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Abstract

Quantum gravitational effects in black hole spacetimes with a cosmological constant

Λ are considered. The effective quantum spacetimes for the black holes are constructed

by taking into account the renormalization group improvement of classical solutions ob-

tained in the framework of Unimodular Gravity (a theory which is identical to General

Relativity at a classical level). This allows us to avoid the usual divergences associated

with the presence of a running Λ. The horizons and causal structure of the improved

black holes are discussed taking into account the current observational bounds for the

cosmological constant. It is shown that the resulting effective quantum black hole

spacetimes are always devoid of singularities.
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1. Introduction

The pioneering works on gravitational collapse in the framework of General Relativity (GR)

(see, for instance, [1] [2]) seemed to show that, under the appropriate circumstances, the

formation of black holes was unavoidable. Moreover, black holes appeared to be accompanied

of an inner singularity, something that was later backed up with the development of the

singularity theorems [3]. However, the formation of singularities (where GR cannot longer
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be used) has been considered by many as a weakness of the theory rather than as a real

physical prediction. In fact, it is usually expected that the inclusion of quantum theory in

the description of black holes could avoid the existence of their singularities. Indeed, some

paradigms and heuristic models of non-singular Black Holes inspired in different approaches

to Quantum Gravity have appeared in the recent literature (see, for example, [4–10] and

references therein).

One of the most promising approaches to a consistent and predictive quantum theory of

the gravitational field is Asymptotic Safety (AS) which was proposed by Steven Weinberg

in 1976 [11]. AS requires the existence of a non-trivial fixed point of the theory’s renormal-

ization group which controls the behaviour of the coupling constants. In this way, physical

quantities could be safe from divergences in the ultraviolet regime, without being perturba-

tively renormalizable. In the nineties, the advent of new functional renormalization group

methods made possible the construction of an effective average action Γk (that depends on

the energy scale k under consideration) and the associated flow equation for the gravitational

field [12]. Since then, a variety of nonperturbative computations has been carried out in this

framework [12–15] now known as Quantum Einstein Gravity (QEG) (see, for example, [16]

for a review).

Among the non-perturbative computations within the QEG framework let us mention

those using the Einstein-Hilbert truncation in which one takes into account only two cou-

plings: Newton’s constant G(k) and the cosmological constant Λ(k). If one considers a four

dimensional spacetime and momentarily puts aside Λ one gets [12] a flow equation for the di-

mensionless Newton constant g(k) [≡ k2G(k)] from which one finds a non-trivial fixed point

g∗ ∈ <+. In this way, as the energy scale grows, one gets that the gravitational coupling

weakens, i.e., G(k) → 0 (what can be justified as an antiscreening effect produced by the

gravitons [17]). It would seem that a natural consequence of this could be the avoidance of

the classical singularity in the interior of black holes [4]2. However, in the Einstein-Hilbert

truncation one must also take into account that Λ(k) also runs. If one considers the flow

equations for g(k) and the dimensionless cosmological constant λ(k) [≡ k−2Λ(k)] one gets

a non-trivial fixed point (g∗, λ∗) with λ∗ ∈ <+. Therefore, as the energy scale grows, one

gets Λ(k) → ∞. Not surprisingly, when black holes are studied taking into account both

the effects of the running Newton constant and the running cosmological constant one finds

that the black hole singularity is reintroduced no matter the specific approach used to get

the BH spacetime [20–23].

In this paper, we try to show that this conclusion can be avoided if one adopts the

Unimodular Gravity (UG) approach. UG is a classical gravitational theory that imposes the

2In fact, this true even if the number of dimensions is bigger than 4 [18] [19].
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metric of the spacetime to satisfy √
−det(gµν) = ε0,

where ε0 is a fixed scalar density. This has the effect of reducing the gauge symmetry from full

spacetime diffeomorphism invariance (GR) to invariance only under diffeomorphisms that

preserve this non-dynamical fixed volume element. As a matter of fact, UG was initiated

by Einstein in [24] where he included the condition det(gµν) = −1 and he stressed that this

condition was simply a choice of coordinates made for convenience. Indeed, if one starts with

an unimodular action in which the unimodular condition is imposed from the beginning,

then the resulting field equations correspond to the traceless Einstein equations [25] [26].

By using the Bianchi identity and the conservation of the energy-momentum, it can easily

be shown that the traceless equations are equivalent to the full Einstein equations with a

cosmological constant term, Λ, entering as an integration constant. Thus the equivalence of

GR and UG at a classical level is made manifest. Nevertheless, the status of the cosmological

constant is now different: while it was a coupling in the Einstein-Hilbert action, now it is

just a constant of integration arising at the level of the equations of motion. (Incidentally, it

has been noted [25] that this is remarkable since it solves one of the cosmological constant

puzzles, namely, the naturalness problem which wonders why is Λ not of the order of the

natural value m2
Planck).

