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Abstract

Nowadays, the rapid growth of mobile communications is changing the world towards a

fully connected society. Current 4G networks account for almost half of total mobile traffic,

and in the forthcoming years the overall mobile data traffic is expected to dramatically

increase. To manage this increase in data traffic, operators adopt network topologies such as

Heterogeneous Networks (HetNets). Thus, operators can deploy hundreds of small cells for

each macro cell, allowing them to reduce coverage holes and/or lack of capacity. The advent

of this technology, is expected to tremendously increase the number of nodes in this new

ecosystem, so that traditional network management activities based on, e.g., classic manual

and field trial design approaches are just not be viable anymore. As a consequence, the

academic literature has dedicated a significant amount of effort to Self-Organising Network

(SON) algorithms. These solutions aim to bring intelligence and autonomous adaptability

into cellular networks, thereby reducing capital and operation expenditures (CAPEX/OPEX).

Another aspect to take into account is that, these type of networks generate a large amount of

data during their normal operation in the form of control, management and data measurements.

This data is expected to increase in 5G due to different aspects, such as densification,

heterogeneity in layers and technologies, additional control and management complexity in

Network Functions Virtualisation (NFV) and Software Defined Network (SDN), and the advent

of the Internet of Things (IoT), among others. In this context, operators face the challenge of

designing efficient technologies, while introducing new services, reaching challenges in terms

of customer satisfaction, and where the global objective of an operator is to build networks,

which are self-aware, self-adaptive, and intelligent.

This dissertation provides a contribution to the design, analysis, and evaluation of SON

solutions to improve network operator performance, expenses, and users’ experience, by

making the network more self-adaptive and intelligent. It also provides a contribution to the
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design of a self-aware network planning tool, which allows to predict the Quality of Service

(QoS) offered to end-users, based on data already available in the network.

The main thesis contributions are divided into two parts. The first part presents a novel

functional architecture based on an automatic and self-organised Reinforcement Learning (RL)

based approach to model SON functionalities, in which the main task is the self-coordination

of different actions taken by different SON functions to be automatically executed in a self-

organised realistic Long Term Evolution (LTE) network. The proposed approach introduces

a new paradigm to deal with the conflicts generated by the concurrent execution of multiple

SON functions, revealing that the proposed approach is general enough to model all the SON

functions and their derived conflicts. The second part of the thesis is dedicated to the problem

of QoS prediction. In particular, we aim at finding patterns of knowledge from physical layer

data acquired from heterogeneous LTE networks. We propose an approach that not only is

able to verify the QoS level experienced by the users, through physical layer measurements

of the UEs, but it is also able to predict it based on measurements collected at different time,

and from different regions of the heterogeneous network. We propose then to make predictions

independently of the physical location, in order to exploit the experience gained in other sectors

of the network, to properly dimension and deploy heterogeneous nodes. In this context, we

use Machine Learning (ML) as a tool to allow the network to learn from experience, improving

performances, and big data analytics to drive the network from reactive to predictive.

During the elaboration of this thesis, two general key conclusions have been extracted.

First, we highlight the importance of designing efficient SON algorithms to effectively deal with

several challenges, such as, the most appropriate location of SON functions and algorithms

to solve properly the distributed vs. centralized SON implementation issue, or the solution of

conflicts among SON functions executed in different nodes, or networks. Second, in terms of

network planning tools, different tools can be found covering a wide range of platform systems

and applications oriented to the industry as well as for research purposes. In this context,

research solutions are continuously undergoing major changes, where one of the major drivers

is to present more cost-effective solutions.
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Resumen

Hoy en día, el rápido crecimiento de las comunicaciones móviles están cambiando el mundo

hacia una sociedad completamente conectada. Las redes 4G actuales representan casi la

mitad del tráfico móvil total, y en los próximos años se espera que el tráfico total de los

dispositivos móviles aumente drásticamente. Para gestionar este incremento de tráfico de

datos, los operadores adoptan tecnologías de redes como las redes heterogéneas (HetNet).

De esta manera, los operadores pueden desplegar centenares de pequeñas celdas por

cada macro celda, permitiendo reducir zonas sin cobertura y/o falta de capacidad. Con la

introducción de esta tecnología, se espera que incremente de manera sustancial el número

de nodos en el nuevo ecosistema, de manera que las actividades de gestión de las redes

tradicionales, basadas en, por ejemplo, el diseño manual sean inviables. Como consecuencia,

la literatura académica ha dedicado un esfuerzo significativo al diseño de algorítmos de

redes auto-organizadas (SON). Estas soluciones tienen como objetivo introducir inteligencia

y capacidad autónoma a las redes móviles, reduciendo la capacidad y costes operativos

(CAPES/OPEX). Otro aspecto a tener en cuenta es que este tipo de redes generan una

gran cantidad de datos durante su funcionamiento habitual, en forma de medidas de control

y gestión de datos. Se espera que estos datos incrementen con la tecnología 5G, debido

a diferentes aspectos como los son la densificación de redes heterogéneas, la complejidad

adicional en el control y la gestión de la virtualización de las funciones de redes (NFV) y las

redes definidas por software (SDN), así como la llegada del internet de las cosas (IoT), entre

otros. En este contexto, los operadores se enfrentan al reto de diseñar tecnologías eficientes,

mientras introducen nuevos servicios, consiguiendo objetivos en términos de satisfacción del

cliente, en donde el objetivo global del operador es la construcción de redes auto-conscientes,

auto-adaptables e inteligentes.

Esta tesis ofrece una contribución al diseño y evaluación de soluciones SON para mejorar

ix



el rendimiento de las redes, los costes y la experiencia de los usuarios, consiguiendo que la

red sea auto-adaptable e inteligente. Así mismo, proporciona una contribución al diseño de

una herramienta de planificación de red auto-consciente, que permita predecir la calidad de

servicio brindada a los usuarios finales, basada en la explotación de datos disponibles en la

red.

Las contribuciones principales de esta tesis se dividen en dos partes. La primera

parte presenta una nueva arquitectura funcional basada en el aprendizaje reforzado y auto-

organizado, enfocado en modelar funcionalidades SON, donde la tarea principal es la auto-

coordinación de las diferentes acciones llevadas a cabo por las diferentes funciones SON

ejecutadas de forma automática en una red auto-organizada LTE. El esquema propuesto

introduce un nuevo paradigma para afrontar los conflictos generados por la ejecución

simulatanéa de múltiples funciones SON y los conflictos derivados. La segunda parte de

la tesis está enfocada al problema de la predicción de la calidad de servicio. En particular,

nuestro objetivo es encontrar patrones de comportamiento a partir de datos en la capa física

de redes LTE heterogéneas. Proponemos un enfoque que no solo es capaz de verificar el

nivel de calidad de servicio experimentado por los usuarios, a través de las medidas de la

capa física de los usuarios, sino que también es capaz de predecir basado en las medidas

adquiridas en diferentes instantes, y diferentes regiones de la red heterogénea. Proponemos

por lo tanto hacer predicciones independiente de la ubicacíon física, aprovechando la

experiencia adquirida en otros sectores de la red, para dimensionar y desplegar redes

heterogéneas de manera correcta. En este contexto, utilizamos el aprendizaje máquina (ML)

como una herramienta que permite que la red aprenda de la experiencia pasada, mejorando

el rendimiento, y el análisis de grandes volumenes de datos para conducir la red de reactiva a

predictiva.

Durante la elaboración de esta tesis, se han extraído dos principales conclusiones. En

primer lugar, destacamos la importancia de diseñar algorítmos SON eficientes para afrontar

de manera eficaz diversos retos, como lo son la ubicación más adequada de funciones SON

y algorítmos para resolver de manera adecuado el problema de implementación distributiva o

centralizada, o la solución de conflictos entre funciones SON executadas en diferentes nodos

o redes. En segundo lugar, en términos de planificación de redes, se pueden encontrar

diferente herramientas cubriendo una amplia gama de sistemas y aplicaciones orientadas a la

industria, así como para fines de investigación. En este contexto, las soluciones investigadas

están sometidas continuamente a cambios importantes, donde uno de los principales retos es

presentar soluciones más rentables.
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Resum

Avui en dia, el ràpid creixement de les comunicacions mòbils està canviant el món cap a

una societat completament connectada. Les xarxes 4G actuals representan casi la m trànsit

mòbil total, i en els propers anys s’espera que el trànsit total de dades mòbils augmenti

dràsticament. Per gestionar aquest increment de trànsit de dades, els operadors adopten

topologies de xarxa com ara les xarxes heterogènies (HetNets). D’aquesta manera, els

operadors poden desplegar centenars de cel·les petites per a cada cel·la macro, permetent

reduir forats en la cobertura i/o la manca de capacitat. Amb l’arribada d’aquesta tecnologia,

s’espera que incrementi enormement el nombre de nodes en el nou ecosistema, de manera

que les activitats de gestió de xarxa tradicionals, basades en, per exemple, el disseny manual

i els assaigs de camp esdevenen simplement inviables. Com a conseqüència, la literatura

acadèmica ha dedicat una quantitat significativa d’esforç als algorismes de xarxa auto-

organitzada (SON). Aquestes solucions tenen com a objectiu portar la intel·ligència i capacitat

d’adaptació autònoma a les xarxes mòbils, reduint el capital i les despeses operatives (CAPES

/OPEX). Un altre aspecte a tenir en compte és que aquest tipus de xarxes generen una

gran quantitat de dades durant el seu funcionament habitual, en forma de mesuraments de

control, gestió i dades. S’espera que aquestes dades incrementin amb la tecnologia 5G,

degut a diferents aspectes com ara la densificació, l’heterogeneïtat en capes i tecnologies,

la complexitat addicional en el control i la gestió de la virtualització de les funcions de xarxa

(NFV) i xarxes definides per software (SDN), i l’adveniment de l’internet de les coses (IoT),

entre d’altres. En aquest context, els operadors s’enfronten al repte de dissenyar tecnologies

eficients, mentre introdueixen nous serveis, aconseguint objectius en termes de satisfacció

del client, i on l’objectiu global d’un operador és la construcció de xarxes que són auto-

conscients, auto-adaptables i intel·ligents. Aquesta tesis ofereix una contribució al disseny,

l’anàlisi i l’avaluació de les solucions SON per millorar el rendiment de l’operador de xarxa, les
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despeses i l’experiència dels usuaris, fent que la xarxa sigui més auto-adaptable i intel·ligent.

També proporciona una contribució al disseny d’una eina de planificació de xarxa auto-

conscient, el que permet predir la qualitat de servei (QoS) oferta als usuaris finals, basada

en dades ja disponibles a la xarxa. Les contribucions principals d’aquesta tesis es divideixen

en dues parts. La primera part presenta una nova arquitectura funcional basada en un

aprenentatge per reforç (RL) automàtic i auto-organitzat, enfocat en modelar funcionalitats

SON, on la tasca principal és l’auto-coordinació de les diferents accions dutes a terme per

les diferents funcions SON a ser executades de forma automàtica en una xarxa Long Term

Evolution (LTE) auto-organitzada. L’enfocament proposat introdueix un nou paradigma per

fer front als conflictes generats per l’execució simultània de múltiples funcions SON, revelant

que l’enfocament proposat és prou general per modelar totes les funcions SON i els seus

conflictes derivats. La segona part de la tesis està dedicada al problema de la predicció

de la qualitat de servei. En particular, el nostre objectiu és trobar patrons de coneixement

a partir de dades de la capa física adquirides de xarxes LTE heterogènies. Proposem un

enfocament que no només és capaç de verificar el nivell de QoS experimentat pels usuaris,

a través de mesuraments de la capa física dels UEs, sinó que també és capaç de predir-ho

basant-se en mesuraments adquirits en diferents instants, i de diferents regions de la xarxa

heterogènia. Proposem per tant fer prediccions amb independència de la ubicació física,

aprofitant l’experiència adquirida en altres sectors de la xarxa, per dimensionar i desplegar

nodes heterogenis correctament. En aquest context, utilitzem l’aprenentatge automàtic (ML)

com a eina per permetre que la xarxa aprengui de l’experiència, millorant el rendiment, i

l’anàlisi de grans volums de dades per a conduir la xarxa de reactiva a predictiva. Durant

l’elaboració d’aquesta tesis, s’han extret dues conclusions principals clau. En primer lloc,

destaquem la importància de dissenyar algorismes SON eficients per fer front eficaçment

a diversos reptes, com ara la ubicació més adequada de funcions SON i algorismes per

resoldre adequadament el problema d’implementació distribuïda o centralitzada, o la solució

de conflictes entre funcions SON executades a diferents nodes o xarxes. En segon lloc, en

termes d’eines de planificació de xarxes, es poden trobar diferents eines cobrint una àmplia

gamma de sistemes i aplicacions orientades a la indústria, així com per a fins d’investigació.

En aquest context, les solucions investigades són sotmeses contínuament a canvis importants,

on un del principals impulsors és presentar solucions més rentables.
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Chapter 1
Introduction

The secret of getting ahead is getting started. Mark Twain

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 PhD Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

In the coming years, future mobile networks will be infinitely more complex than nowadays.

Future next generation networks will consist of numerous coexisting Radio Access Technolo-

gies (RAT)s, and multiple cell infrastructures, ranging from classical macrocells, to micro, pico

and femtocells. This heterogeneous network structure is in charge of providing efficient and

ubiquitous broadband wireless access to a wide variety of advanced multimedia applications.

In this context, network operators face the challenge to design efficient technologies, while

introducing new services and achieving goals in terms of customer satisfaction. The network

becomes more difficult to be managed, since it consists of heterogeneous segments where

radio and network resources cannot be easily managed from a centralized and distributed per-

spective, so network designers find themselves thinking how to face the limitations of current

networks.

The objectives when designing this kind of networks can then be classified at high level

as short-term e.g., by maximizing the revenues, minimizing the Capital Expenditure (CAPEX)

and the Operational Expenditure (OPEX), reducing the energy consumption, optimising the
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spectral efficiency, and as medium-term e.g., by decreasing the churning rate, or building new

infrastructures. It would be particularly interesting if these approaches could be achieved con-

sidering minimal human intervention, since this would definitely ease the network management

and reduce the corresponding costs.

In this context, Self-Organising Network (SON) is a common term used to refer to mobile

network automation and minimization of human intervention in the cellular/wireless network

management. This concept has been introduced by 3GPP in Release 8 and it has been

expanding across subsequent releases. 3rd Generation Partnership Project (3GPP) work is

inspired by a set of requirements defined by the operators’ Alliance Next Generation Mobile

Networks (NGMN). The main objective of SON can be roughly classified into three main points:

1) to bring intelligence and autonomous adaptability into cellular networks, 2) to reduce capital

and operation expenditures (CAPEX/OPEX), 3) to enhance network performances in terms

of network capacity, coverage, offered service/experience, etc. SON is considered today as

a driving technology that aims at improving spectral efficiency, simplifying management, and

reducing the operation costs of the next generation Radio Access Networks (RANs). The over-

all complex SON problem has been decomposed in a set of useful use cases, which have

been identified by 3GPP, NGMN, 5G Infrastructure Public Private Partnership (5GPPP) and

different EU projects [1–6]. The academic literature has dedicated significant effort to SON

algorithms in the context of the above mentioned use cases, providing smart solutions to op-

timise network operator performance, expenses and users’ experience. Many of these works

are already reviewed here [7]. The market also offers already complete sets of SON solu-

tions, (e.g. [8–11], among others) many products have been advertised and presented in

Mobile World Congress (MWC) 2016 [12, 13]. For example, AirHop’s eSON from Jio & AirHop

communications [11], which employs a multi-vendor, multi-technology, real-time SON solution

based on scalable and virtualised software platform has recently been awarded for the 2016

Small Cell Forum HetNet management software and service award [14].

However, to the best of our knowledge, the SON solutions available in the market are mainly

based on heuristics, the automated information processing is usually limited to low complexity

solutions like triggering, many operations are still done manually (e.g. network faults are usu-

ally fixed directly by engineers), SON solutions do not really capitalize on the huge amount of

information that is available in mobile networks to build next generation network management

solutions, and several open challenges are still unsolved, like the problem of coordination of

SON functions [15, 16], or the proper solution of the trade-off between centralized and dis-

tributed SON implementations [17].
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Another aspect that should be considered is that, as we observed in [18] a huge amount of

data is currently already generated in 4G networks during normal operations by control and

management functions, and more is expected to come in 5G networks due to the densification

process [19], heterogeneity in layers and technologies, the additional control and management

complexity in NFV and SDN architectures, the advent of Machine to Machine (M2M) and IoT

paradigms, the increasing variety of application and services, each with distinct traffic patterns

and QoS/Quality of Experience (QoE) requirements, etc. 5G network management is expected

to provide a whole new set of challenges due to 1) the need to manage future network com-

plexity, due to ultra dense deployments, heterogeneous nodes, networks, applications, RANs

coexisting in the same setting, 2) the need to mange very dynamic networks where part of the

nodes is controlled directly by the users (e.g. femtocells), energy saving policies are in place

generating a fluctuating number of nodes, active antennas are a reality, etc. 3) the need to

support 1000x traffic, and 10x users, and improve energy efficiency, 4) the need to improve the

experience of the users by enabling Gbps speeds, and highly reduced latency, 5) the need to

manage new virtualised architectures and heterogeneous spectrum Access privileges through

novel LTE-Unlicensed (LTE-U) and Licensed Assisted Access (LAA) paradigms.

In this challenging context, we believe that the use of SON and of smart network manage-

ment policies is crucial and inevitable for operators running multi-RAT, multi-vendor, multi-layer

networks, where an overwhelming number of parameters needs to be configured and opti-

mised. The high level objective is to make the networks 1) more self-aware, by exploiting the

information already available in the network to gain experience in the network management,

2) more self-adaptive, by exploiting intelligent control decisions procedures which allow to au-

tomatize the decision processes based on the experience.

For this reason, Big Data analytics are currently receiving big attention in research and in

the market, due to their capability of providing insightful information from the analysis of data

already available to operators. In this context, a lot of research is being carried out and inter-

esting results have been drawn in areas of; (1) Mobile data to network management, where

the measurements available to operators can be used to optimise the network performance,

develop fault detection, identify coverage holes, sleeping cells or cell in outage, among oth-

ers. Data also can be exploited to find patterns of users, and take better decisions in terms of

handovers, resource allocation, switching on/off base stations, etc., (2) Network Aware busi-

ness Intelligent, where the objective is that a proactive business customer service takes more

informed business decisions. That is, the service can be aware of the problem before the

user calls to complain, but also, it can make better decisions, e.g., the operator could find out
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that insufficient network infrastructure is the source of the problem. Therefore, by investing

in infrastructure, it can add more value to the customers, and (3) Open mobile network data,

where the mobile network data, like, social media feeds and data coming from sensors and

applications is exported to third parties for objectives like smart cities application, optimization

of public transport network, but also could be exported to third parties to provide location, ser-

vices, context aware content, among others [18]. Among the three of them, we focus on the

study and analysis of mobile data to network management.

1.2 Contribution

In this thesis we focus on addressing all the open aspects described in previous section. First,

we address open issues in SON. While self-optimisation and self-configuration are well ad-

dresses, we pay much attention to self-healing and to the open issue of self-coordination. We

resort on machine learning approaches, to build solutions that learn from experience, and of

providing decisions adapting to the evolution of the scenario.

The general wireless framework is a Heterogeneous Network (HetNet), where traditional

macrocell networks coexist with small cells networks. In particular, we rely on RL theory to

take advantage of Temporal Difference (TD) learning to implement autonomous SON functions

in wireless dynamic environments that we cannot model theoretically. We then propose a

functional architecture and a theoretical framework based on the theory of Markov Decision

Process (MDP)s for the self-coordination of different actions taken by different SON functions.

In addition to that, we study the benefit that learning from data already available in the

network may have. Then, we focus on designing a tool for QoS prediction, able to assist net-

work operators in smartly planning future dense deployments. The objective is to predict QoS

in a given area, given a certain deployment where the interference patterns are extremely vari-

able due to the very high frequency reuse. 3GPP already provides an interesting data base to

collect useful data for the purpose of QoS estimation. The Minimization of Drive Tests (MDT)

feature has been introduced by 3GPP since Release 10. Among the targets, there are the stan-

dardization of solutions for coverage optimization, mobility, capacity optimization, parametriza-

tion of common channels, and QoS verification [20]. Since operators are also interested in

estimating QoS performance, in Release 11, the MDT functionality has been enhanced to

properly dimension and plan the network by collecting measurements indicating throughput

and connectivity issues [21]. We exploit these data and present a Big Data approach to make

the networks more self-aware, by exploiting the information already available in the network to
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properly dimension and deploy heterogeneous nodes.

In this challenging context, we believe that machine learning can be effectively used to

allow the network to learn from experience, while improving performance. We focus on super-

vised learning and compare results from different regression techniques, for different amounts

and kinds of input features selected by applying dimensionality reduction techniques. Addition-

ally, we build ensemble methods that combine multiple learners to enhance the performance

of each regression analysis in a reduced space. We then propose a smart network planning

tool based on Big Data analysis through regression techniques in a reduce space.

The main contributions and the structure of this dissertation will be discussed in detail in

the following section.

1.3 PhD Thesis Overview

In this section, we present the topic of each chapter and outline the contributions that are

included in the present dissertation.

In Chapter 2, the background information which is required for the better understanding

of the thesis is provided. At the beginning of the chapter, the basic concepts and use cases

of SON are briefly presented, and the evolution of SON in 3GPP is included. Moreover, the

chapter gives an overview of the key concepts in ML, but it also describes different approaches,

and it elaborates the general objective of applying ML techniques in SON. Finally, it reviews

SON’s recent work in the area of ML. It provides a description of different ML approaches

applied as a current solutions for different SON uses cases.

The publication contained in this chapter is listed here:

• Jessica Moysen and Lorenza Giupponi, "Machine Learning Enabled SONs: a Survey",

to be submitted to the IEEE Communications Surveys & Tutorials, 2016.

In Chapter 3, an automatic and self-organised RL based approach for COC is presented.

It provides the detail of the scenario, and it introduces technical details of the learning approach

to successfully recover users from outage. Finally, an evaluation of the proposed approach

on the ns3 LTE-EPC Network Simulator (LENA) platform based on 3GPP component LTE is

provided.

The publications contained in this chapter are listed here:

• O. Onireti, A. Zoha, J. Moysen, A. Imran, L. Giupponi, M. Ali Imran, A. Abu-Dayya, "A
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Cell Outage Management Framework for Dense Heterogeneous Networks", IEEE Trans-

actions on Vehicular Technology, Vol. 64, No. 4, pp. 2097-2113, April 2015.

• Jessica Moysen and Lorenza Giupponi, "A Reinforcement Learning based solution for

Self-Healing in LTE networks", in proc. of the 80th IEEE Vehicular Technology Confer-

ence (VTC Fall), Vancouver, Canada, 2014.

In Chapter 4, a Distributed SON (D-SON) architecture for the solution of SON conflicts is

presented. A theoretical framework based on the theory of MDPs for the self-coordination of

different actions taken by different SON functions is proposed. Moreover, an example about

how the proposed functional architecture can be used to deal with the conflicts generated by

the concurrent execution of multiple SON functions is provided. As a particular case, in this

chapter, the coordination of two specific SON functions is analysed. Finally, the details of the

simulation platform and scenarios, as well as meaningful simulation results are described.

The publications contained in this chapter are listed here:

• Jessica Moysen and Lorenza Giupponi, "Self-coordination of parameter conflicts in D-

SON architectures: a Markov Decision Process framework", EURASIP Journal on Wire-

less Communications and Networking, 2015.

• Jessica Moysen and Lorenza Giupponi, "Self Coordination among SON functions in LTE

Heterogeneous Networks", in proc. of the 81th IEEE Vehicular Technology Conference

(VTC Spring), Glasgow, Scotland, 2015.

• Jessica Moysen and Lorenza Giupponi, "A Functional Architecture for Self-Coordination

in LTE networks", in proc. of the 20th IEEE European Wireless (EW), Barcelona, Spain,

2014.

In Chapter 5, a network planning tool based on ML and Genetic Algorithms (GAs) is

presented. In particular, an approach which allows to predict QoS offered to end-users, based

on data collected by the MDT function is proposed. In order to evaluate the performance of

the proposed scheme, two cases of study are considered. Finally, a performance analysis is

provided by means of simulations results.

