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ABSTRACT 

 

The anaerobic ammonium oxidation (anammox) consists on the biological conversion of ammonium (NH4
+
) 

into dinitrogen gas under absence of oxygen. Nitrite (NO2
-
) is a substrate of the anammox reaction, but also 

an inhibitor at high concentrations. This study investigates the effect of nitrite on the microbial community 

during the batch enrichment of anammox sludge. Six inoculums collected from different environments were 

enriched after a conditioning pretreatment and under controlled conditions during 4 months. Concerning the 

mineral medium used, two different nitrite supply strategies were applied; i.e., (i) initially low concentration 

at 25 mg NO2
--N/L and progressive increase to 150 mg NO2

--N/L, and (ii) constant high concentration at 150 

mg NO2
-
-N/L. All tested inoculums developed anammox activity but only when the enrichment was started 

at low nitrite concentration. In such case, the specific ammonium conversion rates finally obtained ranged 

from 21 ±1 to 118 ±1 mg NH4
+-N/g VS/d (VS, volatile solids). Abundance of the functional gene encoding 



  

2 

for the enzyme hydrazine oxidoreductase (hzo) was assessed using the real-time quantitative polymerase 

chain reaction (q-PCR) showing positive correlation with the anammox activity finally reported. In addition, 

high-throughput DNA sequencing helped to elucidate the underlying microbial community dynamics. The 

raw inoculum source, the conditioning pretreatment, and the cultivation conditions applied were jointly 

determinants of the final microbial community structure of the enrichments despite a clear convergence at 

the end of the experimental period. On the other hand, the cultivation conditions alone determined the 

selection of anammox species belonging to the genus Candidatus Brocadia. 
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1. INTRODUCTION 

 

The anaerobic ammonium oxidation (anammox) consists on the biological conversion of ammonium (NH4
+
) 

into dinitrogen gas (N2) under absence of oxygen. This is a chemolithoautotrophic microbial process where 

nitrite (NO2
-
) acts as the electron acceptor. The anammox reaction also involves the production of a minor 

fraction of nitrate (NO3
-
). According to Strous et al. [1], the corresponding molar ratios for NH4

+
 

consumption, NO2
-
 consumption, N2 production, and NO3

-
 production are 1.00:1.32:1.02:0.26, respectively. 

Metagenomic studies also suggest that nitric oxide (NO) and hydrazine (N2H4) are intermediates in the 

anammox reaction [2]. The anammox process was discovered in the early 1990’s in a denitrifying fluidized 

bed reactor [3] and the interest in this bioprocess has ever since been rising in fundamental and applied 

research fields, such as marine ecology and environmental biotechnology [4,5]. 

 

So far, six “Candidatus” anammox bacterial genera have been enriched [6,7] from wastewater treatment 

facilities and freshwater environments (Brocadia, Kuenenia, Jettenia, Anammoxoglobus and 
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Anammoxomicrobium), as well as from marine environments (Scalindua). All these genera make a 

monophyletic branch within the phylum Planctomycetes. In physiological terms, they feature a specific 

cytoplasmatic membrane-bound organelle known as anammoxosome, which is the locus of the anammox 

catabolism. They are also characterized by a low growth rate, with doubling times of 2.1-11 days (at ~30ºC) 

equivalent to a maximum specific growth rate of 0.065-0.334 d
-1

 [1,8]. Because of this slow biomass 

development, and the specialized metabolism, anammox bacteria may be difficult to culture. Yet, phylotypes 

related to the anammox genera have increasingly been observed by molecular means in diverse 

environments, such as activated sludge from wastewater treatment plants (WWTP) [9,10], marine sediments 

[11,12], freshwater environments [13], and terrestrial ecosystems [14]. 

 

Anammox bacteria have not been isolated in pure culture yet, thus pointing to the fact that they may coexist 

with other microbial species, even in bioreactors fed exclusively with mineral substrates [8,15,16]. The most 

frequent enrichment strategies have been based on different types of continuously operated bioreactors [17]; 

e.g., sequencing batch reactor (SBR), rotating biological contactor, up-flow biofilm reactor, or membrane 

bioreactor [1, 18-20]. Alternatively, enrichments have also been developed in batch cultures [9, 21-23]. 

Many studies have shown that successful cultivation of anammox bacteria from conventional sludge takes 

long time; i.e., generally from 4 months to 1 year [24]. Such time will be influenced by factors like (i) the 

ecological characteristics of the seeding sludge including initial concentration and relative abundance of 

anammox bacteria [24], (ii) effective biomass retention inside the reactor [25], and (iii) the environmental 

conditions applied: temperature, pH, and concentration of NH4
+
, NO2

-
, dissolved oxygen (DO), organic 

carbon, sulphide and other inhibitors like metals and antibiotics [26-28]. 

 

Monitoring the anammox activity usually involves the chemical analysis of relevant nitrogen (N) compounds 

(i.e., NH4
+
, NO2

-
, and NO3

-
) in the liquid phase. However, this strategy might be unsuccessful during the 

initial stages of the enrichment process, when the number of anammox cells is too low and their activity can 

still not be detected macroscopically. The use of culture-independent molecular methods has been proposed 

as a suitable method in such cases and various protocols for the DNA amplification by polymerase chain 

reaction (PCR) of target genes have been described in the literature, as summarized by Li et al. [12]. 

Anammox specific primers have been developed for amplifying ribosomal genes (16S rRNA) or functional 
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genes such as that encoding for the enzyme hydrazine oxidoreductase (hzo) that dehydrogenates hydrazine to 

N2. These primers have been used to assess the abundance of anammox bacteria genes within environmental 

samples by real-time quantitative polymerase chain reaction (q-PCR), and to analyse the microbial 

community diversity by molecular typing and sequencing methods [9, 29-32]. Emerging next-generation 

sequencing (NGS) have also been applied for providing an in-depth characterization of the microbial 

biodiversity in anammox systems [33-36]. Yet, not so much information is available in the literature 

concerning the microbial community structure and dynamics during enrichment of the anammox biomass as 

determined by quantitative and qualitative culture-independent molecular methods. 

 

Autotrophic nitrogen removal (ANR) applications based on anammox are promising for N-removal from 

municipal side-/mainstreams, industrial and agricultural wastewaters [37-40], particularly after anaerobic 

digestion once biodegradable organic carbon is depleted. However, anammox enriched sludge is not always 

available, and biomass enrichment can become the critical point for the start-up of the process. An 

appropriate selection of the environmental conditions applied is decisive for a successful enrichment. In this 

regard, NO2
-
 is a substrate of the anammox reaction but may also become an inhibitor at high concentrations. 

