada de las baterías.

Potencia máxima de descarga de las baterías.

Potencia inyectada a la red por la batería.

Exceso/déficit de potencia en la red.

Potencia demandada por la carga.

Máxima variación de demanda.

Máxima desviación de potencia fotovoltaica.

Potencia de generación fotovoltaica.

Potencia de generación fotovoltaica disponible.

Potencia pico de la planta fotovoltaica.

Ramp power rate de subida de los generadores diésel.

Ramp power rate de bajada de los generadores diésel.

Superficie de la planta fotovoltaica.

Potencia de descargada de las baterías.

Límite superior del estado de carga de la batería.

Límite inferior del estado de carga de la batería.

Tiempo de simulación.

Variable binaria referida a la ecuación a trozos de los diésel.

Variable binaria de carga/descarga de las baterías.

Variable binaria encendido/apagado de los diésel.

Símbolos griegos

\(\alpha \) Pendiente del tramo 1 de la recta del rendimiento del diésel.

\(\beta \) Pendiente del tramo 2 de la recta del rendimiento del diésel.

\(\eta_{bat} \) Rendimiento de carga/descarga de la batería.

\(\eta_{diesel} \) Rendimiento del generador diésel.

\(\eta_{bat}^{inv} \) Rendimiento del inversor de las baterías.

\(\eta_{inv}^{PV} \) Rendimiento del inversor de la planta fotovoltaica.

\(\lambda \) Factor que relaciona las variables de la batería

\(\phi \) Factor que relaciona la función multi-objetivo.

\(\tau \) Polo de un filtro de primer orden.

\(\psi \) Factor que relaciona las variables de potencia de los diésel.
<table>
<thead>
<tr>
<th>Acrónimos</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>CB</td>
<td>Interruptor.</td>
</tr>
<tr>
<td>CC</td>
<td>Control central.</td>
</tr>
<tr>
<td>CHP</td>
<td>Planta de cogeneración.</td>
</tr>
<tr>
<td>CEMS</td>
<td>Sistema de gestión de energía centralizado.</td>
</tr>
<tr>
<td>CMO</td>
<td>Operador central del mercado.</td>
</tr>
<tr>
<td>DEMS</td>
<td>Sistema de gestión de energía distribuido.</td>
</tr>
<tr>
<td>DER</td>
<td>Recursos energéticos distribuidos.</td>
</tr>
<tr>
<td>DG</td>
<td>Generación distribuida.</td>
</tr>
<tr>
<td>DoD</td>
<td>Profundidad de descarga.</td>
</tr>
<tr>
<td>DNO</td>
<td>Red de distribución.</td>
</tr>
<tr>
<td>EMM</td>
<td>Módulo de gestión de energía.</td>
</tr>
<tr>
<td>EMS</td>
<td>Sistema de gestión energética.</td>
</tr>
<tr>
<td>ESS</td>
<td>Sistemas de almacenaje de energía.</td>
</tr>
<tr>
<td>HMI</td>
<td>Interfaz hombre-máquina.</td>
</tr>
<tr>
<td>LFC</td>
<td>Control demanda-frecuencia.</td>
</tr>
<tr>
<td>Li-ion</td>
<td>Batería de iones de litio.</td>
</tr>
<tr>
<td>MAS</td>
<td>Sistema multi-agente.</td>
</tr>
<tr>
<td>MC</td>
<td>Control de una microfuente.</td>
</tr>
<tr>
<td>MIP</td>
<td>Programación lineal mixta.</td>
</tr>
<tr>
<td>MINLP</td>
<td>Programación no-lineal mixta.</td>
</tr>
<tr>
<td>MO</td>
<td>Operador del mercado.</td>
</tr>
<tr>
<td>OPF</td>
<td>Optimización del flujo de potencia.</td>
</tr>
<tr>
<td>PCM</td>
<td>Módulo de protección y coordinación.</td>
</tr>
<tr>
<td>RR</td>
<td>Ramp Rate del generador síncrono.</td>
</tr>
<tr>
<td>SCB</td>
<td>Interruptor de cortocircuito.</td>
</tr>
<tr>
<td>SoC</td>
<td>Estado de carga.</td>
</tr>
</tbody>
</table>
CAPÍTULO 1: INTRODUCCIÓN

Desde hace más de 100 años, la producción de energía alrededor del mundo ha sido generada en su mayor parte quemando combustibles fósiles, en la que el carbón ha ocupado un papel protagonista (Akorede, Hizam, and Pouresmaeil 2010). La International Energy Agency estimó en 2013 que el 67.4% de la generación de energía eléctrica mundial provino de combustibles fósiles, con el resto de recursos no-fósiles contribuyendo en un 10.6% la nuclear y 22.0% los recursos renovables (geotérmica, hidroeléctrica, solar, biomasa, etc.)(International Energy Agency 2015). Su gran contribución a la generación de energía ha supuesto grandes emisiones de CO₂ ya que poseen un alto contenido en carbono (Marland and Rotty 1984) ocasionando tanto problemas medioambientales como en la salud humana (K. Veltman, B. Singh 2010). Por este motivo, es conveniente el uso de fuentes de energía que emitan menos CO₂ por kWh, que tengan un impacto menor sobre el medioambiente y que sean prácticamente inagotables: son los llamados recursos renovables.

Actualmente el modelo de producción de energía se basa en grandes centrales eléctricas de tecnología convencional (nuclear, carbón, ciclo combinado, etc) (Tidball et al. 2010) que inyectan la energía producida a través de redes de transporte en alta tensión hasta los centros de consumo. Con la creciente concienciación de la necesidad de producir energía mediante recursos de tipo renovable, se ha empezado a investigar nuevos modelos energéticos que integren el uso de estas energías. En los últimos años, el concepto de microred eléctrica ha tomado fuerza ya que permite el uso de recursos renovables y aumenta la eficiencia en la producción y transmisión de energía (Generation 2014). Esta es una de las soluciones propuestas para reducir las emisiones de CO₂ aunque no está exenta de problemáticas que hay que estudiar y solventar. Las microredes aumentan considerablemente la complejidad de gestión del sistema eléctrico ya que se trata de un conjunto de pequeños generadores (Chowdhury and Crossley 2009) que conforman una red la cual puede estar interconectada entre muchas otras. Además, la integración de estos nuevos conceptos a las redes de distribución actuales no es tarea sencilla. Otro de los
ámbitos a investigar es la gestión de la operación de la microred ya que la integración de recursos con generación intermitente y difícil de prever incrementa su complejidad de operación.

El proyecto que se presenta a continuación se centra en esta última problemática, pretendiendo optimizar la operación de una microred aislada compuesta por una planta fotovoltaica híbrida y un sistema de almacenaje. El término híbrido es referido a una complementación de la generación fotovoltaica mediante generadores diésel síncronos.

1.1. Motivación

Este proyecto nace de la ferviente convicción de que un nuevo modelo energético es imprescindible a la vez que posible. Se considera que el modelo actual es insostenible (Ayres 1996) y requiere tomar medidas para evitar una crisis energética. La solución para que un 100% de generación de energía renovable sea posible es la de distribuir la generación y acercarlo a los centros de consumo. Por ello, se intenta abordar la compleja operación del flujo de potencia activa entre los diferentes elementos de una microred para conseguir estabilidad en la operación, haciendo hincapié en una maximización de la generación mediante recursos renovables reduciendo así las emisiones de CO₂, uno de los principales gases que contribuyen al cambio climático.

Se ha escogido estudiar la gestión de los recursos energéticos de las microredes ya que es un tema apasionante lleno de problemáticas de diferentes temáticas como pueden ser la eléctrica, la optimización y gestión de procesos o la electrónica. Como resultado del trabajo, se pretende aporta información y una base para futuras investigaciones en el campo de la gestión de microredes.

1.2. Objetivos y alcance del proyecto

El objeto de este proyecto es la optimización de la operación una microred formada por generadores diésel, paneles fotovoltaicos y bancos de baterías con una carga acoplada al sistema en corriente alterna mediante el uso un sistema de gestión de energía. Los parámetros de los elementos que forman la microred son dados por lo que el estudio del dimensionado de la microred queda fuera del alcance del proyecto.

Una microred está dotada de múltiples sistemas de control pero en este proyecto se estudiará exclusivamente el Energy Management System (EMS) aunque en el Capítulo 2 se introducirán brevemente algunos de estos elementos. Se deberá determinar qué tipo de EMS es más apropiado para el modelo de microred. La optimización se realizará offline (previsión de un escenario real) ya que, previamente a un modelo online (gestión en tiempo real), se requiere de una previsión de la operación para optimizar el control.

Existe una gran variedad de criterios a la hora de gestionar una microred pero en este caso primará el uso de generación renovable aunque también se tendrán en cuenta la operación de las baterías y la generación eléctrica por parte de los diésel. La operación de la batería solo contemplará el control secundario de frecuencia ya que el tiempo de descarga del tipo de baterías de la microred (de
iones de litio) es del orden de minutos a horas (Luo et al. 2015). Uno de los principales retos es el de implementar un modelo de optimización de la operación con una arquitectura que permita una resolución lineal ya que disminuye el tiempo de simulación en comparación a una no lineal. El modelo a optimizar estará constituido por una serie de inputs, los cuales mediante formulación algebraica, generarán variables de salida que permitirán el control de los generadores distribuidos y del sistema de almacenaje de energía. El modelo se realizará con el programa GAMS® aunque MATLAB® enviará y recibirá datos de la optimización.

La optimización del flujo de potencia activa (OPF) se realizará mediante una función multi-objetivo. El modelo de simulación se ejecutará para intervalos de 60 segundos para todo un día. Como consecuencia, no se tratarán efectos transitorios en los distintos elementos que conforman la microred. El intervalo de tiempo escogido se considera suficientemente pequeño como para operar variaciones en el consumo y generación de los elementos. Se entiende que la microred dispone de un sistema trifásico equilibrado de tensiones y, por lo tanto, no se tendrán en cuenta posibles perturbaciones que afecten a la tensión.

Se establecerán tres escenarios con diferentes características para observar la operación que realiza el programa de optimización. Estos se consideran suficientes para observar el funcionamiento del algoritmo implementado. Mediante este proceso se deberá obtener la potencia activa del generador diésel, la energía almacenada/entregada por el sistema de almacenaje de energía, obtención de variables binarias para conectar o desconectar generadores diésel, las consignas booleanas de carga/descarga de las baterías y la potencia entregada por el grupo fotovoltaico. El estado de la frecuencia de la red, que depende del balance potencia activa del sistema, se analizará aparte en MATLAB/Simulink®. No se tendrá en cuenta la tensión de la red por lo que no se realizará un control sobre la compensación de potencia reactiva.

El proyecto no contempla aspectos económicos ya que la motivación principal es minimizar el uso de recursos que usan combustibles fósiles como fuente de energía. Actualmente la generación eléctrica con estas tecnologías resulta más rentable que el uso de renovables, por lo que, una optimización desde el punto de vista económico se desviaría del objetivo proyecto. Consecuentemente, los aspectos económicos relacionados con la operación de los distintos elementos queda fuera del ámbito de este proyecto aunque se anima a realizarlo como continuación del mismo y compararlos con los resultados obtenidos en este trabajo.

El objetivo final del proyecto será validar el modelo de optimización permitiendo asegurar que la microred suministra la potencia demandada, operando de forma estable y cumpliendo los requerimientos de frecuencia, para múltiples escenarios.
CAPÍTULO 2: ESTADO DEL ARTE DE LAS MICROREDES

El presente capítulo expone brevemente el estado actual de las microredes eléctricas así como otros elementos asociados a las mismas con los cuales no se podría entender el funcionamiento de estos sistemas.

2.1. Definición de microred

Una microred es esencialmente una red de distribución activa ya que dispone de un conjunto de sistemas de generación distribuida y diferentes cargas al nivel de voltaje de distribución (García 2010). Los generadores o microfuentes empleadas en la microred acostumbran a ser recursos energéticos distribuidos renovables o no-convencionales integrados entre ellos. Además, las microredes ayudan a reducir el estrés en la red de transmisión compartiendo las cargas. El esquema de una microred típica puede observarse en la Figura 1. Las microredes requieren un gran nivel de comunicación entre los elementos que la conforman para que su gestión y control no comprometa la calidad del suministro energético.

Existen dos modos de operación para las microredes, modo aislado o island y conectado a la red o grid-connected (Palizban and Kauhaniemi 2015). En el primer caso la red opera aisladamente, es decir, la energía es producida, consumida y almacenada dentro la microred. Por el contrario, cuando la red se encuentra en modo grid-connected, ésta puede intercambiar energía y otros servicios con otras redes así como trabajar conjuntamente con el operador de la red principal para dar suministro a los usuarios. Los servicios auxiliares que puede proporcionar la microred a la red principal son la regulación de la tensión mediante el soporte de potencia reactiva, reservas energéticas para hacer frente
a contingencias y potencia auxiliar para el sistema black start (Chowdhury and Crossley 2009).

Existen distintos tipos de cargas dentro de la microred y, por ello, se requiere un control de los flujos de energía dentro de la misma. Las cargas prioritarias requieren de un suministro eléctrico permanente sin posibilidad de corte. Por el contrario, las cargas no prioritarias pueden quedar sin suministro frente a contingencias.

2.1.1. Definición de red de distribución activa

Una red de distribución deviene activa cuando las unidades de generación distribuidas son agregadas a la red de distribución con flujos de energía bidireccional. Para la implementación de estas redes activas es necesario una investigación exhaustiva en el control activo, las protecciones y controles adaptativos, dispositivos para la gestión de la red, simulación de la red en tiempo real, sensores y medidas avanzados, comunicaciones distribuidas, extracción de conocimientos con métodos inteligentes, diseños innovadores de sistemas de transmisión y distribución, entre muchos.

2.1.2. La generación distribuida

A pesar de que la generación distribuida adquirirá importancia en los futuros sistemas de generación, aún no existe una definición consistente para este término (Ackermann, Andersson, and Söder 2001) y, por ello, se ha optado por explicar sus características en vez de tratar de definir el concepto.

La generación distribuida se caracteriza por la producción de energía tanto eléctrica como térmica mediante múltiples generadores de baja potencia y con
localizaciones próximas a las áreas de consumo. Estos, son conocidos como recursos de energía distribuidos (DER). También se caracteriza por no estar planificada centralmente sino que se distribuye a lo largo del territorio según se disponga de recursos energéticos. Generalmente las plantas generadoras son de potencia inferior a 50MW (Chowdhury and Crossley 2009). Además, los generadores acostumbran a estar conectados al sistema de distribución eléctrico en media tensión.

Existen múltiples diferencias entre las plantas de generación convencionales y las DER. En general, las microfuentes de energía son de menor capacidad que las convencionales lo cual reduce la coste de las mismas y facilita su construcción cerca de las áreas de consumo. La energía generada por estas es al voltaje de distribución por lo que puede ser inyectada directamente sin necesidad de transformadores. Por último, las DER acostumbran a estar cerca de los consumidores reduciendo los costes de transporte y distribución así como las pérdidas derivadas de este proceso.

2.2. Control de la microred

El control de una microred es primordial para garantizar la seguridad del sistema, obtener una operación óptima, reducir las emisiones de CO₂ y cambiar de modo de operación sin violar las restricciones y normativa requerida (Chowdhury and Crossley 2009). Esto se consigue mediante un control central de la microred como también disponiendo de un control sobre los DER que están conectados tanto a las microfuentes como a los dispositivos de almacenaje.

2.2.1. Control central

El objetivo del control central (CC) es mantener la frecuencia y el voltaje dentro de los límites fijados al final de la carga a través del control de la potencia activa-frecuencia y voltaje para asegurar una optimización energética de la microred (Chowdhury and Crossley 2009). También da protección y coordinación además de proporcionar el set point de voltaje y potencia. Este control está diseñado para operar automáticamente aunque también está provisto de un sistema de intervención manual por si fuera necesario. Éste, monitoriza continuamente la operación del control de la microfuentes (MC) a través de dos módulos.