The publications contained in this chapter are listed here:

• Jessica Moysen, Lorenza Giupponi, Josep Mangues-Bafalluy, "A Mobile Network Plan-

ning Tool based on Data Analytics", to be submitted to the Mobile Information Systems,
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This chapter provides background information which is required for the better understand-

ing of the thesis. The chapter is devoted to SON as a feature of 3GPP LTE systems. Sec-

tion 2.1 briefly presents the basic concepts, and gives a high level introduction of the structure

of 3GPP SON use cases. Section 2.1.1 summarizes the evolution of SON in 3GPP. Section
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2.2, provides the key concepts of ML algorithms. In Section 2.3, we elaborate the general

objective of applying machine learning techniques in SON. Finally, Section 2.4 concludes the

chapter.

2.1 Self Organizing Network (SON)

A promising approach, which is receiving significant interest from industrial and research com-

munities, to maximize total performance in cellular networks is to bring into them intelligence

and autonomous adaptability. This is traditionally referred to as self-organization, a concept

introduced by Ashby in [1–3]. Self-organization as applied to cellular networks is referred to

SON and it is a key driver for improving Operations, Administration, and Maintenance (OAM)

activities [4]. SON aims at reducing the cost of installation and management by simplifying op-

erational tasks through the capability to configure, optimize and heal itself. The main objective

of SON is to reduce the costs associated with network operations, i.e., CAPEX and OPEX, by

diminishing human involvement, while enhancing network performance, in terms of network

capacity, coverage and service quality. The main motivation behind the increasing interest in

the introduction of SON from operators, standardization bodies and projects is twofold. On

the one hand, from the technical perspective, the complexity and large scale of future radio

access technologies imposes significant operational challenges due to the multitude of tune-

able parameters and the intricate dependencies among them. In addition, the advent of new

heterogeneous kind of nodes like femto, pico, relays, etc., is expected to make tremendously

increase the number of nodes in this new ecosystem, so that traditional network management

activities based on e.g., classic manual and field trial design approaches are just not viable

anymore. Similarly, manual optimization processes or fault diagnosis and cure, performed by

experts are no longer efficient and need to be automatized, as this causes time intensive ex-

periments with limited operational scope, or delayed, manual and poor handling of cell/sites

failures. Key operational tasks, such as radio network planning and optimization are largely

separated nowadays and this causes intrinsic shortcomings like the abstraction of access

technologies for network planning purposes, or the consideration of performance indicators

that are of limited relevance to the end user’s service perception. These problems have been

approached through SON by European projects such as SOCRATES, which aims at the devel-

opment of self-organization methods to enhance the operations of wireless access networks

[5], and Gandalf, which focuses on automating Radio Resource Management (RRM) tasks

in heterogeneous radio access networks (Global System for Mobile Communications (GSM),
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General Packet Radio Service (GPRS), Universal Mobile Telecommunications System (UMTS)

and Wireless Local Area Network (WLAN)), including advanced RRM, auto-tuning, and auto-

mated diagnosis in troubleshooting [6]. Also FP7 and 5GPPP EU projects have been dealing

with SON. In particular FP7 SEMAFOUR [7], which develops a unified self-management to

operate complex HetNets. Among 5GPPP projects, we highlight SESAME [8], which proposes

the Cloud-Enabled Small Cell (CESC) concept, i.e., a new multi-operator enabled Small Cell

by deploying Network Functions Virtualisation (NFV), supporting powerful self-management

inside the access network infrastructure. In terms of self-organised network management in

SDN and NFV, SELFNET project aims at enabling the use of this kind of tools to achieve real

time autonomous 5G network management [9], and for the demand prediction to resize the net-

work using virtualisation, the COGNET project [10] aims at developing several use cases by

applying ML algorithms. On the other hand, from the market perspective, the ever increasing

demand for a diversity of offered services, and the need to reduce the time to market of innova-

tive services, further add to the pressure to remain competitive by effectuating cost reductions.

The overall idea of SON is to integrate network planning, configuration, and optimization into a

single mostly automated process requiring minimal human intervention.

SON has been introduced by 3GPP as a key component of LTE network starting from

the first release of this technology in Release 8, and expanding to subsequent releases. In

SOCRATES project [5] and in 3GPP [11] meaningful SON use cases have been defined, which

can be classified according to the phases of the life cycle of a cellular systems (planning,

deployment, optimization and maintenance) into: self-configuration, self-optimization and self-

healing.

In this chapter, first we give an overview of the evolution of SON in 3GPP. We discuss

about the different architectures that have been considered for these SON functionalities.

Then, we go through self-configuration, optimization and healing functionalities, introducing

the use cases that have been defined for each one of them, mainly talking about how they

have been addressed in 3GPP. We do not focus on the general literature, as it has already

been reviewed in other works [12]. We discuss about the self-coordination problem, to handle

the potential conflicts that may exist between the parallel execution of multiple SON functions.

This is a very challenging issue to keep in mind when designing SON functions. We present

the MDT functionality, which is introduced to collect useful data for analysis from UE measure-

ments, in order to improve coverage and capacity issues, verify QoS etc. We introduce the

core-networks related 3GPP SON use cases. Finally, we discuss the role of virtualised and

software defined networks in the context of 5G SON.
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2.1.1 SON evolution in 3GPP

Release 8 includes SON functionalities regarding initial equipment installation and integration.

The SON functions developed in Release 9 are designed to optimise deployed LTE networks.

Release 10 introduces SON functions to enhance interoperability between small cells and

macrocells and includes NGMNs recommendations, i.e., new functionalities such as CCO,

enhanced ICIC, COD and COC, self-healing functions, MDT and ES, are introduced. Release

11 SON functions are related to the automated management of heterogeneous networks. It

includes mobility robustness optimization enhancements and inter-radio access technology

HO optimization. Release 12 has studied how the NM centralized CCO function should be

enhanced. Release 13 studies the enhancements of OAM aspects of distributed MLB [13–15],

as well as enhanced NM or centralized CCO [16, 17]. Finally, Release 14 focuses on meeting

the 5G requirements in terms of latency reduction, use of unlicensed spectrum in a fair manner,

support for carrier aggregation, energy efficiency at OAM level, SON for active antennas, etc.

i.e. all aspects which received a lot of attention in Release 13 [18]. Table 2.1 summarizes the

evolution of SON in 3GPP.

Table 2.1: Evolution of SON in 3GPP

Release WI Feature TS or TR

Rel.8 SA5-SON concepts and requirements SON concepts and requirements [19]

Rel.8 SA5-Self establishment of eNBs Self configuration [20–25]

Rel.8 SA5-SON Automatic Neighbour Relation (ANR) list management ANR, PCI [26–29]

Rel.9 SA5: Study of SON related OAM Interfaces for HeNBs SON related OAM Interfaces for HeNBs [30]

Rel.9 SA5: Study of self-healing of SON Self-healing management [31]

Rel.9 SA5:SON OAM aspects: Automatic radio network Automatic radio network

configuration data preparation [20–22]

Rel.9 SA5:SON OAM aspects self-organisation management Self-optimisation (MRO, MLB, ICIC) [32]

Rel.9 RAN3: Self-organising networks CCO, MRO, MLB, RACH opt. [33–36]

Rel.10 SA5: SON self-optimization management continuation Self-coordination, self-optimization

(MRO, MLB, ICIC, RACH) [27, 32, 37–39]

Rel.10 SA5: Self-healing management CCO, COC [40]

Rel.10 SA5: OAM aspects of ES in radio networks ES [27–29, 32, 41–43]

Rel.10 RAN2-3: LTE SON enhancements CCO, ES, MLB, MRO enhancements [34–36, 44]

Rel.11 SA5: ULTRAN SON management SON management [19, 37, 38, 45–48]

Rel.11 SA5: LTE SON coordination management SON coordination [49] [19, 27, 32, 37, 38, 47]

Rel.11 SA5: Inter RAT ES management OAM aspects of ES management [37, 38, 43, 45, 48, 50]

Rel.11 RAN3: Further SON enhancements MRO, MDT enhancements [33–36, 44, 51–54]

Rel.12 SA5: Enhanced NM centralized CCO Enhanced NM centralized CCO [32, 55–60]

Rel.12 SA5: Multi-vendor plug and play eNB connection to the network Multi-vendor plug and play eNB connection to the network [20, 61, 62]

Rel.12 SA5: Enhancements on OAM aspects of distributed MLB OAM aspects of distributed MLB [63]

Rel.12 SA5: Energy efficiency related performance measurements Energy efficiency related performance measurements [32]

Rel.12 SA5: HetNets management/OAM aspects of network sharing HetNets/network sharing [64, 65]

Rel.12 RAN2-3: Next generation SON for ULTRAN/EUTRAN SON per UE type, active antennas, small cells [15]

Rel.12 RAN2-3: ES enhancements for EUTRAN ES [66]

Rel.13 RAN2-3: Enhanced Network Management centralized CCO CCO [16]

Rel.13 SA5: Study on Enhancements of OAM aspects of Distributed Mobility Load Balancing SON function MLB [17]

Rel.14 RAN: OAM (SON for Active Antenna Systems (AAS)-based deployments) Energy efficiency [18, 67]
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Figure 2.1: SON implementations.

2.1.2 SON implementations

In this section, we discuss about the different architectures that have been considered for

SON, Centralized SON (C-SON), D-SON and Hybrid SON, ranging from a C-SON functional-

ities, where the self-organising algorithms reside in the network management system, in the

Operation and Maintenance Center (OMC) or in the Network Management Systems (NMS),

to a D-SON solution, where the SON functions are distributed, in the control plane, across

the edges of the network, typically in the Enhanced Node Base stations (eNBs). On the one

hand, C-SON can take into consideration data from all nodes in the network to identify and

address network-wide issues. However, centralized systems may respond too slowly in the

emerging world of small cells that experience very transitory traffic loads. On the other hand,

D-SON functionalities are designed for near real-time response in seconds or milliseconds,

which makes the SON functions highly dynamic and enables the network to adapt to local

changes more rapidly. The main challenge in a D-SON implementation is that, it is more vul-

nerable than C-SON against network instabilities caused by the concurrent operation of SON

functions with conflicting objectives. The SON implementations are depicted in Figure 2.1.

2.1.3 Self-Configuration

Self-configuration is the process of bringing a new network element into service with minimal

human operator intervention [20]. This covers the cellular system life cycle phase related to

planning and deployment. Self-configuring algorithms take care of all configuration aspects

of the eNB. When the eNB is powered on, it detects the transport link and establishes a
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connection with the core network elements. After this, the eNB is ready to establish OAM, S1

and X2 links and finally sets itself in operational mode. After the eNB is configured, it performs

a self-test to deliver a status report to the network management node. Since Release 8 ANR

and automated configuration of Physical Cell ID (PCI) use cases have been considered [68,

69].

1. ANR. This function is one of the first SON functions to be standardized in 3GPP, it relies

on the eNB, and it aims at automatic setting of neighbour relations [70]. According to

the standards, the UE measures and reports the following types of cells: (1) the serv-

ing cell, (2) listed cells (i.e., cells that are indicated by the Evolved Universal Terrestrial

Radio Access Network (E-UTRAN) as part of the list of neighbouring cells), (3) detected

cells (i.e., cells that are not indicated by the E-UTRAN but detected by the UE). However,

E-UTRAN does indicate the carrier frequency. So the detected cell can be a LTE cell

within the same frequency or a LTE cell with a different frequency or even a cell belong-

ing to another RAT. To detect inter-frequency cells or inter-RAT cells, the eNB needs to

instruct the UE to do the measurement on that frequency [46]. Authors in [71] propose

a method to generate the neighbouring cell list based on geographical conditions, an-

tenna patterns and power transmission. The performance of the ANR use case also has

been evaluated in HetNets [72], where the authors use the SINR from adjacent cells to

generate the neighbour list.

Prior to Release 11, focus was on E-UTRAN ANR. Release 11 ANR focuses on the man-

agement aspects of ANR for UMTS Universal Terrestrial Radio Access Network (UTRAN)

and Inter-Radio Access Technology (IRAT) ANR, specifically defining the following SON

use cases in the context of UTRAN ANR.

2. Automatic PCI assignment. The automated configuration of PCI use case aims to config-

ure automatically the neighbour cell list, where, each cell has a unique cell ID and needs

to create a neighbour cell list, e.g., the list update is required when a new cell is deployed

or is temporarily out of service in the network [13].

Recommended practices for both use cases can be found in [73]. Some contributions in Self-

configuration in LTE networks include [74–76].
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2.1.4 Self-Optimization

Self-optimization consists of the set of mechanisms which optimize parameters during oper-

ation, based on measurements from the network. Here, one of the most important thing is

the need for the network to continuously self optimise its operation. This approach has been

studied in a number of papers [13, 77], and we can find a survey of the literature in [4], where

the authors focus on Load Balancing (LB), ICIC and CCO use cases in order to classify them

with respect to the state of the art. 3GPP approved several use cases since Release 9 [13].

These use cases provide a description of how Self-optimisation functionalities can be applied.

These use cases cover many different aspects for self-organization in LTE networks, and can

be found in [47]. Specific use cases are described as follows,

1. Mobility Load Balancing (MLB). The MLB is a SON function where cells with congestion

can transfer load to other cells. The main objective is to improve end-user experience and

achieve higher system capacity by distributing user traffic across system radio resources.

The implementation of this function is generally distributed and supported by the load

estimation and resource status exchange procedure. The messages containing useful

information for this SON function (resource status request, response, failure and update)

are transmitted over the X2 interface [36]. MLB can be implemented by tuning the Cell

Individual Offset (CIO) parameter. The CIO contains the offsets of the serving and the

neighbour cells that all UEs in this cell must apply in order to satisfy the A3 handover

condition [78].

2. Mobility Robustness Optimisation (MRO). The MRO is a SON function designed to guar-

antee proper mobility, i.e., proper handover in connected mode and cell re-selection in

idle mode. Among the specific goals of this function we have the minimization of call

drops, the reduction of Radio Link Failures (RLFs), the minimization of unnecessary

handovers, ping pongs, due to poor handover parameters settings, the minimization of

idle problems. Its implementation is commonly distributed. The messages containing

useful information are: the S1AP handover request or X2AP handover request, the han-

dover report, the RLF indication/report. The Release 11 improvements to the handover

optimization are included [79]. MRO operates over connected mode and idle mode pa-

rameters. In connected mode, it tunes meaningful handover trigger parameters, such

as the event A3 offset (when referring to intra-RAT, intra-carrier handovers), the Time to

Trigger (TTT), or the Layer 1 and Layer 3 filter coefficients. In idle mode, it tunes the

offset values, such as the Qoffset for the intra-RAT, intra-carrier case.
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3. Inter-Cell Interference Coordination (ICIC). ICIC is a SON function, which aims to mini-

mize interference among cells using the same spectrum. It involves the coordination of

physical resources between neighbouring cells to reduce interference from one cell to

another. ICIC can be done in both uplink and downlink for the data channels Physical

Downlink Shared Channel (PDSCH), and Physical Uplink Shared Channel (PUSCH), or

uplink control channel Physical Downlink Control Channel (PDCCH). ICIC can be static,

semi-static or dynamic. Dynamic ICIC relies on frequent adjustments of parameters,

supported by signalling among cells over X2 interface. To support proactive coordination

among cells the High Interference Indicator (HII) and the Relative Narrowband Transmit

Power (RNTP) indicators have been defined, while to support reactive coordination, the

Overload Indicator (OI) has been introduced [36].

4. Random Access Channel (RACH). RACH optimization aims at optimising the random

access channels in the cells based on UE feedback and knowledge of its neighbour-

ing eNBs RACH configuration. RACH optimization can be done by adjusting the Power

control (Pc) parameter or change the preamble format to reach the set target access

delay [80].

In Release 10, 3GPP defines new use cases as follows:

1. Coverage and Capacity Optimisation (CCO) is a SON function, which aims to provide

capacity and coverage optimization. The targets that can be optimised may be vendor

dependent and include coverage, cell throughout, edge cell throughput, or a weighted

combination of the above.

2. Energy Saving (ES) aims at providing the quality of experience to end users with minimal

impact on the environment. The objective is to optimize the energy consumption, by de-

signing Network Elements (NEs) with lower power consumption and temporarily shutting

down unused capacity when not needed [41].

Release 11 provides enhancements to MLB optimization, HO optimization, CCO, and ES. In

Release 12 a study on enhancements of OAM aspects of distributed MLB SON function has

been done, and can be found in [81].

2.1.5 Self-healing

Self-healing focuses on the maintenance phase of a cellular network. Wireless cellular systems

are prone to faults and failures, and the most critical domain for fault management is the RAN.
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Every eNB is responsible for serving an area, with little or none redundancy. If a NE is not

able to fulfil its responsibilities, it results in a period of degradation of performances, during

which users are not receiving a proper service. This results in severe revenue loss for the

operator. 3GPP has technical specifications [40] that describe the concepts and requirements

related to self-healing. Also we can find documents specifying the Information Service (IS)

[27, 37] and Solution Sets (SS) [38, 39] for SON, Network Resource Model (NRM) Integration

Reference Point (IRP). The Self-Healing methods are triggered by the failure of a cell or site.

These methods aim to resolve the loss of coverage/capacity induced by such events [82]. By

automatic adjustment of network parameters and algorithms in surrounding cells the problem

is solved. Once the actual failure has been repaired, all parameters are restored to their

original settings. A study on Self-healing was carried out since Release 9 [31], and in Release

10, features for detection, and adjustment of parameters have been specified [83]. These

specifications have been updated in Release 11 [40], and are describe as follows,

1. Self-recovery of NE Software. If the NE software failed due to load earlier software

version and/or configuration, the most important thing is to ensure that the NE runs

normally by removing the fault software, and restoring the configuration.

2. Self Healing of board Faults. This use case aims to solve hardware failures in the NE

[84].

3. Cell Outage Management. This use case is split in two main functions: 1) Cell Outage

Detection. The main objective here is to detect a cell outage through the monitor per-

formance indicators, which are compared against thresholds and profiles, and 2) Cell

Outage Compensation. This use case aims at alleviating the outage caused by the loss

of a cell from service [40]. It refers to the automatic mitigation of the degradation ef-

fect of the outage by appropriately adjusting suitable radio parameters, such as the pilot

power and the antenna parameters of the surrounding cells. For this use case an ad-

equate reaction is vital for the continuity of the service, so vendor specific Cell Outage

Detection (COD) schemes have to be designed [85, 86].

Significant work was carried out by the GANDALF consortium in the area of diagnosis and

detection in troubleshooting in the context of heterogeneous RANs, like GSM, GPRS, UMTS

[87].
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2.1.6 Self-Coordination

SON functionalities are often designed as stand-alone functionalities, by means of control

loops. When they are executed concurrently in the same or different network elements, the

impact of their interactions is not easy to be predicted, and unwanted effects may even occur

among instances of the same SON function, when implemented in neighbouring cells. The risk

of unacceptable oscillations of configuration parameters or undesirable performance results

increase with the number of SON functions, so that it is considered necessary to define and

implement a self-coordination framework [5, 88]. 3GPP has proposed different architectures

for SON implementation, ranging from centralized C-SON to distributed D-SON, and the choice

of the architecture has a strong impact on the efficiency of the self-coordination framework. If

C-SON is used, SON functions are implemented in the OMC or in the NMS, as part of the

Operation and Support System (OSS). This implementation benefits from global information

about metrics and Key Performance Indicator (KPI)s, as well as computational capacity to run

powerful optimization algorithms involving multiple variables or cells. However, it suffers from

long time scales. In order to avoid oscillations of decision parameters, 3GPP requires [49] that

each SON function asks for permission before changing any configuration parameter. This

means that a request must be sent from the SON function to the SON coordinator and a

response has to be returned. In C-SON all these requests must pass through the Interface-N,

which is not suitable for real-time communication, so that there is no possibility to give priority

to SON coordination messages over other OAM messages. If in turn, distributed coordination

is used, the interaction between the SON function and the local SON coordinator will be over

internal vendor-specific interfaces, with much lower latency characteristics. This makes the

D-SON architecture much more flexible and adequate for small cell networks, which experience

very transitory traffic loads, thus requiring high reactivity to propagation and traffic conditions.

Figures 2.2 and 2.3 depict the Centralized vs. Distributed implementation describe before.

Market implementations of C-SON are offered by vendors like Celcite (acquired by AM-

DOCS), Ingenia Telecom and Intucell (acquired by Cisco), while D-SON solutions have tradi-

tionally been more challenging to implement and vendor specific, not allowing for easy inter-

action of products from different vendors, so that a supervisory layer is commonly still needed

to coordinate the different instances of D-SON across a much broader scope and scale. Only

recently, vendors like Qualcomm or Airhop have started proposing D-SON as a SON main-

stream, as small cells and HetNets require the millisecond response times of D-SON.

The topic of conflicts resolution and coordination has been receiving growing interest
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also from academic community. In [84, 89] the authors focus on the classification of po-

tential SON conflicts and on discussing the valid tools and procedures to implement a solid

self-coordination framework. Examples of centralized and distributed implementations of SON

coordination are offered in [90] and [91], respectively. A preventive coordination mechanism

that uses policy based decision making has been proposed in [91]. Guard functions have been

proposed in [88] to detect undesirable network behaviours and trigger countermeasures. De-

cision trees have been proposed in [92] for properly adjusting Remote Electrical Tilt (RET) and

transmission power.

2.1.7 Minimisation of Drive Tests

MDT enables operators to collect User Equipments (UEs) measurements together with loca-

tion information, if available, with the purpose of optimising network management while reduc-

ing operational effects and maintenance costs. This feature has been studied by 3GPP since

Release 9 [93], among the targets there are the standardization of solutions for coverage opti-

mization, mobility, capacity optimization, parametrisation of common channels, and QoS verifi-

cation [84]. Since operators are also interested in estimating QoS performance, in Release 11,

MDT functionality has been enhanced through QoS performance to properly dimension and

plan the network by collecting measurements indicating throughput and connectivity issues

[94]. Some use cases are as follows:

1. Coverage optimisation. This function covers multiple objectives, such as coverage map-

ping, coverage hole detection, identification of weak coverage, detection of excessive

interference, uplink coverage verification, etc.

2. Mobility optimisation. This function aims to optimize the mobility performance by moni-
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toring the cells with a high handover rate and the provided coverage.

3. Capacity optimisation. This function aims to improve strategies of network planning and

network capacity verification/optimization

4. QoS verification. This function is aimed to verify the service level that can be offered to

the users in different parts of the network. Some contributions on these use cases can

be found in [95–98].

These MDT functions have been further elaborated in Release 11, while Release 12 has in-

cluded specific enhancements in terms of correlation of information, which can be found in the

study on enhanced network management centralized CCO. These improvements and exten-

sions of SON enhancements introduced until Release 13 can be found in [16].

2.1.8 Core networks

The core network is that part of the network that connects the different parts of the access

networks and provides a gateway to other networks. The core network operations can be en-

abled with SON functionalities. The benefits also in this case come from the reduced human

intervention and so from reduced operational costs. SON for core network allows to self-adapt

traffic loads and prevent bottlenecks. It also helps operators route calls to a point of intercon-

nection that improve capital and operational expenditures. In addition, SON for Core enables

the core network to handle signalling more efficiently. In this regard, Nokia [99] already auto-

mates core networks operations based on SON technology. The objective is to automatically

and rapidly allocate core network resources to meet unpredictable behaviours and demands

in terms of broadband. Notice that SON use cases for core networks are not limited to LTE

networks, but many of them can be taken into account also for other kinds of networks, like

2G/3G.

2.1.9 Virtualised and Software defined networks

In order to deal with the open challenges related with the autonomic 5G networks management

new deployment approaches based on NFV and SDN architectures, are being introduced to

make mobile network deployments more cost-effective. The main idea behind these novel

architectures is to provide a framework capable of assisting network operators to solve man-

agement problems, such as, cyber attacks, network failures, optimisation to improve network

performance, and QoE of the users, among others. In this context, SON can be useful to
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achieve real time autonomous network management. This research line is extremely novel

and no much work can be found so far. However, we highlight the work that is underdevelop-

ment in the context of the SELFNET project [9], which consider valuable. SELFNET SON will

operate in virtualised and software defined network and thus can be compatible with non-3GPP

systems, but also is expected to be complementary with those in 3GPP networks.