The new status of Λ in Unimodular Gravity suggests that at a quantum level the dif-

ferences between GR and UG could be drastic. In effect, recent studies [25] [27] [28] [29]

indicate that the cosmological constant in Unimodular Gravity would be generated, but

quantum corrections would not renormalize the classical value of the observable. Thus,

there would be a fixed Λ providing a scale to the spacetime3. Moreover, G would become an

essential coupling [29]. In our view, this could also be a very interesting feature in favor of

the UG approach since this would show that the theory could be devoid of the unwelcome

infinite quantities arising from a running Λ.

In the case of UG the AS approach leads to what is known as Unimodular Quantum

Gravity (UQG) [28]. Our aim in this paper is to study black hole spacetimes by improving the

classical unimodular solutions using the UQG approach. We will analyze the characteristics

of these spacetimes including their horizons, causal structure and, specially, their regularity.

The article is divided as follows. Section 2 is devoted to the study of the classical

unimodular black holes. In sect.3 the running of the Newton constant as a function of

the energy scale G(k) is obtained in the framework of UQG. A proper cutoff identification

provides us with its dependence on the radial distance “ρ” to the black hole center G(ρ). The

3But Λ will not explicitly appear in the effective average action.
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quantum improved spacetime metric is deduced from this result in sect.4 and its properties

are studied in sect.5. Finally, sect.6 is devoted to the conclusions.

2. Classical Unimodular Black Hole

In the framework of GR the solution for spherically symmetric black holes characterized by

their mass m and the presence of a cosmological constant Λ is known as the Schwarzschild-

de Sitter solution [30]. A simple coordinate change allows us to write the Schwarzschild-de

Sitter metric in unimodular form (see the appendix A) as

ds2 = −f(ρ)dt2 +
1

(3ρ)4/3f(ρ)
dρ2 + (3ρ)2/3

[
dx2

1− x2
+ (1− x2)dφ2

]
, (2.1)

where

f(ρ) = 1− 2G0m

(3ρ)1/3
− Λ

3
(3ρ)2/3, (2.2)

G0 is the usual Newton’s gravitational constant and here (as in the rest of the paper) we

are using units in which c = ~ = 1. The coordinate ρ has the dimensions of a volume and

it is related to the area A of the round spheres (t, ρ constant) through the relationship

A3 = 576π3ρ2. This metric has trivial coordinate singularities at the solutions of f(ρ) = 0

and at x = ±1. More importantly the metric has a well-known unavoidable curvature

singularity at ρ = 0. The fact that t does not appear in the metric coefficients (i.e., t is a

cyclic coordinate) implies that there is a killing vector ~k = ∂/∂t. A proper study reveals

that this killing vector becomes light-like at f = 0, what implies the existence of a horizon.

It can be checked that there are two real positive roots of the cubic equation f(ρ) = 0

whenever 0 < 9ΛG2
0m

2 < 1 which correspond to a black hole horizon ρBH and a (classical)

cosmological horizon ρCC . These two roots can be written as

ρBH =
8

3

sin3 Ψ

Λ3/2
(2.3)

ρCC =

√
3

Λ3

(
cos Ψ− 1√

3
sin Ψ

)3

, (2.4)

where sin(3ψ) ≡ 3G0m
√

Λ. It is easy to show [31] that for 0 < ρ < ρBH and for ρ > ρCC

the round spheres (t, ρ constant) are closed trapped surfaces (i.e., ρBH and ρCC are also

apparent 3-horizons). A plot of f showing the existence of these two horizons in a particular

0 < 9ΛG2
0m

2 < 1 case can be seen in fig.1.

Taking into account the current observational value for the cosmological constant 0 ≤
Λ . 10−52 m−2 and that the biggest observed (supermassive) black holes have Schwarzschild
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Figure 1: A plot of f as a function of ρ̃ ≡ 3(G0m)−3 ρ for the particular case ΛG2
0m

2 =

3 · 10−24 (around the value corresponding to the biggest supermassive black hole

currently known). A logarithmic scale has been used for the abscissa. In this case,

the roots of f provide us with the BH horizon ρ̃BH and the cosmological horizon

ρ̃CC . By using (2.2) one gets that the maximum of f is fmax = 1 − (9ΛG2
0m

2)1/3.

This means that, in practice, even for this supermassive BH the function f has its

maximum very close to 1 (specifically at fmax = 1 − 3 · 10−8). A particle describing

a radial geodesic with an energy per unit mass Ẽ satisfying Ẽ2 > fmax will be able

to travel from an initial ρ0 satisfying ρBH < ρ0 < ρCC either to ρ = 0 or to ρ → ∞.