El módulo de gestión energética es el encargado de proporcionar el valor de potencia activa, reactiva, voltaje y frecuencia consigna al controlador de la microfuentes. La obtención del set point de potencia activa se consigue mediante la estimación del precio del combustible del DER, el coste de la energía eléctrica, conocer parámetros medioambientales y con la anticipación de los requerimientos de la operación de los procesos. En cambio, para obtener el valor consigna del voltaje se necesita saber la regulación de voltaje de la microred.

El módulo de protección y coordinación (PCM) es el encargado de responder a faltas y caídas de la red para asegurar la correcta protección de todos los elementos que la forman.
2.2.2. Control de la microfuente

El control de la microfuente controla y supervisa las funciones de los DER y utiliza la información local para controlar el voltaje y la frecuencia de la micróred en condiciones transitorias. El MC tiene la autonomía para optimizar localmente la producción de energía activa y reactiva de la microfuente. La función de control del MC consiste en controlar la potencia activa y reactiva, el voltaje, los requisitos de almacenaje para un rápido seguimiento de la curva de demanda y el reparto de carga a través del control P-f de los DER y los sistemas de almacenaje.

2.2.3. Control de supervisión y adquisición de datos

El control de supervisión y adquisición de datos (SCADA) es un sistema distribuido que permite monitorizar y controlar la generación de energía eléctrica y térmica, los dispositivos de almacenaje, la distribución y otros servicios auxiliares. Las funciones de este sistema consisten en la adquisición de datos, su procesado, el control remoto, procesado de alarmas, crear un historial de datos, control de emergencias, gestión de herramientas para la planificación de las cargas y, por último, crear una interfaz gráfica hombre-máquina (HMI).

2.3. Sistema de gestión energética

El gran reto de la gestión de energía en una micróred consiste en encontrar el nivel de funcionamiento óptimo de los generadores y sistemas de almacenamiento disponibles para alcanzar ciertos objetivos (Olivares, Canizares, and Kazerani 2014). El EMS, que se encuentra dentro del CC, se acostumbra a optimizar mediante una función coste multi-etapa. Las variables de salida obtenidas son los valores de referencia del sistema de control para cada DER flexible juntamente con variables binarias para conectar o desconectar cargas (load shifting). Para el modo aislado, el objetivo es suplir la carga local de forma económicamente viable. En cambio, para una operación grid-connected el principal objetivo es maximizar el beneficio económico. Para lograr una operación óptima se han propuesto principalmente dos aproximaciones: un sistema de gestión de energía centralizado (CEMS) y uno distribuido (DEMS).

2.3.1. EMS centralizado

La arquitectura del CEMS consiste en un controlador central dotado con información útil de cada uno de los DER o de la misma micróred. Estos parámetros pueden ser funciones de coste, características técnicas o limitaciones, parámetros de la red y el modo de operación. El sistema también tiene que adquirir datos de previsiones para determinar un uso óptimo de los generadores para hacer frente a la demanda siguiendo el criterio del objetivo marcado. Estos parámetros pueden ser la carga local, la velocidad el viento, la radiación solar, etc.

Las principales variables según (Chowdhury and Crossley 2009) de un CEMS son la estimación de la potencia entregada por los generadores no flexibles para los n siguientes períodos, estimación de la carga local de los n siguientes periodos, el estado de carga del sistema de almacenaje (ESS), los límites de operación de los
generadores flexibles y de los ESS, la fiabilidad y seguridad de las restricciones de la microred, el estado de la interconexión y la estimación del precio de la energía de la red principal.

Las ventajas del uso del CEMS frente al DEMS son la amplia observabilidad de la microred y la idoneidad para la aplicación de técnicas de optimización. Por el contrario, las desventajas que presenta este sistema son la reducción de flexibilidad del mismo, si se incorporan nuevos generadores debe modificarse el algoritmo de optimización y, por último, necesita amplios requisitos de cálculo para realizar la optimización.

2.3.2. **EMS descentralizado**

El DEMS fue propuesto como alternativa al CEMS para una operación coordinada entre microredes dentro de un mercado competitivo con generadores propiedad de múltiples dueños (Chowdhury and Crossley 2009). El DEMS está provisto de un entorno comercial a partir del uso de un sistema con múltiples agentes (MAS) en el cual cada agente de la microred envía ofertas de compra o venta (generadores, consumidores, ESS y la red principal) a un operador central del mercado (CMO) de acuerdo con los costes y las necesidades particulares del sistema. El CMO, una vez dispone de toda la información, realiza una casación para determinar la operación de la microred para el siguiente periodo. Este proceso se realiza con la normativa y las restricciones que impone el operador de la red de distribución (DNO). Tanto el CMO como el DNO no pertenecen a la red sino que son delegadas de la red principal. El CC se encarga de coordinar los MC y controles locales a la vez que hace de interfaz entre la microred y el DNO o el operador del mercado (MO). La Figura 2 muestra el esquema básico para una microred conectada a la red.

Figura 2. Esquema del control de una microred conectada a una red.
2.4. Control de frecuencia de la red

Un desbalance entre generación y demanda causado por un importante estrés del sistema degrada seriamente el comportamiento del sistema eléctrico, el cual no puede ser descrito en análisis transitorios convencionales o estudios de estabilidad de tensión (Bevrani 2009). Este fenómeno debe ser considerado en relación con el problema del control de frecuencia del sistema.

La desviación de frecuencia es el resultado directo del desbalance entre potencia eléctrica demandada y la suministrada por los generadores conectados, por este motivo, estas desviaciones son usadas como indicador de los desbalances entre generación y consumo. Una desviación permanente en la frecuencia nominal puede afectar a la operación, fiabilidad, seguridad y eficiencia de la red, dañando los equipos, degradando el comportamiento de las cargas, sobrecargando las líneas de transmisión y hacer saltar los sistemas de protección.

La frecuencia generada en la red eléctrica es proporcional a la velocidad de rotación de los generadores, por ello, el problema del control de frecuencia debe ser trasladado a un problema de control de velocidad de las turbinas que están acopladas directamente a la red. Como consecuencia, para restablecer el valor nominal de la frecuencia, debe añadirse un mecanismo que gobiene la velocidad del generador, esto implica un cambio en la potencia mecánica de salida permitiendo acelerar o decelerar el rotor de la máquina. Dependiendo del tiempo en que permanece una determinada desviación de frecuencia y su magnitud, se requieren mecanismos de control de frecuencia para mantenerla estable.

En condiciones de operación normal, las pequeñas desviaciones de frecuencia son atenuadas por el control primario. Para desviaciones mayores (fuera de la operación normal), el control secundario, que es conocido como load-frequency control (LFC), es el responsable de restablecer la frecuencia del sistema. Los dos principales objetivos del LFC es mantener la frecuencia y los intercambios de potencia entre los controles vecinos en los valores previstos. Estos objetivos son alcanzados midiendo el error de una señal de control que representa la desviación real entre generación y demanda, y es una combinación lineal del intercambio neto y la desviación de frecuencia.

El control de la frecuencia esta deviniendo muy importante a día de hoy por el incremento en el tamaño, cambios en la estructura, y aumento de la complejidad de los sistemas eléctricos interconectados. Con el aumento de la presión económica para la estabilidad y eficiencia de los sistemas eléctricos, ha ocasionado que los requerimientos para mantener la frecuencia del sistema y los flujos de potencia sean más estrictos con mantener los valores en los límites previstos. Por lo tanto, en los sistemas eléctricos modernos, el LFC juega un papel fundamental, como servicio auxiliar, dando soporte a los intercambios de potencia y aportando mejores condiciones para la actividad comercial del sector eléctrico. Pero para desbalances considerables asociados a rápidos cambios en la frecuencia ocasionando una falta significativa, el LFC no puede restablecer la frecuencia del sistema. En esta situación, se usa el control terciario o control de emergencia, y los sistemas de protección como última opción para reducir el riesgo de producirse faltas en otros sectores.
El control primario de frecuencia aporta una respuesta automática ajustando la velocidad de los gobernadores en el intervalo de segundos después de una perturbación. El control secundario inicia un control automático centralizado que usa las spinning reserves (reservas rodantes), el cual es activado en el intervalo de pocos segundos a minutos después de una perturbación. A diferencia de los otros dos, el control terciario acostumbra a activarse manualmente en el intervalo algunos minutos a horas.

Las cuatro formas de control de la frecuencia presentadas acostumbran a estar presentes en los sistemas eléctricos. Además, la demanda también puede participar en el control de frecuencia mediante la desconexión de algunas de las cargas para un umbral de frecuencia. A pesar de ello, esta contribución no siempre se toma en cuenta en el cálculo en la respuesta de todos los controles de frecuencia. La cantidad de reservas de energía depende en diversos factores incluyendo el tipo y tamaño del desbalance demanda-generación.

Por último, se quiere hacer hincapié en la necesidad de un control robusto de frecuencia por el incremento del estrés de los sistemas eléctricos debido a la tendencia predominante de aprovechar al máximo las instalaciones existentes. Además, la emergente aparición de las microfuentes está modificando la operación de estos sistemas en nuevas direcciones que presentan grandes desafíos para una operación segura del sistema.

2.5. Estado actual de las microredes

Actualmente existe un gran y creciente interés en la investigación de las microredes con algunos proyectos importantes en camino en diversas partes del globo (Barnes et al. 2007). Sin embargo, el desarrollo de estos proyectos en gran parte ha sido emprendido por separado y con la intención de usarlos para el desarrollo de nuevas tecnologías.

A nivel europeo, uno de los objetivos de los proyectos es establecer estándares de operación, seguridad, análisis y medida que permitan la interoperabilidad entre proveedores del mercado energético (Rubia 2011). Otro de los motivos principales es la de integrar la generación distribuida mediante recursos renovables a la red. Uno de los proyectos importantes que se está realizando en Europa es el Labein Experimental Centre en España, el cual dispone de plantas fotovoltaicas de baja potencia (inferior a los 3.6kW), generadores diésel de 55kW, una turbina eólica de 6kW, una microturbina de 50kW, un flywheel de 250kVA, ultracondensadores de 6kW y una batería de 1925Ah (European Research Project 2016). Otros proyectos importantes son EDP Feeder (Portugal), CESI (Italia), Kythnos (Grecia), Continuon Holiday Park (Holanda), Demotec (Alemania) y MVV Energie Projects (Alemania).

A nivel mundial existen numerosos proyectos los cuales están implementando microredes con la finalidad de desarrollar nuevas tecnologías que permitan solucionar algunos de los retos que estas plantean. En Estados Unidos se está realizando el AEP CERTS el cual está localizado en el AEP Walnut Test. La microred está formada por tres plantas de cogeneración alimentadas por generadores de gas natural de 60kW, y un sistema de almacenaje (Lasseter et al. 2011). También existe el proyecto Mad River o el BC Hydro Boston Bar,
aunque a nivel global, Asia es uno de los continentes que está desarrollando una mayor cantidad de proyectos. A modo de ejemplo, Shimizu Corporation ha construido una microred piloto a gran escala en su centro de investigación en Tokio, Japón. El objetivo es de dar soporte a la demanda eléctrica de la compañía además de evaluar su sistema de planificación de la operación óptima. La microred está formada por cuatro turbinas de gas de 27, 90 y 350kW, una planta fotovoltaica de 10kW, baterías de plomo-ácido de 20kW, Baterías NiMH de 400kWh y grupo de ultracondensadores de 100kW (Denda 2006). Otros proyectos importantes son el Kyoto Eco-Energy Project (Japón), Hachinohe Project (Japón), Aichi Project (Japón), Sendai Project (Japón), Hsinchiang China (China), entre otros.

Este apartado refleja cuál es el estado actual del desarrollo de microredes con sistemas de generación distribuidos y la naturaleza de estos proyectos. Se espera que los próximos años se hagan grandes avances en el dimensionado y gestión de las microredes que permitan implantarlas de forma genérica en las redes eléctricas convencionales.
CAPÍTULO 3: DESCRIPCIÓN DE LA MICRORED

En el presente capítulo se detallan las características de la microred así como que tipo de dispositivo de control se usará y, dentro de este, que tipo de optimización se llevará a cabo con sus correspondientes objetivos.

3.1. Topología de la microred

La microred de estudio pretende dar suministro eléctrico a una demanda no constante de forma ininterrumpida y con un control sobre la potencia activa entregada y consumida para asegurar una estabilidad en la frecuencia. Ésta no dispondrá de conexión ni con la red principal de transporte y distribución ni con otras microredes. Los dispositivos que formaran parte de la microred a optimizar serán una planta fotovoltaica, generadores diésel síncronos y un sistema de almacenaje mediante baterías. Estos elementos estarán distribuidos uniformemente en un mismo bus y, éste, tendrá una carga acoplada. Se considera un sistema trifásico equilibrado para el caso de estudio.

La planta fotovoltaica y el sistema de almacenaje tendrán acoplados un inversor que permitirá inyectar la potencia DC de estos dispositivos al bus en AC con una tensión y frecuencia determinada. Los inversores tendrán un rendimiento asociado. Por otro lado, los generadores diésel síncronos se conectarán directamente al bus AC. Estos elementos permitirán generar y controlar la frecuencia de la red ya que su inercia rodante les permite compensar variaciones de potencia en la microred.

Los generadores diésel ,el sistema de almacenaje y la planta fotovoltaica estarán dotados de un MC independiente que recibirá las consignas de potencia del CC.
Estos serán generados mediante la optimización realizada por el EMS centralizado. El PCM se encargará de controlar los dispositivos de seguridad de la microred. La Figura 3 muestra la microred de estudio con los elementos mencionados.

![Figura 3. Microred de estudio.](image)

3.2. Arquitectura del EMS

La microred que se ha diseñado operará aislada, con un número reducido de generadores (Olivares, Canizares, and Kazerani 2014), con una potencia instalada no homogénea (fotovoltaica y generadores diésel) y con una falta de consistencia en el precio de la energía por no tener el soporte de la red principal. Esto supone una gran dificultad para la implementación de un DEMS y, por ello, la optimización de la microred se realizará mediante un EMS centralizado.

El EMS se estructura básicamente en dos bloques principales: la optimización del sistema que se realiza con el programa GAMS® y la entrada/salida de datos con MATLAB® (Figura 4). La entrada de datos se realiza con el software MATLAB® ya que facilita la comunicación hombre-ordenador. Esto implica una mayor sencillez y versatilidad a la hora de añadir o modificar parámetros a la microred. Este programa también permite la extracción de datos de GAMS® con la finalidad de realizar un tratamiento de los datos para que sean mucho más gráficos ya que el programa de optimización no lo permite. En GAMS®, se generan las variables del problema con sus restricciones físicas y tecnológicas, se programa el modelo de microred y se determina la función objetivo a maximizar. Existen dos tipos principales de variables: las variables no-enteras y las binarias. Las primeras son las que caracterizan las potencias de la microred mientras que las segundas
establecen los estados de encendido/apagado, carga/descarga y otros aspectos lógicos condicionales. Este modelo dispondrá de una función multi-objetivo en la que cada uno de sus parámetro tendrá asociado un factor de ponderación que dependerá de qué tipo de operación se desee realizar.

Figura 4. Diagrama del programa de optimización (EMS).
El período temporal de simulación será de un día y se fraccionará en intervalos de 1 minuto por lo que se tendrán 1440 períodos. Se escoge este intervalo de tiempo por tres motivos principalmente. El primero es para reducir el tiempo de computación que incrementa exponencialmente al aumentar la resolución de los datos. En segundo lugar, al tratarse de un EMS offline no se requieren consignas cada segundo sino que son simulaciones que ayudan a la operación de la microred cuando se usa el EMS online. Por último, la operación de la batería debe tener una respuesta de minutos como se explicará en el Capítulo 5. La optimización empezará en el tiempo cero y se ejecutará hasta llegar al 1440. Para generalizar la duración del intervalo temporal, la Figura 4 muestra el equivalente temporal de simulación en segundos por lo que el programa debe llegar hasta los 86400 segundos que tiene un día.