2.2 Key concepts of ML

Learning is the process of gaining knowledge by instruction or study, and the discovery of new

facts by experience. Computer modelling of learning processes that are able to introduce such

capabilities in computers is the main challenge of ML. The term of ML was originally introduced

in 1959 by Arthur Samuel [100]. He defined ML as a field study that gives computers the ability

to learn without being explicitly programmed. According to [101], a computer is said to learn

from experience, with respect to some task, and some performance metric, if its performance

of the task, improves with experience. ML studies computer algorithms for learning to complete

a task, or to make predictions based on observations, i.e., it is about learning to do better in the

future based on what was experienced in the past. The target is to discover learning algorithms

that do the learning without human intervention [102]. The primary goal of ML is to develop

efficient algorithms, where time and the amount of data are one of the most important things.

Learning algorithms should also be as general as possible, i.e., the learning algorithm has to be

able to make a prediction that is as accurate as possible. But also, those predictions have to be

easily understandable by experts. Machine Learning is in our everyday life, and its applications

are huge and cross-disciplinary, e.g., web search, spam filters, recommender systems, ad

placement, fraud detection, stock trading, etc. A recent report from McKinsey Global Institute

asserts that machine learning will be the driver of a next big wave of innovation [103].

The objective of ML is to improve performance of a particular sets of tasks by creating

a model that helps find patterns through learning algorithms. ML taxonomy is traditionally

organised onto: 1. Supervised Learning (SL), 2. Unsupervised Learning (UL), 3. RL, and 4.

New trends: Deep Learning (see Table 2.2). The four techniques are described as follows.

2.2.1 Supervised Learning

SL is a Machine learning technique which takes training data (organised into an input vec-

tor (x) and a desired output value (y)) to develop a predictive model, by inferring a function

f(x), returning the predicted output ŷ. For that, the construction of a dataset is needed. The
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Table 2.2: Summary of machine learning techniques

Supervised Learning

Classification K-Nearest Neighbours

Generalized Linear Model

Support Vector Machines

Naive Bayes

Neural Networks

Regression K-Nearest Neighbours

Generalized Linear Regression

Support Vector Regression

Neural Networks

Decision Trees

Unsupervised Learning

Clustering Non-overlapping clustering

Hierarchical clustering

Overlapping clustering

Dimensionality Reduction Feature Extraction

Feature Selection

Anomaly Detection Pruning techniques

Rule-based systems

Reinforcement Learning

Model-based Dynamic Programming

Monte Carlo

Model-free Temporal Difference

New trends

Deep Learning Deep networks for supervised learning

Deep networks for unsupervised learning

Hybrid deep network
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dataset contains training samples (rows), and features (columns), and is usually divided into

2 sets. The training set, used to train the model, and the test set, used to make sure that

the predictions are correct. The goal of the training model is to minimize the error between

the predictions and the actual values. Hence, by applying ML, we aim to estimate how well

a learning algorithm generalizes beyond the samples in the training set. The input space is

represented by a n-dimensional input vector x = (x(1), . . . , x(n))T ∈ Rn. Each dimension is

an input variable. In addition a training set involves m training samples ((x1, y1), . . . , (xm, ym)).

Each sample consists of an input vector xi, and a corresponding output yi. Hence x(j)
i is the

value of the input variable x(j) in training sample i, and the error is usually computed via |ŷi−yi|.
The SL technique has two main applications, classification and regression. On the one hand,

classification is applied when y, the output value we try to predict is discrete, e.g., we want

to predict if a cancer is benign or malign, based on a dataset constructed based on medical

records, and collecting many features, e.g., tumour size, age, uniformity of cell size, uniformity

of cell shape. On the other hand, a regression problem is applied when y is a real number, i.e.,

we try to predict continuous valued outputs, e.g., we want to predict housing prices, based on

a dataset of examples of prices per size of houses.

A huge amount of SL algorithms for classification can be found in the literature, and a

study to evaluate the performance of some of them can be found in [104]. At this point the

key factor in ML is how to evaluate ML models. A ML model is a function that represents the

relationship between different aspects of data. For example, consider a linear model y = ΦTx,

this model uses a line to represent the relationship between the vector x (representing the

features of the data) and a scalar y (representing the value we want to learn to predict). The

variable Φ is a weight vector that specifies the slope of the line. This is referred as a model

parameter and it is learned during the training phase. The goal is to determine the best model

parameter that fits the data. Other parameters that we need to consider are the nuisance

parameters [105]. These parameters control the model’s capacity, which gives us information

about the flexibility of the model, i.e., how to control a low error on the training set (under-

fitting), and how to control a big gap between the training error and the test error (over-fitting).

These concepts are fundamental to characterize notions of:

1. How to measure the error from erroneous assumptions in the learning algorithm (bias).

High bias can cause under-fitting.

2. How to quantify how much the response varies from one learning sample to another

(variance). High variance can cause over-fitting.
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Some parameters that influence these two concepts are:

1. The complexity of the model.

2. How much y varies from the model (noise).

3. The learning sample size.

4. The learning algorithm, among others.

Hence the capacity of the model is one of the main factors we need to take into account when

implementing a ML algorithm. Many SL algorithms can be reduced to some variant of those

described as follows:

1. k-Nearest Neighbours (k-NN) can be used for classification and regression. k-NN is a

non-linear method where the input consists of the k closest training samples in the input

space. The predicted output is the average of the values of its k nearest neighbours.

A commonly used distance metric for continuous variables is the Euclidean distance.

The k-NN method has the advantage of being easy to interpret, fast in training, and

the amount of parameter tuning is minimal. However, the accuracy of the prediction is

generally limited.

2. Generalized Linear Models (GLM). The linear model describes a linear relationship be-

tween the output and one or more input variables, and where the approximation function

maps from xi to yi as follows,

ŷi = Φ0 + Φ1x
(1)
i + . . .+ Φnx

(n)
i (2.1)

where Φi are the unknown parameter. The idea is to choose Φi so that ŷi minimizes

the loss function. Typically we make the assumption that the samples in each dataset

are independent from each other, and that the training set and testing set are identically

distributed. Note that if the relation is not linear, the model should be generalized, in an

attempt to capture this relationship [106].

3. Naive Bayes (NB). The method is used for classification and is based on Bayes the-

orem, i.e., calculating probabilities based on the prior probability. The main task is to

classify new data points as they arrive. A NB classifier assumes that all attributes are

conditionally independent, and is recommended when the dimensionality of the input is

high [107]. Since NB assumes independent variables, it only requires a small amount of

training data to estimate the means and variances of the variables.
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4. Support Vector Machine (SVM) can be used for classification and regression. SVM are

inspired by statistical learning theory, which is a powerful tool for estimating multidimen-

sional functions [108, 109]. This method can be formulated as a mathematical optimiza-

tion problem, which can be solved by known techniques. For this problem, given m

training samples ((x1, y1), . . . , (xm, ym)), the goal is to learn the parameters of a function

which best fits the data. It samples hyperplanes. Thus, the hyperplane with the main

minimum distance from the sample points is maintained. The sample points that form

margin are called support vectors and establish the final model. This method in general

shows high accuracy in the prediction, and it can also behave very well with non-linear

problems when using appropriate kernel methods. Also, when we cannot find a good lin-

ear separator, kernel techniques are used to project data points into a higher dimensional

space where they can become linearly separable. Hence the correct choice of kernel pa-

rameters is crucial for obtaining good results. In practice, this means that an exhaustive

search must be conducted on the parameter space, thus complicating the task [110].

5. Artificial Neural Networks (ANN) is a statistical learning model inspired by the structure

of a human brain, where the interconnected nodes represent the neurons producing

appropriate responses. ANN supports both classification and regression algorithms. The

basic idea is to efficiently train and validate a neural network. Then, the trained network is

used to make a prediction on the test set. In this method the weights are the parameters

in charge to manipulate the data in the calculations. Here, the interconnection pattern

between the different layers of neurons, the learning process for updating the weights

of the interconnections, and the activation function that converts a neuron’s weighted

input to its output activation are the most important parameters to be considered [111].

ANNs methods require parameters or distribution models derived from the data set, and

in general they are also susceptible to over-fitting.

6. Decision Tree (DT) is a flow-chart model in which each internal node represents a test on

an attribute. Each leaf node represents a response, and the branch represents the out-

come of the test [112]. DTs can be used for classification and regression, and they have

nuisance parameters, such as the desired depth and number of leaves in the tree [113].

Also, they do not require any prior knowledge of the data, are robust (i.e., do not suffer

the curse of dimensionality as they focus on the salient attributes) and work well on noisy

data. However, DTs are dependent on the coverage of the training data as with many

classifiers. Moreover, they are also susceptible to over-fitting.
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2.2.2 Ensemble Methods

Ensemble methods combine the predictions of multiple learning algorithms to produce a fi-

nal prediction. This technique has been investigated in a huge variety of works [114, 115].

A general method is sub-sampling the training examples, where the most useful techniques

are bagging and boosting techniques [116]. Bagging manipulated the training examples to

generate multiple hypothesis. It runs the learning algorithm several times, each one with dif-

ferent subset of training samples. Random Forest (RF) is a modification of bagging that build

a collection of trees, and then average them [117]. Every tree in the ensemble is grown on an

independently drawn sample of input data. It takes an average of predictions from individual

trees (for regression) or takes votes from individual trees (for classification). Like Bagging,

AdaBoost manipulates the training examples to generate multiple hypotheses. It maintains a

probability distribution over the training samples. AdaBoost maintains a set of weights over the

original training set, and adjusts these weights by increasing the weight of examples that are

misclassified, and decrease the weight of examples that are correctly classified [118, 119]. In

literature, the authors in [102] show that AdaBoost is one of the best methods for construct-

ing ensembles of decision trees. However in [120] the authors have shown that in domains

with noisy training data AdaBoost can perform badly. It places high weight on incorrectly la-

belled training examples, and, consequently constructs bad classifiers. In [121], the authors

have showed that combining bagging with error correcting output coding improved the perfor-

mance of both methods, which suggest that combinations of other ensemble methods should

be explored. However, ensembles method requires large amount of memory to store and large

amount of computation to apply. An important line of research is to find ways of converting

these ensembles into less redundant representations. A difficulty is that an ensemble provides

little insight into how it makes its decisions, e.g., a single DT can often be interpreted by human

users, but an ensemble of hundreds of DTs is much more difficult to understand. In [122], the

authors propose to take advantage of ensembles of DTs. Although the accuracy of each of the

individual DT is less than the accuracy of a single tree grown with all the data, the accuracy of

the ensemble is better than the accuracy of one DT.

2.2.3 Unsupervised Learning

UL is a ML technique, which receives unlabelled input patterns. In this case, we let the com-

puter learn by itself, without providing the correct answer to the problem we want to solve. The

goal is to construct representation of inputs that can be used for predicting future inputs without
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giving the algorithm the right answer, i.e., it tries to find patterns in the data without unstruc-

tured noise [123]. The three most important families of algorithms are clustering, dimensional-

ity reduction and anomaly detection techniques. Nowadays we can find real UL applications,

e.g., news.google.com, understanding genomics, organize computer clusters, social network

analysis, astronomical data analysis, market segmentation, etc.

1. Clustering. This technique aims at identifying groups of data to build representation

of the input. The most common methods to create clusters by grouping the data are:

non-overlapping, hierarchical and overlapping clustering methods. K-means [124] and

Self Organising Maps (SOMs) [125] methods belong to non-overlapping clustering tech-

niques. When the clusters at one level are joined as clusters at the next level (cluster-

tree), this is refereed in literature as a hierarchical clustering method [105]. In case that

an observation can exist in more than one cluster simultaneously, it is known as over-

lapping or fuzzy clustering. Fuzzy C-means and Gaussian mixture models belong to this

kind of technique [124, 126]. This kind of algorithms have been proposed in a wide range

of fields, such as, robotics, wireless systems, and routing algorithms for mobile ad hoc

networks, among others.

2. Dimensionality Reduction. High-dimensional datasets present many challenges. One of

the problems is that, in many cases, not all the measured variables are necessary to

understand the problem of interest. In the state of the art we can find a huge amount of

algorithms to predict models with good performance from high-dimensional data. How-

ever it is of interest for many problems to reduce the dimension of the original data. For

example, in [127], the authors face the problem of the huge amount of potential features

the system have as input, and they suggest that the regression analysis has a better

performance in a reduced space. In this context, the most common methods are: Fea-

ture Extraction (FE) and Feature Selection (FS) [128]. Both methods seek to reduce the

number of features in the dataset. FE methods do so by creating new combinations of

features (e.g., Principal Component Analysis (PCA)), which project the data onto a lower

dimensional subspace by identifying correlated features in the data distribution. They re-

tain the Principal Components (PCs) with the greatest variance and discard all others to

preserve maximum information and retain minimal redundancy [129]. Correlation based

FS methods include and exclude features present in the data without changing them.

For example, Sparse Principal Component Analysis (SPCA), which extends the classic

method of PCA for the reduction of dimensionality of data by adding sparsity constraint
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on the input features.

3. Anomaly Detection. The idea of this technique consists in identifying events, which do

not correspond to an expected pattern. By modelling the most common behaviours the

machine selects the set of unusual events [130]. The two most common techniques are:

• Rule based systems are very similar to DTs, but they are more flexible than DTs as

new rules may be added, without creating a conflict with the existing ones.

• Pruning techniques aim at identifying outliers, where there are errors in any combi-

nation of variables.

Identifying irregular behaviour in the data is crucial in many applications such as medical

imaging, in mobile networks specify the case of fault detection, and network security.

2.2.4 Reinforcement Learning

Differently from the case of SL, RL aims to learn from interactions how to achieve a certain

goal. In many real applications and in particular, in sequential decision and control problems,

it is not possible to provide an explicit supervision to the training (i.e., the right answer to the

problem). In these cases, we can only provide a reward/cost functions, which indicates to

the algorithm when it is doing well and when it is doing poorly. RL has already been proven

effective in many real world applications, such as autonomous helicopters, network routing,

robot legged automation, etc. [131–133]. The learner or decision maker is called agent, and

it interacts continuously with the so-called environment. The agent selects actions and the

environment responds to those actions and evolves into new situations. In particular, the envi-

ronment responds to the actions through rewards, i.e., numerical values that the agent tries to

maximize over time.

The agent has to exploit what it already knows in order to obtain a positive reward, but it

also has to explore in order to take better actions in the future. The problem is then defined

by means of a Markov decision process {S,A, T ,R}, where S, is the set of possible states of

the environment S = {s1, s2, . . . , sn}, A is the set of possible actions A = {a1, a2, . . . , aq} that

each decision maker may choose, T is the probability of moving to state s + 1 when action a

is taken in state s, and R is a reward function, which specifies the expected immediate return

R, for each state s, action a, and next state s + 1. The interactions between the multi-agent

system and the environment at each time instant t consist of the following sequence.

• Agent i senses the state sit = s ∈ S.
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• Based on s, agent i selects an action ait = a ∈ A.

• As a result, the environment makes a transition to the new state sit+1 = v ∈ S.

• The transition to the state v generates a reward rit = r ∈ R.

• The reward r is fed back to the agent and the process is repeated.

The solution to a MDP is based on the RL framework [134]. At each time step, the agent

implements a mapping from states to probabilities of selecting each possible action. This

mapping is the agent’s policy. The objective of each learning process is to find an optimal

policy π∗(s) ∈ A for each s, to maximize some cumulative measure of the reward r received

over time. Almost all RL algorithms are based on estimating a so called value function, which

is a function of the states estimating how good it is for an agent to be in a given state. The

objective is to choose a policy π that minimizes the expected discounted sum cost over a

potentially infinite horizon.

V ∗(s) = min
π

E

( ∞∑
t=0

γtct

)
(2.2)

where E stands for the expectation operator, t is any time step, and 0 ≤ γ ≤ 1 is a discount

factor. The principle of Bellman’s optimality proves that there is an optimal policy.

Single vs Multi agent

Learning can be centralized in a single agent or distributed across a multiple agents. In sin-

gle agent systems, the machine learning approaches are capable of finding optimal decision

policies in dynamic scenarios with only one decision maker. In multi agent systems, the dis-

tributed decisions are made by multiple intelligent decision makers, and the optimal solutions

or equilibria are not always guaranteed [135]. Some characteristics of this kind of system are:

• Each agent has incomplete information and capabilities to solve the decision making

problem.

• No central entity providing global control.

• Spatially distributed sources of information.

• Decisions of each agent strongly depend on the decisions made by the other agents.
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RL approaches

RL literature offers two approaches to solve MDPs. These two approaches are: model-based

and model-free.

Stochastic Games

Distributed Centralised

Markov Decision Process

Temporal Difference

Model-based

Reinforcement Learning

Model-free

Monte Carlo

Q-learning Sarsa

Dynamic Programming

Actor Critic

Figure 2.4: Useful taxonomy for RL.

1. Model-based. Dynamic Programming (DP) and Monte Carlo (MC) methods belong to

model-based approach. DP, relies on the knowledge of the state transition probability

between two states after executing a certain action. The main drawback of DP methods

are that they require to fully known the MDP model. DP algorithms are based on update

rules derived from the Bellman equation. The basic building blocks are:

• Policy evaluation and Policy improvement. Combining these two processes we ob-

tain the two most popular solving algorithms, which are Policy and Value iteration.

Although their application on practical cases is limited, they provide foundation for

other RL methods.

MC method requires only experience, i.e., sample sequences of states, actions and re-

wards. The estimations are only updated after the episodes conclude. Although their

application on practical cases is limited, they provide foundation for other RL methods.

2. Model-free. TD methods are model free approaches to solve RL problems. TD learning

is a combination of MC and DP ideas. It uses the current estimate V π
t instead of the true

V π, like DP. If T is known, we can solve the MDP through DP, otherwise we need TD

methods. Some examples of TD methods are: Sarsa, Q-learning and AC [134].
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(a) Q-learning is an off-policy TD control. In Q-learning the learned action-value func-

tion, Q, directly approximates Q, independent of the policy followed. The policy

guides the algorithm selecting which state-action pairs are visited and updated.

(b) Sarsa is an on-policy control method, it is necessary to estimate Qπ(s, a) instead

of V π(s). The convergence properties depend on the policy’s dependence on Q.

In MC control methods, if a policy that causes the agent to stay in the same state

is found, the episode never ends. In step-by-step methods like sarsa this can not

happen. The sequence (st, at, rt+1, st+1, at+1) gives rise to the name Sarsa.

(c) AC method. As already mentioned, we rely on RL theory to take advantage of

TD learning to implement autonomous SON functions in wireless dynamic envi-

ronments that we cannot model theoretically. Among the literature of TD learning

schemes, in this dissertation the AC approach has been selected to solve indepen-

dently each SON function (i.e., to learn the optimal policy), as it is one of the most

representative TD schemes and it is not computationally complex. Therefore, for this

particular method we have provided a more in-depth description of the algorithm.

AC methods are TD methods that have a separate memory structure to represent

the policy independently of the value function. The policy structure is known as the

actor, since it is used to select the actions, while the estimated value function is

known as the critic. The critic learns and critiques whatever policy is currently being

followed by the actor and takes the form of a TD error δ, which is used to determine

if at was a good action or not. δ is a scalar signal, which is the output of the critic and

drives the learning procedure. After each action selection, the critic evaluates the

new state to determine whether things have gone better or worse than expected, as

it is defined by the TD error:

δt = rt + γVt(st+1)− Vt(st) (2.3)

where V is the current value function implemented by the critic, to evaluate the

action at taken in st. If the TD error is positive, it suggests that the tendency to

select at should be strengthened for the future, whereas if the TD error is negative,

it suggests the tendency should be weakened. We identify this tendency with a

preference function P (st, at), which indicates the tendency or preference to select

a certain action in a certain state. Then the strengthening or weakening described

above can be implemented by increasing or decreasing P (st, at) by

P (st, at)← P (st, at) + β δt (2.4)
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where β is a positive learning parameter. This is the most simple implementation of

a AC algorithm. The variation that we consider for implementation, is to add different

weights to different actions, for example based on the probability of selecting action

at in state st, i.e., π(st, at), which results in the following update rule:

P (st, at)← P (st, at) + β δt(1− π(st, at)) (2.5)

In this implementation, AC directly implements the Boltzmann exploration method

to select actions as follows:

π(st, at) =
eP (st,at)∑

at∈A e
P (st,at)/τ

(2.6)

This means the probability to select an action a in state s at time t depends on the

temperature parameter τ , and on the preference values P (st, at) at time t. In this

kind of exploration, actions that seem more promising, because of higher preference

values, have a higher probability of being selected. Figure 2.4 depicts the taxonomy

of RL.

2.2.5 New trends: Deep Learning Networks

Large ML problems are beginning to arise in database applications, where there can be mil-

lions of measurements every day, and it is desirable to have ML algorithms that can analyse

such large data sets. As a result, people who are interested in collecting such data look inside

ML to find useful insights and predictions. However, ML techniques seem to be limited in their

ability to process the data in the original form. In this context ML is rapidly expanding by in-

venting new formalizations of ML problems. The idea is to be able to fed a machine with row

data and discover the representations needed for detection and/or classification/regression.

Deep learning allows this [136]. Deep learning is a new area of ML research that attempts to

learn in multiple levels. It allows to find patterns from data. This is done by applying computa-

tional models that are composed of multiple levels of representation and abstraction that help

to make sense of data. This method is making major advances in solving problems, such that,

language, vision, speech recognition, object and audio detection, and many other fields. Deep-

ening on the application, this technique can broadly categorize into three major classes [137]

described as follows:

1. Deep networks for supervised learning. They try to find patterns when visible information

about labels data is available. Some of examples of this kind of deep networks are;
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Restricted Boltzmann Machines (RBMs) [138], Deep Belief Networks (DBNs) [139], Deep

Boltzmann Machines (DBMs) [140].

2. Deep networks for unsupervised learning. They try to find patterns when no visible in-

formation about labels data is available. Examples of these architectures are, Hidden

Markov Modelss (HMMs) and Conditional Random Fieldss (CRFs) [141] .

3. Hybrid deep networks. This type of neural networks make use of both, supervised and

unsupervised components. The goal is to use supervised learning to estimate some

parameters in any of the deep unsupervised category. An example of this is a DBN [139].

This type of neural network is trained on a set of examples in an unsupervised way, once

this kind of neural network has learned how to reconstruct its inputs, it can be trained in

a supervised way.

2.3 Machine Learning Enabled SONs

The exploitation of the huge amount of data that we referred to in the introduction can be

analysed with proper tools used as a part of advanced analytics, e.g., predictive analytics,

where the primary goal is to make more informed decisions by analysing large data sets.

Here, ML is a great opportunity due to its capability of providing insightful information from the

analysis of data already available to operators, which can be used to make improvements or

changes.

This section presents some relevant information in the area of big data and ML for SONs.

It first presents sources of information relevant for mobile networks, and then, it provides an

overview of SON’s related work, where ML techniques have been adopted.

2.3.1 Big data within mobile cellular networks

As we observed in [142] a huge amount of data is currently already generated in mobile net-

works during normal operations by control and management functions. This kind of data can

be exploited to find patterns of users, and take better decisions to optimise the network perfor-

mance, in terms of handovers, mitigate/eliminate session drops, resource allocation, among

others. Some examples of different sources of information available within mobile networks,

but also the kind of the usage made by operators are depicted in Table 5.1. Notice, that the

kind of sources provided in this table are the most relevant 3GPP technical specifications for

SON solutions, and are described as follows.
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Table 2.3: Information elements relevant for ML enabled SONs

Source Data Usage TS

Charging Data Records (CDR) Includes statistics at the service, bearer and

IP Multimedia Subsystem (IMS) levels.

Coarse time granularity TS 32.298 [143]

Performance Management (PM) Call/session setup, release, maintenance

QoS, RRC, idle and connects mode mobility

Discarded after usage TS32.401 [144],

TS32.425 [32]

Minimization of Drive Tests (MDT) Radio measurements for coverage, capac-

ity, mobility optimization, QoS optimisa-

tion/verification

Heuristic algorithms

typically discard info

after

TS37.320 [145]

E-UTRA Control plane protocols and

interfaces

Lots of info (coverage, UE connectivity, mo-

bility idle/connected, inter-cell interference,

resource management, load balancing)

Typically thrown away

after usage

TS36.331 [44],

TS36.413 [35],

TS36.423 [36]

1. Charging Data Records (CDR). It refers to data, which most of the time is not be able for

networks managements purposes. It can be very useful to find mobility patterns of users

to take better decision in terms of handovers, switch off eNBs, among others. Already

are used for Big Data.