However, for Ẽ2 < fmax a particle traveling in a radial geodesic will be bounded either

by 0 < ρ < ρ1 or by ρ2 < ρ < ∞, where ρ1,2 are the solutions of Ẽ2 = f satisfying

0 < ρ1 < ρ2. (In all cases, when a particle is in the BH region (ρ < ρBH) its radial

position must decrease with time, while in the cosmological region (ρ > ρCC) its radial

position must increase with time).
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radius of the order of RS . 1014 m [32], one has 0 < 9ΛG2
0m

2 < 10−24 � 1, so that the case

with two horizons seems to be the only relevant one in practical terms. Moreover, in this case

it is easy to check that the value obtained for the position of the BH horizon corresponds,

within a very good approximation, to that of the Schwarzschild black hole horizon (Λ = 0)

since

ρBH '
8

3
G3

0m
3(1 + 4ΛG2

0m
2) ' 8

3
G3

0m
3. (2.5)

On the other hand, the position of the cosmological horizon would be approximately the

position that would be obtained for a de Sitter cosmological horizon (m = 0) since

ρCC '
1

3

(√
3

Λ
−G0m

)3

'
√

3

Λ3
. (2.6)

3. Running Newton constant in UQG

As stated in the introduction, UQG aims to find an UV complete theory of Unimodular

gravity in the context of Asymptotic Safety. One way to achieve this is by imposing the

condition
√
−det(gµν) = ε0 in the action and the path integral, what reduces the dynamical

variables (when compared to the GR case) [33] [28] [29]. The main steps in Unimodular

gravity were described in [28] and later improved and generalized in [29]. A summary of

the procedure would be as follows. The effective average action Γk for gravity satisfies the

following Wetterich-type [34] Functional Renormalization Group Equation (FRGE) [12]

∂tΓk =
1

2
STr

[
(Γ

(2)
k +Rk)

−1∂tRk

]
, (3.1)

where ∂t = k∂k, STr is the super-trace (over all fields, indices and an integral over spacetime),

Γ
(2)
k is the second functional derivative of Γk with respect to the dynamical fields and Rk

is an infrared mass-like regulator that suppresses IR modes with p2 < k2 in the generating

functional. In order to follow the background field formalism [35] one has to split the

metric into background and fluctuation field and adapt this to the unimodular setting. In

addition, one has to introduce a background field gauge fixing condition Sgf and a Faddeev-

Popov ghost sector Sgh in the effective average action with both Sgf and Sgh adapted to the

unimodular condition [28].

If one assumes that there is a set of basis functionals spanning the theory space, one

could write Γk as a linear combination of an infinite number of the basis functionals, being

the coefficients the scale dependent couplings. Then, by using the FRGE one would obtain

a system of infinitely many coupled differential equations that would be too hard to solve in
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general. The usual way out is to restrict the analysis to a finite-dimensional subspace of the

full theory space. Here we are considering a truncation with the form

Γk = − k2

16πg(k)

∫
d4x ε0R + Sgf + Sgh. (3.2)

By using (3.2) together with a proper regulator Rk [36] in (3.1) one gets the flow equation

for the dimensionless Newton constant g in UQG [28]

∂tg = β(g), (3.3)

where

β(g) = 2g +
g2 A1

A2 − A3g

and Ai (i = 1, 2, 3) are constants4. This can also be rewritten for our purposes as

β(g) = 2g

(
1− ωg
1−Bg

)
, (3.4)

where ω ≡ (2A3 − A1)/(2A2) and B ≡ A3/A2. The flow equation has two critical points.

In one hand, the Gaussian fixed point g∗ = 0 and, on the other hand, the more interesting

non-Gaussian fixed point g∗ = 1/ω (which suggests that UQG could be an UV complete

quantum theory of gravity).

The integration of (3.3) using (3.4) between a reference energy scale k0 and the energy

scale k leads us to
g(k)

k2(1− g(k)ω)ζ
=

g(k0)

k20(1− g(k0)ω)ζ
, (3.5)

where we have defined ζ ≡ 1− B/ω. An approximate analytical expression for g(k) can be

obtained if we take into account that, according to the numerical values in [28],

ζ−1 = 1− 2
A3

A1

' 2. (3.6)

(It is remarkable that previous works in the framework of QEG and, specifically, in the

Einstein-Hilbert truncation [12] [4] [28] had found ζ ' 1). If one now uses the approximation

(3.6) in order to get an analytical expression for the running G from (3.5), one gets

G(k) = G0

(
G0k

2ω −
√
G2

0k
4ω2 − 4G0k20 + 4

2(G0k20ω − 1)

)
,

4See sect. III of [28]: A1 = 3(1300− 309
√

13− 325
√

17) (< 0), A2 = 936π and A3 = 1625. Note also that

the values are slightly different in [29]. However, they provide similar qualitative behaviors.
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where the definition of g(k) [≡ G(k)k2] and G(k0) = G0 have been used. Of course, the

energy scales in which the Newton constant has been experimentally determined in the

laboratory are very small with respect to the Planckian energy scales so that we can take

k0 ≈ 0 and identify G(k0 = 0) ≡ G0 from which we get

G(k) = G0

(√
G2

0k
4ω2 + 4−G0k

2ω

2

)
. (3.7)

The infrared limit of this running gravitational coupling provide us with the expected

result

G(k → 0)→ G0,

while the ultraviolet limit takes the (independent of G0) form

G(k) ' 1

k2ω
+O(k−3),

so that the gravitational coupling weakens with increasing energy scales and, eventually,

G(k →∞) = 0. This is precisely the behaviour conjectured in [37] and already obtained in

the framework of QEG [4].