La optimización del EMS debe contemplar el equilibrio de potencias tanto a corto como largo plazo (Garcia 2010). El equilibrio a corto plazo incluye provisiones de la capacidad de seguimiento de la carga y control de frecuencia, basándose en el equilibrio en la distribución de potencia activa de los DER como del seguimiento de cargas para minimizar las diferencias entre potencia generada y consumida. Para la gestión de la microred a largo plazo, el modelo busca los estados de los DER actuales que permitan disponer de capacidad suficiente para hacer frente a la demanda futura con la energía en las baterías, potencia fotovoltaica y generadores diésel disponibles.

La función objetivo permitirá la maximización del aprovechamiento de la potencia fotovoltaica disponible estableciendo un criterio de prioridad sobre la inyección a la red. También permitirá la regulación del tipo de operación que realizarán las baterías para prolongar su vida útil. Por último, se regulará la potencia entregada por los generadores diésel. Para maximizar el rendimiento de estos se implementará una curva que permita situar el punto de funcionamiento alrededor de la potencia nominal. Muchos de los OPF existentes no contemplan esta opción pero se ha considerado que se obtienen previsiones mucho más realistas a la vez que se reduce el consumo de combustible y las emisiones consiguientes. Para lograr este objetivo debe implementarse la curva de dos tramos, en el Capítulo 5 se comentaran los motivos. Es importante que el punto de unión entre las dos rectas corresponda con la potencia nominal de los diésel. Deben añadirse parámetros en la función objetivo que relacionen estas rectas y permitan la optimización de la operación de los generadores diésel. Cuando finaliza la simulación se obtienen las potencias eléctricas de los diésel. Estas consignas se envían al MC, el cual dispone de la curva de rendimiento de cada generador síncrono. El MC convierte la potencia eléctrica en mecánica y envía la información a cada unos de los diésel. La Figura 5 muestra este proceso.

Una vez realizada la simulación en GAMS®, los datos son validados y, en caso que sean correctos se grafican los resultados en MATLAB®, en caso contrario, se deben cambiar los factores de ponderación de la función objetivo y se empieza el proceso de nuevo.

3.3. Perfil de consumo

Se han encontrado grandes dificultades para conseguir datos de consumo diarios con una resolución igual o inferior a sesenta segundos de un conjunto amplio de
cargas como el que se podría encontrar en una microred. Por ello, se ha optado por crear una curva de demanda que se aproxime lo mejor posible a un consumo real.

Por una mayor facilidad en la obtención de curvas de demanda diarias con resolución horaria, se han extraído los datos necesarios de (“SCE Dynamic Load Profiles” 2016) y, mediante interpolación polinómica, obtener la ecuación (1) de demanda, la cual permitirá obtener cuantos valores sean necesarios en el intervalo de un día.

\[y = -7.0 \cdot 10^{-6} \cdot x^5 + 0.4 \cdot 10^{-3} \cdot x^4 - 8.2 \cdot 10^{-3} \cdot x^3 + 72.9 \cdot 10^{-3} \cdot x^2 - 0.24 \cdot x + 0.78 \]

La Figura 6 muestra el error que se comete al interpolar una curva horaria. Puede observarse como este es considerable pero cuando se aplique un factor de variabilidad disminuirá sustancialmente. Por otra parte, el objetivo es obtener una función que aproxime una curva de demanda por lo que esta interpolación cumple los requisitos.
Una vez obtenida la función de interpolación, se debe escalar con un factor multiplicador para adecuar los valores de potencia consumida de la microred estudiada. Para determinar este valor se debe marcar el límite superior, que en este caso lo determina la potencia máxima que pueden suministrar el conjunto de generadores diésel (12150 kW). Este límite no puede ser superado bajo ningún concepto ya que, si no hubiera energía fotovoltaica o en las baterías disponible, el sistema se desestabilizaría y no podría hacer frente a parte de la demanda. El valor escogido para el factor multiplicador k_1 es de 10100. Se deja un margen de seguridad frente al límite superior ya que aún se debe aplicar una variabilidad en el consumo.

El error que se comete al usar datos con una resolución horaria frente a datos secundales puede aproximarse mediante una distribución normal ("Hybrid Energy Management System" 2015). Por este motivo se suma una distribución normal aleatoria escalada a la curva de demanda interpolada. Se escoge una distribución normal estándar aleatoria por no poder comparar la función obtenida a datos reales secundales y, mediante el error entre estas dos, obtener los parámetros de una normal que aproxime con mayor acierto el consumo real. El valor del factor escalador k_2 será el 2% de k_1, ya que según datos secundales de curvas de demanda de ("Hybrid Energy Management System" 2015), se observa como este factor está entre el 1-3%.

El resultado de este proceso es una curva de demanda la cual puede proporcionar valores cada sesenta segundos como se requiere para el caso de estudio. La ecuación (2) muestra la función de demanda eléctrica.

$$P_{load} = y \cdot k_1 + DN \cdot k_2$$ \hspace{1cm} (2)

La Figura 7 muestra la distribución normal aplicada a la curva de demanda diaria con una resolución de 60 segundos así como el límite superior de potencia que está fijado por la potencia máxima que pueden entregar el conjunto de generadores diésel.

3.4. Perfil de irradiancia

La optimización de la microred requiere disponer de la curva de producción de la planta fotovoltaica. Por ello, se han extraído datos de irradiancia solar con una
resolución de 1 segundo del *National Renewable Energy Laboratory* en Hawaii (Sengupta, M; Andreas 2010) para todo un año. Conociendo la irradiancia, la superficie de colección y la potencia pico de la planta fotovoltaica, puede obtenerse la potencia de salida de la planta fotovoltaica. Este tipo de planta puede ser modelada mediante una función en un filtro de primer orden basado en el análisis en el dominio de la frecuencia de la irradiancia y la señal de la potencia de salida.

El análisis de la microred se realizará para tres escenarios distintos con características diferentes (Figura 9) ya que el objetivo del proyecto es la obtención de un modelo que optimice la operación de todos los escenarios reales posibles de irradiancia solar y demanda. Analizando los escenarios límite y óptimo se puede llegar a la conclusión que si la microred opera correctamente en éstos, en otros escenarios menos críticos también lo hará. En primer lugar, el perfil $P_{PV \text{ max}}$ se caracteriza por tener una gran variabilidad en la potencia de salida.
salida lo que significa una climatología nubosa. En segundo lugar, el perfil \(P_{PV_{max}} \) muestra un día con el cielo completamente tapado. Por último, el perfil \(P_{PV_{max}} \) caracteriza un día soleado sin variabilidad en la potencia fotovoltaica de la planta.

![Figura 9](image)

Figura 9. a) Irradiancia global diaria. b) Potencia fotovoltaica generada.

3.5. Definición de parámetros y variables

En el presente capítulo se explica el significado, las unidades y de donde se han sacado los parámetros y las variables que se han usado en la caracterización de la microred. Algunos parámetros y variables dependen del período de tiempo \(t \) y del generador diésel \(d \). Se define parámetro como dato conocido que se considera imprescindible para realizar el modelo. Y, variable, como un símbolo que permite identificar a un elemento no especificado dentro del modelo.

![Figura 10](image)

Figura 10. Potencia de la planta fotovoltaica de tres días característicos.
3.5.1. **Planta fotovoltaica**

En la Tabla 1 se definen los parámetros referentes a la planta fotovoltaica. La potencia pico, el rendimiento del inversor de la planta, la irradiancia y la superficie de captación son conocidos. Los valores de estos parámetros son tabulados en el apartado 3.6. En el apartado 3.4 se explica el cálculo de la potencia máxima de captación solar disponiendo de la irradiancia solar, la superficie fotovoltaica y la potencia pico de la planta.

<table>
<thead>
<tr>
<th>Definición</th>
<th>Símbolo</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia de generación fotovoltaica disponible.</td>
<td>P^max_{PV}</td>
<td>[kW]</td>
</tr>
<tr>
<td>Potencia pico de la planta fotovoltaica.</td>
<td>P^pico_{PV}</td>
<td>[kW]</td>
</tr>
<tr>
<td>Rendimiento del inversor de la planta fotovoltaica.</td>
<td>η^inv_{PV}</td>
<td>[pu]</td>
</tr>
<tr>
<td>Irradiancia solar del área de captación solar.</td>
<td>G</td>
<td>[W/m²]</td>
</tr>
<tr>
<td>Superficie de la planta fotovoltaica.</td>
<td>S</td>
<td>[Ha]</td>
</tr>
</tbody>
</table>

La Tabla 2 muestra las variables creadas referentes a la potencia y energía aprovechada por la planta fotovoltaica. Estos valores son determinados con el programa de optimización GAMS® según el criterio de optimización que se emplee.

<table>
<thead>
<tr>
<th>Definición</th>
<th>Símbolo</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia de generación fotovoltaica.</td>
<td>P_{PV}</td>
<td>[kW]</td>
</tr>
<tr>
<td>Energía fotovoltaica.</td>
<td>E_{PV}</td>
<td>[kWh]</td>
</tr>
</tbody>
</table>

3.5.2. **Generadores diésel**

En la Tabla 3 se definen los parámetros referentes a los generadores síncronos. Todos los datos son dados con el modelo de microred por lo que no permiten modificación alguna. Los valores de estos parámetros son tabulados en el apartado 3.6. El rendimiento de los generadores diésel se considera una variable ya que depende de la potencia eléctrica de los mismos y puede ser optimizado en GAMS®.

En la Tabla 4 se muestran las variables creadas referentes a la potencia, energía y encendido/apagado de los generadores diésel. La potencia del conjunto de generadores es la suma de la potencia de cada generador para cada instante de
tiempo. Estos valores son determinados con el programa de optimización GAMS® según el criterio de optimización que se emplee.

Tabla 3. Parámetros de los generadores diésel.

<table>
<thead>
<tr>
<th>Definición</th>
<th>Símbolo</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de generadores diésel.</td>
<td>n</td>
<td>-</td>
</tr>
<tr>
<td>Número de generadores diésel mínimos conectados.</td>
<td>n_{min}^{diesel}</td>
<td>-</td>
</tr>
<tr>
<td>Potencia nominal del generador diésel.</td>
<td>p_{n}^{diesel}</td>
<td>[kW]</td>
</tr>
<tr>
<td>Límite de generación de cada generador diésel.</td>
<td>p_{max}^{diesel}</td>
<td>[kW]</td>
</tr>
<tr>
<td>Potencia mínima de cada generador diésel.</td>
<td>p_{min}^{diesel}</td>
<td>[kW]</td>
</tr>
<tr>
<td>$Ramp Rate$ máximo de los generadores diésel.</td>
<td>r_{max}^{diesel}</td>
<td>[kW/s]</td>
</tr>
<tr>
<td>$Ramp Rate$ mínimo de los generadores diésel.</td>
<td>r_{n}^{diesel}</td>
<td>[kW/min]</td>
</tr>
</tbody>
</table>

Tabla 4. Variables de los generadores diésel.

<table>
<thead>
<tr>
<th>Definición</th>
<th>Símbolo</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia de cada generador diésel.</td>
<td>p_{d}^{diesel}</td>
<td>[kW]</td>
</tr>
<tr>
<td>Potencia del conjunto de generadores diésel.</td>
<td>p_{sum}^{diesel}</td>
<td>[kW]</td>
</tr>
<tr>
<td>Energía del conjunto de generadores diésel.</td>
<td>E^{diesel}</td>
<td>[kWh]</td>
</tr>
<tr>
<td>Rendimiento del generador diésel.</td>
<td>η^{diesel}</td>
<td>[pu]</td>
</tr>
<tr>
<td>Variable binaria encendido/apagado de los diésel.</td>
<td>X^{diesel}</td>
<td>-</td>
</tr>
</tbody>
</table>

3.5.3. Banco de baterías

La Tabla 5 se definen los parámetros referentes al banco de baterías. Todos los datos son dados con el modelo de microrred por lo que no permiten modificación alguna. Los valores de estos parámetros son tabulados en el apartado 3.6. El modelo realiza la simplificación de considerar de igual valor el rendimiento de carga y descarga de la batería. No se ha definido límite inferior de las baterías ya que se considera 0.

En la Tabla 6 se muestran las variables creadas referentes a la potencia extraída/inyectada a la red y la carga/descarga de las baterías, así como una variable binaria que determina si está en modo carga o descarga. Estos valores son determinados con el programa de optimización GAMS® según el criterio de optimización que se emplee.
Optimización de la operación de plantas fotovoltaicas híbridas aisladas

Tabla 5. Parámetros del banco de baterías.

<table>
<thead>
<tr>
<th>Definición</th>
<th>Símbolo</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Límite superior de almacenaje de las baterías.</td>
<td>$P_{\text{max battery}}$</td>
<td>[kW]</td>
</tr>
<tr>
<td>Potencia máxima de carga de las baterías.</td>
<td>$P_{\text{max charged}}$</td>
<td>[kW]</td>
</tr>
<tr>
<td>Potencia máxima de descarga de las baterías.</td>
<td>$P_{\text{max discharge}}$</td>
<td>[kW]</td>
</tr>
<tr>
<td>Límite superior del estado de carga de la batería.</td>
<td>$S_{\text{OC max}}$</td>
<td>[pu]</td>
</tr>
<tr>
<td>Límite inferior del estado de carga de la batería.</td>
<td>$S_{\text{OC min}}$</td>
<td>[pu]</td>
</tr>
<tr>
<td>Rendimiento de carga/descarga de la batería.</td>
<td>η_{bat}</td>
<td>[pu]</td>
</tr>
<tr>
<td>Rendimiento del inversor de las baterías.</td>
<td>η_{inv}</td>
<td>[pu]</td>
</tr>
</tbody>
</table>

Tabla 6. Variables del banco de baterías.

<table>
<thead>
<tr>
<th>Definición</th>
<th>Símbolo</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potencia de almacenamiento en las baterías.</td>
<td>P_{battery}</td>
<td>[kW]</td>
</tr>
<tr>
<td>Potencia de carga de las baterías (después del inversor).</td>
<td>P_{charged}</td>
<td>[kW]</td>
</tr>
<tr>
<td>Potencia de descarga de las baterías.</td>
<td>$P_{\text{discharge}}$</td>
<td>[kW]</td>
</tr>
<tr>
<td>Exceso/déficit de potencia en la red.</td>
<td>P_{excess}</td>
<td>[kW]</td>
</tr>
<tr>
<td>Potencia para almacenar en las baterías.</td>
<td>P_{charge}</td>
<td>[kW]</td>
</tr>
<tr>
<td>Potencia de descarga de las baterías (después del inversor)</td>
<td>$P_{\text{discharged}}$</td>
<td>[kW]</td>
</tr>
<tr>
<td>Energía entregada a la red por la batería.</td>
<td>E_{battery}</td>
<td>[kWh]</td>
</tr>
<tr>
<td>Potencia de descarga de las baterías.</td>
<td>S_{OC}</td>
<td>[pu]</td>
</tr>
<tr>
<td>Variable binaria de carga/descarga de las baterías.</td>
<td>X_{battery}</td>
<td>-</td>
</tr>
</tbody>
</table>

3.5.4. Otros parámetros

La Tabla 7 muestra otros parámetros imprescindibles para la modelización de la microred como la potencia demandada. El número de períodos se ha determinado en función de la resolución de los datos de potencia fotovoltaica y potencia demanda disponibles, el tiempo de simulación, las características que requiere la optimización de la batería y, también, considerando que se trata de un EMS offline. Los factores de la función multi-objetivo se obtienen mediante un análisis de sensibilidad hasta obtener la operación de la microred más favorable según los objetivos marcados.
3.6. Información de los equipos

En este apartado se tabulan los datos técnicos de los equipos de la microred necesarios para la construcción del OPF. La microred dispone de 9 generadores diésel síncronos con las mismas características. En la Tabla 8 se detallan los parámetros de estos equipos usados para el problema de optimización.

| Tabla 8. Datos de los parámetros de los generadores diésel síncronos. |
|------------------|---------------|-----------------|-----------------|-----------------|
| Ud. | P_{ından} | P_{_max} | P_{min} | r_{d} |
| nº | [kW] | [kW] | [kW] | [kW/s] |
| 1 | 1100 | 1350 | 200 | 110 |
| 2 | 1100 | 1350 | 200 | 110 |
| 3 | 1100 | 1350 | 200 | 110 |
| 4 | 1100 | 1350 | 200 | 110 |
| 5 | 1100 | 1350 | 200 | 110 |
| 6 | 1100 | 1350 | 200 | 110 |
| 7 | 1100 | 1350 | 200 | 110 |
| 8 | 1100 | 1350 | 200 | 110 |
| 9 | 1100 | 1350 | 200 | 110 |

La Tabla 9 muestra los valores de potencia pico y superficie de la planta fotovoltaica así como el rendimiento de su inversor. El rendimiento del inversor de los paneles fotovoltaicos se ha obtenido de (Notton, Lazarov, and Stoyanov 2010). El parámetro de potencia fotovoltaica disponible es tratado en el apartado...
3.4. La potencia pico de la planta es dada. Con ella puede obtenerse una aproximación del área de captación mediante (Marcos et al. 2011).