2. Performance Management (PM). It provides a significant amount of data on network

performance aspects such as, the performance of the radio access network.

3. Minimization of Drive Tests (MDT). It refers to the data provided by the users, which

covers aspects such as, power measurements, radio link failure events among others.

4. E-UTRA Control plane protocols and interfaces. This kind of data covers aspects of the

Radio Resource Control (RRC), S1-AP, and X2-AP protocols.

In this context, the literature already offers different works, where these kind of information is

exploited for network management purposes, such as [127, 146–149]. But also, information

regarding the benefits of big data in 5G networks, for example, the work of [150], where the

authors identify different source of data, which can be exploited to develop fault detection,

identify coverage holes, sleeping cells, or cell in outage, but also they list source of data that

can act as an input to the SON entity to perform load balancing and prediction operations.

2.3.2 Overview of SON’s relevant work in the area of ML

This section reviews SON’s recent work in the area of ML. Table 2.4 summarizes the main

works in this area and classifies them per 3GPP use case, technique and specific algorithm
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adopted by the authors.

1. Use case: Indicates the 3GPP use case achieved.

2. Reference: Indicates the related work.

3. Technique: Indicates the ML method applied (Supervised Learning, Unsupervised Learn-

ing, Reinforcement Learning).

4. Problem: Indicates the main problem to solve.

5. Algorithms: Indicates the algorithm applied to the data (see Table2.4).

Mobility Load Balancing

The literature offers some examples of application of ML techniques to the MLB use case. The

majority of applications falls in the area of RL, as the main problem to solve is a sequential

decision problem about how to set configuration parameters, which optimise network perfor-

mance and user experience. As a consequence, several works on this use case were carried

out by different authors, and a couple of them take advantage of ML techniques to reach the

target of this use case. An example of application of RL for MLB is [155], where the authors

present a distributed Q-learning approach that learns for each load state the best MLB action

to take, while also minimizing the degradation in HO metrics, another option to take advantage

also of fuzzy logic capabilities of dealing with heterogeneous sources of information is provided

in [154], where fuzzy logic is combined with Q-learning in order to target the load balancing

problem. For similar reasons, fuzzy logic is also proposes in [152] to enhance the network per-

formance by tuning HO parameters at the adjacent cells. Alternatively, a centralized solution

is approached in [156], where a central server in the cellular network determines all HO mar-

gins among cells by means of DP approach. Besides RL also clustering schemes have been

proposed in this area, to group cells with similar characteristics and provide for them similar

configuration parameters [153].

Mobility Robustness Optimization

Also for the case of MRO, we find in literature different solutions based on RL to solve a control

decision problem. In [157, 160, 161], the authors focus on the optimization of the users’

experience and of the HO performance. The three of them target this problem by means of a

Q-learning approach. [157] focuses on the enhancement for handover robustness in a wireless
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Table 2.4: Related work

Reference ML technique Problem Algorthim

Self-configuration

ANR [151] RL Sequential decision Q-learning

Self-optimization

MLB [152] RL Sequential decision Fuzzy Q-learning

[153] UL Finding large classes of time series K-means clustering

[154] RL Solving congestion Q-learning

[155] RL Decision making Q-learning

[156] RL Decision making Dynamic Programming

MRO [157] RL Sequential decision Fuzzy Q-learning

[158, 159] UL Detecting clusters within data SOM

[160] RL Decision making Q-learning

[161] RL Sequential decision Q-learning

[162] SL Extract patterns from data Multiple linear regression

CCO [163] RL Decision making/control Fuzzy Q-learning

[164] UL, RL Sequential decision/control Fuzzy NN/Q-learning

[165] RL Decision making/control Fuzzy Q-learning

ICIC [166–168] RL Control optimisation Q-learning

[169] UL Control optimisation Neural Networks

[170] SL Prediction/estimation SVM for regression

[171] RL Control optimisation Fuzzy Q-learning

ES [172] RL Decision making Q-Learning

[173] UL Decision making Fuzzy logic

Self-healing

COC [174] SL Control optimisation Fuzzy logic

[175] RL Decision making Actor Critic

[176] UL Anomaly detection Dimensionality Reduction

[177] UL Information overflow/curse of dimensionality Clustering, Diffusion Maps

[178] RL Detection making Actor-critic

COD [179] SL Anomaly detection SVM, Ensemble methods

[180] SL Diagnosis Fuzzy logic

[181] UL Anomaly detection Diffusion Maps

[178] SL/UL Anomaly detection KNN, local-outlier-factor

[87] UL Diagnosis Bayesian networks

Self-coordination

[182] RL Decision making Actor Critic

[183] SL Sequential decisions Classification (DTs)

[184] RL Decision making Actor Critic

[185] RL Decision making Q-learning

Minimization Drive Tests

[146, 186] SL Verification/estimation Linear correlation

[127] SL Prediction Regression models

[147] SL/UL Prediction/curse of dimensionality Regression models/Dimensionality reduction

[149] UL Curse of dimensionality/detection making Dimensionality Reduction

[148] SL Prediction Bagged-SVM/Dimensionality reduction

Core Networks

[187] SL Prediction Adaboost, SVM
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network optimisation, whereas in [160] and [161] focus in a LTE SON network optimisation.

The solution enables self-tuning of HO parameters to learn optimal parameters’ adaptation

policies. In [160] the authors take advantage of the Q-learning approach to effectively reduce

the call drop rates, whereas in [161], unlike other solutions that assume a general constant

mobility, the authors adjust the HO settings in response to the mobility changes in the network

by means of a distributive cooperative Q-learning. Different from [160, 161], in [188] and [157],

the authors take advantage also of fuzzy logic capabilities. Additionally, in terms of solutions

based on unsupervised learning, we can find in the literature the works of [158] and [159].

In these works the authors propose an approach to HO management based on UL and SOM

analysis. The idea is to exploit the experience gained from analysing data of the network based

on the angle of arrival and the received signal strength of the user to learn specific locations

where HO have occurred and decide whether to allow or forbid certain handovers.

Coverage and Capacity Optimization

A number of papers that relate to CCO solutions based on ML methods, are also find in the

current literature. For this approach, a RL technique is quite common to interact with the

environment to optimise the antenna tilt and transmission power. In [163] and [165] a fuzzy

Q-learning approach to optimise the complex wireless network by learning the optimal antenna

tilt control policy has been proposed, and a similar approach is followed also in [189] and [164].

In both works, the authors apply Q-Learning technique in a decentralized manner for the joint

optimization of coverage and capacity task. But they also combine the fuzzy rule with the Q-

Learning to deal with the realistic problem whose input and output variables are continuous.

In addition, in [189], a central control mechanism which is responsible for the initialization and

the termination of the optimization process of every learning agent deployed in every eNB is

introduced, whereas in [164], the authors optimise the antenna tilt and transmission power

considering the traffic load distribution of the cells in a specific region. The solution introduces

a mechanism to facilitate cooperative learning among different SON entities.

Inter-cell Interference Coordination

ML has been proposed in the literature of ICIC use case as a valid solution, where RL has the

greatest amount of works compared to other areas. In addition, several work target the prob-

lem to minimize de interference among cells by means of Q-learning. [166–168, 171]. In [166]

the authors proposed a distributed Q-learning algorithm to control the interference at each re-
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source block by integrating multi-user scheduling in the operation of the macro cell network,

whereas in [171] a fuzzy Q-learning approach has been proposed to solve the ICIC in OFDMA

cellular network, and a decentralised Q-learning framework for interference management in

small cells is proposed in [168]. Different from previous works, an example of channel assign-

ment based on geographical location using neural networks is offered in [169]. Regarding the

prediction/estimation to ICIC, in [162, 170], the authors focus on mobility management using

regression to find correlations patterns between different KPIs and the RRM parameters.

Cell Outage Compensation

The literature already offers different works targeting the problem of COC. For this use case RL

has been proved as a valid solution since it is a continuous decision making/control problem.

In this context a contribution in the area of self-healing has been presented in [175, 178],

where the authors present a complete solution for the automatic mitigation of the degradation

effect of the outage by appropriately adjusting suitable radio parameters of the surrounding

cells. The solution that they provide is based on optimising the coverage and capacity of

the identified outage zone, by adjusting the gain of the antenna due to the electrical tilt and

the downlink transmission power of the surrounding eNBs. To implement this approach, they

propose a RL scheme to take advantage of its capability of making online decisions at each

eNB, and of providing decisions adapting to the evolution of the scenario in terms of mobility of

users, shadowing, etc., and of the decisions made by the surrounding nodes to solve the same

problem. A COC contribution also based on ML is targeted in [174], where fuzzy logic and RL

is proposed as the driving technique to fill a coverage gap. The authors show performance

gains by using different parameters, such as, the power transmission, the antenna tilt, and a

hybrid of both schemes. Alternatively, in [176, 177] the authors proposed self-healing and self

optimization algorithms. They introduce a data mining framework to detect coverage holes,

and sleeping cells. They take advantage of different KPIs provided by the users to guarantee

the network performance by means of regression models.

Cell Outage Detection

As we already mentioned, COD aims to autonomously detect cells that are not operating prop-

erly due to possible failures. For this kind of problem, anomaly detection algorithms offer an

interesting solution which allows to identify outliers measurements which can be highlighting a

hidden problem in the network. As a consequence, approaches on this use case were carried
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out by different authors, such the one in [181], where a contribution for the detection of sleep-

ing cell problem is presented. The method applied to detect anomalous network behaviour

is diffusion maps by means of clustering. Additionally, a solution using fuzzy logic, for the

automated the diagnosis stage of a troubleshooting system is presented in [180]. In order to

determine if there is a failure, the authors propose a controller, which receives as an inputs a

set of representative KPIs. A similar approach is presented by [87], where the authors present

an automated diagnosis model for UMTS networks based on naive bayesian classifier, and

where the model uses both network simulator and real UMTS network measurements. For

similar reasons, the use of different KPIs is also exploited in [179], where the authors focus on

anomaly detection problem. The paper addresses both the outage case and the case where

the cell can provide a certain level of service, but its performance has degraded UEs expe-

rience. They use ensemble method to train the KPIs extracted by human operators to make

informed decisions. Also, for control COD, in [178], the authors have utilized the data gathering

of MDT reports to develop models by applying anomaly detection techniques. They compared

the performance of two anomaly detecting algorithms.

Energy Savings

Energy savings schemes for wireless cellular systems have been proposed in the past, en-

abling cells to go into a sleep state, in which consume a reduced amount of energy. In order

to reduce the energy consumption of the eNBs, we can found several works related to ML

techniques. This domain has attracted a lot of attention to research communities since it al-

lows energy savings by learning a policy by the iterations with the environment taking into

account every change over time, such as the daily solar irradiation. An example of that can be

found in [172], where the authors take advantage of RL to propose a decentralized Q-learning

approach to enhance this case of study. Also, in [173], the authors switch off some under-

utilized cells during off peak hours. The proposed approach optimises the number of base

stations in dense LTE pico cell deployments in order to maximize the energy saving, they use

a combination of Fuzzy Logic, Grey Relational Analysis and Analytic Hierarchy Process tools

to trigger the switch off actions, and jointly consider multiple decision inputs for each cell. Also

for HetNets, we find several works, such as, [190, 191]. where the authors take advantage of

the channel quality information available in the network for the construction of different kind of

databases. In [190] the authors take advantage of such a a database to analyse the potential

gains that can be achieved in clustered small cell deployments.
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SON Conflicts Coordination

As the deployment of stand-alone SON functions is increasing, the number of conflicts and

dependencies between them also increases. Hence, an entity has been proposed for the

coordination of this kind of conflicts. In this context, current literature includes several works

based on ML. In [183] the authors focus on the classification of potential SON conflicts and on

discussing the valid tools and procedures to implement a solid self-coordination framework. Q-

Learning, as a RL method, has been proposed in [184] to take advantage of experience gained

in past decisions, in order to reduce the uncertainty associated with the impact of the SON

coordinator decisions when picking an action over another to resolve conflicts. Consequently,

in [185], the authors use Q-learning to deal with the conflict resolution between two SON

instances. Additionally, in [182] the authors provide a functional architecture that can be used

to deal with the conflicts generated by the concurrent execution of multiple SON functions.

They show that the proposed approach is general enough to model all the SON functions

and their derived conflicts. They focus on the self-optimization functionality and on all the

associated SON functions, as defined in [84]. First they introduce these SON functions in the

context of the general SON architecture, together with high-level examples of how they may

interfere. Second, they define the state and action spaces of the global MDP that models the

self-optimization procedure of the overall RAN segment. Finally, they show that the global

self-optimization problem can be decomposed onto as many Markov decision sub-processess

(sub-MDPs) as SON functions.

Minimization of Drive Tests

Based on the works that the literature already offers, we observe that most of the approaches

use the supervised and unsupervised learning techniques to provide different solutions for this

use case. An example of that can be observed in [146, 186], where the authors address the

QoS estimation by selecting different KPIs and correlating them with common nodes measure-

ments, to establish whether a UE is satisfied with the received QoS. We observe that the most

of the works available in literature cover only traditional macrocell scenarios and do not focus

on more complex multi layer heterogeneous networks. Additionally, in [127], the authors fo-

cus on multi layer heterogeneous networks. They present an approach, based on regression

models, which allows to predict QoS in heterogeneous networks for UEs, independently of the

physical location of the UE. This work is extended in [147] by taking into account the most

promising regression models, but also analysing dimensional reduction techniques. By doing
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PCA/SPCA on the input features, and promoting solutions in which only a small number of

input features capture most of the variance, the number of random variables under considera-

tion is reduced. Based on previous results, in [148] the same authors defined a methodology

to built a tool for smart and efficient network planning, based on QoS prediction derived by

proper data analysis of UE measurements in the network. Finally, in [149], the authors con-

sider large data sets to identify anomaly behaving base station. They proposed an algorithm

consisting of preprocessing, detection and analysis phases. The results show that by using

dimensionality reduction and anomaly detection techniques irregularly behaving base stations

can be detected in a self-organised manner.

In addition, the previous works cover a wide range of active measurements, like, time, location,

serving-cell info, Reference Symbol Received Power (RSRP), Reference Symbol Received

Quality (RSRQ), strongest intra-LTE neighbours, best quality intra-LTE neighbours, Wide-band

Channel Quality Indicator (WCQI), Power Headroom Report (PHR). However determining the

correct KPIs deserve our attention.

Core Networks

As we already mentioned in section 2.1, the operational aspects of core networks elements

can be enhanced through, for example, the automatic configuration of neighbour cell relations

function. In this regards, the idea of applying data mining and ML to this function is not new.

The works in [192, 193] focus on the ANR function to perform handovers without dropping the

connection. The authors have developed an algorithm, which solves a part of this problem by

automatically creating and updating neighbour cell relation lists, based on measured network

data. Moreover, in [187] the authors study the benefits of using ML to root-cause analysis

of session drops, as well as, drop prediction for individual sessions. They present an offline

Adaboost and SVM method to create a predictor, which is in charge of eliminate/mitigate the

session drops by using real LTE data.

Virtualised and Software Define Networks

Despite the use of SON for virtualised architectures and ML has still not been exploited, there

are some ongoing European projects, which aim to target these domains. The COGNET

project is an example of that. It aims at developing several use cases by applying ML research

to build intelligent network management systems to fulfil the 5G vision [10].
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2.4 Conclusions

In this chapter, we have review the field of SON by giving an overview of the functionalities,

improvements and enhancements. We presented different machine learning methods, and

how these learning methods can be used to target different SON applications. In this context,

machine learning was proved as useful tool for current solutions of SON. We can see in these

contributions that the level of performance increase with SON implementations.
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Strategy requires thought, tactics require observation. Max Euwe
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In this Chapter we present a contribution in the area of Self Healing (SH). We provide

a solution for COC based on the TD learning tools described in previous chapters. As we

mentioned in chapter 2, COC is applied to alleviate the outage caused by the loss of service

from the faulty sector. For this use case, an adequate reaction is vital for the continuity of the

service. As a result, vendor specific COD schemes have also to be designed [1]. We consider

that the network has already been capable of detecting the degradation of the service and

identifying the outage. We propose that a COC module is implemented in a distributed manner

in the eNBs in the scenario and intervenes when a fault is detected and so the associated

outage, i.e., during a certain period of time a sector is not able to provide service to its users.

The solution that we provide is based on optimising the coverage and capacity of the

identified outage zone, by adjusting the gain of the antenna due to the electrical tilt and the

downlink transmission power of the surrounding eNBs. With the objective of controlling the

inter-cell interference generated at the borders of the extended cells, a modified Fractional

Frequency Reuse (FFR) scheme is proposed for scheduling. Among the RL methods, we

select a TD learning approach, the AC, for its capability of continuously interacting with the

complex wireless cellular scenario and learning from experience. Results, validated on the
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ns3 LENA platform based on 3GPP component LTE, demonstrate that our approach outper-

forms state of the art resource allocation schemes in terms of number of users recovered from

outage.

The outline of the chapter is organised as follows. Section 3.1 provides the details of the

COC proposed approach. Section 3.2 introduces the details of our learning approach. Sec-

tion 3.3 presents the considered simulation platform. Section 3.4 discusses relevant simulation

results. Finally, section 3.5 concludes the chapter.

3.1 System model

We consider a LTE cellular network composed of a set ofM eNBs. The M=|M| eNBs form

a regular hexagonal network layout with inter-site distance D, and provide coverage over the

entire network. We denote by pm = (pm1 , . . . , p
m
R ) the transmission power vector of eNB m∈M,

with pmr denoting the downlink transmission power of Resource Block (RB) r. The multi user

resource assignment to the R RBs is carried out by a FFR like scheduler, described later

in this section. Each of the N users is assigned a Channel Quality Indicator (CQI) value

CQI = (CQI1, ..., CQIN ). The maximum transmission power of each eNB is PM
max, such that∑R

r=1 p
m
r ≤ PM

max. We consider U UEs moving around the scenario and provided with service

by the |M| eNBs. We assume that a sector in the scenario is down, in particular, sector 4

depicted in Figure 3.1. This generates a deep outage zone affecting the population of users

active in the geographical area. We assume that this fault is already diagnosed and that the

solution provided by the self-organised network is to activate the COC module implemented in

the eNBs.

Figure 3.1: COC scenario

In particular, the surrounding eNBs automatically and continuously adjust, based on inter-
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actions with the environment carried out by a learning process, their antenna tilt and downlink

transmission power levels, till the coverage gap is filled. In order to avoid inter-cell interference

at the new cell borders when the cells extend their coverage area, eNBs negotiate over the

X2 interface the scheduling criteria that they are following to allocate the new outage users.

We propose a modified FFR scheme, which, at the beginning of each subframe divides each

cell into two regions, and assigns a certain group of RBs to the inner region and another, or-

thogonal, to the outer region, at the border of the cell. The inner regions of all the cells in the

scenario are covered by the same spectrum, but the outer regions are assigned orthogonal

RBs to reduce the effect of inter-cell interference generated by the COC coverage enhance-

ment scheme. The overall resource allocation scheme is designed taking into account the

spectral efficiency and in particular, the corresponding CQI of all the users in the scenario.

Moreover since the eNB antenna tilt is an important parameter for system performance, the

vertical radiation pattern of a cell sector is obtained according to [2], building an adjustable

electrical tilt in the vertical plane, with the same structure as for the horizontal component,

where the gain in the horizontal plane is given by

Gh(φ) = max

(
−12

(
φ

HPBWh

)2

, SLLh

)
(3.1)

Here φ is the horizontal angle relative to the maximum gain direction, HPBWh is the half

power beam-width for the horizontal plane, SLLh is the side lobe level for the horizontal plane.

Similarly, the gain in the vertical plane is given by,

Gv(θ) = max

(
−12

(
(θ − θtilt)
HPBWv

)
, SLLv

)
(3.2)

All eNBs in the scenario have the same antenna model where, θ is the vertical angle relative to

the maximum gain direction, θtilt is the tilt angle, HPBWv is the vertical half power beam-width

and SLLh is the vertical side lobe level. Finally, the two gain components are added by,

G(φ, θ) = max{Gh(φ) +Gv(θ), SLL0}+G0 (3.3)

where SLL0 is an overall side lobe floor and G0 the antenna gain.

3.2 AC in the context of COC

In this section, we design the AC algorithm to implement the automatic transmission power and

antenna tilt adjustment for the COC. We define the state and action spaces and the reward

function as follows:
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• State: The state is defined based on the result of the scheduling scheme, which defines:

(1) the allocation of users to RBs (RB1, RB2, ..., RBR) to the N users, (2) the values of

CQI of each user in the corresponding RB.

• Actions: The set of eligible actions are:

– The finite set of downlink transmission power levels, which can be allocated to the

RBs assigned to the users. The selected values are: 0 to 46 dBm per RB with 0.5

dBm granularity.

– The finite set of available tilt values, which can be assigned to the gain of the vertical

plane of the antenna model. Those values range from 0 to 15◦ with 0.1◦ granularity.

• Reward : The reward function is defined based on the SINR of the users as follows:

r(st, at) =

 1 , if SINR ≥ −6

0 , otherwise

Where the threshold is set in order to support the lowest Modulation and Coding Scheme

(MCS) [3].

Figure 3.2: High level vision of the COC algorithm.

In order to mitigate the inter-cell interference that the adjustment of the eNB power levels may

generate in the outage zone, in each neighbouring cell a certain amount of frequency band-

width denoted by F = {f1, . . . , fc} is reserved for users moving around the outage zone. The

learning algorithm is executed every 1 msec, so every time that the scheduling is performed

and users are allocated. The CQI is obtained from the spectral efficiency (η) provided in [4]. A

high level vision of the COC algorithm is given in Figure 3.2.

60



3.3. Simulation platform

3.3 Simulation platform

The proposed algorithm has been evaluated on the ns3 LENA platform based on 3GPP com-

ponent LTE. In LTE systems each frame has a duration of 10 msec, divided into equally sized

Transmission Time Interval (TTI), which have a duration of 1 msec. The granularity of the simu-

lator for resource allocation is the Resource Block Group (RBG). The bandwidth is divided into

180 kHz physical RBs which are grouped in RBG of different size determined as a function of

the transmission bandwidth configuration in use. In LENA ns3-model, the eNB physical layer

handles the start and end of frames and subframes. Every TTI the UE physical layer sends

to the eNB a feedback message with information related to the channel quality for each RB.

In order to inform about the resource allocation, the scheduler is in charge of generating the

Data Control Indication (DCI) structures, which are transmitted by the eNB to the connected

UEs. Based on the tilt angle and/or the power levels selected by the algorithm per RB, the

spectral efficiency per user u, ηu = log2(1 + SINRi
Γ ), is mapped onto the corresponding CQI

value, using the mapping function reported in [4], where, Γ depends on the target Bit Error

Rate (BER), Γ = −ln(5BER)
1.5 . Once the UE computes these CQI values, the reward function

described in Section 3.2 can be obtained. The scenario that we set up consists of 4 eNB sites,

each one with three sectors, which results in 12 cells, as depicted in Figure 3.1. N Users

are randomly distributed in the scenario, and after the related traffic session ends, the user

appears in another location and starts a new session. The beginning and duration of sessions

are based on Poisson scheme. The parameters used in the simulations, for both the cellular

scenario and the learning algorithm, are given in Table 4.1.
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Table 3.1: COC solution-Simulation parameters

Simulation parameters Value

LTE

No. Cells 12

No. UEs 100

Transmission Power 46 dBm

Path loss model Friis spectrum propagation

Mobility model pedestrian, speed 3 Km/h

Scheduler FFR

Shadow Fading Log-normal, std=8dB

AMC model 4-QAM, 16-QAM, 64 QAM

Cell layout radius:500m

Bandwidth 5MHz

No. of RBs 25; RBs per RBG:2

Antenna parameters

Horizontal angle φ -180◦ ≤ φ ≤ 180◦

HPBW Vertical 10◦: Horizontal 70◦

Antenna gain G0 18 dBi

Vertical angle θ -90◦ ≤ φ ≤ 90◦

SLL Vertical -18 dB : Horizontal -20 dB

SLL0 -30 dB

RL

SINR threshold -6 dB

Actions (power) 0− 46 dBm per RB

Actions (tilt) 0◦ − 15◦

τ, β, γ 0.1; 0.5; 0.98

Simulation time 10s

3.4 Results

The fault to self heal occurs when sector 4 fails to provide service to the associated users, gen-

erating a deep outage. We assume a cell outage detection function, which is out of the scope

of this thesis, has already detected the problem and we focus on the COC solution. Here, the

neighbouring cells are in charge of adjusting its power transmission in order to fill the coverage

gap. We start analysing the behaviour of a particular user attached to the faulty sector, user

79. We observe that once the COC algorithm starts being operational, the user gets associ-

ated to one of the neighbour cells, to which we will refer in the following as the compensating

sector. The CQI associated to the user in this moment is zero. As it was explained in Sec-
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tion 4.5, the scheduling scheme minimizes the interference, which can be generated among

compensating sectors, by reserving a certain RBG to user 79. This information is shared with

neighbour eNBs through the X2 interface. The performance to determine the capacity of the

AC algorithm adjusting both Tx power and antenna tilt to which we refer in the following as

AC(p+θ) is compared to the following approaches.