3.1. Cutoff identification

Let us now apply the results for the running G in UQG to the case of spherically symmetric

black holes. We will quantum improve the spacetime describing the BH by assuming that

the classical coupling G0 is replaced by a running coupling G, which could depend on the

coordinates and the parameters (m and Λ) characterizing the spacetime (see, for example,

[4] [18] [19] [22] [23] [42]). The search for a static spherically symmetric quantum improved

spacetime imposes that G should be independent of t and the angular coordinates θ and

φ. In this way, we are essentially searching for a running coupling G = G(ρ;m,Λ). Now,

since the renormalization group has provided us with a momentum dependent G(k), we still

require an identification between the momentum scale k and the coordinate ρ, what can be

formally written as

k(ρ;m,Λ) =
ξ

d(ρ;m,Λ)
, (3.8)

where the (dimensionless) numerical value ξ should be fixed later and d(ρ;m,Λ) is the

distance scale which provides the relevant cutoff for the Newton constant when a test particle

is located at a given ρ. Clearly, we need d to have the dimensions of a “distance”. It also
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should be an invariant, i.e., independent of the chosen coordinates. In this way, a common

choice in the literature has been to define [4] [23]5

d =

∫
C

√
|ds2|, (3.9)

where, there is still an ambiguity in identifying the correct spacetime curve C in which the

integration is carried out from ρ = 0 to the specific value of ρ. Let us remark the use of

a modulus in the square root in (3.9) since this distance does not even impose a causal

character to the curve C (which could even vary piecewise).

In order to compare our results with the results in the QEG approach we will now consider

the usual curves analyzed in that approach when dealing with static spherically symmetric

BHs. Consider, first, the so-called straight radial curve [4] [23] C1 parametrized with κ:

xµ(κ) = {t(κ) = t0, ρ(κ) = κ, x(κ) = x0, φ(κ) = φ0}. By using (2.1) we have (from now on

we will not make explicit the dependence on the parameters m and Λ)

d1(ρ) =

∫ ρ

0

dρ

(3ρ)2/3
√
|f(ρ)|

. (3.10)

The integrand in this expression diverges at the horizons (were the causal character of C1
changes). However, it can be shown that the integral provide us with a continuous function

d1(ρ) (see fig. 2). The approximate analytic behaviour of the distance scale (3.10) for ρ ' 0

is simply

d1(ρ) '
√

2ρ

3G0m
. (3.11)

On the other hand, for large ρ (ρ≫ ρCC) the asymptotic analysis of (3.10) provide us with6

d1(ρ) ' 1√
3Λ

ln(Λ3/2ρ). (3.12)

The other usual curve considered in the QEG literature [4] [23] is the radial geodesic C2
described by a test particle of mass µ with a proper time per unit mass τ̄ : t = t(τ̄) and

ρ = ρ(τ̄) (see, for instance, [39] for the general procedure). For this trajectory, and taking

into account that the coordinate t is cyclic, one has pt = −E, pρ = gρρdρ/dτ̄ , px = 0 and

pφ = 0. Then, gαβpαpβ = −µ2 provides us (after considering the different possibilities for

the trajectories) with the formal compact expression

∆τ =

∫ ρ

0

dρ

(3ρ)2/3
√
Ẽ2 − f(ρ)

, (3.13)

5As far as I am aware, in the literature one can only find one alternative definition useful for BH spacetimes

[38]. Nevertheless, it provides similar qualitative results.
6Alternatively, one can get this result by considering that the parameter Λ becomes relevant at these

distances, while m becomes irrelevant (see the appendix B).
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Figure 2: A logarithmic plot of the distance scales d1(ρ) and d2(ρ) in natural units.

Note that d1(ρ) is a continuous function at the horizons ρBH and ρCC . Note also

how the short distance and the long distance behaviour of d1(ρ) and d2(ρ) coincide.

Here we have chosen m = 10 mPlanck, ΛG2
0m

2 = 10−8, but the qualitative features are

independent of the parameters as long as the two horizons exist.
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where Ẽ ≡ E/µ is the energy per unit mass and τ ≡ τ̄µ is the particle proper time. [Note

that the signs and the order of the integration limits in the expression have been chosen to

provide the correct results in any situation: First, when we want to compute the time taken

for a particle to travel from ρ < ρCC to ρ = 0 (necessarily in this order for the particle)

or, second, when we want to compute the time to “travel between ρ > ρCC and ρ = 0”. In

this last case, we must take the time taken from a particle to travel from an intermediate

ρ∗ < ρCC to ρ = 0 and add the time taken for a particle to travel from ρ∗ to ρ (> ρCC).