Such inhibition has been reported as highly case-specific; i.e., concentrations as low as 5 and 30 mg NO2
-
-

N/L were found as inhibitory in some studies [41,42] whereas much higher inhibitory boundaries of 210-274 

mg NO2
-
-N/L were determined in other cases [43-45]. Concerning this variability, Kimura et al. [44] 

suggested that differences in NO2
-
 concentration tolerance may be caused by the cultivation conditions used. 

The aim of this study is to investigate the presence of anammox populations in different inoculum sources 

and to assess the feasibility of enrichment in batch under two different strategies concerning NO2
-
 supply. 

Thus, final concentrations of 150 mg NO2
-
-N/L were targeted in the mineral medium used as feeding solution 

but testing two different supply strategies (i.e., initially low vs. high concentration) in order to evaluate the 

effect of the NO2
-
 concentration when starting anammox batch enrichments. Use of molecular techniques 

will help to detect anammox bacteria and to establish correlations between macroscopically observed process 

parameters and the underlying microbial community dynamics. Microbial monitoring will be conducted 

using q-PCR and 16S rRNA gene targeted NGS. 
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2. MATERIALS AND METHODS 

 

2.1. Inoculum sources 

 

Six different biomass sources collected in conventional N-removal facilities were considered as inoculum (I) 

for batch enrichment; i.e., (I1) activated sludge collected in a municipal WWTP that combine the use of a 

Modified Ludzack-Ettinger (MLE) bioreactor unit and a membrane filtration loop (Betton, Brittany, France), 

(I2) mixture of activated and settled sludge collected in a pig slurry treatment plant with intermittent aeration 

and gravity settling (Meslin, Brittany, France), (I3) activated sludge collected in a pig slurry treatment plant 

with MLE configuration (Calldetenes, Catalonia, Spain), (I4) settled sludge -sediments- collected in a 

receiving lagoon treating municipal wastewater (Amanlis, Brittany, France), (I5) settled sludge -sediments- 

collected in polishing lagoons treating municipal wastewater (Amanlis, Brittany, France), and (I6) settled 

sludge collected in an intermittently aerated lagoon treating pig slurry (Almacelles, Catalonia, Spain). The 

volatile solids (VS) content of the samples was 0.44%, 1.82%, 0.62%, 0.82%, 0.48%, and 1.92% of the wet 

weight, respectively; whereas, the corresponding VS/TS ratio (TS, total solids) was 0.52, 0.64, 0.54, 0.09, 

0.09, and 0.59, respectively. In order to favour biodegradation of available organic carbon before incubation 

for anammox biomass enrichment, a conditioning pretreatment based on promoting denitrification was 

carried out at room temperature during the first days after sampling by adding a NO3
-
 source such as KNO3 

in pulses of 722 mg/L (100 mg N/L) and controlling the pH within the range 7.0-8.0 (HCl 2M). Batch 

enrichment was started once denitrification declined (after 2-4 weeks). 

 

2.2. Mineral medium 

 

The synthetic nutritive solution was prepared using tap water according to a modification of the mineral 

medium described by Magrí et al. [45]; i.e., NH4Cl (variable: 95-573 mg/L), NaNO2 (variable: 123-739 

mg/L), KNO3 (361 mg/L), KHCO3 (1000 mg/L), FeSO4·7H2O (9 mg/L), EDTA (5 mg/L), MgSO4·7H2O 

(240 mg/L), CaCl2·2H2O (143 mg/L), and trace element solution 0.3 mL/L. The trace element solution 

contained ZnSO4·7H2O (1247 mg/L), MnSO4·H2O (1119 mg/L), CuSO4·5H2O (44 mg/L), Al2(SO4)3·14H2O 

(201.5 mg/L), Na2MoO4·2H2O (129 mg/L), CoCl2·6H2O (30 mg/L), KCl (100 mg/L), and EDTA (975 
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mg/L). Once dissolved the mineral salts, the DO was purged by bubbling with N2 (< 0.2 mg/L) and the pH 

was adjusted to 7.0 (HCl 2M). The chemical KNO3 was added aiming to strengthen the anoxic conditions 

and to prevent potential sulphate reduction to sulphide (which could inhibit the anammox reaction) in case of 

total NO2
- consumption during the enrichment. Unfortunately, any phosphorus source was added to the 

nutritive solution throughout the enrichment due to a mistake, discovered later, in the labelling of the 

corresponding chemical (K2O (27 mg/L) was supplied instead of KH2PO4). Thus, it seems that the 

phosphorus released by the decaying biomass was enough to avoid limitation in the availability of this 

nutrient. 

 

2.3. Enrichment procedure 

 

Twelve glass bottles (total volume: 575 mL; working volume: 500 mL) containing inoculum and mineral 

medium were flushed with N2, sealed with a rubber stopper plus an aluminium cap, and placed in an 

incubator shaker (KS4000i control, IKA, Germany) at 150 rpm, 35ºC, and in dark conditions. Initial VS 

content within the bottles was adjusted to 3 g/L. Biomass settling was allowed once per week (for 1h). Each 

bottle was then opened and the supernatant was manually withdrawn to avoid accumulation of inhibitory 

compounds while keeping the settled biomass inside of the bottles. Subsequently, the bottles were refilled 

with new nutritive mineral medium, closed, and flushed with N2. Two different strategies concerning NO2
-
 

supply were applied (i.e., initially low vs. high concentration). Thus, mineral medium was prepared with low 

amount (25 mg NO2
-
-N/L) or high amount (150 mg NO2

-
-N/L) of NO2

-
 whereas NH4

+
 was added at a 

constant rate of 25 mg NH4
+
-N/L. In those bottles running at low NO2

-
 concentration, once anammox activity 

was detected, a second weekly addition of NO2
-
 and NH4

+
 (NO2

-
-N/NH4

+
-N = 1.2) was carried out. Following 

this procedure, NO2
- content in the mineral medium was progressively increased from 25 to 150 mg N/L at 

increments of 12.5 mg N/L. For the six bottles running at high NO2
-
 concentration, the NO2

-
 content was kept 

constant at 150 mg N/L with only one feeding event per week throughout the experimental period. 