1 The Iterative Water-Filling (IWF) optimal solution formulated in [5], where taking into ac-

count any feasible power allocation, for each RBG, the algorithm calculates the optimal

strategy of each eNB, assuming the power allocation of the other eNBs,

max
R∑
r=1

log

(
1 +

pkrhmm,r∑
k=1,k 6=m p

k
rhkm,r + σ2

)

where,

pmr = max

(
1

λm
−
∑

k=1,k 6=m p
k
rhkm,r + σ2

hmm,r
, 0

)
s.t.

R∑
r=1

pmr ≤ PMmax pmr ≥ 0.

where λ is used in order to satisfy the power constraint, hmm,r indicates the link gain

between eNB m and the user it serves in RB r, and hkm,r is the link gain between eNB k

and the user served by eNB m in RB r.

2 Fuzzy logic is proposed in [6] as the driving technique to fill a coverage gap. The authors

vary both tilt angle and transmit power, with final values of tilt and flat transmission power

of 11.8◦ and 31.60 dBm, respectively.

3 The AC algorithm where we compensate the outage by adjusting only the transmission

power levels per RB, and which we indicate as AC(p).

4 The same AC algorithm where we compensate the outage by adjusting only the antenna

tilt, which we indicate as AC(θ).

Figure 3.3, depicts the time evolution of the SINR of user 79 since when it is in outage, at the

beginning of the simulation, till when it is recovered and correctly associated to the compen-

sating sector. We assume the user is out of outage when its SINR is above the threshold of

−6 dB, as explained in the previous section [3].

The behaviour followed by the AC(p+θ) scheme is that during the first part of the simulation

it learns through interactions with the environment the proper policy to recover the user from

outage. After approximately 500 msec the user’s SINR is above the threshold and this result is
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Figure 3.3: Time evolution of the average SINR of user 79, which is recovered from outage by the COC

solution based on AC.

maintained during the rest of the simulation, as the correct policy has been learnt and it can be

maintained independently of the variability of the proposed scenario. AC(p) and AC(θ) follow

a similar behaviour taking just few msec more to reach the threshold. On the other hand, we

observe that the IWF scheme never really recovers the user from the outage, as its driving

principle is to maximize the total rate of the agent. In general once the AC algorithm has learnt

the proper policy to make decisions, our learning approach provides better results in terms of

coverage than the traditional IWF. Figure 3.4 describes the performance of SINR of users in

the scenario.

We compare the CDF of the SINR of each user before and after COC actions. The NO

COC implementation depicts the performance of each user when COC actions are not taken.

Here, the number of users below the threshold is equal to 30%. When COC actions are taken

it can be observed that the IWF is available to recover at least 10% of the scenario, similar

results can be observed in case of fuzzy logic approach, while the AC approaches provide

better results. The AC(p) fails to compensate 5% of users and a comparable performance is

achieved by AC(θ). The proposed AC(p+θ) scheme, finally, offers the best results providing, on

average, service to 98% of users.
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Figure 3.4: CDF of the SINR of all the users, which are recovered from outage due to different COC

actions. i.e., finding the optimal tilt value and power transmission level per RB via the learning process.

3.5 Conclusion

We have presented in this chapter a self healing solution for COC, based on a reinforcement

learning scheme. We assume a sector in the macro cellular scenario fails to provide service to

its associated users, so that neighbour eNBs have to adjust their transmission power levels and

electrical tilt in order to extend their coverage and fill the coverage and capacity gap generated

by the fault. Due to the complexity of the proposed wireless cellular scenario, where UEs move

around in random directions and at random speeds, and the channel is affected by fading and

shadowing, as well as path loss, we propose a form of RL, a TD method referred to as AC, to

provide a solution to our coverage problem. This kind of algorithm allows to learn from expe-

rience and from interactions with the surrounding environment an optimal policy to maximize

the reward received by the eNBs over time. In order to avoid the inter-sector interference that

can be generated by the surrounding eNBs extending their coverage, the AC algorithm is over-

laid to a scheduling approach inspired to the FFR, which allocates a specific bandwidth to the

users allocated in the outage zone. This reduces additional inter-cell interference in the outage

zone and oscillations of the multi-agent learning scheme. Performance is evaluated on a ns3

LTE Release 10 platform and in comparison to the fuzzy logic approach and the traditional IWF

transmission power allocation approach, which aims at maximizing the capacity of the node

implementing it. Results demonstrate the ability of the proposed algorithm to compensate 98%

of outage users and to provide them with service, outperforming the referenced benchmark in
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terms of SINR.
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Chapter 4
SON conflict in D-SON architectures: a

MDP framework

Life is 10% what happens to you and 90% how you react to it. Charles R. Swindoll
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As we mentioned in chapter 2, self-organization as applied to cellular networks is a key

driver for reducing the cost of installation and management by simplifying operational tasks

through the capability to configure, optimise and heal itself. This trend, and in particular the

self-healing function has been our motivation for the first chapter of this thesis. In this chapter,

we focus on the 3GPP SON functions, where, in order to deal with the conflicts generated

by the concurrent execution of multiple SON functions, we proposed a functional architecture

and a theoretical framework based on the theory of MDPs for the self-coordination of different

67



Chapter 4. SON conflict in D-SON architectures: a MDP framework

actions taken by different SON functions. In order to cope with the complexity of the overall

SON problem, we subdivide the global MDP modelling the LTE eNB onto simpler sub-MDPs

modelling the different SON functions. Each sub-problem is defined as a sub-MDP and solved

independently by means of RL, and their individual policies are combined to obtain a global

policy. This combined policy can execute several actions per state but can introduce policy

conflicts.

As a particular case, in this chapter we focus on the coordination of two specific SON

functions, the CCO and the ICIC already described in chapter 2, and we model them through

two sub-MDPs, which are solved independently through RL. The two selected SON functions

incur in the so called output parameter SON conflict [1] when e.g., the CCO function increases

the transmission power levels to decrease the outage probability at the cell edge, while the

ICIC decreases the power transmission levels to minimize interference. These two policies

may generate a resource conflict as each one requires modifying the eNB transmission power

in a way that may cancel the actions that the other one intends to take. We propose then a

self-coordination approach modelled by means of a coordination game [2], where the players

are the conflicting SON functions, the actions are the solutions to the specific sub-MDPs, i.e.,

the output of the Actor-Critic algorithm, and the rewards are those provided by the solution of

the individual sub-MDPs. Coordination games have been proven to correctly model the coor-

dination problems that arise when there is a conflicting interest, i.e., when two or more persons

prefer different equilibrium outcomes. This is why we consider they are appropriate to model

the problems that the self-coordination function has to face. The self-coordination framework

aims then at founding a Nash equilibrium through the coordination game, maximizing the av-

erage reward.

We consider that focusing on only two functions does not result in a loss of generality

to our approach, as also other SON functions, considering their automatic characteristic, can

be solved through RL, e.g., [3] [4], so that our theoretical model can be extended to n SON

functions. The generality of our solution for 3GPP SON architecture is proven later in the

chapter. Performance evaluation is carried out in a ns3 LTE system simulator and it shows that

our self-coordination approach provides satisfying solutions in terms of system performances

for both the conflicting SON functions.

The outline of the chapter is organised as follows. Section 4.1 provides the details of the

system model. Section 4.2 presents a functional architecture for the solution of SON conflicts.

Section 4.3 defines the global SON problem modelling it through a MDP, and its decomposition

through sub-MDPs modelling the different SON functions. Section 4.4 describes the CCO and
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ICIC conflict case study. Section 4.5 describes details of the simulation platform and scenarios,

as well as meaningful simulation results. Finally, section 4.6 concludes the chapter.

4.1 System model

We consider a heterogeneous wireless network composed of a set ofM macro-cells that co-

exist with F small cells. The M=|M| macro-cells form a regular hexagonal network layout

with inter-site distance D, and provide coverage over the entire network, comprising both in-

door and outdoor users. The F=|F| small cells are placed indoors within the macro-cellular

coverage area following the 3GPP dual strip deployment model. Both macro and small cells

operate in the same frequency band, which allows to increase the spectral efficiency per area

through spatial frequency reuse.

An Orthogonal Frequency Division Multiple Access (OFDMA) downlink is considered,

where the system bandwidth BW is divided into B RBs. A RB represents one basic time-

frequency unit that occupies the bandwidth BWRB over time T . In particular, in LTE systems

each frame has a duration of 10ms, divided into equally sized TTI, which have a duration of

1ms. The bandwidth B is divided into BRB = 180 kHz physical RBs which are grouped in RBG

of different size determined as a function of the transmission bandwidth configuration in use.

Associated with each macro and small cell Base Station (BS) are UM macro and UF small cell

users, respectively. The multi-user resource assignment that distributes the B RBs among the

UM macro and UF femto-users, is carried out by a proportional fair scheduler.

We denote by pnt = (pn1,t, . . . , p
n
B,t) the transmission power vector of BS n at time t, with

pnr,t denoting the downlink transmission power of RB r. The maximum transmission power for

small and macro BSs are P F
max and PM

max, with P F
max�PM

max, such that
∑B

r=0 p
m
r,t ≤ PM

max, m∈M
and

∑B
r=0 p

f
r,t ≤ P F

max, f∈F .

We analyse the system performance under different perspectives. First of all, we consider

the SINR. Assuming perfect synchronization in time and frequency, the SINR of macro-user um

who is allocated RB b of macro-cell m∈M amounts to:

γmb,t =
pmb,th

mu
b,t∑

n∈M,n 6=m
pnb,th

nu
b,t +

∑
f∈F

pfb,th
fu
b,t + σ2

(4.1)

where hmub,t accounts for the link gain between the transmitting macro BS m and its macro-

user um; while hnub,t and hfub,t represent the link gain of the interference that BSs n and f imposes

on macro-user um, respectively. Finally, σ2 denotes the thermal noise power.
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Likewise, the SINR of small cell user vf who is allocated in RB b by small cell f∈F is in

the form:

γfb,t =
pfb,th

fv
b,t∑

m∈M
pmb,th

mv
b,t +

∑
n∈F ,n6=f

pnb,th
nv
b,t + σ2

(4.2)

where hnvb,t and hmvb,t indicate the link gain between BSs n and m and small cell user vf , respec-

tively.

We also use as a meaningful indicator of quality perceived by users the CQI. This is

computed based on the spectral efficiency per user, using the mapping function as indicated

in [5], where the Block Error Rate (BLER) BLER = 1 − exp(log (1−BLER)
TBS ), should be smaller

or equal to 10%, and the Transport Block Size (TBS) for the estimated CQI is calculated as

reported in [5]. As a system metric, we also use the RSRQ from the serving cells, which

is defined as the number of RBs multiplied by the RSRP over the system bandwidth BW

multiplied by Reference Signal Strength Indication (RSSI). Finally, the throughput per user, is

achieved by User Datagram Protocol (UDP) Client application.

4.2 Functional Architecture

In this section, we model the self-organised decision making process of the eNB, characterized

by the multiple parallel SON functions, by means of a MDP. The problem, involving all the radio

access autonomous functions, is so complex that cannot be handled by means of classical

approaches.

In order to reduce the complexity of MDPs, the literature proposes three approaches:

factorization [6], abstraction [7] and decomposition [8]. The idea behind the factorization ap-

proach is to address the complexity of the problem by identifying variables, which determine

the state of the environment and the specific actions which have an effect on them, under

certain conditions. In this framework, a state is implicitly described by an assignment to a set

of state variables x = {x1, ..., xn}, where the state at time t is now represented as a vector

xt = {x1,t, ..., xn,t}, where xi,t denotes the ith state variable at time t [9]. Furthermore, the

rewards can often also be decomposed as a sum of rewards related to individual variables.

The abstraction approach, in turn, creates an abstract model that aims at generating an equiv-

alent simplified MDP by mapping a group of states, sharing a local behaviour, onto a single

state. Finally, the decomposition approach subdivides the complex problem into smaller tasks.

Each task is modelled by means of a sub-MDP and the value function and optimal policy for

the MDP associated to each subtask are computed and then combined.
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In this work, we rely on the so called decomposition approach [10], which subdivides

the autonomous decision making process into multiple tasks represented by the individual

SON functions. This results in a MDP organised onto multiple tasks which are theoretically

modelled by different sub-MDP. Each sub-MDP is solved independently through AC describes

in chapters 2 and 3, and the resulting policies are combined to obtain a global solution. This

results in a MDP organised onto multiple tasks which are theoretically modelled by different

sub-MDP. Each sub-MDP is solved independently and their policies are combined to obtain a

global solution, such that the actions of each sub-MDP can be executed. This is illustrated in

Figure 4.1.
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Figure 4.1: General Architecture.

If the tasks are independent, the policies can be executed without incurring into conflicts.

However, if it is not the case, and the selected actions for each task are executed concurrently

and not serially, conflicts among local policies may arise, which may result in undesirable

behaviours. In order to solve SON conflicts we propose a functional architecture based on two

main functions:

• Functional Decomposition: It is the function in charge of breaking the complex problem

into tasks. The complex MDP is subdivided into k sub-MDPs, which are solved locally. k

Optimal policies π∗1, . . . , π
∗
k are obtained so that at each time step t actions a1, . . . , ak can

be selected.

• Resolution of Policy Conflicts: It is the function in charge of detecting and solving po-

tentially conflicting policies, which are to be executed concurrently. The resource conflict

detector entity, represented in Figure 4.1, evaluates whether two or more of the actions

a1, . . . , ak aim at modifying the same parameter. In this case, the conflict is detected and

the self-coordinator entity is activated to solve the conflict, the result is the execution of

the global solution a′1, . . . , a
′
k.

The next sections describe these two functions with further details.
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Chapter 4. SON conflict in D-SON architectures: a MDP framework

4.2.1 Functional Decomposition

This module is responsible for breaking the global MDP {S,A, T ,R} into k tasks. Each task

is characterized by a specific objective and is modelled by a sub-MDP, which is solved in-

dependently to find a policy π that maps states to actions to maximize the expected reward.

Each sub-MDP i is characterized by its own state, action set, transition probability and reward

functions and is denoted by sub−MDPi = {Si,Ai, Ti,Ri}.

The set S = {s1, s2, . . . , sn} of states of the global problem is modelled by means of

a set of m variables of possible states of the environment x = {x1, x2, . . . , xm}. For each

sub-MDP we consider a decomposed representation, so that the sub-MDP state space is

modelled by a set of v state variables: xi = {x1, x2, . . . , xv}, where v < m. The state space

of the global problem is fully modelled when the k sub-MDPs include all the m variables, i.e.,

x = ∪ki=1xi. If the global problem is not modelled in decomposed representation, the union

of all space states of the sub-MDPs must be equal to the state space of the global problem,

i.e., S = {S1 ∪ S2 ∪ . . . ∪ Sk}. Each sub-MDP is solved independently to obtain the value

function V ∗i for any π∗i . The global problem is then defined by k sub-MDPs, sub−MDP1, sub−
MDP2, ..., sub−MDPk, such that,

• The global state space S is modelled in decomposed form, in such a way that the total

state variable x is the union of the k sets of state variables x = x1 ∪ x2 ∪ ... ∪ xk.

• The action space A = {A1,A2, . . . ,Ak}.

• The transition function T = {T1, T2, ..., Tk}

• The reward function R = {R1 +R2 + . . .+Rk}

4.2.2 Resolution of policy Conflicts

In this section we deal with the conflicts, which may arise from the combination of local so-

lutions of individual sub-MDPs. We focus on the parameter conflict generated by different

sub-MDPs, which occurs when two or more sub-MDPs may request different values for the

same parameter. If there are no conflicts, the set of actions to be selected in a generic state

s, A = {π∗1(s) = a1, π
∗
2(s) = a2, ..., π

∗
k(s) = ak}, is executed simultaneously and the solution

is optimal. Otherwise, the sub-MDPs with conflicts are detected and solved. In the following

we propose a solution based on the theory of coordination games, which have already been

proven in literature good to solve coordination problems which arise when there is a conflict-
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ing interest. The classic example of application is the "battle of the sexes" game, where the

man prefers to attend a baseball game and the woman prefers to attend an opera, but both

would rather do something together than go to separate events. The question is, if they cannot

communicate, where they would go. We consider that this game perfectly fits our coordination

game in case of conflicting interests between two SON functions. This game has two pure

strategy Nash equilibria, one where both go to the opera and another where both go to the

football game. There is also a mixed strategies Nash equilibrium, where the players go to their

preferred event more often than the other.

For the sake of simplicity, we model the conflict between two sub-MDPs, sub−MDP1 and

sub −MDP2, by means of a two player coordination game. However, the conflict between n

sub-MDPs is scalable to a n-player coordination game.

• S is the set of possible states of the environment, which is the same as the one defined

for the global MDP S = {s1, s2, . . . , sn}.

• A = {α, β} is the action set, where α and β are the actions selected by sub −MDP1

and sub −MDP2, respectively, and they belong to the corresponding action sets, i.e.,

α ∈ {asub−MDP11 , ..., asub−MDP1q1} and β ∈ {asub−MDP21 , ..., asub−MDP2q2}.

• The reward matrix associated with each state at time t is denoted by R.

The self-coordinator module receives as input the actions selected by each sub-MDP, and

based on that, the possible situations to face are the following:

1 The sub-MDPs choose the same action (α = β).

2 The sub-MDPs choose different actions, with different rewards, i.e., α 6= β with rα 6= rβ.

3 The sub-MDPs choose different actions, but with the same reward, i.e., α 6= β with

rα = rβ.

If the actions are the same, the coordinator just executes the action, otherwise the conflict

is solved by mixed strategies through the reward matrix depicted inside the coordination box

in Figure 4.2, where A, a, are the rewards of sub − MDP1 and sub − MDP2, respectively,

when executing for both sub-MDP α; B, b, are the rewards of sub −MDP1 and sub −MDP2,

respectively when executing action α for sub − MDP2 and action β for sub − MDP1; C, c,

are the rewards of sub −MDP1 and sub −MDP2, respectively, when executing action α for

sub−MDP1 and action β for sub−MDP2; D, d, are the rewards of sub−MDP1 and sub−MDP2,
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Figure 4.2: Self Coordination based on Coordination game.

respectively, when executing for both sub-MDPs action β. This game has mixed strategy Nash

Equilibria given by probabilities p = (d − b)/(a + d − b − c) to play α and 1 − p to play β, for

player 1(rows) and q = (D − C)/(A + D − B − C) to play α and 1 − q to play β, for player 2

(columns). Hence, each player is not actually choosing α, β directly, but choosing a probability

with which a player will play α. A given number p means that player 1 will play α with probability

p and β with probability 1− p. Similar considerations can be done for player 2. Since d > b and

d− b < a+ d− b− v, p and q are always between 0 and 1, so the existence is assured.

The algorithm for solving resource conflict is described in Algorithm 4.1.

Algorithm 4.1. Coordination game (S,A, T ,R)
Let sub−MDP1= player 1

Let sub−MDP2= player 2

A = {α, β}

if α = β then

compute and execute a′ = α = β

end if

if α 6= β and rα > rβ then

compute and execute a′ = α

else

compute and execute a′ = β

end if

if α 6= β and rα = rβ then

if A > B,D > C and a > c, d > b then

compute and execute

Function mixedStrategies CG (A, Rt, p, q)

return a′

end Function

end if

end if

return {a′}
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4.3 Functional decomposition of the general 3GPP

self-optimisation use case

In this section we provide an example about how the proposed functional architecture can be

used to deal with the conflicts generated by the concurrent execution of multiple SON functions.

The objective of this section is to show that the proposed approach is general enough to model

all the SON functions, and their derived conflicts. For this purpose, we focus on the self-

optimisation functionality and on all the associated SON functions, as defined in [1] and [5],

i.e., MLB, MRO, CCO, ICIC, COC, ES, and RACH optimisation. We first introduce these SON

functions in the context of the general SON architecture, together with high level examples

of how they may interfere. Then, we define the state and action spaces of the global MDP

that models the self-optimisation procedure of the overall RAN segment. Finally, we show

that the global self-optimisation problem can be decomposed onto as many sub-MDPs as

SON functions. We define the different sub-MDPs, with state and action spaces and tentative

proposals for reward functions. References in literature will show that these self-optimisation

problems can be solved using reinforcement learning functionalities. We consider that this

demonstrates the generality of our approach to solve conflicts in 3GPP SON architectures.

4.3.1 Overview of 3GPP self-optimisation functions

In the following we quickly described the main self-optimisation functions. We describe the

main information these functions rely on and the main parameters the aim to tune.

The MLB is a SON function where cells with congestion can transfer load to other cells.

The main objective is to improve end-user experience and achieve higher system capacity by

distributing user traffic across system radio resources. The implementation of this function

is generally distributed and supported by the load estimation and resource status exchange

procedure. The messages containing useful information for this SON function (resource status

request, response, failure and update) are transmitted over the X2 interface [11]. MLB can be

implemented by tuning the CIO parameter. The CIO contains the offsets of the serving and

the neighbour cells that all UEs in this cell must apply in order to satisfy the A3 hand-over

condition [5].

The MRO is a SON function designed to guarantee proper mobility, i.e. proper hand-over

in connected mode and cell re-selection in idle mode. Among the specific goals of this function

we have the minimization of call drops, the reduction of RLFs, the minimization of unneces-
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sary hand-overs, ping pongs, due to poor hand-over parameters settings, the minimization of

idle problems. Its implementation is commonly distributed. The messages containing useful

information are e.g., the S1AP hand-over request or X2AP hand-over request, the hand-over

report, the RLF indication/report. MRO operates over connected mode and idle mode parame-

ters. In connected mode, it tunes meaningful hand-over trigger parameters, such as the event

A3 offset (when referring to intra-RAT, intra-carrier hand-overs), the TTT, or the Layer 1 and

Layer 3 filter coefficients. In idle mode, it tunes the offset values, such as the Qoffset for the

intra-RAT, intra-carrier case. CCO is a SON function, which aims to provide capacity and cov-

erage optimisation. The targets that can be optimised may be vendor dependent and include

coverage, cell throughout, edge cell throughput, or a weighted combination of the above.

CCO reacts to changes in the environment depending on diverse origins: seasonal changes,

changes in the surrounding infrastructures, changes in the network planning, daily variations

of traffic, etc. It can be implemented in both centralized (in the network manager or element

manager) and distributed architectures. Useful information is generally extracted from UE

measurements. Parameters that may be tuned are the transmission power, the pilot power

and antenna parameters (azimuth and tilt).

ICIC is a SON function, which aims to minimize interference among cells using the same

spectrum. It involves the coordination of physical resources between neighbouring cells to

reduce interference from one cell to another. ICIC can be done in both uplink and downlink for

the data channels PDSCH, and PUSCH, or uplink control channel PDCCH. ICIC can be static,

semi-static or dynamic. Dynamic ICIC relies on frequent adjustments of parameters, supported

by signalling among cells over X2 interface. To support proactive coordination among cells the

HII and the RNTP indicators have been defined, while to support reactive coordination, the OI

has been introduced [11]. Parameters that may be tuned are the transmission power, the pilot

power, antenna parameters (azimuth and tilt), and the support of coordinated Almost Blank

Subframes (ABS).

COC is applied to alleviate the outage caused by the loss of a cell from service. For this

use case an adequate reaction is vital for the continuity of the service, so vendor specific COD

schemes have to be designed. Parameters to tune, to try to compensate the outages are the

transmission power and antenna parameters of the cells neighbouring the fault.