This is already taken into account in (3.13)]. Considering now that for the radial geodesic

ds2 = −dτ 2, we directly get the distance scale in this case from its definition (3.9). A

specially simple analytical expression can be found for the particular case Ẽ2 = 1 taking the

form

d2(ρ) =
2√
3Λ

arsinh

√
Λρ

2G0m
. (3.14)

For ρ ' 0 this can be approximated by

d2(ρ) '
√

2ρ

3G0m
, (3.15)

while for large distances (ρ≫ ρCC)

d2(ρ) ' 1√
3Λ

ln(Λ3/2ρ). (3.16)

Is is easy to check that even for Ẽ2 6= 1 the expression (3.15) is a good approximation of

(3.13) for small ρ’s. Likewise, for large distances and Ẽ2 6= 1 the expression (3.16) is a good

approximation of (3.13) 7.

Comparing the results obtained by using the curves of type C1 and C2 we see that the

qualitative behaviour of their distance scales coincide. Not only does the long distance be-

haviour ((3.12) and (3.16)), but also does the short distance behaviour ((3.11) and (3.15)),

where the quantum modifications are expected to be relevant. (See also figure (2)). There-

fore, since we have the analytical expression (3.14), it would seem sensible to consider, from

now on, (3.14) as our interpolating distance scale [4] [23]. In this way, one would expect that

the results obtained by using it to be qualitatively correct.

7Of course, we are assuming that the energy per unit rest mass of the particle Ẽ is chosen big enough

to let the particle reach such distances, i.e., to let it classically traverse the potential barrier (see figure 1),

what requires Ẽ2 > fmax. This will always be true, for example, for Ẽ2 > 1.
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3.2. The running G(ρ)

Let us now write G(ρ) by using (3.7) and (3.8) as

G(ρ) = G0

(√
1 +

G2
0ω̃

2

4d4(ρ)
− G0ω̃

2d2(ρ)

)
, (3.17)

where the new dimensionless constant ω̃ ≡ ωξ2 and d(ρ) is given by (3.14). A relevant fact

with regard to ω̃ is that it carries the quantum modifications to the gravitational coupling.

In effect, ω̃ = 0 would turn off the running of G. Moreover, if we explicit Planck’s con-

stant we see that ω̃ ∝ ~. In principle, the precise value of ω̃ can be found by comparison

with the standard perturbative quantization of Unimodular Gravity. Previous results in the

perturbative quantization of General Relativity (see [40] and references therein) show that

ω̃ = 167~/(30π) ∼ ~ [4] [41] so that, since the qualitative properties of G do not rely on its

precise value (as long as it is strictly positive), we will assume for numerical computations

that ω̃ ' ~.

For small distances the expression (3.17) reduces to

G(ρ) ' 2ρ

3ω̃G0m
,

so that, on the one hand,

G(ρ→ 0) = 0

(which points toward a weakening of gravitational effects in the innermost region of the BH)

and, on the other hand, we see that the role played by Λ at small distances is negligible.

For large distances (ρ≫ Λ−3/2) we get

G(ρ) ' G0 −
3ω̃G2

0Λ

2[ln(Λ3/2ρ)]2
= G0

(
1− 3ω̃Λl2Planck

2[ln(Λ3/2ρ)]2

)
, (3.18)

where lPlanck is Planck’s length. Therefore, we find the expected result

G(ρ→∞) = G0

and we see that Λ does play a role (by weakening G) in the leading term for the quantum

corrections of the gravitational constant at large distances. A graph of the running G

obtained can be seen in figure 3.

4. Improved black hole spacetime

In classical Unimodular Gravity (as in classical General Relativity) the metric (2.1) has a

meaning even in the absence of test particles to probe it. As we have seen, in the Asymptotic
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Figure 3: A plot of G/G0 as a function of ρ̃ ≡ 3(G0m)−3 ρ and the BH mass (/mPlanck).

As can be seen, for a given BH mass, G monotonously increases from its minimum

value G(ρ = 0) = 0 towards its maximum (classical) value G0.

Safety approach, the presence of the test particle defines a physically relevant distance scale

d(ρ) which enters into the cutoff for the running of G. If one assumes that the leading

quantum effects in the system consist of a position dependent renormalization of Newton’s

gravitational constant appearing in the unimodular classical metric (see, for example, [4] [18]

[19] [22] [23] [42]), we will have a quantum improved line element for the spacetime of the

form (2.1)

ds2 = −fI(ρ)dt2 +
1

(3ρ)4/3fI(ρ)
dρ2 + (3ρ)2/3

[
dx2

1− x2
+ (1− x2)dφ2

]
, (4.1)

with

fI(ρ) = 1− 2G(ρ)m

(3ρ)1/3
− Λ

3
(3ρ)2/3, (4.2)

and G(ρ) given by (3.17).