Concerning NH4
+ content, it was proportionally increased at a ratio of 1.2 g NO2

--N per gram of NH4
+-N for 

those first six bottles initially running at low NO2
-
 concentration but it was kept constant at 25 mg NH4

+
-N/L 

for the others. The pH within the bottles was controlled in the range from 7.0 to 8.0 using HCl 2M. N2 

flushing was used to displace air in the bottles headspace every time they were opened. The liquid volume 
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exchanged when renewing the mineral medium was variable depending on the settling capability of the 

biomass, but usually between 60-80%. This is a higher value than those generally considered in anammox 

SBRs [46-48]. Enrichment lasted 4 months. Liquid samples were taken before and after each new feeding 

event and filtered using 0.45 µm polypropylene membrane filters prior to storage in the refrigerator. 

Biological samples were taken once per month, centrifuged at 10,000g for 4 min and supernatants were 

discarded. Pellets were stored at -20°C. 

 

2.4. Final anammox activity test 

 

Final anammox activity was assessed using batch tests at the end of the enrichment period. According to the 

aforementioned conditions, after renewing the mineral medium, liquid samples were collected using syringes 

at regular time intervals for N-compounds analysis. VS contents were also measured. The batch experiments 

were done in duplicate. Linear regression analyses were used to describe N-conversion. 

 

2.5. Chemical analyses 

 

NH4
+
, NO2

-
 and NO3

-
 were measured by ion chromatography (850 Professional IC, Metrohm, Switzerland). 

TS were measured after sample drying to constant weight at 105ºC and VS were measured after further 

ignition in a muffle furnace at 550ºC. The pH and DO were measured using portable meters pH 197i and Oxi 

197 (WTW, Germany), respectively. 

 

2.6. Molecular analyses 

 

2.6.1. DNA extraction 

 

Total DNA was extracted from approximately 0.25 g of pellet with the PowerSoil
TM

 DNA Isolation Kit 

(MoBio Laboratories Inc., USA), according to the instructions of the manufacturer. The concentration and 

purity of the extracted DNA were checked spectrophotometrically (ND-1000, NanoDrop Technologies, 

USA) and in TBE 1X - 0.7% agarose gel. The extracted DNA was stored at -20ºC until further analysis. 
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2.6.2. Real-time q-PCR 

 

All real-time PCR amplifications were performed using the iQTM SYBR® Green supermix (2x) (Bio-Rad 

Laboratories, USA) and the CFX96 real-time system equipped with the CFX Manager
TM

 software v3.1 (Bio-

Rad Laboratories), according to the instructions of the manufacturer. Quantification of total bacteria used 

universal eubacterial forward 1055F (5’-ATGGCTGTCGTCAGCT-3’) and reverse 1392R (5’-

ACGGGCGGTGTGTAC-3’) primers to amplify the hypervariable V3-V5 region from the 16S rRNA gene, 

as previously reported by Ferris et al. [49]. Concerning anammox bacteria, the gene encoding specific 

enzyme HZO (hzo gene) was used as functional biomarker. The primer set used to selectively amplify 

anammox bacterial fragment was hzocl1F1 (5’-TGYAAGACYTGYCAYTGG-3’) and hzocl1R2 (5’-

ACTCCAGATRTGCTGACC-3’) as described by Schmid et al. [50]. The PCR reactions were run in a 25 µL 

volume containing 12.5 µL of iQ
TM

 SYBR
®
 Green supermix (2x), 1.5 or 0.625 µL of each primer 

(eubacteria-16S rRNA or anammox-hzo, respectively; 10 µM), 2 µL of diluted DNA template, and 7.5 or 

9.25 µL of sterile water (eubacteria or anammox, respectively). To check against potential inhibition of the 

PCR amplification, reactions were done on DNA templates diluted 10- and 100-folds and each reaction was 

carried out in triplicates. The amplification program applied for eubacteria was 95ºC for 10 min, followed by 

45 cycles of denaturation at 95ºC for 30 s, annealing at 60ºC for 50 s, and extension at 72ºC for 30 s. In case 

of anammox bacteria, the program applied was 95ºC for 2 min, followed by 40 cycles of denaturation at 95ºC 

for 30 s, annealing at 51ºC for 60 s, and extension at 72ºC for 60 s. The fluorescence intensity of the 

amplified DNA was measured after each extension step and a melting curve analysis was performed after 

completion of PCR. The microbial quantification was based on a mean slope value derived from standard 

curves obtained by q-PCR amplification of 10-fold successive dilutions of DNA fragments of the targeted 

genes [51], and which were purified using the Wizard® Plus SV Minipreps DNA Purification System 

(Promega, USA) according to the instructions of the manufacturer. The absolute copy number of DNA 

fragments per µL of standard solution was calculated from the concentration measured 

spectrophotometrically (ND-1000) and the molecular mass of the DNA fragment. The standard curves 

covered a range from 102 to 1010 gene copies per µL of reaction. These series of standard dilutions were 
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amplified along with the unknown samples during each q-PCR run, which allowed building the standard 

curve (R
2
 > 0.98) corresponding to each run. Results were expressed as gene copy number per mL of mixed 

liquor within the enrichment bottle. 

 

2.6.3. High-throughput DNA sequencing 

 

16S rRNA genes high-throughput DNA sequencing was performed at the NGS facility of the BIOMIC Team 

of IRSTEA (Antony, France) using Ion Torrent
TM

 (Life Technologies, USA) technology and methods, 

according to the procedures described by Poirier et al. [52]. Briefly, the bacterial and archaeal hypervariable 

region V4-V5 of the 16S rRNA genes was amplified using the “universal” fusion-primers 515F (5’-

GTGYCAGCMGCCGCGGTA-3’) and 928R (5’-CCCCGYCAATTCMTTTRAGT-3’) [53] modified to 

allow the tagging and sequencing of the amplified products. Amplification was performed in a 50 µL 

reaction mixture containing 5 µL of Pfx buffer (10X), 1.5 µL of dNTP mix (10 mM each), 1 µL of MgSO4 

(50 mM), 1.5 µL of each primer (10 µM), 0.4 µL of Platinum
®
 Pfx DNA polymerase, 38.1 µL of water and 1 

µL of extracted DNA (10 to 200 pg) (Pfx SuperMix protocol from Life Technologies). The mixture was held 

at 94°C for 5 min, followed by 30 cycles at 94°C for 15 s, 50°C for 30 s and 68°C for 1 min, and a final 

extension step at 68°C for 5 min. PCR products were cleaned using the Agencourt
®
 AMPure

®
 XP magnetic 

beads purification system (Beckman Coulter, USA) and quantified with a capillary electrophoresis 

bioanalyzer (2100 Electrophoresis Bioanalyzer, Agilent Technologies, USA). Purified libraries were diluted 