<table>
<thead>
<tr>
<th>Tabla 9. Datos de los parámetros de la planta fotovoltaica.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{PV}^{pico}</td>
</tr>
<tr>
<td>[kWp]</td>
</tr>
<tr>
<td>9400</td>
</tr>
</tbody>
</table>

Las baterías son de iones de litio (Li-ion). Los parámetros de potencia máxima, las máximas de carga y descarga son dados. El estado de carga máximo y mínimo admisible se han determinado según (Lee, Nam, and Cho 2007) para evitar una degradación pronunciada. El rendimiento de la batería se ha extraído de (Zakeri and Syri 2015). El rendimiento del inversor de las baterías se ha obtenido de (Notton, Lazarov, and Stoyanov 2010). La tabla 10 muestra estos parámetros.

<table>
<thead>
<tr>
<th>Tabla 10. Datos de los parámetros de las baterías.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{max}^{battery}$</td>
</tr>
<tr>
<td>[kWh]</td>
</tr>
<tr>
<td>410</td>
</tr>
</tbody>
</table>
CAPÍTULO 4:
OPTIMIZACIÓN CONVEXA

El presente capítulo expone brevemente qué es la optimización convexa y su utilidad para la optimización del flujo de potencia activa que se propone en este proyecto. Además, se argumentará porqué se puede asegurar que el problema de optimización tiene una solución óptima y si esta es local o global.

4.1. Introducción

Un método resolutivo para algunos problemas de optimización son los algoritmos que generan una solución con una cierta exactitud. Desde finales de 1940, se realizaron numerosos avances en el desarrollo de algoritmos para solucionar diferentes tipos de problemas lineales de optimización, analizando sus propiedades, y desarrollando buenos software para su resolución. Pero no fue hasta la década de los noventa donde se realizaron los mayores progresos en optimización, en especial en el campo de la programación convexa (Ben-Tañ and Nemirovski 2001). Nuevos modelos de lenguaje potentes y la invención de tecnologías que permitían almacenar una gran cantidad de datos, permitieron modelizar problemas complejos. El progreso en teorías complejas mejoró el conocimiento de las ventajas de ciertos algoritmos, como también conocer las limitaciones de otros. Como resultado, se desarrollaron algoritmos de punto interior eficientes para una gran cantidad de problemas convexos. Todos estos avances combinado con la extraordinario mejora de los ordenadores, permiten que a día de hoy se puedan solucionar problemas que se consideraban imposibles de resolver hace un par de décadas.

El término "convexidad" referido a una curva o superficie es la región que se asemeja a la parte exterior de una circunferencia o una superficie esférica. Por lo que respecta a la optimización convexa, esta definición sirve para denotar que existen puntos extremos en las regiones convexas. Sin esta definición no puede entenderse el concepto de optimización el cual está referido a encontrar estos puntos extremos.
La optimización matemática es la ciencia del determinado de la mejor solución a un problema matemático definido, el cual puede ser un modelo físico real o un sistema de gestión o producción. Más formalmente, es el proceso de formulación y solución de un problema de optimización con restricciones (Snyman 2005) de la siguiente forma:

$$\text{maximizar } f(x), \quad x = [x_1, x_2, ..., x_n]^T \in \mathbb{R}^n$$

sujeto a restricciones:

$$g_i(x) \leq 0, \quad i = 1, 2, ..., m$$

$$h_i(x) = 0, \quad i = 1, 2, ..., r$$

donde $f(x)$ es la función objetivo, $g_i(x)$ denota las desigualdades de las funciones de las restricciones y $h_i(x)$ las igualdades. Todas son funciones escalares de la columna real del vector x. Las componentes continuas x_i de $x = [x_1, x_2, ..., x_n]^T$ son llamadas variables.

Desde el punto de vista del procesado numérico del problema, existe un caso solucionable cuando el problema de optimización es convexo, los problemas donde el dominio de x es un subconjunto cerrado de \mathbb{R}^n, y la función objetivo $f(x)$ y las restricciones funcionales $g_i(x)$ y $h_i(x)$ son funciones convexas en x. Por lo tanto, si se dispone de un conjunto convexo se puede hallar la solución óptima del problema. Una de las grandes ventajas de la optimización convexa es la de eliminar la incertidumbre sobre los mínimos/máximos locales y globales.

El teorema local-global o teorema fundamental de la programación convexa expone que: sea $f: C \subset \mathbb{R}^n \to \mathbb{R}$ siendo C un conjunto convexo no vacío y f una función convexa/cóncava entonces si $x_0 \in C$ es un mínimo/máximo local de f en C, también es un mínimo/máximo global (Snyman 2005).

Los casos especiales de los problemas de programación matemática general son la programación clásica, la programación lineal y la programación no-lineal. En este capítulo se expone la programación lineal que es el problema que envuelve al OPF. Para una definición formal de los otros casos, puede consultarse (Intriligator 1971). La potencia computacional requerida para resolver un problema convexo con una exactitud dada crece moderadamente con las dimensiones del problema y con el número de dígitos de precisión. En contraste, la mayoría de los problemas no-convexos son muy difíciles de resolver numéricamente; el esfuerzo computacional requerido es mucho mayor, por lo que el tiempo de computación aumenta vertiginosamente con las dimensiones del problema y con el número de dígitos de precisión.

4.2. Programación lineal

La programación lineal es la técnica que permite la resolución de un problema de optimización de una función objetivo lineal sujeta a igualdades lineales y restricciones con desigualdades lineales. Este tipo de programación es del tipo convexa. No existe una fórmula analítica simple para la resolución de un programa lineal, pero hay una variedad de métodos muy efectivos para
resolverlo (Boyd and Vandenberghe 2004). No obstante, este tipo de resolución permite asegurar que el problema tiene una o múltiples soluciones óptimas las cuales siempre están asociadas a los puntos extremos de la región factible. Estas pueden ser halladas con métodos de resolución matemática de problemas lineales (algoritmo Simplex, por ejemplo). El algoritmo Simplex permite hallar la solución óptima del problema determinando una solución básica. Luego se selecciona una variable de entrada que al incrementar su valor mejore el valor de la función a optimizar. Si la solución no existe, la actual es la óptima.

Tabla 11. Tipos de problemas en GAMS®.

<table>
<thead>
<tr>
<th>Tipo de problema</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP</td>
<td>Programación lineal. No admite términos no-lineales o variables discretas.</td>
</tr>
<tr>
<td>QCP</td>
<td>Programación con restricciones cuadráticas. Existen términos lineales y cuadráticos pero admite variables no-lineales ni discretas.</td>
</tr>
<tr>
<td>NLP</td>
<td>Programación no-lineal. Existen términos no-lineales relacionadas solo con funciones diferenciables pero no variables discretas.</td>
</tr>
<tr>
<td>DNLP</td>
<td>Programación no-lineal con derivativas discontinuas. Este es igual que el NLP, excepto en que pueden aparecer funciones no diferenciables.</td>
</tr>
<tr>
<td>RMIP</td>
<td>Programación mixta entera relajada. Puede contener variables discretas pero los requerimientos de estas son relajadas. No pueden aparecer variables no-lineales.</td>
</tr>
<tr>
<td>MIP</td>
<td>Programación mixta entera. Es parecida al RMIP pero en este las variables discretas deben tomar valores enteros.</td>
</tr>
<tr>
<td>RMIQCP</td>
<td>Programación mixta entera relajada con restricciones cuadráticas. El modelo puede contener variables discretas y términos cuadráticos. Las variables discretas son relajadas.</td>
</tr>
<tr>
<td>RMINLP</td>
<td>Programación mixta entera no-lineal relajada. Puede contener variables discretas y no-lineales. Las variables discretas son relajadas.</td>
</tr>
<tr>
<td>MIQCP</td>
<td>Programación mixta entera con restricciones cuadráticas. Es parecido al RMIQCP, pero las variables discretas deben tomar valores enteros.</td>
</tr>
<tr>
<td>MINLP</td>
<td>Programación mixta entera no-lineal. Es parecido al RMINLP, pero las variables discretas deben tomar valores enteros.</td>
</tr>
<tr>
<td>RMPEC</td>
<td>Programas matemáticos con relajaciones y restricciones de equilibrio.</td>
</tr>
<tr>
<td>MPEC</td>
<td>Programas matemáticos con restricciones de equilibrio.</td>
</tr>
<tr>
<td>MCP</td>
<td>Problema mixto complementario.</td>
</tr>
<tr>
<td>CNS</td>
<td>Sistemas no-linealmente restringidos.</td>
</tr>
<tr>
<td>EMP</td>
<td>Programa matemático extendido.</td>
</tr>
</tbody>
</table>
4.3. Modelo de resolución en GAMS®

Como se ha expuesto anteriormente, las ventajas de usar un problema lineal frente a otro tipo de métodos son numerosas. Un breve resumen son la rápida velocidad de computación, la gran cantidad de algoritmos que existen para este tipo de problemas, la convergencia del modelo, la existencia de uno o varios puntos óptimos, la certeza que estos sean globales, entre otros.

Es posible realizar una programación lineal ya que los flujos de potencia activa de la microred se pueden expresar con ecuaciones lineales con restricciones con igualdades y desigualdades lineales y, variables en el dominio de los reales como también en el de los enteros. El valor de la solución se aproximará al óptimo global con una tolerancia máxima definida.

El modelo de simulación usado en GAMS® es del tipo *Mixed Integer Programming* (MIP) ya que se trata de un modelo lineal tanto con variables reales como binarias. GAMS® es un programa informático de optimización que permite resolver una gran cantidad de problemas matemáticos. Se ha escogido la resolución MIP ya que al ser lineal reduce el tiempo de computación además de que son requeridas variables enteras para determinar el encendido/apagado de los generadores síncronos como la carga/descarga de las baterías. En la Tabla 11 se muestran los distintos tipos de problemas que pueden ser resueltos en GAMS® (GAMS 2016).

Aún pudiéndose usar otro tipo de problema para este modelo, el más adecuado y que se asemeja más a las características del OPF es el MIP. Dentro de este tipo existen una gran cantidad de algoritmos de resolución llamados solvers. Cada uno usa técnicas matemáticas distintas para la resolución del problema. La elección del solver depende mucho de cada problema en particular por lo que se expondrá cual se ha usado en el Capítulo 6.
En este capítulo se detallan y explican las características del problema de optimización de la microred de forma matemática sin entrar en la sintaxis del programa GAMS®. El problema escrito en dicho programa se encuentra en el anexo del proyecto.

5.1. Optimización del flujo de potencia activa

5.1.1. Ecuaciones
A continuación se presentan las ecuaciones que relacionan aspectos del sistema con las potencias de los distintos elementos. Todas las ecuaciones se ejecutan en para cada periodo t.

$t \in \mathbb{Z}, t = \{0..1440\}$

Primeramente, obedeciendo la Ley de Kirchhoff, el sistema debe tener un balance de potencias (6). Esta ecuación relaciona todos los elementos del sistema donde P_{excess} está relacionada con la potencia de las baterías.

$$ P_{PV}(t) + P_{\text{sum}}^{\text{diesel}}(t) - P_{\text{excess}}(t) - P_{\text{load}}(t) = 0 $$

La potencia real extraída de la planta fotovoltaica se calcula mediante la ecuación (7). Ésta relaciona la potencia máxima extraible de la misma una vez pasada por el inversor y el posible desaprovechamiento de la potencia fotovoltaica por no poder ser almacenada o inyectada a la microred. El cálculo de la energía generada por la planta fotovoltaica se calcula mediante la ecuación (8).
Algunas ecuaciones de los generadores diésel se calcularán para cada período \(t \) y para cada generador diésel \(d \). Siendo \(d \) el número asignado a cada generador.

\[
d \in \mathbb{N}, d = \{1..9\}
\]

Tanto la potencia de los generadores diésel como su encendido/apagado se determinarán mediante la ecuación (10) la cual se calculará para todo \(t \) y \(d \).

\[
X_{\text{diesel}}(t, d) \cdot P_{\text{diesel}}^{\text{min}} \leq P_{\text{diesel}}^d(t, d) \leq X_{\text{diesel}}(t, d) \cdot P_{\text{diesel}}^{\text{max}}
\] (10)

El \textit{ramp rate} (RR) de cada generador síncrono se obtiene mediante la potencia máxima que puede entregar en un periodo de tiempo \((t_f - t_i)\) (Jabr, Karaki, and Korbane 2014). Las ecuaciones (11) y (12) determinan el \textit{ramp rate} de subida y bajada de los generadores diésel. En este caso, el RR no influye en el problema de optimización ya que para 60 segundos (tiempo entre periodos de simulación) la potencia máxima que pueden entregar los diésel es superior al límite.

\[
P_{\text{diesel}}^d(t, d) - P_{\text{diesel}}^d(t - 1, d) \geq 0 \quad P_{\text{diesel}}^d(t, d) - P_{\text{diesel}}^d(t - 1, d) \leq r_{\text{diesel}}^{\text{max}} \cdot \Delta t
\] (11)

\[
P_{\text{diesel}}^d(t, d) - P_{\text{diesel}}^d(t - 1, d) < 0 \quad P_{\text{diesel}}^d(t - 1, d) - P_{\text{diesel}}^d(t, d) \leq r_{\text{diesel}}^{\text{min}} \cdot \Delta t
\] (12)

La potencia que generarán el conjunto de generadores diésel para cada instante \(t \) de tiempo se obtiene con (13). El cálculo de la energía generada por los grupos diésel se calcula mediante la ecuación (14). Se añade un factor de conversión para obtener las unidades en kWh.

\[
P_{\text{sum}}_{\text{diesel}}(t) = \sum_{d=1}^{\eta} P_{\text{diesel}}^d(t, d)
\] (13)

\[
E_{\text{diesel}} = \left[\sum_{t=0}^{c_t} P_{\text{sum}}_{\text{diesel}}(t) \right] \cdot \frac{1}{60}
\] (14)

El exceso o déficit de potencia de la red se determinará con la ecuación (15) con el criterio de exceso con valor positivo y déficit negativo. El exceso o déficit de potencia se divide en dos términos positivos (carga y descarga, respectivamente) (16).

\[
P_{\text{excess}}(t) = P_{\text{py}}(t) + P_{\text{sum}}_{\text{diesel}}(t) - P_{\text{load}}(t)
\] (15)

\[
P_{\text{excess}}(t) = P_{\text{charge}}(t) - P_{\text{discharged}}(t)
\] (16)