ES aims at providing the quality of experience to end users with minimal impact on the

environment; the objective is to optimise the energy consumption, by designing NEs with lower

power consumption and temporarily shutting down unused capacity when not needed. The
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most common action is to switch on/off the appropriate cells.

RACH optimisation aims at optimising the random access channels in the cells based on

UE feedback and knowledge of its neighbouring eNBs RACH configuration. RACH optimisation

can be done by adjusting the Pc parameter or change the preamble format to reach the set

target access delay.

The independent execution of these individual SON functions affects parameters or per-

formances that can end up in conflict. For example, the ICIC may decide to reduce the trans-

mission power to reduce inter-cell interference, while the CCO may decide on increasing it, to

improve coverage. These conflicting actions affect the borders of the cell, and consequently

the performances of the MLB function of the same cell and its neighbours. To compensate for

the actions taken by ICIC and CCO, the MLB may decide to modify some hand-over parame-

ters, which then have impact on the hand-over and MRO performances, etc.

4.3.2 Definition of the global MDP and of the decomposed sub-MDPs

We consider a heterogeneous wireless network composed by M 3GPP (H)eNBs, as defined

in section 4.1. Each eNB has to be capable of executing the N standardized SON functions,

where N = {NCCO, NICIC , NCOC , NMLB, NMRO, NES , NRACH}, and where

NCCO, NICIC , NCOC , NMLB, NMRO, NES , NRACH are, respectively, the number of CCO, COC,

ICIC, MLB, MRO, ES, RACH instances across the M eNBs and the Network Management

(NM)/Ensemble Methods (EM). We can model the global self-optimisation problem defined

by the N SON functions through a MDP, as it consists of a multi-objective, multi-parameter

decision making/optimisation process where the outcomes are partly random and partly under

the control of the decision maker. The global problem is then defined by,

• State. The state space S is defined by a set of state variables X defined, among others,

by: (1) the allocation of users to RBs, (2) the values of CQI, (3) UE measurements in

terms of RSRP, the values of RSRQ, (4) resource status information,(5) hand-over and

RLF statistics and information, (6) interference coordination information in terms of HII,

OI, RNTP.

• Actions. The action set A consists of all the possible actions that can be taken by tuning,

among others, the following parameters: (1) transmission power, (2) pilot power, (3)

antenna parameters, in terms of tilt and azimuth, (4) CIO, (5) hand-over parameters in

terms of event offsets, TTT, Qoffset, etc.
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• Reward. The reward R is defined based on the following rationale. If the combination of

the selected actions gives e.g., an intercell interference below a threshold or an outage

probability above a threshold, or RLF statics above a threshold or throughput perfor-

mances below objectives, or pilot pollution above threshold, etc., the reward is negative,

otherwise the reward is weighted function of multiple objectives, such as the network

throughput and the users fairness.

The global MDP including the N SON functions and their related instances, is extremely

complex. To solve it, we should rely on multi-objective optimisation frameworks, which do not

provide real-time solutions [12]. As a result, the global SON problem is subdivided into multiple

tasks represented by the simpler N = 7 SON functions described before. Other functional

decomposition approaches may be possible but they would not be aligned with the 3GPP SON

architecture, and consequently they are not interesting for our problem. Here each sub−MDPi

is characterized by its own state, action set, transition probability and reward functions, and is

denoted by sub−MDPi = {Si,Ai, Ti,Ri}.

We define the state and action spaces, together with one of the possible reward functions

of each sub-MDP as follows:

1. CCO

• State: The state S1 is defined based on the result of the scheduling scheme, which

defines (1) the allocation of users to RBs, (2) the values of CQI of each user in the

corresponding RB, (3) UE measurements (e.g., RSRP, RSRQ, etc.)

• Actions: The action set A1 is based on (1) the set of eligible actions are a finite set

of downlink transmission power levels, which can be allocated to the RBs assigned

to the users, (2) the finite set of available tilt, and azimuth values, which can be

assigned to the gain of the vertical plane of the antenna model.

• Reward : If the CQI is greater or equal than 1, the reward will be positive, otherwise

will be negative. The threshold is set in order to support the SINR values for Multiple-

input Multiple-output (MIMO) transmissions.

The sub-MDP representing this SON function can be solved through reinforcement learn-

ing, as for example has been done before in [13].

2. ICIC
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• State: The state S2 is defined based on the result of the scheduling scheme, which

defines (1) the allocation of users to RBs, (2) the values of SINR of each user in the

corresponding RB, (3) UE measurements (e.g., RSRP, RSRQ, etc.)

• Actions: The set of eligible actions A2 are defined based on (1) the finite set of

downlink transmission power levels, which can be allocated to the RBs assigned

to the users, (2) the finite set of available tilt and azimuth values, which can be

assigned to the gain of the vertical plane of the antenna model.

• Reward : If the SINR is greater or equal than 0 dB, the reward will be positive,

otherwise will be negative. The threshold is set in order to support the SINR values

for MIMO transmissions.

Also the sub-MDP modelling this SON function can be solved through reinforcement

learning as it is done for example in [14].

3. COC

• State: The state S3 is defined based on the result of the scheduling scheme, which

defines (1) the allocation of users to RBs, (2) UE measurements (e.g., RSRP,

RSRQ, etc.)

• Actions: The set of eligible actions A3 are defined based on (1) the finite set of

downlink transmission power levels, which can be allocated to the RBs assigned

to the users, (2) the finite set of available tilt, and azimuth values, which can be

assigned to the gain of the vertical plane of the antenna model.

• Reward : If the SINR is greater or equal than 6 dBs, the reward is positive, otherwise

is negative. The threshold is set in order to support the lowest MCS.

A complete solution for COC by adjusting the gain of the antenna due to the electrical tilt

and the downlink transmission power of the surrounding eNBs can be founded in [15],

and this solution is based on reinforcement learning tools.

4. ES

• State: The state S4 is defined based on (1) the resource status information of the

cell and its neighbours, (2) the expected demand of traffic, (3) the energy available

to the network element.

• Actions: The action set A4 consists of switching on/off the cell.
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• Reward : If the resource usage and the energy available for consumption (in case

we are in an energy constrained system) are below a certain threshold, the reward

is negative, otherwise it is positive.

The sub-MDP modelling this use case can also be solved through reinforcement learning,

as it is demonstrated in [16].

5. MLB

• State: The state S5 is defined based on the resource status information of each cell,

and of that of its neighbours.

• Actions: The action set A5 is defined based on the update of the CIO value, by a

finite set of fixed values.

• Reward : If the change of CIO removes overload with minimal negative Handover

(HO) effects the reward will be positive, otherwise will be negative.

A solution for the sub-MDP modelling this function can also be based on reinforcement

learning tools [4].

6. MRO

• State: The state S6 is defined based on hand-over and RLF reports and statistics.

• Actions: The action set A6 is defined based on the update of the cell’s hand-over

event offsets, TTT and layer1/layer 3 filter coefficients.

• Reward : If the users affected by the RLF in the cell, after the HO parameter setting

is completed, are lower than a threshold, the reward will be positive, otherwise will

be negative.

A solution for the sub-MDP modelling this function can also be based on reinforcement

learning tools [4].

7. RACH optimization

• State: The state S7 is defined based on the resource status information.

• Actions: The action set A7 is defined based on the update of the power control

parameter or of the preamble format to reach the set target access delay.

• Reward : If the users achieve lower data rate than the agreed Guaranteed Bit Rate

(GBR), the reward will be negative, otherwise, will be positive.

80



4.4. Case study: Self-coordination for ICIC and CCO function conflict

This can also be solved through reinforcement learning strategies, as shown in [17].

If n polices are in conflict the coordination is handled through a n-player coordination game, as

discuss in section 4.2.2.

4.4 Case study: Self-coordination for ICIC and CCO function

conflict

Among the different SON functions defined by 3GPP, we focus our attention on CCO, and

ICIC. The CCO is in charge of optimizing the capacity and coverage of the area of influence

of the particular eNB. As a result, it aims to decrease the outage probability at the border

of the cell. The ICIC is in charge of minimizing the interference among different cells. We

will focus on the conflict generated by ICIC and CCO SON functions, as both of them aim at

modifying the transmission power. In particular, while the CCO may decide to increase the

power e.g., to improve the coverage or the capacity, the ICIC may decide to decrease the

power to reduce the interference. Figure 4.3 shows the actions taken by the two different

SON functions, in the D-SON architecture implemented in a heterogeneous scenario. The

impact of the concurrent execution of two conflicting actions is highlighted for cell boundaries

of one cell. In this section we describe how to solve the independent sub-MDPs characterizing

the ICIC and CCO functions through TD-learning, and the Actor Critic algorithm in particular.

Once each SON function has found the optimal policy by means of the AC algorithm, if the

actions are different, ICIC and CCO play a game with conflicting interests. We define a two-

player game G = {N,A,R}, where the N = 2 players are the SON functions, A = {α, β} is

the action set consisting of the actions selected by CCO, α = {pCCO1 , ..., pCCOR}, and ICIC,

β = {pICIC1 , ..., pICICR}. The reward matrix associated with each state is denoted by R,

represented in Figure 4.2, inside the coordination game box. Here, the rows correspond to

ICIC and the columns to CCO.

4.4.1 AC-based solution for CCO function

The CCO SON function aims to provide capacity and coverage optimization. In this scenario,

the uncovered planned cell area is the coverage holes that need to be optimised by the cov-

erage and capacity optimization [18]. We measure this by decreasing the outage probability.

As an indicator, we consider the CQI, which is a measurement of the communication quality of

wireless channels. We define the state and action spaces and the reward function as follows.
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Figure 4.3: Impact of ICIC, and CCO parameter conflict

• State: The state is defined based on the result of the scheduling scheme, which defines:

(1) the allocation of users to RBs (RB1, RB2, ..., RBR) to the N users, (2) the values of

CQI of each user in the corresponding RB.

• Actions: The set of eligible actions are the finite set of downlink transmission power

levels, which can be allocated to the RBs assigned to the users. The selected values

are: 0 to 46 dBm per RB with 0.5 dBm granularity.

• Reward :

r(st, at) =

 1 , if CQI ≥ 1

0 , otherwise

The threshold is set based on the CQI. The reason behind this value, is that one of the

possible causes of bad BLER is bad coverage. This one should be smaller or equal than

10%, which is the requirement from the LTE standard. As for the particular CQI values

associated to the modulation schemes and channel coding rates, we refer to [5].

4.4.2 AC-based solution for ICIC function

The ICIC SON function aims to minimize interference among cells using the same spectrum.

In this scenario [18], we define the state and action spaces and the reward function as follows.

• State: The state is defined based on the result of the scheduling scheme, which defines:
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(1) the allocation of users to RBs (RB1, RB2, ..., RBR) to the N users, (2) the values of

SINR measured for each user in the corresponding RB.

• Actions: The set of eligible actions are the finite set of downlink transmission power

levels, which can be allocated to the RBs assigned to the users. The selected values

are: 0 to 46 dBm per RB with 0.5 dBm granularity.

• Reward :

r(st, at) =

 1 , if SINR ≥ 0

0 , otherwise

Where the threshold is set in order to support the SINR values for multi user MIMO trans-

mission mode [5]. MIMO can be used to increase the SINR, i.e, the capacity increases

logarithmically with the SINR.

4.5 Simulation platform, scenario and results

The proposed algorithms have been evaluated on the ns3 LENA platform based on LTE Re-

lease 8 [19]. The Self Coordinator framework given in Figure 4.2 is executed every time a new

action is selected by one of the functions, i.e., every time a CQI or the UE measurements are

reported to the (H)eNB. This happens, in periodic reporting, every 2-160 msec for the CQI, and

every 120− 60 msec for the UE measurements [20]. The parameters used in the simulations,

for CCO and ICIC are given in Table 4.1.

The scenario that we set up consists of 2 eNBs, each one with three sectors, which

results in 6 cells and 38 UEs. The small cell network is based on the dual stripe scenario with

1 block of 2 buildings. Each building has one floor, with 20 apartments, which results in 40

apartments per block, as depicted in Figure 4.4. The number of blocks is equal to 5. The

Home eNodeB (HeNB) activation factor is 0.5 and the deployment ratio is 0.2, which results in

20 HeNBs, each one located in an independent apartment. Each HeNB provides service to

one user in the scenario, which results in 20 HeNB users.

In the scenario, users are randomly distributed, and after the related IP traffic session

ends, the UE appears in another location and starts a new session. In addition, in order to

test the QoS performance we use a UDP Client application, which takes care of the generation

of Radio Link Control (RLC) Protocol Data Units (PDUs) allowing multiple flows belonging to

different QoS classes.
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Figure 4.4: Scenario-SON conflict

4.5.1 Results

We first show in Figure 4.5 the time evolution of the average SINR reported by UEs when

the two SON functions are executed independently, and for different values of the CQI and

UE measurements reporting periodicity (i.e., CQI feedback every 2/120/160 msec and RSRQ

feedback every 120 msec). We observe that both the AC algorithms implementing the two

SON functions - even if the proposed scenario is characterized by the dynamism typical of

realistic wireless networks, as the UEs move around, the HeNBs are characterized by random

activation factors, the channel model include shadow and fading effects, etc. - after a first

training phase, converge in a stable manner to a situation where no user is in outage. We

observe as well that the time of convergence depends on the periodicity of feedback to the

(H)eNBs from the users.

On the other hand, in Figure 4.6, we compare performances in terms of time evolution of

the SINR provided by the proposed coordination game framework and by the approach that is

suggested by 3GPP in [21]. Here, it is proposed that every time that a SON function is willing

to modify a transmission parameter, asks for permission to the self-coordination entity, which

handles the queues of requests for parameter modifications. We consider then an implemen-

tation of ICIC and CCO characterized by similar reporting periodicity, i.e., 120 msec for each

SON function. We observe in Figure 4.6 that while the self-coordination framework based

on the proposed coordination game, actually selects the most appropriate action to execute

based on a compromise between conflicting interests, the 3GPP proposed approach handles
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Table 4.1: SON conflict-Simulation parameters

Simulation parameters Value

Parameter

Path loss model Friis spectrum propagation

Mobility model Pedestrian, speed 3 Km/h

Shadow fading Log-normal, std = 8 dB

Scheduler Proportional Fair Scheduler (PF)

AMC model LteAmc::MiErrorModel

Transport protocol UDP

Macro cell scenario

Number of cells 6

Number of UEs 38

eNB Tx power 46 dBm

Small cell scenario

Number of cells 20

HeNBs per block 4

Number of home UEs 20

HeNB Tx power 23 dBm

LTE

Cell layout Radius: 500 m

Bandwidth 5 MHz

Number of RBs 25; RBs per RBG: 2

RL

Actions (power) 0 to 46 dBm per RB

τ ;β; γ 0.1; 0.5; 0.98

ICIC threshold SINR > 0 dB

CCO threshold CQI ≥ 1

Simulation time 10 s

the conflict by properly scheduling in time the different actions, but due to the execution of both

actions, it generates unnecessary oscillations and poorer performances in terms of average

achieved SINR for the UEs in the scenario.

We now further analyse the results provided by the independent implementation of ICIC

and CCO, in comparison to the results obtained when the self-coordination framework is ac-

tive. Figure 4.7 represents the CDF of the SINR of the UEs, at the end of simulation time.

We observe that when performing the SON functions independently, the CCO offers better

performances than the ICIC, for low values of SINR, i.e., at the border of the cell, as it aims

at optimizing the capacity and coverage features of the scenario. On the other hand, the ICIC

function performs better than the CCO for higher values of SINR, as it aims at minimizing the
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Figure 4.5: Time evolution of the average SINR of UEs in the scenario, considering different values of

reporting periodicity for the CQI and the UE measurements.
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Figure 4.6: Time evolution of the average SINR of UEs in the scenario, for the self-coordination frame-

works based on Coordination game and 3GPP approaches.

effect of inter-cell interference in the whole scenario, thus improving interference performances

for all users. When executing the two SON functions in parallel, conflicts may arise, so we need

the support of a self-coordination function. When implementing it, we achieve a compromise

between the conflicting objectives of the two SON functions. On the one hand, at the cell edge,

we are reducing the outage probability with respect to the results obtained otherwise with ICIC,

while we are maintaining the outage with respect to results obtained by CCO. On the other
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hand, inside the cell, the self-coordination framework obtains better performances in terms of

outage, compared to previous results of the CCO, while it increases the outage compared to

ICIC independent results. The reason behind this behaviour is to found in the compromise

achieved by means of the mixed strategy equilibrium, which consists in an equilibrium where

there is a percentage of time during which ICIC gets less reward than CCO, and the rest of the

time when the CCO achieves a higher reward than ICIC.
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Figure 4.7: CDF of the SINR of UEs in the scenario.

Figure 4.8 shows the RSRQ from the serving cell, which is one of the UE measurements

periodically reported by the same UE indicating its performance rate. We observe a similar

behaviour as discussed for Figure 4.7. However, here the self-coordinator performs more

similarly to ICIC inside the cell, and more similarly to CCO at the cell edge, thus managing to

get the best out of each SON function. Finally, the same desirable behaviour is also confirmed

in Figure 4.9, which depicts the CDF of each UE average throughput. The traffic considered

uses a RLC Saturation Mode (SM), which takes care of the generation of RLC PDUs allowing

multiple flows belonging to different QoS classes.
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4.6 Conclusions

In this chapter, we have discussed the challenging problem that arises when multiple con-

current SON functions are executed by the same node, or different instances of the same or

different SON functions are executed in neighbouring cells. Without loss of generality, we have

focused on the conflicts between two different SON functions, which aims at updating the same

(H)eNB transmission parameter in a D-SON architecture, more suitable for a small cell sce-

nario. We have proposed then a general framework to support the modelling of SON functions

and their conflicts when they are executed in parallel. We have shown that the global SON

problem can be modelled through a MDP, which can be organised onto simpler sub-problems,

to favour scalability, and modelled by means of sub-MDP. Due to the dynamic nature of the

wireless environment and to the autonomous characteristic of the SON functions, we solve the

sub-MDPs by means of RL. RL algorithms provide solution policies to the different SON func-

tions which can be in conflict, so that require a self-coordinator framework. We have shown

that this framework can be modelled by means of a coordination game, where the sub-MDPs

are the players, and their solution policies the actions. Simulation results obtained in a LENA

platform LTE network simulator demonstrate that the proposed scheme provides a convenient

compromise among conflicting actions, taking the best result among the conflicting solution

policies.
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Chapter 5
A Mobile Network Planning Tool based on

Data Analytics

The best way to predict the future is to create it. Abraham Lincoln
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As we already mentioned in chapter 1, nowadays, we are assisting to the definition of what

5G networks will look like. 3GPP has started multiple work items which lead to the definition of

novel 5G radio and architecture [1]. The main vendors are publishing numerous white papers

presenting their view on 5G networks and architectures. EU commission has put in place an

important 5GPPP program to fund research for 5G networks [2]. What looks clear from all

these converging visions, is that in network management beyond 4G and future 5G networks

has to face a whole new set of challenges due to high densification of nodes and heterogeneity

of layers, applications, RAT, among others.

In this chapter, among many network management problems, we focus on designing a

smart network planning, which gives particular emphasis to the QoS offered to the users. The

state of the art in network planning, in literature and in the market, offers a wide range of

platforms systems and applications oriented to the industry, as well as for research purposes.

From the industry perspective and the research community, the market of commercial plan-
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ning tools aims at providing a complete set of solutions to design and analyse networks [3–6].

In [7], the authors present a network planning tool capable to meet the requirements of the

academia and the industry. They propose different planning algorithms to analyse the network

under different failures and energy efficiency schemes. However, these works in general focus

on several configuration scenarios, RF coverage planning, network recovery test, traffic load

analysis, forecasting traffic, among others, and not directly on QoS offered to end-users and

the resources the operator needs to offer it. Other works are more targeted to QoS estimation,

but not in the area of network planning. The literature already offers different works targeting

the problem of QoS prediction, and verification, such as, [8, 9]. In our preliminary work [10],

we focus on more complex multi-layer heterogeneous networks, where we predict QoS inde-

pendently of the physical location of the UE. Preliminary results show that by abstracting from

the physical position of the measurements, we can provide high accuracies in the estimations

of QoS in other arbitrary regions. Furthermore, our results obtained in [11] show that data

analysis has better performance in a reduced space rather than in the original one.

This chapter presents a smart network planning tool based on 2 steps. First, we estimate

the QoS in every point of the network based on measurements collected in different moments

in time, and from other regions of the heterogeneous network. Second, we close the loop

by adjusting network performances to target network objectives. To do this, we apply Machine

Learning (ML) and Genetic Algorithms (GAs) techniques. We believe that ML can be effectively

used to learn from experience while improving performance. The indicator that we want to

estimate is expressed in terms of PRB per MB in an arbitrary point of the network. We focus

on this specific QoS indicator because it combines information that is relevant for the operator

(PRBs) and other that is relevant to the end user (Mb of data) into a single metric. We perform

this estimation through supervised learning tools. Second, we close the loop by adjusting

the network parameters in order to target network objectives in terms of PRB per Mb. The

minimization of this indicator allows to serve users with an improved spectral efficiency and

offered QoS. To carry out this optimization we take advantage of GAs, which are stochastic

search algorithms useful to implement learning and optimization tasks [12].

In order to evaluate the performance of the proposed scheme, we consider 2 use cases,

the first one in a densified indoor scenario, and the second one in a more traditional macrocell

scenario. In the first use case, we focus on how to plan a dense small cell deployment inspired

by a typical 3GPP dual stripe scenario [13], where the aspects to optimise are the number

of small cells and their position. In the second use case we deal with self-healing aspects

in macrocellular scenarios. We focus on readjusting the network planning to quickly solve an
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outage problem by automatically optimising the antenna tilt parameters.

We will show, through network simulation results obtained over the 3GPP compliant, full

protocol stack LTE ns-3 module, that the proposed ML enabled network planning, differently

from other closed optimisation approaches, is extremely flexible to the application problem and

scenario. It is equally valid and brings great benefits in both the studied use cases, character-

ized by very different optimisation problems and scenarios.

The outline of the chapter is organised as follows. The general approach is described

in Section 5.1. It introduces the criteria that we use to construct the proposed method. In

Section 5.2, we select the learning methods that the network planning tool follows to reach

the operators targets. In Section 5.3, we present the details of 2 use cases of application, the

simulation platform, and meaningful simulations results. Finally, Section 6.1 summarizes with

the conclusions.

5.1 ML-based network planning tool description

We propose to design a smart network planning tool, which involves 3 main processes: 1) Data

preparation; 2) Data analysis; and 3) Optimised network planning. We model and estimate the

QoS in every point of the network through analysing data extracted from UE measurements.

This modelling consist on the first 2 process already mentioned. The 3 main processes are

depicted in Figure 5.1 and discussed in the following.

 Collecting the data
 Pre-processing the data
 Loading the data 

Data preparation Data analysis
Optimised network 

planning 

 Optimisation of decision 
making process 

 Reducing the high 
dimensional space

 Building machine learning 
models 

Modelling QoS

Figure 5.1: Architecture of the network planning tool.

1. Data preparation. This process aims at transforming data into an understandable format.

The target is to integrate and prepare large volumes of data over the network to provide

a unified information base for analysis. To do this, we follow the Extract-Transform-Load
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Table 5.1: Relevant sources of information in mobile networks

Source Information Usage

Control info for short-term

network operation.

Call/session setup, release, maintenance QoS,

RRC, idle and connects mode mobility.

Discarded after usage.

Control info for SON func-

tions.

Info on Radio link failure, inter-cell interference,

UE measurements, MDT measurements, radio re-

source status, cell load signalling, etc.

Heuristic algorithms typi-

cally discard info after.

Management information

for long-term operation.

Fault configuration, accounting, performance and

security management (FCAPS), Operations and

Management, e.g. in OAM aggregated statistics

per eNB, on network performances, # users, suc-

cessful/failed HO, active bearers, information from

active probing.

Mainly used for triggering

engineer intervention.

Customer Relationship In-

formation.

Complaints about bad service quality, churn info. Only used by customer ser-

vice.