(in a first step at 500 pM and later at 100 pM). Equal volumes of amplicons were combined in equimolar 

concentrations (100 pM) for sequencing using the Ion OneTouch
TM

 2 Instrument with the Ion PGM
TM

 

Template OT2 400 Kit and using a Ion Personal Genome Machine (PGM
TM

) System with the Ion 316
TM

 Chip 

Kit v2 and the Ion PGMTM Sequencing 400 Kit, according to the instructions of the manufacturer. Low 

quality and polyclonal sequence reads were filtered out by the PGM
TM

 System software, and resulting data 

was exported as a FastQ file. 16S rRNA genes high-throughput DNA sequencing was performed directly on 

total DNA extracts to analyze global microbial community structure, and when anammox bacteria were not 

detected on PCR products obtained by specific amplification of the Planctomycetes phylum using the 

primers Pla46F and 1392R, as described in Bae et al. [9]. Sequences were analyzed using the Quantitative 

Insights into Microbial Ecology (QIIME v1.8.0) pipeline [54]. Sequences shorter than 200 bp, containing 
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chimeras, and found as singletons were removed. Operational taxonomic units (OTUs) were subsequently 

defined using UPARSE implemented in USEARCH (v8.0.1623) [55] at a 97% similarity level. MOTHUR 

(v1.25.0) [56] and SILVA (v119) [57] were used as the classifier tool and database for taxonomic association 

(with a minimum similarity threshold of 80%), respectively. 

 

2.6.4. Statistical analyses 

 

Statistical analysis to evaluate microbial community structure evolution was carried out through the non-

metric multidimensional scaling (NMDS) method using the open-source software R (v3.2.3) [58] including 

functions from the vegan package (v2.3-2) [59]. Shannon-Weaver, Simpson, and Inverse Simpson diversity 

indices, as well as species richness and Pielou’s evenness were calculated according to the procedures 

described in Oksanen et al. [59]. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1. Performance of the anammox enrichment 

 

All tested inoculums developed positive anammox activity throughout the 4-month experimental period 

when the enrichment was started at low NO2
-
 concentration (Fig. 1A). However, biomass still maintained 

overall appearance of activated sludge and brownish colour at the end of the enrichment. Three main 

enrichment phases were observed: (P1) endogenous heterotrophic denitrification was the dominant process 

and NH4
+ may even slightly increase during incubation due to the hydrolysis of the remaining organic matter, 

(P2) occurrence of NH4
+
 consumption and subsequent speed up at increasing NO2

-
 concentration, and (P3) 

consolidation of NH4
+
 consumption at high NO2

-
 concentration with evidence of NO3

-
 production (while the 

NO2
--N/NH4

+-N reaction ratio became closer to the expected value of 1.32 [1]). Time for detecting NH4
+ 

consumption under anaerobic conditions (beginning of P2) was variable (Table 1), ranging from 0 days in 

bottle seeded with I3 to 92 days in bottle seeded with I2 (time for anammox activity appearance was longer 

in those bottles seeded with the inoculums containing higher VS). According to this fact, and the progressive 
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increase in the NO2
- supplied, concentrations of 150 mg NO2

--N/L at the beginning of a new batch were 

applied at the end of the experimental period in all cases except in bottle with I2, where the maximum 

concentration used was 50 mg NO2
-
-N/L. On the other hand, no anammox activity was developed by any of 

the inoculums when enrichment was started at high NO2
- concentration (Fig. 1B), which evidences the 

importance of the feeding strategy adopted when targeting anammox bacteria enrichment and although NO2
-
 

levels of 150 mg N/L were not previously evaluated as inhibitory elsewhere [43-45]. 

 

Results of the final activity test did not evidence link between time of anammox activity appearance and 

measured NH4
+
 conversion rate (Table 1). Good linearity in the evolution of the N-forms was observed 

during the activity test, which was indicative of no substrate inhibition (R2 > 0.98). Thus, specific activity 

was assessed within the range from 21 to 118 mg NH4
+
-N/g VS/d which is equivalent to total N-conversion 

rates of 59-297 mg N/g VS/d. These values are within the range of specific N-removal activities of 60-1600 

mg N/g VSS/d (n=14; VSS, volatile suspended solids) obtained for a variety of anammox sludges of diverse 

origins as reported by Van Hulle et al. [39]. 

 

The procedure followed in this study for the enrichment of anammox biomass consisted on the use of bottles 

as bioreactors (where substrates were supplied in pulses to the biomass). Eventual singularities of this 

method with respect to the use of the SBR technology are: long cycle (7 d), long hydraulic residence time (> 

7 d), high volume exchange ratio (60-80%), and exposure of the biomass to a wide range of substrate 

concentrations (0-150 mg NO2
-
-N/L). These factors could influence on the evolution of the microbial 

community since they may have implications on the biomass retention within the reactor, the existence of 

famine periods during the enrichment, and the tolerance of high substrate concentrations by the biomass. 

 

3.2. Monitoring the enrichment of anammox bacteria by real-time q-PCR 

 

The evolution of total and anammox bacteria was monitored by real-time q-PCR throughout the 4 months 

that lasted the experimental period. For a given batch culture, the bacterial 16S rRNA gene was the most 

abundant and the least fluctuant (Fig. 2). Average values in the enrichments ranged from 2.5 ±0.2·10
6
 to 1.0 

±0.2·109 copies/mL depending on the inoculum source and the NO2
- supply strategy applied. Concerning the 
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anammox hzo gene, it was quantified from the beginning of the experiment in all inoculums (Table 1), and a 

significant increase throughout the enrichment was evidenced in those cases where NO2
-
 was initially 

supplied at low concentration (Fig. 2). Conversely, that was not the case when NO2
-
 was initially supplied at 

high concentration. Thus, at day 0, the hzo gene copy number in the enrichments started at low NO2
- 

concentration ranged from 3.3 ±0.3·10
4
 to 1.2 ±0.3·10

5
 copies/mL, and after 4 months reached values from 

1.1 ±0.1·10
6
 to 1.5 ±0.1·10

7
 copies/mL. At that time, it was also evidenced a positive correlation between the 

hzo gene copy number and the anammox activity (Fig. 3), similarly as previously reported by Tsushima et al. 