Para evitar carga y descarga simultanea hace falta añadir una variable binaria. La constante \(M \) (valor de \(1 \cdot 10^7 \)) se usa para evitar que el modelo tenga incoherencias matemáticas. Las ecuaciones (17) y (18) se encargan de ello.
Optimización de la operación de plantas fotovoltaicas híbridas aisladas

\begin{align*}
 P_{\text{charge}}(t) & \leq M \cdot X_{\text{battery}}(t) \quad (17) \\
 P_{\text{discharged}}(t) & \leq M \cdot \left(1 - X_{\text{battery}}(t)\right) \quad (18)
\end{align*}

El exceso de potencia de la red pasa por un inversor y se almacena en la batería. La potencia que llega a la batería se calcula con (19). Cuando el sistema lo requiere, la batería entrega cierta potencia \(P_{\text{discharge}} \) y, esta, pasa por el inversor antes de ser inyectada a la red. La potencia transferida a la red es calculada mediante la ecuación (20).

\begin{align*}
 P_{\text{charged}}(t) &= P_{\text{charge}}(t) \cdot \eta_{\text{inv}} \quad (19) \\
 P_{\text{discharged}}(t) &= P_{\text{discharge}}(t) \cdot \eta_{\text{inv}} \quad (20)
\end{align*}

La potencia de la batería, teniendo en cuenta su rendimiento, queda representada con la ecuación (21).

\[P_{\text{battery}}(t) = P_{\text{charged}}(t) \cdot \eta_{\text{bat}} - P_{\text{discharge}}(t)/\eta_{\text{bat}} \quad (21) \]

Para clarificar el proceso de carga/descarga de la batería, su paso por el inversor y su intercambio con la red, se presenta la Figura 11 que relaciona los flujos de potencia entre estos elementos.

\begin{figure}[h]
 \centering
 \includegraphics[width=\textwidth]{Figura11.png}
 \caption{Esquema del flujo de potencia entre la microred y las baterías.}
\end{figure}

La ecuación (22) sirve para calcular el estado de carga de la batería. El estado de carga (SoC) es el nivel de carga de la batería dividido por su máxima capacidad.

\[SoC(t) = SoC(t - 1) + \frac{P_{\text{battery}}(t)}{P_{\text{max}}_{\text{battery}}} \quad (22) \]

La energía entregada por la batería a la red durante el período de estudio se calcula con la ecuación (23).

\[E_{\text{battery}} = \left[\sum_{t=0}^{c_f} P_{\text{discharged}}(t) \right] \cdot \frac{1}{60} \quad (23) \]

5.1.2. Restricciones de las variables

En el siguiente subapartado se presentan los límites, tanto inferior como superior, de las variables que intervienen en el problema. Estos restringen las variables para todo \(t \) y, en el caso de la generación diésel, para todo \(d \). No se han incluido las variables binarias ya que sus límites (0 y 1) se entienden por conocidos.
Restricciones de la planta fotovoltaica

La potencia fotovoltaica útil, al igual que la desaprovechada, no puede ser negativa y su límite superior viene dado por la máxima potencia fotovoltaica disponible como muestra la ecuaciones (24). La ecuación (25) restringe la energía de la planta fotovoltaica a valores mayores a 0 ya que solo puede entregar energía (signo positivo), no consumirla.

\[0 \leq P_{PV}(t) \leq P_{PV}^{\text{max}} \quad (24) \]
\[E_{PV} \geq 0 \quad (25) \]

Restricciones de los generadores diésel

La potencia entregada por cada diésel, igual que su suma, debe ser superior a cero. El límite superior para cada generador diésel es la potencia máxima que puede entregar y se restringe con las ecuaciones (26) y (27). El límite de la suma de estos, por lo tanto, es \(n \) veces la potencia máxima de un diésel. Donde \(n \) es el número de generadores síncronos.

\[0 \leq P_{\text{sum}\text{diesel}}(t) \leq P_{\text{diesel}}^{\text{max}} \cdot n \quad (26) \]
\[0 \leq P_{\text{diesel}}^{\text{d}}(t, d) \leq P_{\text{diesel}}^{\text{max}} \quad (27) \]

La energía de la generación diésel siempre es positiva ya que solo se entrega potencia, nunca se consume. La ecuación (28) restringe su rango de valores.

\[E_{\text{diesel}} \geq 0 \quad (28) \]

Restricciones de las baterías

Tanto el exceso/déficit de potencia de la red como la potencia que acaba almacenando/entregando el banco de baterías tienen el límite inferior en la potencia máxima de descarga de la batería en negativo (descarga) y para el superior la carga en positivo, tal y como muestran las ecuaciones (29) y (30).

\[-P_{\text{max}\text{discharge}}/\eta_{\text{inv}}^{\text{bat}} \leq P_{\text{battery}}(t) \leq P_{\text{max}\text{charged}}/\eta_{\text{inv}}^{\text{bat}} \quad (29) \]
\[-P_{\text{max}\text{discharge}}/\eta_{\text{inv}}^{\text{bat}} \leq P_{\text{excess}}(t) \leq P_{\text{max}\text{charged}}/\eta_{\text{inv}}^{\text{bat}} \quad (30) \]

Las ecuaciones (31) y (32) muestran que la potencia máxima que se puede absorber de la red no puede ser superior a la potencia máxima de carga de las baterías divido por el rendimiento del inversor y potencia máxima de descarga multiplicado por el rendimiento del inversor, respectivamente. Ambas variables no pueden tener valores negativos.

\[0 \leq P_{\text{charge}}(t) \leq P_{\text{max}\text{charged}}/\eta_{\text{inv}}^{\text{bat}} \quad (31) \]
\[0 \leq P_{\text{discharged}}(t) \leq P_{\text{max}\text{discharge}}/\eta_{\text{inv}}^{\text{bat}} \quad (32) \]
Debe fijarse un límite a la potencia de carga y descarga de la batería para evitar una degradación pronunciada de la misma. Las ecuaciones (33) y (34) muestran los límites fijados para el banco de baterías.

\[
0 \leq P_{\text{discharge}}(t) \leq P_{\text{discharge}}^{\text{max}} \\
0 \leq P_{\text{charged}}(t) \leq P_{\text{charged}}^{\text{max}}
\]

Por el mismo tema de degradación, el estado de carga superior e inferior de la batería es fijado en valores inferiores a los máximos admisibles como puede observarse en la ecuación (35). La energía entregada por la batería a la red, dejando de seguir el criterio de signos expuesto anteriormente, se toma como positiva para una mayor comodidad en el análisis de los datos. La ecuación (36) muestra esta restricción.

\[
SoC_{\text{min}} \leq SoC(t) \leq SoC_{\text{max}}
\]

\[
E_{\text{battery}} \geq 0
\]

5.1.3. **Restricción de la frecuencia**

Como se ha comentado en el Capítulo 2, es imprescindible mantener la estabilidad de la frecuencia del sistema eléctrico dentro de unos márgenes para garantizar la estabilidad de la red y el correcto funcionamiento de los equipos acoplados a la misma. Actualmente no existe regulación para desviaciones de frecuencia en una microred ya que se trata de un concepto novedoso. Por ello, se ha escogido el rango de frecuencias permitido en el sistema eléctrico Nórdico que se sitúa entre 50.1 y 49.9Hz (Ackermann 2012).

Tabla 12. Afectación de la frecuencia por variaciones en la potencia de la red.

<table>
<thead>
<tr>
<th>$p_{\text{var load}}^\text{Max}$ [kW]</th>
<th>P_{max} [kW]</th>
<th>f_{max} [Hz]</th>
<th>f_{min} [Hz]</th>
<th>$n_{\text{min diesel}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>919.8</td>
<td>2202.6</td>
<td>50.0034</td>
<td>49.9377</td>
<td>3</td>
</tr>
<tr>
<td>919.8</td>
<td>2643.1</td>
<td>50.0038</td>
<td>49.9269</td>
<td>3</td>
</tr>
<tr>
<td>919.8</td>
<td>2700.0</td>
<td>50.0037</td>
<td>49.9269</td>
<td>4</td>
</tr>
</tbody>
</table>

Para garantizar que la microred estudiada no sobrepasa estos límites de frecuencia, se ha realizado un análisis dinámico con el modelo de la microred en MATLAB/Simulink® para observar la respuesta de la frecuencia frente a variaciones en la potencia generada y demandada. Con estas simulaciones se pretende obtener el número mínimo de generadores diésel conectados que permite mantener la frecuencia de la red dentro del frequency band para el caso más crítico de variación de potencia que se puede dar en la microred. Por lo que, si se puede asegurar que para una variación de potencia la frecuencia permanece
dentro del rango permitido, para cualquier variación inferior la frecuencia también estará dentro del rango.

Analizando los datos generados de demanda se obtiene que la mayor variación de potencia entre dos instantes consecutivos es de 919.8kW. La mayor variación de potencia fotovoltaica es de 2202.6kW. Se considera que el soporte que realiza el sistema de almacenaje al sistema es nulo. Para el caso de desviación de demanda \((P_{\text{par}})\) mencionado y la variación de potencia fotovoltaica \((P_{\text{max}})\) se ha obtenido que se requieren como mínimo 3 generadores diésel conectados para que su inercia permita estabilizar la frecuencia de la microred (Figura 12). Para un incremento del 20% en la variación de la potencia fotovoltaica disponible también se requieren tres diésel y la frecuencia permanece dentro del rango permitido (Tabla 12). Para variaciones superiores de potencia se requeriría un mayor número de diésel conectados ya que tres no dispondrían de la potencia suficiente para suplir la demanda.

Puede garantizarse que para variaciones de potencia fotovoltaica inferiores a \(1.2P_{\text{max}}\), la frecuencia se mantendrá dentro del frequency band ya que el sistema tendrá tres generadores diésel conectados como mínimo.

![Figura 12. Frecuencia de la microred para una variación \(P_{\text{max}}\) con 3 diésel.](attachment:figura12.png)

Debe añadirse la ecuación (37) para garantizar que habrá un mínimo de generadores diésel conectados en cada instante \(t\). El valor de \(n_{\text{diesel}}^{\text{min}}\) es constante e igual a 3 y se ha determinado con el análisis dinámico en Simulink\(^\circledR\).

\[
n_{\text{diesel}}^{\text{min}} \leq \sum_{d=1}^{n} X_{\text{diesel}}(t,d) \tag{37}\]

5.2. Función objetivo

La función objetivo del problema de optimización será del tipo multi-objetivo. Mediante unos factores de ponderación \((\phi)\), los distintos elementos adquirirán más o menos peso en función del tipo de operación que se desee. La suma de los
tres valores no puede ser superior a la unidad como muestra la ecuación (38). Los valores se determinarán a partir de un proceso iterativo el cual empezará con un reparto de pesos equitativo entre los elementos. Una vez realizada la primera simulación, se observarán los resultados obtenidos de la misma. Con esta información se modificarán los parámetros ϕ para ajustar la operación y se volverá a simular el modelo de microred. Este proceso finalizará cuando se obtenga la operación deseada.

$$0 \leq [\phi_1, \phi_2, \phi_3, \lambda, \psi] \leq 1 \quad (38)$$

El primer objetivo de la función será maximizar la potencia fotovoltaica total permitiendo una óptima generación de la planta. El segundo, optimizar la operación de la batería. Por último, se pretende que los generadores diésel conectados operen en el punto de potencia nominal. Esto se consigue con la construcción de una función con dos tramos cuya intersección sea este punto. La función objetivo maximizará o minimizará los valores de potencia (estén a la derecha o izquierda del punto) para que la potencia eléctrica generada esté entorno a este punto. Como consecuencia, se optimizará el rendimiento de los mismos.

$$f = \phi_1 \cdot \left[\sum_{t=0}^{C_t} f_1(t) \right] + \phi_2 \cdot \left[\sum_{t=0}^{C_t} f_2(t) \right] + \phi_3 \cdot \left[\sum_{t=0}^{C_t} f_3(t) \right] \quad (39)$$

$$f_1(t) = P_{PV}(t) \quad (40)$$

$$f_2(t) = -\lambda \cdot P_{charge}(t) - (1 - \lambda) \cdot P_{discharged}(t) \quad (41)$$

$$f_3(t) = \psi \cdot P_1(t, d) - (1 - \psi) \cdot P_2(t, d) \quad (42)$$

5.2.1. Optimización de la potencia fotovoltaica

Una de las motivaciones de este proyecto ha sido el de gestionar una microred con un recurso renovable intermitente. En este caso, se trata de una planta fotovoltaica. Para reducir la dependencia de la generación de energía con combustibles fósiles y sus emisiones contaminantes asociadas, se considera indispensable maximizar la potencia fotovoltaica disponible por ser una fuente de energía limpia e inagotable. Al ser una optimización off-line (se conocen los datos del tiempo $t = 0$ hasta $t = C_t$) se maximizará la energía fotovoltaica de todo el período ya que así permite gestionar el recurso fotovoltaico teniendo en cuenta futuros períodos temporales.

5.2.2. Optimización de la operación de las baterías

La operación de las redes eléctricas usan y se benefician de los sistemas de almacenaje de energía los cuales incluyen los llamados servicios auxiliares. A menudo estos se confunden con los servicios del sistema por lo que se muestran las diferencias entre estos dos. Los servicios auxiliares son aquellos servicios entregados por algunos de los usuarios de la red al operador del sistema, mientras que los servicios del sistema los proporciona el SO a los usuarios.
(Rebours et al. 2007). Una definición más extensa es propuesta por la Federal Energy Regulatory Commission (FERC 2015) donde define los servicios auxiliares como "aquellos servicios necesarios para el soporte en la transmisión de potencia eléctrica desde los vendedores hasta los compradores dadas unas obligaciones de control en ciertas áreas de la red para mantener una operación fiable en el sistema de transmisión interconectado.". Para proveer los servicios del sistema, el SO acostumbra a comprar los servicios auxiliares a los generadores y los consumidores. A continuación se muestran los servicios auxiliares que pueden proveer los sistemas de almacenaje según (Energy Storage Association 2016).

Respuesta a la frecuencia

Sistemas de almacenaje con ramp rates muy rápidos pueden proveer el servicio auxiliar llamado frequency response. Estos sistemas monitorizan la frecuencia de corriente alterna y responden frente a anomalías en intervalos de tiempo de milisegundos. El objetivo es mantener la frecuencia lo más próxima posible a la frecuencia de referencia, 50Hz en el caso de Europa.

La respuesta a la frecuencia es similar a la regulación pero con una diferencia importante: mientras que los recursos que usan frequency response monitorizan la frecuencia y responden a desviaciones de esta, la regulación responde a señales de control que reflejan la diferencia entre la potencia generada y la consumida.

Los ESS usados para la respuesta a la frecuencia permiten reducir la necesidad de generación de respuesta rápida, reducir la puesta en marcha de generación de respuesta reduciendo el uso de combustibles y emisiones generadas.

Soporte de la tensión

Uno de los importantes retos para el operador del sistema de las redes eléctricas es mantener el nivel de tensión y la estabilidad necesaria. Generalmente, para lograr este objetivo se necesario la gestión de potencia reactiva. Para gestionar la reactancia, el SO depende del servicio auxiliar llamado voltage support.

Históricamente, el soporte a la tensión ha sido provisto por los generadores que pueden generar potencia reactiva como por ejemplo los generadores síncronos. Las nuevas tecnologías (sistemas de almacenaje de energía modulares, generación modular, sistemas de electrónica de potencia y sistemas de comunicación y control del sistema) han creado nuevas alternativas para el voltage support.

Ramping

El ramping es un cambio significativo en la potencia de salida generada en el rango de pocos segundos a pocos minutos de un generador. El gran interés está el uso del ramping en la generación eólica ya que existe una rápida variabilidad en la velocidad del viento y la generación fotovoltaica o solar por la variabilidad en la potencia de salida ocasionada por nubes. Estos dispositivos permiten la integración de sistemas de generación intermitente a la red sin afectar a la estabilidad de la misma.
Los beneficios del uso de sistemas de almacenaje para servicios de *ramping* son la reducción de la necesidad de la capacidad de generación, reducción del encendido de generadores y reducción de la variabilidad de la potencia de salida.