As a consequence, it is easy to check that the classically diverging f(ρ→ 0) behaviour is

now replaced around ρ = 0 by8

fI(ρ) ' 1−
(

4

9G0ω̃
+

Λ

3

)
(3ρ)2/3, (4.3)

8Clearly, this development and what follows is correct if ω̃ 6= 0. I.e., we are describing now a fully quantum

effect. Of course, there is not de Sitter core in the classical case, but a divergence of f .
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which corresponds to a de Sitter core [by considering that in the exact unimodular de Sitter

solution one has fdS(ρ) = 1− (Λeff/3)(3ρ)2/3], with an effective cosmological constant

Λeff =
4

3G0ω̃
+ Λ. (4.4)

Since the first term in the rhs is of the order of l−2Planck, clearly, the role played by Λ in the

interior of the BH will be negligible. Thus, the behaviour is very close to that found in [4],

where the Quantum Einstein Gravity approach without cosmological constant provides (4.4)

(with Λ = 0).

5. Properties of the quantum improved solution

5.1. Regularity of the solution

Our study of fI(ρ ' 0) strongly suggests that, contrary to the classical case, the improved

spacetime will not have a scalar curvature singularity at ρ = 0. In principle, to strictly prove

this (and given that we are dealing with the center of a spherically symmetric spacetime)

it would be enough to check two algebraically independent curvature invariants [43]. The

computations for this specific case show that, in fact, here there is only one algebraically

independent non-zero curvature invariant for this spacetime at ρ = 0 which can be taken to

be the Ricci scalar R. Around ρ = 0 the Ricci scalar takes the form

R = 4

(
4

3G0ω̃
+ Λ

)
+O(ρ),

so that it is finite and, therefore, there will not be scalar curvature singularities in this

quantum improved spacetime.

5.2. Horizons

There is a killing vector ~k = ∂/∂t in the improved spacetime since the coordinate t does not

appear in the metric coefficients of (4.1). This vector becomes lightlike if there is a ρh such

that fI(ρh) = 0. Then ρ = ρh would define a spherically symmetric lightlike hypersurface

called a killing horizon that can be shown [31] to be also an apparent 3-horizon. While

(at a theoretical level) in the classical Schwarzschild-de Sitter solution one can choose the

parameters such that the solution would not have any horizon (9ΛG2
0m

2 > 1), in the improved

solution this situation will not be possible and there will always be one or more horizons. This
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is a consequence of the fact that fI is a continuous function in <+ with fI(ρ → 0) = 1 > 0

and fI(ρ→∞) = −∞ < 0.

On the other hand, it is not possible to obtain an exact analytical solution for the zeros

of fI(ρ) = 0 in the general case. However, it is possible to study the zeros numerically and

to find some approximate values (by using the observational limits of the parameters com-

mented in sect.2). For example, (3.18) tell us that the large distance quantum corrections

to the classical Schwarzschild-de Sitter black hole solution should be negligible. Therefore,

according to the observational limits for Λ and m there should be an improved cosmological

horizon ρC solution of fI = 0 around the classical value ρCC (2.6). By finding an approx-

imate expression for fI around this value and searching for its zero we find the improved

cosmological horizon to be approximately given by

ρC ' ρCC(1 + αω̃G2
0mΛ3/2)

where α is a positive constant9. In this way, we get that the quantum correction slightly

enlarges the classical cosmological horizon ρCC .

On the other hand, for astrophysical size black holes (m≫ mPlanck = G
−1/2
0 ) one expects

a very small quantum correction in the position of the BH horizon (now ρOH) with respect

to its classical value ρBH (2.5). In effect, we can approximately solve fI = 0 around the

classical value to get

ρOH ' ρBH

(
1− 27

32

ω̃

G0m2

)
,

where we see that now the quantum correction slightly shrinks the classical horizon. The

subindex (OH) here stands for outer horizon. The nomenclature is due to the fact that, for

these astrophysical black holes, one expects the quantum effects to also create another inner

horizon (IH). The reason is that in the m ≫ mPlanck case and for ρ’s slightly smaller than

ρOH one will have a black hole region with fI < 0 (dfI/dρcρOH
> 0), however fI(ρ = 0) =

1 > 0 and, since fI is a continuous function in <+, it should have at least another inner zero.

The position of the inner horizon ρIH around ρ = 0 can be very well approximated for the

m≫ mPlanck case by using the expression for fI in (4.3) and demanding it to be zero. The

result is

ρIH '
9

8
(G0ω̃)3/2

(
1− 9

8
G0ω̃Λ

)
.

Note that, as expected, the role of the cosmological constant in determining the position

of the inner horizon is negligible. More importantly, for these large masses and within this

9The expansion of the solution in terms of the small dimensionless parameters X ≡ ΛG2
0m

2 and Y ≡
ω̃/(G0m

2) provide us with α = 6
√

3/(ln 3)2 ' 8.61.
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Figure 4: A plot of fI as a function of ρ̃ ≡ 3ρ/(G0m)3 for a particular case with

ΛG2
0m

2 = 3 · 10−24 and m � mPlanck (i.e., similar values as those used for the plot

of the classical case in fig.1). A logarithmic scale has been used for the abscissa. In

this quantum improved case three horizons (corresponding to the zeros of fI) appear:

The cosmological horizon ρ̃C , the outer horizon ρ̃OH and the new inner horizon ρ̃IH .

approximation, the position of the inner horizon turns out to be independent of the precise

value of the black hole mass. In fig.4 we plot the quantum improved function fI for this

m � mPlanck case in order to show the position of the three horizons when the parameters

take similar values to those used in fig.1 (for the classical case).