(ETL) process, which is responsible for pulling data out of the source and placing it into

a database. It involves 3 main steps: Data extraction (E), whose objective is to collect

the data from different sources; Data transformation (T), which prepares the data for the

purpose of querying and analysis; Data loading (L), which loads the data into the main

target, most of the cases into a flat file. This process plays an important role for the design

and implementation of planning future mobile networks. The objective is to create a data

structure, which is able to provide meaningful insights and decisions. Some examples

of the kind of sources available in mobile networks are shown in Table 5.1 [14]. Here

the data are classified based on the purpose for which are generated in the network.

The usage that is given nowadays in the network is also suggested in the last column.

For the purpose of network planning, we plan to extract data reported by the UEs to the

network in the form of UE measurements, in terms of received power, received quality

and perceived QoS.

Once the data has been collected, we prepare the data for storing, using the proper

structure for the querying.

2. Data analysis. The objective of this process is to discover patterns in data that can

lead to predictions about the future. This is done by finding this information/correlation

among the radio measurements extracted from the network. We do this by applying ML

techniques.
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3. Optimised network planning. The objective of this process is to find the configuration

parameters for the optimised network planning based on the information extracted from

the previous data analysis process. In the complex cellular context, we need to deal

with several challenges which introduce high complexity, e.g., the very large number

of parameters, the strong cross-tier interference, due to aleatory introduced by random

propagation patterns, like fast fading, shadowing, mobility of users, etc. In order to deal

with these issues, and guarantee the capacity requirements of the network, in this work,

we propose to use the tool of GAs, for many advantageous characteristics, which allow to

avoid more typical closed optimisation techniques, which would be infeasible in a complex

and dynamic 5G scenario as the one we are considering. In particular, GAs perform

parallel search from a population of points. They face the ability to avoid local minima.

They use probabilistic, and not deterministic search rules. They work as chromosomes,

which are the encoded versions of potential solutions parameters, rather than parameters

themselves, and they use fitness scores, obtained from the objective function [15].

5.1.1 Modelling the QoS

We estimate the QoS in every point of the network based on measurements collected in dif-

ferent moments in time, and from other regions of the heterogeneous network. To do this, we

consider the Data preparation and Data analysis processes of the network planning tool. As

mentioned previously, the objective of these 2 processes is to extract, prepare and analyse the

information already available in the network to provide insightful information from the analysis

of it. As we stated earlier, in this kind of problems ML techniques can be very effective to

make predictions based on observations. We then take advantage of ML techniques to cre-

ate a model that allows to estimate the QoS by finding patterns in PHY layer measurements

reported by the users. We propose to use SL, since among many applications, it offers tools

for estimation and prediction of behaviours. In particular, we focus on a regression problem,

since we want to analyse the relationship between a continuous variable (PRB per Mb), and

data extracted from the network in the form of UE measurements. Many regression techniques

have been developed in the SL literature, and criteria to select the most appropriate method

include aspects such as the kind of relation that exists between the input and the output, or

between the considered features, the complexity, the dimension of the dataset, the ability to

separate the information from the noise, the training speed, the prediction speed, the accuracy

in the prediction, etc. We focus on regression models, and we select the most representative

approaches. We then use ensemble methods to sub-sampling the training samples, prioritizing
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criteria such as the low complexity and the high accuracy.

We build a dataset of user measurements, based on the same data contained in the MDT

database. The MDT is a standardized database used for different 3GPP use cases. The

dataset contains training samples (rows), and features (columns), and is divided in 2 sets. The

training set to train the model, and the test set to make sure that the predictions are correct.

That training data develops a predictive model, and evaluate the accuracy of the prediction, by

inferring a function f(x), returning the predicted output ŷ. The input space is represented by

a n-dimensional input vector x = (x(1), . . . , x(n))T ∈ Rn. Each dimension is an input variable.

In addition, a training set involves m training samples ((x1, y1), . . . , (xm, ym)). Each sample

consists of an input vector xi, and a corresponding output yi of one data point i. Hence x(j)
i is

the value of the input variable x(j) in training sample i, and the error is usually computed via

|yi − ŷi|.

In addition to regression analysis, we exploit UL techniques for dimensionality reduction,

whose output is fed into an ensemble method consisting of Bagging/AdaBoost to manipulate

the training examples. The SL techniques under evaluation are then applied. Details for each

step are given in the following, and the whole process is depicted in Figure 5.2.

Building machine learning models

Reducing the high dimensional space
FE-PCA / FS-SPCA

Bagging/ Adaboost

Tune 
regression model
 ( e.g., k-NN, NN, 

SVM, DT)

Tuned model

Pre-processing
the dataCollecting 

the data

Loading the data 

Figure 5.2: Modelling the QoS.

96



5.1. ML-based network planning tool description

Collecting the data

The data we take into account comes from mobile networks, which generate data in the form

of network measurements, control and management information (Table 5.1). As we mentioned

previously, we focus on MDT functionality, which enables operators to collect UEs measure-

ments together with location information, if available, with the purpose of optimising network

management, while reducing operational effects and maintenance costs. This feature has

been introduced by 3GPP since Release 10, among the targets there are the standardization

of solutions for coverage optimisation, mobility, capacity optimisation, parametrization of com-

mon channels, and QoS verification. Since operators are also interested in estimating QoS

performance, in Release 11, MDT functionality has been enhanced to properly dimension and

plan the network by collecting measurements indicating throughput and connectivity issues

[16]. Therefore, we collect for each UE: (1) the RSRP, and (2) the RSRQ coming from the

serving and neighbouring eNBs. The size of the input space is [l × n]. The number of rows is

the number l of UEs in the scenario, and the number of columns corresponds to the number

of measurements n. The size of the output space is [l × 1], which corresponds to the QoS

performance associated to the measurements in terms of the PRB per transmitted Mb. In par-

ticular, these measurements gathered at arbitrary points of the network throughout its lifetime

are exploited to plan other arbitrary future deployments.

Pre-processing the data

In order to obtain a good performance during the evaluation, the input variables of the different

measurements must be on a similar scale and range. So, a common practice is to normalize

every variable between −1 ≤ x(j) ≤ 1 range, and replace x(j) with x(j) − µ(j) over the range

(max-min), where µ(j) is the average of the input variable (j) in the dataset. The normalized

data is then split into training and test set. We create a random partition from the l sets of

input. This partition divides the observations into a training set of m samples, and a test set

p = l −m samples. We randomly select approximately p = 1
5 × l observations for the test set.

Loading the data

This process varies widely. As we mentioned before, depending on the operator requirements,

the data can be updated or new data can be added in a historical form at regular intervals. For

our propose, in this particular work, we maintain a history of all changes to the data loaded in

the network.
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Reducing the high dimensional space

One of the problems that mobile operators have to face in this kind of networks is the huge

amount of potential features we have as input. Therefore, to deal with the huge amount of fea-

tures, we propose to apply regression techniques in a reduced space, rather than in the original

one. The idea behind that, comes from our previous work [10], in which we observed that we

lose information in the high dimensionality of measurements obtained from all the neighbours.

Therefore, we suggest that the regression analysis has a better performance in a reduced

space. As a result, we take advantage of dimensionality reduction techniques to reduce the

number of random variables under consideration. These methods can be divided into FE and

FS methods. Both methods seek to reduce the number of features in the dataset. FE methods

do so by creating new combinations of features (e.g. PCA), which project the data onto a lower

dimensional subspace by identifying correlated features in the data distribution. They retain

the PCs with greatest variance and discard all others to preserve maximum information and

retain minimal redundancy [17]. Correlation based FS methods include and exclude features

present in the data without changing them. An example is SPCA, which extends the classic

method of PCA for the reduction of dimensionality of data by adding sparsity constraint on the

input features. Notice that, in a sparse matrix most of the elements are zero. By contrast, if

most of the elements are nonzero, then the matrix is considered dense. In FS-SPCA the spar-

sity is promoted up to the selection of the f features that give us the most useful information.

That is, by adding sparsity constraint on the input features, we promote solutions in which only

a small number of input features capture most of the variance. Some preliminary work on this

features was presented in [11].

Building the machine learning models

We select some representative regression models, prioritizing criteria such as the low com-

plexity and the high accuracy: (1) k-NN, (2) Neural Networks (NN), (3) SVM, and (4) DT, and

we analyse them by performing an empirical comparison of these algorithms, observing the

impact on the prediction of the different kinds and amounts of UE measurements.

1. k-NN can be used for classification and regression [18]. The k-NN method has the

advantage of being easy to interpret, fast in training, and the amount of parameter tuning

is minimal.

2. NN is a statistical learning model inspired by the structure of a human brain where the
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interconnected nodes represent the neurons to produce appropriate responses. NN sup-

port both classification and regression algorithms. NNs methods require parameters or

distribution models derived from the dataset, and in general they are susceptible to over-

fitting [19].

3. SVM can be used for classification and regression. The estimation accuracy of this

method depends on a good setting of the regularization parameter C, ε, and the kernel

parameters. This method in general shows high accuracy in the prediction, and it can

also behave very well with non-linear problems when using appropriate kernel methods

[20].

4. DT is a flow-chart model, which supports both classification and regression algorithms.

Decision trees do not require any prior knowledge of the data, are robust, and work well

on noisy data. However, they are dependent on the coverage of the training data as, as

for many classifiers, and they are also susceptible to over-fitting [21, 22].

In order to enhance the performance of each learning algorithm described before, instead

of using the same dataset to train we can use multiple data sets by building an ensemble

method. Ensemble methods are learning models, which combine the opinions of multiple

learners. This technique has been investigated in a huge variety of works [23, 24], where the

most useful techniques have been found to be Bagging and AdaBoost [25]. Bagging manip-

ulates the training examples to generate multiple hypothesis. It runs the learning algorithm

several times, each one with different subset of training samples. AdaBoost works similarly,

but it maintains a set of weights over the original training set, and adjusts these weights by in-

creasing the weight of examples that are misclassified, and decreasing the weight of examples

that are correctly classified [26].

At high level, once the extracted data has been processed and loaded into a flat file,

is fed into a dimensionality reduction step, and successfully into an ensemble step, which

manipulates the training set by applying Bagging/AdaBoost techniques. The learning algorithm

is then applied to produce a regressor (see Algorithm 5.1).

Evaluation of accuracy

To evaluate the accuracy of the model, the performance of the learned function is measured on

the test set. That is, we use a set of examples used to tune the regressor algorithm. For each

test value, we predict the average QoS, and evaluate performance against the actual value in
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terms of the Root Mean Squared Error (RMSE) as follows RMSE =
√∑p

i=1(yi−ŷi)2
p , where p

is the length of the test set, ŷi indicates the predicted value, and yi is the testing value of one

data point i. In order to compare the RMSE with different scales, the input and output variable

values are normalized by, NRMSE= RMSE
ymax−ymin , where ymax and ymin represent the max and

min values in the output space Ytest of size [p× 1] respectively.

Algorithm 5.1. Train regressor algorithm
Input: Input space of size [m× n](Xtrain),

output space of size [m× 1](Ytrain),

Input space of size [p× n](Xtest),

output space of size [p× 1](Ytest),

number of iterations (niter)

Output: model

——————————————————————————————————-

// Given the training set (Xtrain, Ytrain)

Xtrain = {x1, . . . , xm}

Ytrain = {y1, . . . , ym}

// Apply dimensional reduction step (if it is necessary)

obtain c-dimensional input vector

Apply regression analysis in a reduced space

// Set up the data for Bagging/Adaboost

for k = 1 to niter do

// Call regressor algorithm

model(k):=regressor algorithm, namely k-NN, NN, SVM,DT

// Predict the average QoS

QoSpredicted:=predict(model(k),Xtest)

Evaluate performances against the actual value (Ytest) by NRMSE

end for

// Result of training base learning algorithm

model:=best(model)

return (model) }

5.1.2 Optimised network planning

As we mentioned before, the objective of this process is to close the loop by adjusting network

performances through a GA to target network objectives in terms of PRB per Mb. This results

in a GA organised onto different phases, as depicted in Figure 5.3.

Create S feasible solutions

We create a set of S = {θ(1), . . . ,θ(psize)} random feasible solutions (also called chromosomes

or individuals), where psize is the starting population size. We denote by θ(s) = (θ
(s)
1 , . . . , θ

(s)
M )
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Figure 5.3: Optimised network planning.

the configuration parameters vector of an individual s, with θ
(s)
j denoting the parameter con-

figuration, e.g., the transmitted power (θ(s)
jtxp

) or the antenna tilt (θ(s)
jtilt

) value of the j-th eNB, or

switch on-off (θ(s)
jsc

) the j-th small cell, among others.

Evaluate network deployment performance

This function is responsible for evaluating the network deployment performance. The objective

is to define the evaluation function (fitness) of each individual. Given a particular configuration

parameter vector θ(s), this function is responsible for returning the average offered QoS of a

subset of random points in the scenario. This function takes as an input S feasible solutions,

and the model produced by the regressor algorithm discussed in previous section. That is, the

output of Algorithm 5.1.

The behaviour of this module is as follows. In each iteration we collectXval measurements

at some arbitrary point in the scenario. These measurements are obtained as a result of the

evaluation of each θ ∈ S in the evalNetPerformance function (see Algorithm 5.2). These

Xval measurements and the tuned model (model), are the inputs to the predict function, which

gives us the QoS in any position of the scenario. As a result, for each θ ∈ S, we obtain a QoS

value predicted for each point of interest in the scenario.

As we mentioned before, we aim at minimizing the PRB per transmitted Mb to allow max-
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Algorithm 5.2. Evaluate network deployment performance
Input: Configuration parameters vector (θ),

the tuned model (model)

Output: average QoS

——————————————————————————————————-

evalNetPerformance := function(θ, model){

// Call ns-3 network simulator

evaluate θ = (θ
(s)
1 , ..., θ

(s)
M )

// Collect measurements at q points in the scenario

Xeval = {x1, . . . , xq}

// Predict the average QoS

QoSpredicted:= predict (model,Xeval)

average QoS:=mean(QoSpredicted)

return (average QoS)}

imizing the QoS of the users and the spectral efficiency of the operator. Therefore, the fitness

function aims at finding the configuration of parameters for which the total PRB per transmitted

Mb is minimized. The operator can target a desired value for the total PRB per transmitted Mb,

and based on this the network planning tool can decide when the objective has been achieved

and interrupt the operation.

Selection

We select the best fit individuals for reproduction based on their fitness, i.e., this function

generates a new population of individuals from the current population. This selection is known

as elitist selection. Elitism copies the best e fittest candidates, into the next generation.

Crossover

This function forms a new individual by combining part of the genetic information from their

parents. The idea behind crossover is that the new individual may be better than both of the

parents if it takes the best characteristics from each of them. We use an arithmetic crossover,

which creates new individuals (β) that are the weighted arithmetic mean of two parents. If θ(a)

and θ(b) are the parents, the function returns,

β = α× θ(a) + (1− α)× θ(b) (5.1)

where, α is a random value between [0, 1].

102



5.1. ML-based network planning tool description

Mutation

This function randomly selects a parameter based on a uniform random value between a min-

imum and maximum value. It maintains the diversity in the value of the parameters for subse-

quent generations. That is, it avoids premature convergence on a local maximum or minimum.

For that, we set to δ the probability of mutation in a feasible solution θ(s). If δ is too high, the

convergence is slow or it never happens. Therefore, most of the times δ tends to be small.

Finally we replace the worst fit population with new individuals. The whole genetic algorithm is

described in Algorithm 5.3.

Algorithm 5.3. GA scheme
Input: Initial population (S) ,

size of S (psize),

the tuned model (model),

number of generations (g),

rate of elitism e,

rate of mutation δ

Output: solution θ(∗)

——————————————————————————————————-

// Initialization

for i = 1 to g do

// Return the value of average QoS describing the fitness of each individual θ ∈ S

for all θ ∈ S do

average QoS := evalNetPerformance(θ, model)

end for

// Elitism based selection

select the best e solutions

// Crossover

number of crossover nc = (psize − e)/2

for j = 1 to nc do

randomly select two solutions θ(a) and θ(b)

generate θ(c) by arithmetic crossover to θ(a) and θ(b)

end for

// Mutation

for j = 1 to nc do

mutate each parameter of θ(j) under the rate δ and generate a new solution

end for

end for

return the best solution θ(∗)

103



Chapter 5. A Mobile Network Planning Tool based on Data Analytics

5.2 ML tool to estimate the QoS

This section defines our model in terms of dimensional reduction, ensemble and regression

methods. We consider different options for: 1) dimensionality reduction (i.e., FE-PCA, FS-

SPCA); 2) ensemble methods (i.e., Bagging and AdaBoost); and 3) regression models (i.e.,

k-NN, NN, SV, DT), as anticipated in section 5.1.1.

Table 5.2 summarizes the accuracy performance of each learning algorithm in terms of

(1−NRMSE)× 100. From this table, we observe the following:

Table 5.2: Overall model accuracy

Approach Regression model Bagging AdaBoost

1. FE-PCA 1.1 k-NN

1.2 NN

1.3 SVM

1.4 DT

90.33%

93.44%

94.70%

92.84%

91.98%

92.28%

94.07%

93.60%

2. FS-SPCA 2.1 k-NN

2.2 NN

2.3 SVM

2.4 DT

89.69%

92.41%

93.62%

91.22%

90.88%

91.78%

92.87%

92.08%

1. FS-SPCA is a very useful approach if we are interested in excluding features to retain

minimal redundancy. In this context, we can reduce the dimensionality of the data up to

92 features and still maintain almost the same accuracy. This can be observed in Fig-

ure 5.5, which shows the NRMSE as a function of different number of features selected

by the SPCA. As a consequence, we promote sparsity down to 92 features that give us

the most useful information. In this respect, FE-PCA would present less inputs to the SL

step of the data processing chain at the cost of a prior processing of features. As we

observed in Figure 5.4, the results of the FE-PCA implementation suggest, that we can

obtain the 70% of cumulative variance if we consider only the first 10 PCs. That is, with

the first 10 PCs we already capture the main variability of the data. As a result, FS-SPCA

would simplify the initial feature processing, since selected features are taken as they

are, but the cost would be the higher storage need (i.e., 92 inputs vs. 10 inputs to the SL
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Figure 5.4: The left side, shows the cumulative contribution of each PC to the original data’s variance.

The right side, shows the variability of the data set as a function of the c = 10 PCs. That is, the figure

shows the variances (y-axis) associated with the PCs (x-axis).
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Figure 5.5: NRMSE a function of different number of features selected

by the SPCA.

Once the kinds and amounts of measurements that each approach takes into account,

have been explained, from Table 5.2, we observe that if we consider the 92 features, we

lose only 1% of accuracy with respect to FE-PCA. Therefore, it will depend on the specific

network and operator to select whether computing or storage should be optimised and

to decide whether the price paid in terms of accuracy is acceptable.

2. When we build ensemble methods, SVM and NN regression models perform better when

they are bagged than when they are boosted. This was to expect, as Bagging combines

many weak predictors (i.e., the predictor is only slightly correlated with the true prediction)

to produce a strong predictor (i.e., the predictor is well-correlated with the true prediction).

This works well for algorithms where by changing the training set, the output changes.
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The opposite behaviour can be found in k-NN and DT regression models, i.e., when

these algorithms are boosted the models tend to provide better results than when they

are bagged. That is, in order to improve the performance of AdaBoost, we use sub-

optimal values, k for k-NN, and T for DT, i.e., we use values that are not that good, but

at least better than random. As a result AdaBoost does its job properly. This is not the

case for SVM and NN. Since these learning algorithms do not have an input parameter

that we can adjust to obtain a weak predictor without affecting the accuracy of the model,

the probability that these algorithms provide better performance when are boosted than

when are bagged is lower. Some initial results can be found in [27].

3. By applying different regression models and in particular, when the SVM regression

model is bagged, we improve by 5% the overall accuracy of the prediction with respect

to the k-NN model. More specifically, in terms of the NRMSE, k-NN exhibits an error of

10%, while SVM halves this value to 5%.

Results suggest that while in overall, all the regression models exhibit high accuracy,

bagged-SVM learning model is the one that better fits our needs, and exhibits more accurate

predictions. Therefore, in this work we focus on Bagged-SVM to build the best model that fit

the data. The whole network planning process is depicted in Figure 5.6.

Evaluate network 

deployment 

performance

Selection

Crossover

Mutation

yes

no

Output

Desired 

performance 

reached?

Create S random 

initial feasible 

solutions Pre-processing

 the data 

T
u

n
e

d
 m

o
d

e
l

Collecting 

the data

Reducing high dimensional space

FS-SPCA

Building machine learning models

Bagging

Subsets of

 training samples

Tune SVM

 using 

grid search 

Pre-processing

the data Collecting 

the data

Data preparation

Loading the data

Reducing high dimensional space

FS-SPCA

Building machine learning models

Bagging

Subsets of

training samples

Tune SVM

using 

grid search 

Evaluate network 

deployment 

peperformanceperformance

Selection

Crossover

Mutation

yes

no

Output

Desired 

performance 

reached?

Create S random 

initial feasible 

solutions 

Optimised network planning

Data analysis

Figure 5.6: Bagged-SVM network planning tool architecture.
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5.3 Network planning results

In order to evaluate the performance of the proposed scheme, we consider two cases of study.

A. Case study #1-Deployment planning in a dense small cell scenario. We propose to

exploit the experience gained in other sectors of the network, to properly dimension and

deploy heterogeneous nodes in an indoor small cell deployment. We aim at providing

a smart network planning to improve the QoS offered to end-users, and to increase the

spectral efficiency of the operators

B. Case study #2-Self-healing to compensate faults. COC is applied to alleviate the outage

caused by the loss of service from a faulty cell. For this use case, an adequate reaction

is vital for the continuity of the service. As a result, vendor specific COD schemes have

also to be designed [28]. In this case of study we assume the outage has already been

detected, and we focus on readjusting the network planning to quickly solve the outage

problem.

The planning tool aims at guaranteeing that the network meets the operators needs. We

proceed to design the appropriate planning tool by defining the following aspects:

1. Data. We define the radio measurements we extract and analyse from the network.

2. Parameter. We define the network parameters we aim to optimise.

3. Action. We define the possible actions to take to optimise the network

4. Objective. We define the system level target.

Table 5.3 presents these information for each case of application.

The results of the use cases of application are described in the rest of the section. We

first present the simulation scenario and then the simulation results for each use case.

5.3.1 Case of study #1-Deployment planning in a small cell scenario

We aim at providing a network planning of a small cell indoor deployment to improve the QoS

offered to end-users, and to increase the resource efficiency of our planning by our approach.
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Table 5.3: Information relevant for the network planning tool

Information Case study #1 Case study #2

Data RSRP and RSRQ coming from the serving and

neighbouring cells

RSRP and RSRQ coming from the serving and

neighbouring cells

Parameter θsc = (θsc1 , . . . , θscNsc), which is a binary

vector that denotes if the small cells are switch

on-off

θtilt = (θtilt1 , . . . , θtiltM ), which is a vector

that denotes the tilt value associated to each of

the surrounding cells that are trying to fill the

outage gap

Action Switch on-off each small cell Adjusting the antenna tilt parameter

Objective Increasing the resource efficiency of our plan-

ning by designing the dimension of a LTE in-

door small cell deployment

Readjusting the network planning to quickly

solve an outage problem

Simulation scenario

The scenario that we set up consists of 1 eNB, with 3 sectors. We need to plan the deployment

of the small cell network defined as the standard dual stripe scenario based on 1 block of

2 buildings. The building has 1 floor, with 20 apartments, which results in 40 apartments,

as depicted in Figure 5.7. We consider that 1 small cell is located in each apartment, and

the planning will decide which one will be switched ON or OFF. The parameters used in the

simulations and the learning parameters are given in Table 5.4.

x2

Figure 5.7: Scenario

Simulation results

The simulation starts by an initial deployment, where each apartment of the building has ran-

domly deployed a small cell. This initial deployment is depicted in Figure 5.8(a), which rep-

resents the SINR in each point of the scenario. The idea is to determine the most effective

location for the small cells by evaluating the performance of each θsc configuration. There-
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Table 5.4: Case of study #1-Simulation parameters

Simulation parameters Value

Propagation loss model HybridBuildings

Shadow fading Log-normal, std = 8 dB

Scheduler Proportional Fair Scheduler (PF)

AMC model LteAmc::MiErrorModel

Transport protocol UDP

Traffic model Constant bit rate

Layer link protocol RLC

Mode Unacknowledged Mode (UM)

Macro cell scenario

Number of cells 3

eNB Tx power 46 dBm

Small cell scenario

Initial number of small cells

(Nsc)

40

Small cell Tx power 23 dBm

LTE

Cell layout Radius: 500 m

Bandwidth 5 MHz

Number of RBs 25

TTI 1 ms

GA

Type binary-valued

Size of S (psize) 100

Elitism e 2

Mutation change δ 0.1

Bagged-SVM

Num. of iteration (γ) 1000

Epsilon ε 0.1

Kernel Radial Basis Function (RBF)

Simulation time 0.25 s

fore, the proposed network planning tool first takes advantage of the data preparation and data

analysis processes to estimate the QoS at any random point in the scenario. Then, based on

the offline evaluation, it online learns, through the optimised network planning tool the θ
(∗)
sc best

configuration to deploy. The configuration θ
(∗)
sc is represented by a binary string, with dimension

Nsc. This process is referred here after as GAθsc .