Load Following

El seguimiento de la curva de demanda es necesario durante los períodos en los que la demanda aumenta o disminuye considerablemente durante el ciclo diario de demanda de electricidad. Los sistemas de almacenaje permiten el *load following* aumentando o disminuyendo la carga o la descarga.

Los beneficios del uso de ESS es la reducción de la necesidad de equipos de generación. Otros beneficios están relacionados con la reducción de la variabilidad en la generación de potencia de salida y reducir parte de la operación de la generación la cual supondría una reducción en el uso de combustibles y emisiones generadas en el proceso. También reduciría la cantidad de equipos de generación necesarios en la red y ampliaría la vida útil de los existentes.

Peak shaving

El corte de picos de demanda se lleva realizando muchos años usando generadores diésel y turbinas de gas. No obstante, actualmente pueden instalarse grandes plantas de ESS capaces de descargar energía en cortos períodos de tiempo durante las horas pico y cargar durante los períodos de baja demanda, por ejemplo por la noche (Oudalov, Cherkaoui, and Beguin 2007).

El gran beneficio del uso de sistemas de almacenaje para esta aplicación es la reducción de la conexión de generadores con costes de operación muy elevados y una reducción del uso de combustibles y las emisiones relacionadas con el uso de los mismos.

Capacidad de reserva

La capacidad de reserva es esencialmente un sistema de respaldo a la generación para redes eléctricas. Éstos entran en funcionamiento cuanto uno o dos grandes recursos dejan de estar disponibles inesperadamente. Por lo que, usando sistemas de almacenaje con capacidad de reserva, el coste y la necesidad de generación basados en la capacidad de reserva son reducidos/evitados. A continuación se explican los tres tipos de capacidad de reserva genéricos.

- **Reserva rodante (regulación de frecuencia o LFC).** Es la capacidad de generación disponible pero no inyectada con una capacidad de respuesta de 10 minutos para compensar cortes en la generación o transmisión.

- **Reserva suplementaria.** Es la capacidad de generación disponible o un bloque de cargas interrumpibles que deben responder en 10 minutos. Se usan las reservas suplementarias después que todas las reservas rodantes estén online.
- **Reserva de respaldo.** La generación de respaldo sirve principalmente como apoyo a las reservas rodantes y suplementarias aunque también puede ser usado para almacenar la energía en las horas que su precio es muy bajo y venderla cuando éste aumenta.

El beneficio de los sistemas de almacenaje usados con capacidad de reserva para la red es pequeño ya que las reservas mediante generación son económicamente más rentables. A pesar de ello, la capacidad de reserva mediante ESS puede ser atractivo porque las reservas proporcionadas por esta tecnología tiene un incremento en el coste de la energía muy pequeño.

Por las características del sistema de almacenaje mediante baterías de la microred, que se ha diseñado para operar tanto en condiciones normales como con contingencias, éste debe proveer regulación a la frecuencia (LFC) ya que dispone de un tiempo de respuesta de 1 minuto, un *ramp rate* del mismo orden y una capacidad de almacenamiento suficiente para realizar este servicio auxiliar (410kWh). En cambio, no podría proveer de *ramping* a la planta fotovoltaica, *load following* o *peak shaving*, ya que requieren una capacidad de almacenamiento mayor. El modelo de optimización simplifica la parte de estabilidad de la frecuencia de la red (respuesta a la frecuencia) porque los equipos necesarios para realizarlo requieren de tiempos de respuesta inferiores a la resolución del modelo.

![Figura 13. Servicios auxiliares de los sistemas de almacenaje.](image-url)

Al tratarse de una microred aislada, la inercia del sistema no es muy elevada lo que repercute directamente en una inestabilidad en la frecuencia considerable. Con el sistema de regulación se pretende equilibrar estas variaciones dando a las
baterías valores consigna de potencia a absorber o inyectar en la red según se requiera.

La función objetivo implementada permite que la batería actúe cuando haya variaciones significativas en la potencia fotovoltaica y/o potencia de demanda, permitiendo así, una menor afectación en la frecuencia.

Además se han aplicado dos ecuaciones que permiten regular la operación de la batería como se desea, aportando energía al sistema cuando hay fluctuaciones importantes de potencia fotovoltaica en la ventana de pocos minutos.

Para conseguir que la batería inyecte energía cuando se producen desviaciones de potencia en la planta fotovoltaica se han implementado las ecuaciones (44) y (45) para cuando la variación es un descenso o un aumento de la potencia generada, respectivamente.

\[
P_{PV}(t) - P_{PV}(t + 1) - P_{discharged}(t + 1) \leq P_{max} - P_{discharge}^{max} \quad (43)
\]

\[
P_{PV}(t + 1) - P_{PV}(t) - P_{discharged}(t) \leq P_{max} - P_{discharge}^{max} \quad (44)
\]

5.2.3. Optimización de la potencia de los generadores diésel

La optimización de la potencia de los generadores diésel está relacionado con el rendimiento y con el punto de operación óptimo \(P_{n}^{diesel}\). El objetivo que se pretende lograr que frecuencia relativa de los generadores esté en el punto de potencia nominal. Esto es debido a que es el punto de máximo rendimiento a la vez que el generador no se sobrecalienta ni aparecen vibraciones que pueden dañar la máquina. Estos problemas aparecen cuando se trabaja en otras zonas de operación por un tiempo prolongado. Para lograr esta acometida, se usa la curva de rendimiento, que en este caso, es la misma para todos los generadores, para localizar los puntos de potencia máxima, mínima y nominal. Para ello se deberá implementar una función lineal en GAMS® con estos puntos. Una de las cuestiones que deben ser abordadas es: ¿Cuál es el número de tramos en los que se debe dividir la función para lograr el objetivo marcado? No debe perderse de vista que el objetivo es maximizar la operación en el punto de potencia nominal.

\[
f(x) = \begin{cases}
0 & 0 \leq x < c_1 \\
 f_0 + \alpha \cdot (x - c_1) & c_1 < x \leq c_2 \\
 f_0 + \alpha \cdot (c_2 - c_1) + \beta \cdot (x - c_2) & c_2 < x \leq c_3
\end{cases} \quad (45)
\]

Para esta acometida, es suficiente usar una función a trozos de 2 tramos con una discontinuidad en los 0-200kW que marca el encendido y apagado de los diésel. La intersección entre el primer y segundo tramo debe coincidir con el punto \(P_{n}^{diesel}\). La Figura 14 muestra como se ha superpuesto la función que optimizará la operación de los generadores diésel con la curva de rendimiento. La formulación de la función a trozos se muestra en la ecuación (45). Donde \(f(x)\) representa \(\eta_{diesel}(t,d)\), \(f_o\) el valor inicial del rendimiento, \(x\) es \(P_{d}^{diesel}(t,d)\), \(\alpha\) y \(\beta\) son los
pendientes de las rectas, por último, c_1, c_2 y c_3 representan los valores límite de las rectas.

El error entre el rendimiento real y la función a trozos es significativo pero no vinculante ya que la potencia consigna que da el EMS es eléctrica, por lo que no se usa el rendimiento para ningún cálculo. Sin embargo, esta función a trozos permite optimizar la operación de los diésel.

La Figura 14 muestra los valores de rendimiento realizados en la Tabla 13. Las ecuaciones en GAMS® se pueden encontrar en el Anexo del proyecto. Puede comprobarse como el resultado será independiente del pendiente de la recta de cada tramo. Solo será función de la potencia eléctrica. Aún así, se muestran los tramos en el gráfico de rendimiento para facilitar la comprensión de la relación entre maximizar la potencia eléctrica y el rendimiento.

Tabla 13. Parámetros para linealizar la curva de rendimiento de los diésel.

<table>
<thead>
<tr>
<th>f_0</th>
<th>α</th>
<th>β</th>
<th>c_1</th>
<th>c_2</th>
<th>c_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>[pu]</td>
<td>$-1.1\cdot10^{-4}$</td>
<td>0</td>
<td>200</td>
<td>1100</td>
<td>1350</td>
</tr>
</tbody>
</table>

En GAMS® se han definido unas variables para construir la función a trozos que son función de la potencia de los diésel, tal y como muestra la ecuación (46), y que servirán para optimizar la operación de los diésel. La potencia $P_1(t,d)$ está referida al primer tramo y $P_2(t,d)$ al segundo, y $v(t,d)$ es una variable binaria. Para obtener la operación deseada se deberán ponderar estos dos parámetros en la función objetivo. El factor ponderador se determinará mediante un proceso iterativo.
Optimización de la operación de plantas fotovoltaicas híbridas aisladas

Para una mayor comprensión de las variables usadas en la ecuación (46) se recomienda mirar el modelo en GAMS® en los Anexos. Los resultados referentes a la optimización de los generadores diésel se mostrarán en el Capítulo 6.

Además de la optimización del punto de operación de los generadores, se ha establecido una jerarquía de funcionamiento a cada generador diésel reduciendo así el encendido/apagado de estos. De esta forma, la operación de los diésel es más simple de controlar ya que se usan unos generadores para la potencia base y otros para los picos de demanda. Esta jerarquía consiste en que un generador \(d + 1 \) solo puede conectarse si el generador \(d \) lo está. La ecuación (47) muestra cómo se formula matemáticamente la jerarquización implementada.

\[
P_{\text{diesel}}(t, d) = v(t, d) \cdot c_1 + P_1(t, d) + P_2(t, d) \quad (46)
\]

\[
\sum_{d=i}^{i} X_{\text{diesel}}(t, d) \geq \sum_{d=i+1} X_{\text{diesel}}(t, d) \quad (47)
\]

\[i \in \mathbb{N}, i = \{1..8\}\]

5.3. Simplificaciones del modelo

Se considera que la resolución escogida (1 minuto) es suficiente para generar datos históricos que sirven para predecir el comportamiento futuro de las variables del sistema. Además, el tipo de operación de la batería requiere una resolución del orden de minutos.

Se asumirá que se trabaja en todo momento con un sistema de tres tensiones sinusoidales con el mismo valor eficaz y desfasadas en el tiempo 120º, en sentido directo. Por otro lado, el modelo desarrollado se centra en el balance de potencia activa sin tener en cuenta las impedancias del sistema. No se tiene en cuenta la potencia reactiva. Por otro lado, se han agrupado todo el conjunto de cargas acopladas al sistema en una única carga agregada.

Tampoco se entrará en aspectos transitorios ya que el tiempo entre períodos de simulación no lo permite. Se ha tenido en cuenta el tiempo de puesta en marcha de los generadores pero al ser inferior a la resolución de los datos (<15 segundos) no se ha implementado en el modelo. El tiempo de desconexión también se ha estudiado pero, por un incremento excesivo en el tiempo de simulación del modelo, se ha descartado su implementación.

No se ha tenido en cuenta la autodescarga de la batería ya que es inferior al 0.3% (Zakeri and Syri 2015). Se considera el mismo rendimiento para carga y descarga. Tampoco se considera la pérdida de capacidad de la batería. Tanto el rendimiento del inversor como de las baterías se ha estimado constante.

La estabilidad de la frecuencia se garantiza con un número mínimo de generadores diésel ya que el problema de optimización de la operación no tiene la resolución temporal necesaria para hacer un seguimiento a las variaciones de frecuencia instantáneas (<20 segundos).
En el presente capítulo se muestran los resultados de la optimización realizados con GAMS® y posteriormente enviados a MATLAB®. Solo se exponen los resultados más significativos referentes a los objetivos marcados. El resto de simulaciones se pueden encontrar en el Anexo.

6.1. Introducción

El solucionador usado en GAMS® para la optimización de la operación de la microred es SCIP. Éste es uno de los solvers no-comerciales más rápidos para programación entera mixta y no-lineal entera mixta (MINLP). Permite tener un control total sobre el proceso de solucionado y da acceso a información detallada del proceso. SCIP soluciona el problema dividiéndolo sucesivamente en pequeños subproblemas que resuelve recursivamente. Dentro de la caja de herramientas de SCIP se encuentra SoPlex, que es un paquete de optimización para resolver problemas lineales que se caracteriza por tener una implementación avanzada del Simplex Algorithm (Doxygen 2015). SoPlex ha sido usado en numerosos proyectos industriales y de investigación por lo que su fiabilidad está ampliamente contrastada.

6.2. Definición de la función objetivo

Este apartado muestra el análisis de sensibilidad realizado para la obtención de los valores de la función objetivo \((\phi_1, \phi_2, \phi_3, \lambda, \psi)\) que optimizan la operación de la microred según los criterios expuestos en capítulos anteriores. Este análisis se ha realizado para la potencia fotovoltaica \(P_{PV}^{\max}\) (Figura 10) aunque posteriormente
se ha comprobado que opera satisfactoriamente para otros escenarios con perfiles de potencia fotovoltaica distintos.

6.2.1. Potencia de la planta fotovoltaica

La optimización de la operación de la planta fotovoltaica se ha realizado con el parámetro de la función objetivo ϕ_1. Aplicándole un valor mayor o menor incrementa o disminuye el aprovechamiento fotovoltaico. Para comprender mejor cómo afecta el parámetro ϕ_1 a la energía fotovoltaica se introducen dos nuevos términos: E_{PV}^{max}, que es la máxima energía que puede obtenerse de la planta (48) y E_{PV}^{loss}, que es la energía solar desaprovechada respecto a la máxima en tanto por ciento (49). La Tabla 14 muestra estos parámetros para distintos valores de ϕ_1 y la Figura 15 representa la potencia fotovoltaica.

\[
E_{PV}^{\text{max}} = \frac{\sum_{t=0}^{C_1} P_{PV}^{\text{max}}(t) \cdot n_{\text{inv}}^{PV}}{60}
\]

\[
E_{PV}^{\text{loss}} = \frac{E_{PV}^{\text{max}} - E_{PV}}{E_{PV}^{\text{max}}} \cdot 100
\]

Tabla 14. Parámetros de la potencia fotovoltaica para distintos ϕ_1.

<table>
<thead>
<tr>
<th>ϕ_1</th>
<th>E_{PV}</th>
<th>E_{PV}/E_{tot}</th>
<th>E_{PV}^{loss}</th>
</tr>
</thead>
<tbody>
<tr>
<td>[pu]</td>
<td>[MWh]</td>
<td>[%]</td>
<td>[%]</td>
</tr>
<tr>
<td>0.00</td>
<td>18.55</td>
<td>1.00%</td>
<td>76.89%</td>
</tr>
<tr>
<td>0.25</td>
<td>78.16</td>
<td>42.22%</td>
<td>2.64%</td>
</tr>
<tr>
<td>0.50</td>
<td>78.83</td>
<td>42.54%</td>
<td>1.81%</td>
</tr>
<tr>
<td>0.75</td>
<td>79.44</td>
<td>42.80%</td>
<td>1.05%</td>
</tr>
<tr>
<td>1.00</td>
<td>80.16</td>
<td>43.06%</td>
<td>0.15%</td>
</tr>
</tbody>
</table>

6.2.2. Uso de las baterías

La optimización de la operación de las baterías se ha realizado con el factor de ajuste de la función multi-objetivo ϕ_2 y, con los parámetros P_{charge} y $P_{\text{discharged}}$ relacionados con un factor λ. El objetivo era obtener que la batería reaccionara a variaciones significativas de potencia fotovoltaica para conseguir una menor desviación de frecuencia del sistema. Se ha considerado que las variaciones de potencia de demanda sean compensadas íntegramente por los generadores diésel. La operación de la batería debe contemplar diversos aspectos técnicos que deben cumplirse para evitar una degradación excesiva de la misma. Una batería de Li-ion está diseñada para realizar entre 300-400 ciclos por año con tiempos de respuesta de segundos a minutos (Zakeri and Syri 2015). Esta aplicación permite al sistema de almacenaje tener una vida útil de 15 años.
Otros aspectos a tener en cuenta es la profundidad de descarga (DoD). La vida útil en las baterías de Li-ion es dependiente de la DoD, lo cual hace que este tipo de baterías no sean apropiadas para aplicaciones donde se requieren descargas completas (Díaz-González et al. 2012). Una profundidad de descarga inferior o igual a 0.4-0.6 no tiene efectos significativos en el número de ciclos que puede realizar la batería (Ning and Popov 2004).