[29] using primers targeting the 16S rRNA gene of the anammox bacteria, and although there was no evident 

link between the hzo gene copy number in the inoculum at day 0 and the time of anammox activity 

appearance (Table 1). Lack of linkage between the initial hzo gene copy number and the time of anammox 

activity appearance suggests that other factors besides the initial anammox biomass concentration (measured 

as hzo gene copy number) determined the time when such activity became evident macroscopically. Among 

these factors, we might include competition for substrate, coexistence of the anammox bacteria with other 

microbial populations, and change of the growing anammox species (see section 3.3). In this regard, 

mineralization of organic-N forms and denitrification could have masked an earlier detection of anammox 

activity. Furthermore, Tao et al. [24] pointed out dependence of the lag phase length not only on the initial 

biomass concentration but also on other ecological characteristics of the inoculum used and concluded that 

an evenly distributed community benefits the start-up of the anammox process with shorter times and higher 

activities. Yet, differences exist between these findings and our study; i.e., we dealt with inoculums with 

much lower initial relative abundances of anammox bacteria and also we observed a change of the growing 

anammox species during the enrichment process (see section 3.3). On the other hand, final hzo gene copy 

numbers were below 2.0 ±0.2·10
5
 copies/mL in all cultures started at high NO2

-
 concentration.  

 

3.3. Microbial community structure and dynamics during the enrichment 

 

The 16S rRNA high-throughput DNA sequencing was performed for all inoculums (I1-I6) at initial time (t0 

= 0 months) and final time (t4 = 4 months) when the enrichment was started at low NO2
-
 (LN) and high NO2

-
 

(HN) concentrations, and for I3 at all times (t0-t4) and NO2
-
 supply conditions (LN, HN). Reads obtained 

yielded between 1933 and 22475 high-quality sequences per sample that made up to 633 OTUs. A 



  

13 

systematic random depletion was applied on the different datasets to equalize the number of sequences per 

sample; i.e., dataset for all inoculums including samples at initial and final time (18 samples) was adjusted to 

11058 sequences per sample whereas dataset for I3 including samples at all times (9 samples) was adjusted 

to 1933 sequences per sample. The representativeness and identification of these OTUs was analysed to 

better understand the process of anammox enrichment. 

 

3.3.1. Evolution of the microbial communities 

 

The diversity indices reported in Table 2; i.e., Shannon-Weaver, Simpson, and Inverse Simpson, globally 

show a systematic decrease of the microbial diversity throughout the enrichment (average index reductions 

for the cultures started at low NO2
-
 concentration of 25.7 ±4.5%, 8.8 ±3.4%, and 67.9 ±14.3%, respectively). 

In addition, both the species richness and Pielou’s evenness decreased in this period (average reductions for 

the cultures started at low NO2
-
 concentration of 30.2 ±7.6% and 20.5 ±4.7%, respectively). These data may 

imply concomitant disappearance of some species and larger segregation between the low and highly 

represented taxons [60-61]. The impact seems to be more important when the enrichment was started at low 

NO2
-
 concentration (Table 2). No relation was found between the initial microbial diversity and the 

effectiveness of the anammox enrichment in terms of both time required and final activity achieved. 

 

Statistical analysis of the microbial community structure evolution was also performed through the NMDS 

method. For a given inoculum, the evolution of the microbial community was different depending on the 

NO2
-
 supply strategy applied during the enrichment. Relative differences in the composition of both 

microbiomes (enrichments started at low vs. high NO2
-
 concentration) over time were evidenced as it is 

shown for the bottle seeded with I3 in Fig. 4. Thus, although both microbiomes evolved similarly with a 

diminution in the diversity throughout the enrichment, divergence in the microbial community structure 

progressively increased and was maximal after 4 months of enrichment. Such divergence included the 

enrichment of anammox bacteria only under conditions of initially low NO2
- concentration. In addition, the 

NMDS analysis also revealed that, despite the significant relative differences in the composition of the 

microbial community concerning the inoculums used in this study, the enrichment conditions applied forced 

the convergence of such communities (Fig. 5). The most similar microbial community structures were 
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observed for those inoculums coming from systems treating the same kind of wastewater; i.e., municipal (I1, 

I4, and I5) vs. pig slurry (I2, I3, and I6), at both initial and final time. The clear trend to converge 

independently of the inoculum source and the feeding strategy applied indicates the high selective pressure 

exerted by the experimental conditions here implemented. 

 

3.3.2. Description of the microbial community structures 

 

As aforementioned, the microbial community structure in the batch cultures evolved significantly throughout 

the enrichment. However, main phyla detected in inoculums such as Proteobacteria, Bacteroidetes, 

Firmicutes, Chloroflexi, Chlorobi, Acidobacteria, and Planctomycetes were also present at the end of the 

enrichment period (Fig. 6A-6B; Table 3 and 4). The phylum Proteobacteria, which is commonly found in 

wastewater treatment bioreactors, anaerobic digesters, and soils [62-64] was one of the most predominant at 

both initial time (relative abundances of 10.3-46.7%) and final time (relative abundances of 23.9-55.5%). For 

those enrichments started at low NO2
-
 concentration, the evolution of this phylum in terms of abundance was 

dependent on the inoculum source. Thus, the proportion of sequences belonging to this phylum followed an 

increase of 93.1 ±60.4% (in average) for those inoculums coming from pig slurry treatment plants (I2, I3 and 

I6) whereas followed a decrease of 19.6 ±16.0% (in average) for those inoculums coming from municipal 

WWTPs (I1, I4, and I5). On the other hand, for those enrichments started at high NO2
-
 concentration, the 

abundance of sequences belonging to this phylum increased at an average rate of 55.9 ±37.9% regardless the 

inoculum source. For I3 (Fig. 6B), the increased proportion of Proteobateria is essentially attributable to the 

evolution of genera belonging to the class Betaproteobacteria and family Rhodocyclaceae (OTUs 2 and 11) 

that contain several denitrifying species; e.g. Azoarcus. Bacteroidetes was another of the most represented 

phyla at initial time with proportions ranging from 6.1% to 30.9% in I2 and I6, respectively. However, 

despite this initial high abundance, a systematic reduction was observed regardless the inoculum source and 

feeding strategy applied, with final relative abundances lower than 2.7%. This is not surprising since the 

phylum Bacteroidetes contains both aerobic and anaerobic bacteria such as Sphingobacteriales and 

Bacteroides, respectively. In the case of I3 (Fig. 6B), the reduced proportion of Bacteroidetes is clearly 

linked to the disappearance of OTU 4 identified as a Sphingobacteriales Saprospiraceae. Conditions applied 

during the anoxic enrichment including the progressive abatement of residual organic compounds may be the 
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cause of the depletion of this widespread phylum [62-64]. Concerning the phylum Firmicutes, relative 

abundance of sequences belonging to this phylum (0.7-18.6%) was higher for those inoculums coming from 

pig slurry treatment facilities than for those others coming from municipal WWTPs; i.e., 12.7 ±6.2% vs. 1.0 

±0.2% in average, respectively. The corresponding quantitative evolution was slightly different depending on 

the NO2
-
 supply strategy. The coexistence of bacteria belonging to the phylum Chloroflexi is usually reported 

in anammox reactors being suggested that they can use decaying anammox bacterial cell materials [65]. 