The scenario is different for planckian size black holes since a numerical computation

shows that there exists a critical mass mcr for which there is only a single black hole horizon

(see figure 5) (coexisting with the cosmological one). In other words, as one considers smaller

BH masses, two of the zeros of fI are transformed into a double zero when the BH reaches the

critical mass. This critical mass can be numerically computed when one chooses particular

values for the parameters. For example, if Λ = 10−52m−2 and ω̃ ' ~ we get mcr ' 1.5mPlanck

with the black hole horizon situated at ρcr ' 3.18 l3Planck. Finally, when the mass is smaller

than the critical mass there is no black hole horizon, but only the cosmological horizon (fig.5).

5.3. Causal structure

A portion of the global causal behaviour of the improved black hole spacetime with m > mcr

is depicted in the conformal diagram of fig.6. The complete maximally extended conformal

diagram of the spacetime consists of an infinite repetition of this pattern.
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Figure 5: A plot of fI centered in the innermost BH region for different BHs with

masses of the order of the planckian mass. Only the positive values of fI are shown

so that it is easy to identify the (flat) region where the 2-spheres are closed trapped

surfaces (fI < 0) and the locus of the horizons (fI = 0, i.e., the boundary of the

flat region). In particular, we can see how the outer (OH) and inner (IH) horizons

converge into a single critical horizon (CR) in ρ̃ = ρ̃cr when the considered BH mass

has the value corresponding to the critical mass mcr.
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This improved black hole shares with the classical Reissner-Nordtröm spacetime with

Q2 < G0M
2 the feature of having an inner and an outer (lightlike) BH horizon. However,

they disagree in the fact that for the improved black hole there is a non-singular center of

symmetry while in the RN case the would-be center of symmetry is not even part of the

spacetime (since there is a curvature singularity).

According to (3.18) and (4.2), for large distances the quantum gravitational effects be-

come negligible and the cosmological constant dictates the behaviour of the spacetime metric.

In this way, the causal asymptotic behaviour of the improved black hole becomes similar to

that in the classical de Sitter case. In particular, the causal structure has spacelike conformal

infinities I ± at ρ =∞.

6. Conclusions

In this paper we have tried to show that Asymptotic Safety could be able to provide us with

quantum improved non-singular black hole spacetimes. Specifically, we have seen that this

could be achieved by following an UQG framework in which the cosmological constant Λ is

generated, but does not run [25] [27] [28] [29]. Moreover, we have shown that then there

is a running gravitational coupling G that tends to zero as the energy scale increases so

that the gravitational coupling weakens at high energies. These results are a consequence of

implementing UQG by imposing the action to be invariant under transverse diffeomorphism

symmetry. In this way, we can know the value of Λ through low energy observations (ob-

servational cosmology) and by using classical Unimodular gravity (or, equivalently, General

Relativity). Since Λ is not a coupling in the effective action this value would be unaffected

as we probe higher energies. The improvement of classical solutions would then naturally

imply letting the constant Λ appearing in the metric of the classical spacetime unaffected by

the quantum improvements. In this manner, the dimensionful constant Λ simply becomes

a (/another) fixed scale of the improved spacetime. For the sake of completeness, notice

that the results described above cannot be reached by using a fully diffeomorphism invariant

formulation of UQG [44], which would lead to a running Λ and the subsequent singular

improved spacetimes, a fact that we interpret as favoring our approach.

In order to obtain the spherically symmetric black hole spacetimes incorporating the UQG

improvements, we have first found a proper interpolating distance scale that has allowed us

to deduce the qualitative behaviour of the gravitational coupling G with respect to a chosen

areolar coordinate ρ. The effective quantum spacetime describing black holes characterized

by their mass and the presence of a cosmological constant (4.1) has then been found by ussing
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Figure 6: A portion of the conformal diagram for the improved black hole spacetime

with m > mcr and assuming 0 < Λ . 10−52m−2. The grey regions are not part of

the spacetime. A test particle O initially between the outer horizon of the black hole

ρOH and the cosmological horizon ρC can traverse ρOH . In the region between this

horizon and the inner horizon ρIH the round spheres are closed trapped surfaces so

that the particle has to reach the inner horizon. Were this horizon stable, the particle

could not reach any singularity. In particular, the particle could reach the center of

symmetry ρ = 0, where the curvature is finite, and continue its travel without any

disruption. In principle, it could traverse the interior through the (white hole) outer

horizon ρOH in the upper part of the drawing.
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the common procedure ( [4] [18] [19] [22] [23] [42]) of improving the corresponding classical

unimodular metric (G0 → G(ρ)). We have shown that, indeed, this improved spacetime

is devoid of singularities. This contrasts with similar computations in the framework of

QEG where the existence of a non-gaussian fixed point for the (necessarily) running Λ leads

to singular BH spacetimes [20–23]. Nevertheless, it has to be taken into account that the

method of quantum improving a classical spacetime is expected to provide us only with good

qualitative results far from the Planckian regime. In this way, it can be said that the method

only suggests the avoidance of the singularity, what is better grounded in a vanishing running

G and, especially, in the existence of the constant Λ suggested by UQG.