Para obtener el valor del factor ϕ_2 que permite operar la batería dentro de los criterios previamente mencionados se ha obtenido realizando un análisis de sensibilidad. Los resultados para distintos ϕ_2 y para el valor del parámetro λ óptimo, se muestran en la Figura 16. No se mostrará el proceso iterativo realizado para obtener lambda ya que implicaría realizar un análisis tridimensional y complicaría la comprensión de los resultados. A modo de resumen, cuanto mayor es λ más pronunciada es la descarga y, cuando es menor, mayor es la carga.

Figura 15. Potencia fotovoltaica para distintos valores de ϕ_1.

Figura 16. Análisis del SoC de las baterías para distintos ϕ_2.

- 59 -
Observando la Figura 16 puede determinarse que el valor óptimo de ϕ_2 se encuentra alrededor de 1. Para este caso el número de ciclos por día puede considerarse igual a uno y, la máxima profundidad de descarga es del 46.99%.

6.2.3. Potencia de los generadores diésel

La optimización de la operación de los generadores diésel se ha realizado con el factor de ajuste de la función multi-objetivo ϕ_3 y, con los parámetros P_1 y P_2 relacionados con un factor ψ. El análisis de sensibilidad que se muestra a continuación hace referencia al parámetro ψ ya que es el que permite operar los diésel para una mayor o menor frecuencia en el punto de potencia nominal. El valor de ϕ_3 afecta globalmente al problema por lo que se discute en el apartado 6.2.4.

![Histograma de Potencia de los Diesel normalizado](image)

Figura 17. Histograma de potencia de los diésel normalizado para distintos ψ.

La Figura 17 muestra la frecuencia relativa de la potencia generada por los diésel para distintos valores de ψ en intervalos de 100kW. Puede observarse como este parámetro no tiene demasiada incidencia en la frecuencia en que se dan las potencias excepto para $\psi=0$. La frecuencia relativa de la potencia nominal para un valor de $\psi=0.25$ es de 35.61% mientras que para $\psi=0$ es de 34.47% (histograma de la izquierda de la Figura 17). Para $\psi=0.50$ es de 35.59%, para
Optimización de la operación de plantas fotovoltaicas híbridas aisladas

ψ=0.75 de 35.64% y para ψ=1.00 de 35.79% (histograma de la derecha de la Figura 17). Estos resultados indican que el valor óptimo de ψ es 1. No obstante, deben analizarse los demás puntos de operación. Otro de los puntos clave es para \(P_{\text{diesel}} = 200 \text{kW} \) en el cual se desea obtener la menor frecuencia posible. En este punto puede observarse que para ψ=0.25 la frecuencia relativa es de 9.88%, para ψ=0.50 es de 10.22%, para ψ=0.75 es de 10.25% y para ψ=1.00 es de 9.90%. Por último, se analiza el punto \(P_{\text{diesel}} = 1350 \text{kW} \) en el cual también se busca una frecuencia baja. Para ψ=0.25 se obtiene una frecuencia del 1.43%, para ψ=0.50 de 1.28%, para ψ=0.75 de 1.38% y, por último, para ψ=1.00 de 1.45%.

Con los resultados obtenidos del histograma de potencia de los generadores diésel, se ha decidido optar por ψ=0.50 ya que, en conjunto, posee una distribución de frecuencias más equilibrada. No se recomienda el uso de ψ con valor 1 o 0 a pesar de tener unas frecuencias relativas más interesantes ya que se deja de controlar algún tramo de la función de generación diésel y, en algún escenario, podría causar problemas de operación en los diésel.

6.2.4. Parámetros de la función objetivo

Anteriormente se han realizado análisis de sensibilidad de los parámetros \(\phi \) para observar el comportamiento de variaciones de estos parámetros en las variables directamente relacionadas con estos. No obstante, variaciones en los parámetros de la función objetivo tiene una incidencia global, también en las variables que no están relacionadas con ese parámetro \(\phi_n \). Por ello, los valores que optimizan globalmente la operación de la microred no tiene porque ser los que optimizan la variable asociada a ese factor de ponderación. La Tabla 15 muestra los parámetros que optimizan la operación de la microred para todos los objetivos marcados previamente. Cabe mencionar que \(\phi_3 \) tiene un valor relativamente bajo en comparación a los otros dos debido a que la potencia del conjunto de los generadores diésel es muy superior a la de la batería y, aunque en menor medida pero también mayor, a la fotovoltaica. Por este motivo, para evitar que la optimización de los diésel tenga un peso excesivo en la función objetivo, debe aplicársele una corrección a la baja.

<table>
<thead>
<tr>
<th>(\phi_1)</th>
<th>(\phi_2)</th>
<th>(\phi_3)</th>
<th>(\lambda)</th>
<th>(\psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[pu]</td>
<td>[pu]</td>
<td>[pu]</td>
<td>[pu]</td>
<td>[pu]</td>
</tr>
<tr>
<td>0.80</td>
<td>0.90</td>
<td>0.20</td>
<td>0.05</td>
<td>0.50</td>
</tr>
</tbody>
</table>

6.3. Escenario con perfil fotovoltaico 3

En este apartado se muestra la simulación de la operación de la microred realizada en GAMS® y MATLAB® para un perfil de potencia fotovoltaica \(P_{\text{PV3}}^\text{max} \) y una curva de demanda \(P_{\text{load}} \) con los parámetros de la función multi-objectivo
mostrados en el apartado 6.2.4. La Figura 18 muestra el balance de potencias de la microred. Se ha realizado un gráfico de área con la potencia fotovoltaica \(P_{PV} \), potencia de los generadores diésel \(P_{Diesel} \), potencia de carga \(P_{Battery\,charge} \) y de descarga \(P_{Battery\,discharged} \). A esta ilustración se le ha superpuesto una línea con la carga \(P_{Load} \) de la microred. Cabe mencionar que la potencia negativa que se aprecia en el gráfico hace referencia a la potencia de carga. La potencia de descarga es difícil de apreciar, por este motivo, se ha realizado una ampliación de un intervalo de tiempo para mostrarla. En el área ampliado puede observarse como la batería opera como se deseaba, para desviaciones pronunciadas de potencia fotovoltaica, la batería aporta energía para reducir la desviación.

![Balance de Potencias de la Microred](image)

Figura 18. Balance de potencias de la microred \(P_{PV}^{\text{max}} \).

En la Figura 18 puede observarse como la potencia fotovoltaica con la potencia generada por los diésel más la descarga de las baterías sigue la curva de demanda en todo momento. Cuando la potencia generada es mayor que la demandada se almacena en las baterías como puede apreciarse, por ejemplo, en el instante 15.13h. La contribución de cada elemento de la microred para suplir la energía eléctrica de la carga se muestra en el gráfico circular en 2D de la izquierda de la Figura 19. Puede observarse como la generación diésel es la que
tiene un peso predominante (57%) seguidamente de la fotovoltaica (43%). Por último, la batería contribuye en menos de 1% en el balanceo de potencia activa de la red. Este valor es de esperar ya que solo actúa cuando existe una desviación de fotovoltaica superior a $P_{\text{max}} - P_{\text{discharge}}^\text{max}$. El gráfico de la derecha de la Figura 19 muestra la contribución de los nueve generadores diésel respecto al total de potencia entregada por su conjunto. Al haberse aplicado una jerarquía a la generación diésel, tal y como se ha explicado en el apartado 5.3.3, además de haber un número mínimo de diésel conectados a cada instante, los tres primeros generadores entregan una potencia mayor que el resto (19% cada uno). Los demás generadores operan cuando la demanda, restando la potencia fotovoltaica, lo requiere. Para esta curva de demanda e irradiancia, los generadores 6, 7, 8 y 9 operan en las horas de demanda pico (entregan <7%).

![Porcentaje de energía entregada a la Red](image1)

![Porcentaje de energía entregada por los Diesel](image2)

Figura 19. a) Energía entregada a la red ($P_{\text{PV}}^{\text{max}}$). b) Energía entregada por los diésel ($P_{\text{PV}}^{\text{max}}$).

6.3.1. Operación de la planta fotovoltaica

La curva de potencia disponible $P_{\text{PV}}^{\text{max}}$ corresponde a un día sin prácticamente nubosidad. A pesar de ello, muestra fluctuaciones en la potencia disponible de la planta fotovoltaica entre las 10h y 17h. La Figura 20 muestra la potencia fotovoltaica inyectada por la planta y la máxima disponible. La energía fotovoltaica extraída es de 79.50MWh conllevando una pérdida del 0.97% respecto a la energía disponible. La potencia pico de la planta fotovoltaica para este día es de 7.74MW. La mayor variación de potencia entregada por la planta es de 2.17MW.

Como puede observarse, la mayor pérdida de potencia fotovoltaica ocurre entre las 10h y 15h. Este suceso es debido a que hay un mínimo de generadores diésel conectados y, en ese instante, la suma de potencia generada disponible es superior a la demanda. Por otro lado, la operación de la batería no ha sido diseñada para que absorba grandes excedentes de potencia fotovoltaica los cuales no puede ser inyectada directamente a la microred.
6.3.2. Operación de las baterías

La Figura 21 muestra el estado de carga (gráfica superior) y la potencia cargada en positivo y descargada en negativo (gráfica inferior) de las baterías para cada instante de tiempo. Puede observarse en el SoC que la batería no realiza un ciclo completo lo cual significa que no se excede el número de ciclos por día recomendable que es igual a 1. La profundidad máxima de descarga es del 33.86% por lo que también entra dentro del límite del 40-60%.

Se ha establecido un estado de carga nominal para la batería del 70%. Esto incurre en la premisa de establecer un estado de carga inicial y final de este valor. Se ha escogido este SoC ya que la batería debe tener una mayor capacidad de respuesta ante desviaciones decrecientes de potencia fotovoltaica ya que son las que afectan de forma más significativa a la frecuencia de la red. De modo que el SoC de la batería queda distribuido con un 20% de la capacidad de la batería para cargas y un 50% para descargas.

Figura 20. Potencia fotovoltaica útil y disponible (P_{PV}^{max}).

Figura 21. a) Estado de carga de la batería (P_{PV}^{max}). b) Potencia carga/descarga de la batería (P_{PV}^{max}).
La potencia máxima de carga de la batería es de 1.23MW y la descarga de 1.84MW por minuto. El período donde se suceden más cargas y descargas se corresponde con la máxima variabilidad de la potencia fotovoltaica (de las 10h hasta las 18h). Puede observarse como en ningún momento se supera la máxima carga o descarga permitida al igual que los límites del SoC superior e inferior.

6.3.3. Operación de los generadores diésel

Como se ha comentado anteriormente, la contribución de la generación diésel a la microred ha estado del 57% con un reparto de potencias entre los distintos generadores desigual. La Figura 22 muestra la potencia entregada por cada generador diésel en cada instante de tiempo. Puede observarse que la distribución de las funciones de los generadores se divide en tres categorías: suplir la demanda base (generadores 1, 2 y 3), suplir la demanda base-pico (generadores 4, 5 y 6) y suplir la demanda pico (generadores 7, 8 y 9).

La Figura 23 muestra la frecuencia relativa de potencias a las que operan el conjunto de generadores diésel. Puede observarse que el punto de operación más frecuente es el de potencia nominal (1100kW) con el 35.59%. Existe un pico de funcionamiento en el punto de 200kW del 10.22% debido al mínimo de generadores diésel conectados, los cuales, entre las 10h y las 15h, operan a potencia mínima ya que la planta fotovoltaica tiene suficiente energía como para hacer frente a la potencia de demanda. El resto de puntos de funcionamiento tienen una frecuencia relativa de entre el 1.45% y el 0.33%.

6.4. Escenario con perfil fotovoltaico 2

A continuación se muestran las simulaciones de la optimización de la operación de la microred estudiada realizada conjuntamente en GAMS® y MATLAB® para un perfil de potencia fotovoltaica P_{PV}^{max} y una curva de demanda P_{load} con los parámetros de la función multi-objetivo del apartado 6.2.4.
En la Figura 24 puede verse el balance de potencias de la microred. El gráfico muestra la energía fotovoltaica, la de los generadores diésel, la de carga y de descarga. Además, se le ha superpuesto la potencia de demanda de la microred. En esta simulación la batería no actúa por lo que no hay potencia de carga ni descargada. Puede observarse como en todo momento la generación es igual a la demanda.

La Figura 25 muestra el porcentaje de energía entregado por los distintos elementos que forma la microred (gráfico circular de la izquierda) y el porcentaje de energía entregado por cada generador diésel (gráfico circular de la derecha). Como se ha comentado anteriormente, para esta curva de potencia fotovoltaica la batería no opera por lo que su porcentaje es del 0%. La energía generada por la planta fotovoltaica es del 5% y la de los generadores diésel del 95%. La energía de los generadores diésel se reparte de distinta forma que para P_{PV}^max debido a que la potencia pico de esta curva de fotovoltaica es muy baja. La distribución de la función de los diésel se explica en el apartado 6.4.3.
6.4.1. Operación de la planta fotovoltaica

La curva de potencia fotovoltaica disponible P_{PV}^{max} corresponde a un día completamente nublado. La Figura 27 muestra la potencia fotovoltaica inyectada por la planta y la máxima disponible. En ella puede observarse la escasa energía disponible respecto a P_{PV}^{max}. La energía fotovoltaica aprovechada es de 8.58MWh conllevando una pérdida del 0.00% respecto a la energía disponible. La potencia pico de la planta para la optimización realizada es de 1.01MW y la mayor variación de 0.11MW.

6.4.2. Operación de las baterías

El estado de carga y, la potencia cargada y descargada, puede observarse en el gráfico superior e inferior de la Figura 27, respectivamente. Puede apreciarse como el estado de carga tiene un valor constante. Esto es debido a que no hay carga ni descarga en las baterías. Al igual que para P_{PV}^{max}, se ha establecido un
SoC inicial y final del 70%. El desuso de las baterías para esta curva de demanda se debe a una desviación de potencia fotovoltaica inferior a \(P_{\text{max}} - P_{\text{max, discharge}} \) (0.20MW respecto a los 0.11MW). Con esta restricción se evita que las baterías almacenen o descarguen energía para cualquier desviación de potencia conllevando una disminución de la vida útil de la misma.

Figura 27. a) Estado de carga de la batería \((P_{\text{PV}}^{\text{max}}) \). b) Potencia carga/descarga de la batería \((P_{\text{PV}}^{\text{max}}) \).

6.4.3. Operación de los generadores diésel

Como se ha comentado anteriormente, la contribución de la generación diésel a la microred ha estado del 95% con un reparto de potencias entre los distintos generadores es más equitativo ya que no se dispone de elevada potencia pico proveniente de la planta fotovoltaica que obliga a desconectar diésels. Para este escenario los generadores se reparten en dos grupo: potencia base (generador 1, 2, 3, 4, 5 y 6) y potencia pico (7, 8 y 9) (Figura 28). Cabe mencionar que el encendido o apagado de los diésel lo realiza el programa GAMS® de forma automática para optimizar la operación.