Here, the evolution of this phylum (initial relative abundances of 2.1-12.9%) was highly variable ranging 

from 67.7% decrease to 302.4% increase for I2 enriched at initially low NO2
-
 concentration and I6 enriched 

at high NO2
-
 concentration, respectively. Sequences corresponding to the phylum Chlorobi (initial relative 

abundances of 0.1-9.3%) represented from 1.8% to 14.1% of total sequences at final time for I6 and I1, 

respectively. Concerning the phylum Acidobacteria, final relative abundance was lower than 4.0% in all 

cases. Planctomycetes, which contains all known anammox genera, did not become dominant in any of the 

enrichments that developed anammox activity (final relative abundances ranged from 0.6% to 7.7% for I4 

and I1, respectively), which is in accordance with other microbial characterizations performed in anammox 

dedicated reactors [34-35]. Within this group, the final relative abundance of sequences belonging to 

anammox species was between 31.7% and 75.3% for I2 and I1, respectively. For I3 (Fig. 6B), a significant 

enrichment of OTU 1 belonging to phylum Armatimonadetes (formally called the candidate phylum OP10) 

was observed (similarly for other inoculums). Species belonging to the phylum Armatimonadetes have been 

detected in different natural environments such as the Obsidian Pool in Yellowstone National Park and 

freshwater lakes and rivers [66]. However, the reason of their enrichment in this study is not clear. OTU 36 

was identified as Candidatus_Brocadia. In addition, 6 OTUs listed in Table 4 (from a total of 15) were 

identified as identical to sequences retrieved from anammox systems and 2 other OTUs were related to 

sequences retrieved from N-removal systems. This fact suggests that the conditions applied to perform the 

enrichment also favoured selection of other specific microbial groups that could either behave as partners or 

competitors of the anammox bacteria. 

 

3.3.3. Anammox genera 

 

Concerning the presence of anammox genera in the inoculums at initial time, Ca. Brocadia, Ca. Kuenenia, 
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Ca. Anammoximicrobium and Ca. Jettenia were all detected (Fig. 7), although with an important disparity in 

terms of distribution and relative abundance. Thus, for instance, these four genera were detected together in 

I3 but not in the other inoculums. Otherwise, any of these genera were detected in I1. Ca. Jettenia was only 

detected when DNA samples were first amplified by means of selective PCR using Planctomycetes primers, 

which allowed lowering the detection threshold but preclude their relative quantification (Fig. 7). Before 

enrichment, higher relative abundances were measured for Ca. Anammoximicrobium in I4 and I5 (lagoon 

WWTP), with 0.27% and 0.37%, respectively, of the total sequences. In fact, this anammox genus (which 

was recently described) may grow optimally at temperatures around 20°C [7]. On the other hand, the genus 

Ca. Brocadia (maximum initial relative abundance of 0.011% for I3) became dominant at the end of the 

enrichment period regardless of the inoculum considered, with relative abundances ranging from 1.0 to 6.1% 

of the total sequences. Thus, similarly to Costa et al. [34], the obtained results indicated that while the type of 

inoculum and the culture conditions are both key determinants of the global microbial composition of the 

enriched biomass, the operational conditions alone determined the selection of the anammox species. The 

niche differentiation between Ca. Brocadia and other anammox genera often dominant in enrichments 

performed at lab-scale such as Ca. Kuenenia is still not clear. According to several studies [36, 67-69], the 

genus Ca. Brocadia would presumably be an r-strategist (i.e., relatively high growth rate and low substrate 

affinity), while the genus Ca. Kuenenia could be a K-strategist (i.e., relatively low growth rate and high 

substrate affinity). In this study, the feeding of the enrichments was based on the intermittent supply of 

substrates which would favour the proliferation of an r-strategist population. 

 

Overall, our findings showed that anammox bacteria were ubiquitous in all the inoculums collected from 

different waste/water treatment environments which made feasible their eventual enrichment in batch under 

controlled conditions. However, such enrichment was only achieved when the process was started at low 

NO2
-
 concentration (≤ 25 mg NO2

-
-N/L) evidencing the importance of carefully controlling the conditions 

applied (i.e., substrate concentration). The procedure used prompted the enrichment of the anammox genus 

Ca. Brocadia regardless of the inoculum source. A higher initial anammox biomass concentration (measured 

as hzo gene copy number) did not necessarily imply a faster process start-up. Thus, other physicochemical 

and ecological characteristics of the inoculum affected the evolution of the enrichment since they determined 

issues such as the competition for substrate, coexisting microbial groups, dominant anammox species, and 
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associated relative abundances at the beginning of the process. 

 

 

4. CONCLUSIONS 

 

The effect of NO2
-
 supply during the batch enrichment (4 months) of anammox sludge was investigated 

using six different biomass sources. Concerning the mineral medium used as feeding solution, two different 

NO2
-
 supply strategies were applied; i.e., (i) initially low concentration at 25 mg NO2

-
-N/L and progressive 

increase to 150 mg NO2
-
-N/L, and (ii) constant high concentration at 150 mg NO2

-
-N/L. 

• All tested inoculums developed anammox activity only when the enrichment was started at low NO2
- 

concentration. In such case, the final specific NH4
+
 conversion rate was measured within the range 

from 21 to 118 mg NH4
+
-N/g VS/d. 

• Abundance of the hzo functional gene showed positive correlation with the anammox activity finally 

reported. 

• The biomass source, a conditioning pretreatment, and the cultivation conditions applied were 

determinant factors of the final microbial composition of the enrichments despite a clear 

convergence at the end of the experimental period. However, the cultivation conditions alone 

determined the selection of anammox species belonging to the genus Ca. Brocadia. 
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TABLES 

 

Table 1. Results of the anammox activity test at the end of the 4-month enrichment period when process was 

started at low nitrite concentration and comparison with the day of activity appearance and initial hzo gene 

copy number. 