If we assume Λ > 0 (and within its current observational limit) and if the BH mass is

bigger than a critical mass mcr (of the order of Planck’s mass) then the improved spacetime

possesses three horizons: A cosmological horizon, an outer black hole horizon and an inner

black hole horizon. The cosmological and the outer horizons can be considered as quantum

improved versions of the corresponding horizons in the classical case. In fact, we have seen

that if the BH mass satisfies m � mcr then the quantum correction to their positions is

negligible. In contrast, the inner horizon is a truly new feature of the quantum improved

spacetime.

The horizon structure changes if the BH mass equals the critical mass. In this case there

is a cosmological horizon and a single BH horizon. Finally, if the BH mass is smaller than

the critical mass only the cosmological horizon exists.

The interesting causal structure for the case of BHs with masses bigger than the critical

mass has been shown in fig.6. It cannot be forgotten that this structure will be modified

by other unavoidable physical effects. In particular, the existence of the horizons will be

related to the emission of Hawking radiation with the subsequent modification of the BH

mass. Therefore, the horizons will not be able to remain static (and lightlike). On the other

hand, for similar reasons to those found in [45] one expects that the inner horizon could be

unstable under the effect of perturbations on it (such as radiation and particles entering the

BH), so that a study of its behaviour would be required.

Finally, note that the results presented here come from the existence of a fixed point

through the use of the truncation (3.2). However, some studies for QEG [20] [46] and for

UQG [47] confirm that one can consider other relevant terms and still show the existence

of a non-trivial fixed point of the theory’s renormalization group. In this way, one could

expect similar qualitative results in the complete case and, in particular, by using the UQG

approach. Nevertheless, a full analysis of the corresponding quantum corrected black hole is

left for future works.
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A. Unimodular spherically symmetric metrics

Given a spherically symmetric metric written in Schwarzschild-like coordinates as

ds2 = −f(t, r)dt2 +
dr2

f(t, r)
+ r2dΩ2, (A.1)

the coordinate change (incidentally, used for the Schwarzschild solution in [48])

ρ =
r3

3
; x = − cos θ (A.2)

transforms (A.1) into the unimodular metric (with det(gµν) = −1)

ds2 = −f(t, ρ)dt2 +
dρ2

r(ρ)4f(t, ρ)
+ r(ρ)2

[
dx2

1− x2
+ (1− x2)dφ2

]
.

This metric has coordinate singularities at x = ±1, which are not relevant from a physical

point of view.

The Schwarzschild-de Sitter metric written in Schwarzschild-like coordinates has precisely

the form A.1 with

f(t, r) = f(r) = 1− 2G0m

r
− Λ

3
r2,

so that by using the coordinate change (A.2) one directly gets the expression (2.1) with f(ρ)

as in (2.2). Note that the solutions of f(ρ) = 0 (that define the positions of the horizons in

the spacetime) are well-known non-relevant coordinate singularities of the Schwarzschild-de

Sitter solution.

B. Alternative approach for the long distance behaviour

When considering the long distance behaviour of d for straight radial curves one could just

consider that at long distances (ρ & ρCC) the relevant parameter is Λ, while the effect of

m is negligible. In this way, one could get the approximate behaviour of the distance scale

by simply considering the de Sitter spacetime, which can provide us with some analytical
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results. We will explicit these results in this appendix in order to show that they coincide

with ours and to clarify some misunderstandings in the literature. In the de Sitter case we

have the metric (2.1) with

f(ρ) = 1− Λ

3
(3ρ)2/3,

a unique (cosmological) horizon ρCC =
√

3/Λ3 and

d1(ρ) =

∫ ρ

0

dρ

(3ρ)2/3
√
|f(ρ)|

.

If we consider ρ ≤ ρCC , we directly get

d1(ρ ≤ ρCC) =

√
3

Λ
arcsin

(√
Λ

3
3
√

3ρ

)
.

However, for ρ > ρCC the integral diverges at the horizon and we have to perform it in two

steps (from ρ = 0 to ρCC and from ρCC to our desired ρ). Thus

d1(ρ > ρCC) =
π

2

√
3

Λ
+

∫ ρ

ρCC

dρ

(3ρ)2/3
√
|f(ρ)|

.

This admits a (lengthy) analytical expression. Nevertheless, the key here is that f changes

its sign at the horizon. In this way, the arcsin dependence before the horizon becomes

logarithmic beyond the horizon and we have

d1(ρ > ρCC) =
1√
3Λ

ln(Λ3/2ρ) +O(ρ0),

what is the expected long distance behaviour that we had obtained for the Schwarzschild-de

Sitter case (3.12). The complete behaviour of d1 in the de Sitter case is shown in figure 7.
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