Figura 28. Potencia de cada generador diésel \((P_{\text{PV}}^{\text{max}}) \).
La Figura 29 muestra la frecuencia relativa de las potencias en que operan el conjunto de generadores diésel en intervalos de 50 kW. El punto de operación más frecuente es el de potencia nominal con el 63.12%. Existe un pico de funcionamiento en el punto de 200 kW del 2.62%. Puede observarse como este valor es considerablemente inferior que para \(P_{PV1}^{max} \). Esto es debido a tener una potencia fotovoltaica que muy inferior a la potencia de demanda de la microred. Otro pico se encuentra para una potencia de 1350 kW con el 2.73%. El resto de puntos de funcionamiento tienen una frecuencia relativa entre el 0.97% y el 0.24%.

6.5. Escenario con perfil fotovoltaico 1

En este apartado se muestran las simulaciones de la optimización de la microred estudiada realizada en GAMS® y MATLAB® para un perfil de potencia fotovoltaica \(P_{PV1}^{max} \) y una curva de demanda \(P_{load} \) con los parámetros de la función multi-objetivo del apartado 6.2.4. Esta es la curva de potencia fotovoltaica con mayores variaciones de las tres. Por ello, se espera que la batería tenga un peso más importante en la descarga de potencia a la red.

La Figura 30 muestra el balance de potencia activa en el bus de la microred para cada instante de tiempo. El gráfico está compuesto por la potencia fotovoltaica, potencia de los generadores diésel, potencia de carga (potencia negativa) y de descarga (potencia positiva). Además, se ha superpuesto la potencia de demanda de la microred. La potencia de descarga es difícil de apreciar, por este motivo, se ha realizado una ampliación de una región del gráfico para poderla observar con mayor claridad. En el área ampliada puede observarse como la batería opera como se deseaba, para desviaciones pronunciadas de potencia fotovoltaica, el sistema de almacenaje aporta energía para reducir la desviación. En cambio, la batería no actúa para desviaciones inferiores a 0.20 MW. En el apartado 6.5.2 se entrará en la operación de las baterías en mayor detalle. Puede observarse como la potencia fotovoltaica junto con la potencia generada por los diésel más la descarga de las baterías sigue la curva de demanda.
Cuando la potencia generada es mayor que la demandada se almacena en las baterías como puede apreciarse, por ejemplo, a las 12.32h.

La fracción de energía proporcionada por cada elemento de la microred para suplir la energía eléctrica demandada se muestra en el gráfico circular en 2D de la izquierda de la Figura 31. Puede observarse como la generación diésel tiene un peso predominante con un 72% mientras que la fotovoltaica inyecta un 27% de la energía total y, por último, las baterías contribuyen menos de un 1%. Aunque parezca que operan igual que en

La fracción de energía proporcionada por cada elemento de la microred para suplir la energía eléctrica demandada se muestra en el gráfico circular en 2D de la izquierda de la Figura 31. Puede observarse como la generación diésel tiene un peso predominante con un 72% mientras que la fotovoltaica inyecta un 27% de la energía total y, por último, las baterías contribuyen menos de un 1%. Aunque parezca que operan igual que en P_{PV}^{max}, en el apartado 6.5.2 se mostrará que no es del todo cierto. El gráfico circular de la derecha muestra la contribución de los nueve generadores diésel respecto al total de potencia entregada por su conjunto. De nuevo, puede observarse que la contribución de los diésel es descendente (con el valor más alto para el primero y menor para el noveno) debido a la jerarquía impuesta en su operación. En esta simulación puede apreciarse mejor la diferencia entre los modos de operación de los diésel: operación en demandas base (diésel 1, 2 y 3), base-pico (diésel 4 y 5) y pico (diésel 5, 6 7, 8 y 9).

Figura 30. Balance de potencias de la microred (P_{PV}^{max}).
6.5.1. Operación de la planta fotovoltaica

La curva de potencia fotovoltaica disponible $P_{PV\,1}^{max}$ corresponde a un día con nubosidad intermitente. Por ello, muestra fluctuaciones en la potencia disponible de la planta fotovoltaica para todo el espectro horario. La Figura 32 muestra la potencia fotovoltaica inyectada por la planta y la máxima disponible. La energía fotovoltaica inyectada a la microred es de 50.92MWh conllevando una pérdida del 2.11% respecto a la energía disponible. La potencia pico de la planta fotovoltaica para este día es de 8.29MW. La mayor variación de potencia entregada por la planta es de 2.20MW.

Como puede observarse, la mayor pérdida de potencia fotovoltaica ocurre a las 12.35h. Este suceso es debido a que la potencia fotovoltaica excede la demanda además de haber tres generadores diésel conectados a potencia mínima. Además, la operación de la batería no ha sido dimensionada para absorber todo el excedente de potencia generada de la microred.

Figura 31. a) Energía entregada a la red ($P_{PV\,1}^{max}$). b) Energía entregada por los diésel ($P_{PV\,1}^{max}$).

Figura 32. Potencia fotovoltaica útil y disponible para $P_{PV\,1}^{max}$.
6.5.2. **Operación de las baterías**

En la Figura 33 puede observarse el estado de carga (gráfica superior) y la potencia cargada en positivo y descargada en negativo (gráfica inferior) de las baterías para cada instante de tiempo. El SoC de la batería realiza entre 1-1.5 ciclos completos lo cual significa que se está en el límite del número de ciclos por día recomendable. Aún así, para los casos con \(p_{PV1}^{max} \) y \(p_{PV2}^{max} \) no se excede, lo que significa que, a lo largo del año en valor medio, el número de ciclos estará entre 300-400, por lo tanto, dentro del rango recomendado. La profundidad máxima de descarga es del 63.46%, ligeramente superior al máximo recomendado del 0.6. Puede observarse que a las 12.42h hay una carga de la batería pronunciada. Ésta, coincide con el exceso de potencia fotovoltaica.

Del mismo modo que en los otros casos, se ha establecido un estado de carga nominal para la batería del 70%. La potencia máxima de carga de la batería es de 1.80MW y la descarga de 2.00MW por minuto. El período donde se suceden más cargas y descargas se corresponde con la variabilidad con mayor descenso de la potencia fotovoltaica (de las 9h hasta las 15h). Puede observarse como en ningún momento se supera la máxima carga o descarga permitida al igual que los límites del SoC superior e inferior.

![Figura 33. a) Estado de carga de la batería \((p_{PV1}^{max})\). b) Potencia carga/descarga de la batería \((p_{PV2}^{max})\).](image)

6.5.3. **Operación de los generadores diésel**

El 72% de la energía eléctrica consumida ha sido generada con diésels, tal y como se ha comentado anteriormente. Además, existen diferencias entre la potencia entregada por cada generador debido al control jerárquico. La Figura 34 muestra la potencia entregada por cada generador diésel en cada instante de tiempo.

La generación diésel presenta desconexiones abruptas en alguna de las máquinas entre las 7.10h-13.83h. Superponiendo las gráficas de potencia fotovoltaica y de generación de cada diésel puede observarse que esta bajada en la potencia entregada por el conjunto diésel coincide con picos de potencia fotovoltaica. No obstante, los diésels tienen tiempos de respuesta elevados.
La Figura 35 muestra la frecuencia relativa en que operan las potencias del conjunto de generadores diésel. El punto de operación más frecuente es el de potencia nominal con el 48.49%. El segundo pico de frecuencia es en el punto de 200kW con un 4.80% debido a la restricción del número mínimo de diésels conectados, los cuales operan a potencia mínima en los instantes en que la planta fotovoltaica tiene suficiente energía para hacer frente a la potencia de demanda. El resto de potencias tienen una frecuencia relativa entre el 1.36% y el 0.30%. Esta distribución de frecuencias es parecido a la simulación con P_{PV1}^{max} con la diferencia que ésta posee una mayor operación de los generadores a potencia nominal debido a fluctuaciones importantes de potencia fotovoltaica en la región de mayor irradiancia solar.
En el siguiente capítulo se detallan las conclusiones a las que se han llegado mediante el estudio de la optimización de la microred y se confirma que se han alcanzado los objetivos planteados. Además, se muestran las posibles vías de investigación que pueden surgir tras la realización de este trabajo.

7.1. Conclusiones del proyecto

La gestión de una microred es un proceso muy complejo que implica multitud de componentes y diferentes formas de abordar la optimización de la operación por parte del gestor. En este proyecto se ha desarrollado un algoritmo, implementado en GAMS®, que permite gestionar la microred con el fin de maximizar la potencia fotovoltaica extraída de la planta, operar las baterías para que realicen un control secundario de frecuencia y lograr que los generadores diésel síncronos operen a potencia nominal.

Este proyecto ha diseñado un modelo de microred en programación lineal, el cual aprovecha las propiedades de la optimización convexa, para garantizar que la solución propuesta por GAMS® es un óptimo global. La formulación de la microred se ha realizado de forma genérica por lo que es aplicable a otras redes híbridas aisladas con características parecidas. Se ha demostrado el correcto funcionamiento de la herramienta desarrollada con MATLAB® y GAMS® para el caso práctico en distintos escenarios. La convergencia del algoritmo ha permitido obtener datos de potencia activa de los dispositivos al igual que consignas de conexión/desconexión de los generadores diésel y carga/descarga de las baterías.

La función objetivo del algoritmo está formada por parámetros que permiten definir qué influencia tienen en la optimización la potencia fotovoltaica, la operación las baterías y la operación de los generadores diésel síncronos. La obtención de cada valor se ha logrado realizando un análisis de sensibilidad. Se ha demostrado que los parámetros de la función multi-objetivo que optimizan la
operación son independientes del escenario. Se ha podido observar que estos parámetros no solo repercuten en las variables asociadas directamente a éstos sino que también influyen en la optimización de forma global.

A partir de las simulaciones de la microred para los tres escenarios propuestos se puede concluir que el aprovechamiento de potencia activa de la planta fotovoltaica ha sido maximizado. Las baterías aportan el servicio auxiliar de load-frequency control dentro de las características de operatividad recomendadas para baterías Li-ion. La probabilidad que los generadores diésel operen a potencia nominal es mayor que para los otros puntos de operación. Esto permite entregar potencia en el punto de mayor rendimiento y, además, se opera el generador a la potencia de diseño lo que evita sobrecalentamientos y vibraciones que pueden dañar la máquina. Por último, puede asegurarse que existe el balance de potencia activa en la microred para el período de simulación en los tres escenarios.

El modelo de operación jerárquico implementado en los generadores diésel minimiza el número de cambios encendido/apagado además de mejorar sustancialmente su gestión de la operación. A partir de las simulaciones se ha podido observar que el sistema diésel se estratifica en generación base, base-pico y pico. En el caso de las baterías se ha podido observar que al realizar el soporte secundario a la frecuencia éstas tienen una menor capacidad de almacenamiento para picos de energía fotovoltaica.

Por medio del estudio sobre el impacto de desviaciones de potencia activa en la frecuencia de la microred en MATLAB/Simulink®, se ha podido establecer un número mínimo de generadores diésel síncronos conectados que aseguran que la desviación frecuencial no superará los límites establecidos para una variación máxima de potencia en un instante de tiempo determinado.

Por último, las microredes son sistemas con una alta penetración de recursos intermitentes y difícilmente predecibles lo que complica fuertemente su control y gestión. El modelo desarrollado permite generar datos sobre cómo operar la microred de forma óptima para múltiples escenarios. Esta información puede usarse para mejorar la operación de microredes en tiempo real puesto que se dispone de previsiones de la evolución de las variables no controlables además de gestionarlas conjuntamente de forma óptima.

7.2. Trabajos futuros

El proyecto que se ha realizado aporta información que puede ser útil para futuros trabajos o investigaciones en el marco de la optimización de la operación de microredes.

A partir del algoritmo realizado, puede implementarse el criterio de optimización según aspectos económicos. Puede ser interesante realizar una comparativa entre los datos obtenidos con el criterio de maximización renovable y minimización del coste de operación. Si se pretende operar la microred minimizando el coste de operación implica que debe modelizarse el coste asociado a la degradación de la batería por ciclo de carga. Éste, está matemática y tecnológicamente poco desarrollado por lo que su implementación permitiría un gran avance en la operación de estos sistemas de almacenaje. También sería
interesante incluir un impacto ambiental de los elementos que forman la microred y tenerlo en cuenta en la función objetivo para minimizar las emisiones con un objetivo marcado.

El EMS offline realizado puede usarse para mejorar la operación en tiempo real realizada por un EMS online. El modelo aportaría una previsión de cómo debe optimizarse la microred en los siguientes instantes de tiempo. Otra mejora sería la dotación de un control primario de frecuencia al EMS que permita ajustar desbalances de potencia de forma instantánea. Paralelamente al EMS, puede realizarse un PCM que regule la seguridad de la microred conjuntamente con la gestión de la microred.

La microred estudiada no dispone de conexión con otras redes. Otra ampliación del modelo sería realizar un EMS para microredes interconectadas. Para este tipo de configuraciones la optimización debe realizarse para obtener el mayor beneficio económico ya que la energía generada se vende en un mercado energético por lo que entra en competencia con otros generadores.

La gestión de microredes está poco desarrollada existiendo multitud de vías de investigación por lo que queda un largo camino para recorrer antes que puedan ser implantadas de forma genérica en las redes eléctricas actuales.
PRESUPUESTO

A continuación se muestra la información relacionada con los costes de ingeniería asociados a la realización de este proyecto.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidades</th>
<th>Precio</th>
<th>Total (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRABAJO DE INGENIERÍA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costes de personal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estudio previo del proyecto</td>
<td>90h</td>
<td>30€/h</td>
<td>2.700</td>
</tr>
<tr>
<td>Definición e implementación del algoritmo</td>
<td>250h</td>
<td>30€/h</td>
<td>7.500</td>
</tr>
<tr>
<td>Corrección y validación del algoritmo</td>
<td>200h</td>
<td>30€/h</td>
<td>6.000</td>
</tr>
<tr>
<td>Elaboración de la documentación</td>
<td>70h</td>
<td>30€/h</td>
<td>2.100</td>
</tr>
<tr>
<td>Costes de gestión</td>
<td>1</td>
<td>50€</td>
<td>50</td>
</tr>
<tr>
<td>Costes administrativos</td>
<td>1</td>
<td>200€</td>
<td>200</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>18.550</td>
</tr>
<tr>
<td>RECURSOS INFORMÁTICOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hewlett-Packard 15 Notebook PC</td>
<td>0,5</td>
<td>890€</td>
<td>445</td>
</tr>
<tr>
<td>Licencia MATLAB®</td>
<td>0,25</td>
<td>6000€</td>
<td>1.500</td>
</tr>
<tr>
<td>Licencia GAMS®</td>
<td>1</td>
<td>700€</td>
<td>700</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td>2.645</td>
</tr>
<tr>
<td>Total bruto</td>
<td></td>
<td></td>
<td>21.195</td>
</tr>
<tr>
<td>I.V.A. 21%</td>
<td></td>
<td></td>
<td>4.450,9</td>
</tr>
<tr>
<td>Total Presupuesto</td>
<td></td>
<td></td>
<td>€ 25.645,9</td>
</tr>
</tbody>
</table>

El Presupuesto de Ejecución por Contrata del Proyecto de OPTIMIZACIÓN DE LA OPERACIÓN DE PLANTAS FOTOVOLTAICAS HÍBRIDAS AISLADAS importa la cantidad de VEINTICINCO MIL SEISCIENTOS CUARENTA Y CINCO EUROS CON NOVENTA CÉNTIMOS (25.645,9 Euros).

Barcelona, junio de 2016.

Autor del proyecto: Marc Galceran Feixas.
CAPÍTULO 8:

BIBLIOGRAFÍA

El capítulo que se presenta a continuación muestra las referencias de los documentos empleados para la realización del proyecto. La bibliografía se divide en dos partes. La primera, las "Referencias bibliográficas" que son aquellas que corresponden a citas aparecidas en el texto. La segunda, la "Bibliografía de consulta" que corresponde a aquellas obras no citadas explícitamente en el texto, pero que han servido de base i/o de consulta.

8.1. Referencias bibliográficas

Optimización de la operación de plantas fotovoltaicas híbridas aisladas

8.2. Bibliografía de consulta