Inoculum 

(source) 

Activity 

appearance 

ACR a sACR TNCR NO2
--N/NH4

+-N Initial hzo gene 

copy number 

 
(days) (mg NH4

+-N/L/d) (mg NH4
+-N/g VS/d) (mg N/L/d) (-) (copies/mL) b 

I1 (WWTP) 43 222 ±2 118 ±1 560 ±11 1.53 ±0.03 6.3 ±1.4·104 

I2 (PSTP) 92 60 ±9 42 ±6 160 ±25 1.67 ±0.01 1.2 ±0.3·105 
I3 (PSTP) 0 164 ±6 62 ±2 373 ±17 1.28± 0.02 5.2 ±0.8·104 

I4 (LWWTP) 57 78 ±1 26 ±0 208 ±8 1.64 ±0.08 3.3 ±0.3·104* 

I5 (LWWTP) 43 84 ±4 21 ±1 238 ±14 1.83 ±0.02 5.4 ±0.9·104* 
I6 (LPSTP) 77 162 ±12 70 ±5 370 ±37 1.28 ±0.05 1.1 ±0.2·105 

a ACR: ammonium conversion rate. sACR: specific ACR. TNCR: total nitrogen conversion rate. WWTP: wastewater treatment plant. 

PSTP: pig slurry treatment plant. LWWTP: lagoon WWTP. LPSTP: lagoon PSTP. 
b Quantification of those samples labelled with * was carried out at the detection limit. 
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Table 2. Diversity indices for the six tested inoculums (I1-I6) at initial time (t0 = 0 months) and final time (t4 = 4 months) when the enrichment was started at low 

nitrite (LN) and high nitrite (HN) concentrations. 

 
I1   I2   I3   I4   I5   I6   

Indices t0 t4-LN t4-HN t0 t4-LN t4-HN t0 t4-LN t4-HN t0 t4-LN t4-HN t0 t4-LN t4-HN t0 t4-LN t4-HN 

Shannon-Weaver 4.02 2.99 3.15 4.22 2.92 3.44 4.24 3.52 4.03 3.91 2.83 3.21 4.40 3.10 3.44 4.07 3.10 3.43 

Simpson 0.96 0.89 0.87 0.97 0.88 0.94 0.96 0.93 0.97 0.95 0.83 0.92 0.98 0.85 0.93 0.97 0.90 0.93 

Inverse Simpson 28.0 8.77 7.55 36.3 8.19 15.7 23.2 14.3 30.2 20.6 5.88 12.1 40.8 6.87 14.5 31.4 9.88 14.2 

Species richness 245 165 187 255 163 209 358 235 287 262 177 199 303 206 221 239 207 226 

Pielou’s evenness 0.73 0.59 0.60 0.76 0.57 0.64 0.72 0.64 0.71 0.70 0.55 0.61 0.77 0.58 0.64 0.74 0.58 0.63 
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Table 3. Relative abundances (% of total sequences) at the phylum level in the six tested inoculums (I1-I6) at initial time (t0 = 0 months) and final time (t4 = 4 

months) when the enrichment was started at low nitrite (LN) and high nitrite (HN) concentrations. “Others” includes all groups with relative abundance <1%. 

 
I1 

  
I2 

  
I3 

  
I4 

  
I5 

  
I6 

  

 
t0 t4-LN t4-HN t0 t4-LN t4-HN t0 t4-LN t4-HN t0 t4-LN t4-HN t0 t4-LN t4-HN t0 t4-LN t4-HN 

Euryarchaeota 0.09 0.04 0.07 0.18 0.20 0.25 0.59 0.15 0.43 0.14 0.05 0.13 0.42 0.30 0.38 1.90 0.58 0.95 

Acidobacteria 3.74 0.43 2.18 1.43 1.10 1.26 0.62 1.95 2.04 1.08 1.49 1.63 1.74 2.32 0.94 0.08 2.00 0.77 

Actinobacteria 5.29 1.01 4.00 5.47 0.32 3.04 0.86 1.65 2.60 0.30 0.55 0.75 0.49 1.12 1.29 0.04 0.82 1.22 

Armatimonadetes 6.33 24.43 15.59 4.72 26.41 9.98 3.18 20.35 4.79 2.61 38.50 14.48 2.66 35.48 9.61 5.37 21.45 15.32 

Bacteroidetes 13.07 0.95 0.48 6.13 0.99 0.51 29.75 2.13 2.58 7.12 0.44 0.53 4.98 1.38 1.36 30.87 2.42 2.71 

Candidate_division_JS1 * * 0.01 0.70 0.10 1.02 0.36 0.09 0.29 * * * * * * 2.44 1.50 2.42 

Chlorobi 2.93 14.12 3.46 3.50 4.41 8.73 0.19 4.75 2.55 9.26 5.36 4.32 4.73 5.29 4.92 0.09 2.85 1.82 

Chloroflexi 12.90 11.15 7.31 12.78 4.12 9.36 6.62 11.39 12.77 12.59 6.80 7.46 9.37 10.10 10.03 2.07 4.80 8.34 

Deinococcus-Thermus * 0.03 2.31 8.75 0.88 4.83 1.37 0.64 2.64 * 0.54 7.55 * 0.05 0.68 0.86 1.99 2.77 

Firmicutes 1.22 1.57 0.80 13.21 13.47 13.39 6.27 10.73 10.00 0.97 0.88 0.75 0.69 0.30 0.29 18.56 25.95 26.56 

Gemmatimonadetes 1.24 0.96 3.11 1.44 0.58 2.50 1.90 0.91 5.77 0.44 0.58 1.63 0.59 2.18 5.27 * 0.38 0.51 

Nitrospirae * * * 0.00 * * 0.00 * * 0.54 0.09 0.25 1.07 0.70 0.38 * * * 

Planctomycetes 4.54 7.68 3.74 4.19 2.95 1.73 2.62 5.97 4.26 1.47 1.74 0.62 2.57 3.39 0.71 0.45 1.44 3.08 

Proteobacteria 32.47 31.68 49.15 22.04 39.40 36.43 25.07 31.94 37.40 45.24 38.28 53.77 46.71 27.61 55.55 10.30 28.14 23.86 

SHA-109 * 0.27 * * 0.01 * 0.01 * 0.01 * 0.37 0.08 * 0.34 0.06 * * 1.49 

Spirochaetae * * * * * * 0.00 * * * * * * * 0.01 2.95 0.01 * 

Tenericutes * * * * * * 0.04 * 0.01 * * * * * * 1.36 0.01 * 

Others 16.18 5.69 7.78 15.45 5.05 6.96 20.56 7.33 11.88 18.27 4.32 6.04 23.97 9.45 8.53 22.65 5.69 8.16 

* Relative abundance <0.01%. 
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Table 4. Identification of the main operational taxonomic units (OTUs) presented in Fig. 6 and source of their closest relative sequences. 

OTU Identification 

(RDP-II) 

Closest relative sequence 

(BLAST) 

Accession 

number 

Similarity 

(%) 

Source of the closest relative sequence 

1 Bacteria; Armatimonadetes; 

Armatimonadetes_grp5 

clone AMX001BXFT7 LC094877 99 Sludge from an anammox UASB reactor 

2 Bacteria; Proteobacteria; Betaproteobacteria; 

Rhodocyclales; Rhodocyclaceae; Azoarcus 

Azoarcus sp. PA01 16S rRNA KT784536 99 Unknown 

3 Bacteria; Proteobacteria; Betaproteobacteria; 

Burkholderiales; Burkholderiaceae 

clone AMX001BA4AW LC094801 99 Sludge from an anammox UASB reactor 

4 Bacteria; Bacteroidetes; Sphingobacteriia; 

Sphingobacteriales; Saprospiraceae 

clone E7-201bp  KJ993903 99 Earthworm gut 

5 Bacteria; Firmicutes; Clostridia; Clostridiales; 

Clostridiaceae_1; Clostridium_sensu_stricto_1 

DGGE gel band RB2-79 KT835589 99 SBRs performing N-removal via nitrite treating 

swine wastewater 

10 Bacteria; Gemmatimonadetes; 

Gemmatimonadetes; Gemmatimonadales; 

Gemmatimonadaceae; Gemmatimonas  

clone SEAB1AA061 KC432372 99 Wetland 

11 Bacteria; Proteobacteria; Betaproteobacteria; 

Rhodocyclales; Rhodocyclaceae 

clone L1A.6H12 AY989011 97 Soil 

12 Bacteria; Chlorobi; Ignavibacteria; 

Ignavibacteriales 

clone AMX001CIOAL LC094916 99 Sludge from an anammox UASB reactor 

18 Bacteria; Proteobacteria; 

Gammaproteobacteria ; unclassified 

clone MISEQ01_89 KP356069 99 Biofilm in a bioelectrochemical system  

19 Bacteria; Bacteroidetes; unclassified cloneAMX001B2NAV LC094861 99 Sludge from an anammox UASB reactor 

21 Bacteria; Chloroflexi; Anaerolineae; 

Anaerolineales; Anaerolineaceae 

clone HAD103 HG380607 99 Simultaneous autotrophic and heterotrophic 

denitrification process 

36 Bacteria; Planctomycetes; Planctomycetacia; 

Brocadiales; Brocadiaceae; 

Candidatus_Brocadia 

Candidatus Brocadia sinica clone 
MBR_day_30  

KT023580 99 Anammox biomass in a membrane bioreactor 

63 Bacteria; Bacteroidetes; unclassified clone B252 KJ730164 99 Biogas digester sediment 

74 Bacteria; Chloroflexi; Anaerolineae; 

Anaerolineales; Anaerolineaceae 

clone: AMX001C54CS LC094933 99 Sludge from an anammox UASB reactor 

128 Bacteria; Acidobacteria; unclassified DGGE band ANAMMOX11 AM900571 99 Anammox batch culture 
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FIGURE CAPTIONS 

 

Fig. 1. Example of evolution of the N-forms throughout the 4-month experimental period in the bottle seeded 

with I1 when process was started at (A) low nitrite concentration and (B) high nitrite concentration. 

 

Fig. 2. Average copy number of bacterial 16S rRNA and anammox hzo genes throughout the 4-month 

experimental period in the bottle seeded with I1 when process was started at (A) low nitrite concentration 

and (B) high nitrite concentration. Error bars represent ± standard deviation. 

 

Fig. 3. Correlation between the ammonium conversion rate (ACR) and the hzo gene copy number at the end 

of the enrichment period (4 months) in the 6 batch cultures positive in anammox activity. 

 

Fig. 4. Non-metric multidimensional scaling (NMDS) plot showing the evolution of the microbial 

community structure in both bottles seeded with I3 throughout the 4-month experimental period. Circles 

correspond to the bottle started at low nitrite concentration whereas squares correspond to the bottle started at 

high nitrite concentration. Numbers inside circles and squares indicate the experimental time elapsed (in 

months). 

 

Fig. 5. Non-metric multidimensional scaling (NMDS) plot showing the evolution of the microbial 

community structure for all the inoculums tested (1-6) throughout the 4-month experimental period. 

Triangles correspond to initial time, circles correspond to final time for cultures started at low nitrite 

concentration and squares correspond to final time for cultures started at high nitrite concentration. 

 

Fig. 6. Evolution of the microbial community structure level in both bottles seeded with I3 (LN: process 

started at low nitrite concentration, HN: process started at high nitrite concentration) throughout the 4-month 

experimental period (t0-t4). Analysis was performed (A) at the phylum level and also (B) at the genus level. 

Abbreviations: Arc, Euryarchaeota; B<1%, sum of all operational taxonomic units (OTUs) with relative 

abundance <1%; A/A, Actinobacteria/Acidobacteria; Bc, Bacteroiedetes; Cb, Chlorobi; Cx, Chloroflexi; D, 

Deinococcus-Thermus; F, Firmicutes; G, Gemmatimonadetes; A, Armatimonadetes; Pl, Planctomycetes; 
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Proteobacteria (α, Alphaproteobacteria; β, Betaproteobacteria; δ, Deltaproteobacteria; γ, 

Gammaproteobacteria); u, unknown. * is for Candidatus_Brocadia. Main OTUs are numbered and identified 

in Table 4. 

 

Fig. 7. Percentage of sequences related to anammox genera in the enriched inoculums (I1-I6) at initial time 

(t0 = 0 months) and final time (t4 = 4 months). Only cultures started at low nitrite concentration are included. 

*, not detected when high-throughput sequencing was performed on DNA extracts using “universal” 16S 

rRNA primers and neither when sequencing was performed using PCR products obtained using 

Planctomycetes primers. **, only detected when sequencing was performed using PCR products obtained 

using Planctomycetes primers, so relative abundance cannot be quantified (<0.009%). 
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HIGHLIGHTS 

 

• Effect of nitrite supply during batch enrichment of anammox sludge was investigated. 

• Anammox activity was only developed when starting at low nitrite concentration. 

• Final abundance of the hzo gene and anammox activity were positively correlated. 

• Inoculum and enrichment conditions determined final microbial community structure. 

• Enrichment conditions prompted selection of anammox species belonging to Ca. Brocadia. 

 

 