We evaluate the system performance of each deployment on the ns-3 platform based on
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Figure 5.8: Figure (a), shows the initial deployment, in which we consider one small cell located in

each apartment. Figure (b), shows the final deployment, in which the GAθsc scheme finds the number

of small cells to deploy

3GPP component LTE. We consider a binary string (with dimension Nsc). Each number in this

binary string represents either the j-th small cell is switch ON or OFF. A value of 1 means that

the power transmission of the j-th small cell is set to 23 dBm, while a 0 means that the j-th

small cell is switch-off. At each iteration, the GAθsc process evaluates different strings, and

when the evaluation is done, the GAθsc process provides a new configuration of small cells

to deploy. Once we know the new configuration, we modify the deployment to get the new

performance, and the process starts again, until the network topology structure guarantees

the operator’s requirements (i.e., until the target of the operators has been reached).
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Figure 5.9: Evolution of the average PRB per Mb.

Figures 5.9 and 5.10, show the fitness of the best individuals found in each generation

(Best), and the mean of the fitness values across the entire population (Mean). We observe
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that, as the generations proceed, and the GAθsc evolves, the PRB/Mb decreases as it was

expected, and the efficiency of the planning increases.

Figure 5.9, depicts the time evolution of the average PRB per Mb in the scenario. At 60-

th generation, the GAθsc finds the configuration of small cells able to increase the resource

efficiency of our planning.
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Figure 5.10: Evolution of the average throughput in the whole network.

Figure 5.10, shows the evolution of the GAθsc scheme in terms of the average throughput

in the whole network. We observe that as the generations proceed, the GAθsc scheme finds

the number of small cells which maximize the throughput. Figure 5.11, shows the CDF of the

SINR in the building. From this figure we observe that taking into account the new configuration

of small cells deployed, which results on 28 small cells in the whole building, we increase the

SINR inside the building (see Figure 5.8(b)). The performance to determine the capacity of the

GAθsc scheme is compared in this figure to the greedy algorithm. The greedy algorithm is one

of the algorithms often used in combinatorial optimisation [29]. The greedy algorithm searches

for the best configuration, by finding the best combination. The algorithm generates a random

string vector, and returning the QoS indicating how important a given configuration is, and

choose the best one. And the process starts again. The selection of the best node is repeated

approximately miter number of times in case no better node found. While the greedy search

algorithm rarely outputs optimal solutions, it often provides some kind of approximation. This

can be observed in Figure 5.11, where the number of small cells deployed results on 33 in the

whole building. We observe in this figure, that in general the GAθsc tends to work effectively

since it makes a much deeper estimation of the state of the environment through the regression

analysis approach than the greedy scheme, which takes the best it can get at any moment,

i.e., the closest solution that seems to provide optimum solution is chosen.
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Figure 5.11: CDF of the SINR (dB) in the building.

5.3.2 Case of study #2-Self-healing to compensate faults

As we already mentioned, in this case of application, we focus on readjusting the network

planning to quickly solve an outage problem by automatically optimising the antenna tilt pa-

rameter. We consider the hypothesis of a sector fault in a typical macro cellular deployment.

That is, during a certain period of time a sector is not able to provide a service to its users.

Therefore, the proposed network planning tool allows optimisation of the antenna tilt for each

compensating sector to automatically alleviate the outage caused by the loss of service from

a faulty sector [30].

Simulation scenario

We consider a LTE cellular network composed of a set ofM eNBs. TheM eNBs form a regular

hexagonal network layout with inter-site distance D, and provide coverage over the entire

network. We assume that a sector in the scenario is down (see Figure 5.12). The parameters

to tune are the antenna tilts of the cells neighbouring the affected sector. In particular, the

surrounding M cells automatically and continuously adjust their antenna tilt, till the coverage

gap is filled. The vertical radiation pattern of a cell sector is obtained according to [31], where

the gain in the horizontal plane is given by

Gh(φ) = max{−12

(
φ

HPBWh

)
2, SLLh} (5.2)

Here φ is the horizontal angle relative to the maximum gain direction, HPBWh is the half

power beam-width for the horizontal plane, SLLh is the side lobe level for the horizontal plane.
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Similarly, the gain in the vertical plane is given by,

Gv(ρ) = max{−12

(
(ρ− θtilt)
HPBWv

)
, SLLv} (5.3)

All eNBs in the scenario have the same antenna model where, ρ is the vertical angle relative to

the maximum gain direction, θtilt is the tilt angle, HPBWv is the vertical half power beam-width

and SLLh is the vertical side lobe level. Finally, the two gain components are added by,

G(φ, ρ) = max{Gh(φ) +Gv(ρ), SLL0}+G0 (5.4)

where SLL0 is an overall side lobe floor and G0 the antenna gain. We consider a cellular

network, whose system performance has been evaluated on the ns-3 LENA platform based on

3GPP component LTE. The parameters used in the simulations and the learning parameters

eNB3

eNB4

eNB2

eNB1

 Faulty sector

Neighbouring cell

 Active cell

x2

Figure 5.12: Scenario.

are given in Table 5.5. The macro cell scenario that we set up consists of 4 eNB with 3 sectors,

which results in 12 cells, as depicted in Figure 5.12.

Therefore, each feasible solution corresponds to a vector of M = 6 tilt values (i.e., each

tilt value is associated to one of the surrounding cells that are trying to fill the outage gap).

Simulation results

We analyse performance results obtained through the network planning tool described in Sec-

tion 5.1. Figures 5.13, 5.15, and 5.16, show the fitness of the best individual found in each

generation (Best), and the mean of the fitness values across the entire population (Mean).
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Table 5.5: Case of study #2-Simulation parameters

Simulation parameters Value

Propagation loss model HybridBuildings

Shadow fading Log-normal, std = 8 dB

Scheduler PF

AMC model LteAmc::MiErrorModel

Transport protocol UDP

Traffic model Constant bit rate

Layer link protocol RLC

Mode UM

Macro cell scenario

Number of cells 12

eNB Tx power 46 dBm

LTE

Cell layout Radius: 500 m

Bandwidth 5 MHz

Number of RBs 25

TTI 1 ms

Antenna parameters

Horizontal angle φ -180◦ ≤ φ ≤ 180◦

HPBW Vertical 10◦: Horizontal 70◦

Antenna gain G0 18 dBi

Vertical angle θ -90◦ ≤ φ ≤ 90◦

SLL Vertical -18 dB : Horizontal -20 dB

SLL0 -30 dB

GA

Type real-valued

Tilt values (min−max) 0◦ − 15◦

Size of S (psize) 100

Elitism e 2

Mutation change δ 0.1

Bagged-SVM

Num. of iteration (γ) 1000

Epsilon ε 0.1

Kernel RBF

Simulation time 0.25 s

We observe that, in each generation, the population tends to get better as the generations

proceed. Figure 5.13, depicts the time evolution of the PRB per offered Mb in the scenario

during the evolution of the GAθtilt . We observe that as the GAθtilt evolves, the efficiency of
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the planning increases. That is, as the generations proceed, the GAθtilt finds the configuration

parameters vector that minimize the value of the PRB per transmitted Mb.
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Figure 5.13: Evolution of the average PRB per Mb.

The performance to determine the capacity of the GAθtilt is compared in Figure 5.14 to

the self-organised RL based approach for COC proposed in [32], where in order to design

the self-healing solution (ACθtilt), the antenna tilt is adjusted. The considered RL approach

is an Actor Critic algorithm, which is already proven to outperform different solutions for COC

available in literature in [32]. So we consider that the comparison to this benchmark is an

exhaustive test for our approach.

Figure 5.14 depicts the CDF of the SINR of the network. We assume the user is out of outage

when its SINR is above the threshold of −6 dB, as explained in [32]. Therefore, in this figure,

we observe that the ACθtilt is able to recover 95% of UEs, while the GAθtilt is able to recover

all the UEs. We observe in this figure, that in general the GAθtilt tends to work effectively

since it maintains the diversity in the values taken by the parameters, during the generations,

and it makes a much deeper estimation of the state of the environment through the regression

analysis approach than the ACθtilt scheme, which considers only the SINR and CQI feedback

from the UEs to determine the state of the environment and estimate the general behaviour of

the network.

In order to analyse the QoS of the network in terms of the throughput, we analyse the

simulations results considering the average throughput as the metric selected instead of the

PRB per Mb of the neighbouring cells, as well as the whole network.

Figure 5.15, depicts the time evolution of the average throughput of the compensating sectors.

That is, it shows the performance in terms of the throughput of the 6 neighbouring cells, which

adjust their antenna tilt in order to compensate the faulty sector.
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Figure 5.14: CDF of the average SINR values in the faulty sector by two different COC approaches.

The GA based scheme is compared to a RL approach presented in [32].
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Figure 5.15: Evolution of the average throughput in the neighbouring cells.

Finally, Figure 5.16 describes the QoS of the whole network in terms of the average

throughput. From this figure, we observe that the GAθtilt scheme achieves at the 30-th gen-

eration 23 Mbps of average throughput in the whole network, while in the neighbouring cells

(Figure 5.15), the achieved throughput is only 15 Mbps, which is reasonable, due to the chal-

lenging service conditions in this area.

From these figures, we observe that using the planning tool to optimise the antenna tilt

parameter, we are able to automatic alleviating the outage caused by the loss of service from

a faulty sector.
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Figure 5.16: Evolution of the average throughput in the whole network.

5.4 Conclusions

In this chapter, we have defined a methodology and built a tool for smart and efficient network

planning, based on QoS estimation derived by proper data analysis of UE measurements in

the network. We collect UE measurements according to 3GPP MDT functionality. We apply

proper regression analysis techniques to estimate the PRB per offered Mb, and based on the

QoS that we can offer, we execute a GAθ that over time increases the efficiency of resource

allocation of the network.

We have applied our smart ML based planning tool to two different and independent use

cases, 1) a small cell dense based scenario, and 2) a traditional macrocell deployment. For

both cases our approach offers improved spectral efficiency to the operator and QoS to the

end users. This demonstrates the efficiency of our proposed scheme to provide a design for

multiple network planning challenges. The same technique can be applied to other scenarios

identified by the operator. For the case of study #1, results demonstrate the ability of the

proposed scheme to deploy small cells in a network, in such a way that the QoS of the users is

maximized and so the operator’s spectral efficiency. Regarding the case of study #2, results

demonstrate the ability of the proposed scheme to compensate 100% of outage users in the

scenario and provide them with service. A previously proposed RL scheme for the same

scenario, where we apply intelligence in the configuration of parameters, but where we do

not exploit the data available to properly estimate the QoS provided by the deployment, is

demonstrated to recover only 95% of the users. In summary, we believe that the provided use

cases demonstrate that the proper exploitation of data and experience through data analysis
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can bring a great added value to the operators.
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Chapter 6
Conclusions and future work

The future depends on what we do in the present. Mahatma Gandhi
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This chapter completes the dissertation by summarizing our main contributions, while also

providing some challenges for future investigation. In particular, Section 6.1, contains the most

significant concluding remarks of each chapter, while Section 6.2, outlines the open research

issues related to our contributions.

6.1 Concluding remarks

This dissertation has dealt with the open challenges of the SON problem. We have discussed

the state of the art, and then focused on the aspects of SON, which, after the deep analysis

carried out in chapter 2, we believe were still open for interesting research contributions. In our

attempt to make networks self-aware, self-adaptive and intelligent, machine learning has been

proven a valuable and appropriate tool. The major contributions of the thesis has been divided

into two main parts: The first one includes Chapters 3 and 4, and the second one is reported

in Chapter 5. The detailed contributions of each chapter are summarized in the following:

Chapter 3 In this chapter, we introduce the COC, to study the self-healing problem. The

proposed scheme gives a solution based on reinforcement learning to compensate the huge
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coverage and capacity gap generated by a sector fault. Employing the ns3 LTE-EPC network

simulator (LENA) platform, we have been able to evaluate the COC performance. In particular,

we showed that the proposed algorithm has the ability to compensate 98% of outage users

and to provide them with service. The self-healing solution has been compared in [1] to other

state of the art COC solutions, and it outperforms them. As a result we consider that the

proposed comparative results allow to make quite stable conclusions about the usefulness and

effectiveness of reinforcement learning schemes to recover the network from network faults,

by the gradual adjustment of neighbour nodes configuration parameters.

Chapter 4 In this chapter, we present a functional architecture and a theoretical frame-

work based on the theory of MDPs to model and address the self-coordination problem of

multiple interfering SON functions. Since the global problem consisting of all the different SON

use cases and functions generates a too complex global MDP, we have proposed that the

different SON functions are modelled by means of a sub-MDP, which are solved by means of

RL through the theory of TD learning. This theoretical scheme is in line with the approach

considered by 3GPP and industry in the area of SON. We have focused on two uses cases,

the ICIC and the CCO, which generate a resource conflict, as both functions aim at modify-

ing the transmission power to achieve their objectives. The two SON functions are solved by

means of an actor critic scheme, while the coordination among functions is solved through a

coordination game. The coordination game is guaranteed to have mixed strategy equilibria,

which allows the self-coordinator framework to find a common solution for the conflicting SON

functions, which achieves a trade off among their objectives. This solution, characterized by

low complexity and execution costs, is compared to an artificial intelligence benchmark based

on a policy iteration approach, which achieves a long run optimisation, but is more complex

and difficult to implement in a real system. Furthermore, we provide an analysis about how the

proposed functional architecture can be used to deal with the conflicts generated by the con-

current execution of multiple SON functions. We show that the proposed approach is general

enough to model all the SON functions, and their derived conflicts.

Chapter 5 This chapter introduced a smart planning tool to deploy self-adaptive networks.

Motivated by the huge amount of data generated in current 4G networks and more to come in

5G, we have considered the problem for QoS prediction, estimation and verification in dense

heterogeneous network deployments. We have proposed a network planning tool, based on

the prediction of the QoS offered to the users is able to adjust the network configuration pa-

rameters in order to meet certain targets. The contribution focuses on improving the network

planning based on MDT and QoS prediction in terms of the Physical Resource Block (PRB)
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per Megabit (Mb) offered in an arbitrary point of the network. In this chapter we have proven

that the use of ensemble methods for regression analysis allows to predict the network perfor-

mance in terms of QoS offered to end-users, independently of their geographic position, and

only based on measurements available in data bases defined by 3GPP. In addition, we have

shown that that the dimension of the input space has an impact in the error. In this context,

we have studied different techniques to apply dimensional reduction to the input space. By

integrating these techniques in a network planning tool, operators are capable of finding the

most appropriate deployment layout, but also, they can reduced the resources (i.e., the cost)

they need to offer a given QoS in a newly planned deployment, and/or an arbitrary point of

the network. We have analysed this approach in different deployment use cases, validating its

effectiveness.

6.2 Challenges and future work

Despite the progress of SON during the last years, we have seen in chapter 2 that still many as-

pects remain open and we have tackled some of them in this thesis. In particular, we have tried

to bring intelligence and self-awareness in the network by adding ML to the most significant

use cases, that we consider are still open of research contributions. From the work presented

in this dissertation, we observe, that once engineers and researchers acquire expertise in ML

to empower SONs, there are multiple challenges preventing this research line to proceed. In

what we follows we summarize the most important open points that should be tackled in future

works.

6.2.1 How to get real data

A very important aspect, when dealing with data, is how to get real network data to analyse

and get experience from. To the best of the authors’ knowledge it is possible to find databases

related to signals and coverage data [2, 3], by using/designing applications that collect infor-

mation such as RSRP and RSRQ. However, it is not easy to find contributions analysing real

network data. Some work can be found in the context of 3G networks, but currently, in the

context of 4G networks it is very hard to find works considering real data [4, 5]. In this dis-

sertation, it has been proven that an alternative to real data, could be to use a high-fidelity

network simulators like ns-3 LTE/LENA module, to generate realistic data [6]. This simulator

has been built around industrial Application Programming Interface (API) defined by the small

cell forum and offers high-fidelity models from Media Access Control (MAC) to application lay-
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ers. It has also been designed with the requirement to simulate tens of eNBs and hundreds of

UEs, and to specifically test RRM and SON algorithms. Consequently it could be a very useful

tool to generate data to analyse, build algorithms based on this analysis and close the loop on

the simulator to test the designed algorithms. In this context, it is also hard to find contribu-

tions where machine learning approaches are used not only in network simulators, but in real

networking products. In general, it seems vendors are reluctant to test algorithms whose be-

haviour is not completely predictable. We are aware of some works carried out [7]. However,

these approaches are quite simple and do not exploit enough the real potential of machine

learning tools. We consider that it is extremely important for this research line to get to the next

level, to get access to operator’s network data. An important research line is then, the one able

to find or generate meaningful network data, and find patterns in them to understand aspects

that should be optimized in the network.

6.2.2 Theoretical research for decision making process

With respect to more theoretical research, and specifically to control decision problems that

allow to continuously take RRM/SON decisions, in chapters 3 and 4, we have proposed an

approach based on reinforcement learning to solve this problem. However, this kind of algo-

rithms require a considerable amount of time before finding a solution, and it increases with

the state and action spaces. So, reinforcement learning approaches dealing with these issues

have to be investigated. Even though ML literature offers different algorithms that can find

interesting solutions (e.g., NashQ [8]), the space of possible solutions is so big that this kind

of approaches is not feasible to be used in a realistic network where the time constraints of

RRM/SON problem have to be met. So, more research in the area of multi-agent systems,

which are also compatible with real network requirements need to be investigated.

6.2.3 SON for multi-technologies and virtualised architectures

The work of SON related to other technologies, such as WiFi, or the combinations of the

automation of heterogeneous networks including multiple different RATs, or different layers

of the network, e.g., WiFi, mm wave, mobile network layer, transport layer, among others,

is still immature. ML has still not been exploited to handle these networks with intelligence

and self-awareness. In particular, the management of densified and heterogeneous, in both

technologies and layers, architectures, requires the evolution of complex SON concepts which

have traditionally been designed and standardized for LTE based networks. Before reaching
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this vision, multiple challenges need to be addressed, e.g., the self-coordination problem and

the solution of conflicts among SON functions executed in different nodes, or networks, which

put the network at risk of instability, or the most appropriate location of SON functions and

algorithms, to solve properly the distributed vs. centralized SON implementation issue. Many

aspects have to be considered when locating and designing a SON function, e.g., response

time, complexity, size of data bases, computational capability of nodes, etc. Centralized (i.e., a

large number of cells is involved), distributed (approx. 2 cells are involved, coordinating through

X2) and local (only one cell is involved) implementations of SON functions have been proposed.

No architecture can be claimed superior to the other. The growing complexity, dynamicity, and

heterogeneity of 5G networks will substantially increase the number of scenarios to solve. So,

there is the need for exploiting their complementarity by virtualising and dynamically deploying

them.

To benefit of all the opportunities offered by centralized, distributed and local implemen-

tations, there is the need to further study SON over NFV architecture, where SON functions,

aimed at tackling the main radio access and backhauling challenges of extremely dense de-

ployments, are virtualised and run over generic purpose hardware. The NFV infrastructure is

to be managed by an orchestrator entity (in coordination with the corresponding virtual network

function and virtual infrastructure managers), as proposed in European Telecommunications

Standards Institute (ETSI) architecture. Out of all the NFV architecture entities, this is the brain

with the broadest view of the service characteristics and the resource availability in the net-

work. Therefore, it coordinates the allocation of functions across the different segments of the

dense, heterogeneous network.
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List of Acronyms

AAS Active Antenna Systems

ABS Almost Blank Subframes

AC Actor Critic

ANN Artificial Neural Networks

ANR Automatic Neighbour Relation

AP Access Point

API Application Programming Interface

BER Bit Error Rate

BLER Block Error Rate

BS Base Station

CAPEX Capital Expenditure

CCO Coverage and Capacity Optimisation

CDF Cumulative Distribution Function

CDR Charging Data Records

CESC Cloud-Enabled Small Cell

CET Changes Electrical Tilt

CG Coordination Game
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CIO Cell Individual Offset

COC Cell Outage Compensation

COD Cell Outage Detection

COM Cell Outage Management

CoMP Coordinated Multi Points

CQI Channel Quality Indicator

CTTC Centre Tecnològic de Telecommunications de Catalunya

CRF Conditional Random Fields

C-SON Centralized SON

DBM Deep Boltzmann Machine

DBN Deep Belief Network

DNN Deep Neural Network

DCI Data Control Indication

DL Downlink

DP Dynamic Programming

DSA Dynamic Spectrum Access

D-SON Distributed SON

DT Decision Tree

E3 End-to-End Efficiency

EIRP Equivalent Isotropically Radiated Power

EM Ensemble Methods

eNB Enhanced Node Base station

EPC Evolved Packet Core

ES Energy Saving
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ETL Extract-Transform-Load

ETSI European Telecommunications Standards Institute

ETRI Electronics and Telecommunications Research Institute

E-UTRAN Evolved Universal Terrestrial Radio Access Network

FE Feature Extraction

FFR Fractional Frequency Reuse

FL Fuzzy Logic

FS Feature Selection

GA Genetic Algorithm

GANDALF Monitoring and Self-tuning of RRM parameters in a Multi-System Network

GBR Guaranteed Bit Rate

GLM Generalized Linear Models

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GT Game Theory

3GPP 3rd Generation Partnership Project

5GPPP 5G Infrastructure Public Private Partnership

HeNB Home eNodeB

HetNet Heterogeneous Network

HII High Interference Indicator

HMM Hidden Markov Models

HO Handover

ICIC Inter-Cell Interference Coordination

IEEE Institute of Electrical and Electronics Engineers
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IMS IP Multimedia Subsystem

IoT Internet of Things

IRAT Inter-Radio Access Technology

IRP Integration Reference Point

IS Information Service

IWF Iterative Water-Filling

k-NN k-Nearest Neighbours

KPI Key Performance Indicator

LAA Licensed Assisted Access

LB Load Balancing

LENA LTE-EPC Network Simulator

LTE Long Term Evolution

LTE-A LTE-Advanced

LTE-U LTE-Unlicensed

MAC Media Access Control

M2M Machine to Machine

Mb Megabit

MC Monte Carlo

MCS Modulation and Coding Scheme

MDP Markov Decision Process

MDT Minimization of Drive Tests

MIMO Multiple-input Multiple-output

ML Machine Learning

MLB Mobility Load Balancing
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MRO Mobility Robustness Optimisation

MWC Mobile World Congress

NB Naive Bayes

NE Network Element

NFV Network Functions Virtualisation

NGMN Next Generation Mobile Networks

NM Network Management

NMS Network Management Systems

NN Neural Networks

NRMSE Normalized Root Mean Squared Error

NRM Network Resource Model

OAM Operations, Administration, and Maintenance

OFDMA Orthogonal Frequency Division Multiple Access

OI Overload Indicator

OMC Operation and Maintenance Center

OPEX Operational Expenditure

OSS Operation and Support System

PC Principal Component

Pc Power control

PCA Principal Component Analysis

PCI Physical Cell ID

PDF Probability Density Function

PDCCH Physical Downlink Control Channel

PDSCH Physical Downlink Shared Channel
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PDU Protocol Data Unit

PF Proportional Fair Scheduler

PHR Power Headroom Report

PItoRC Policy Iteration to Resource Conflicts

PM Performance Management

PRB Physical Resource Block

PS Packet Switched

PSD Power Spectral Density

PUSCH Physical Uplink Shared Channel

QAM Quadrature Amplitude Modulation

QoE Quality of Experience

QoS Quality of Service

RACH Random Access Channel

RAN Radio Access Network

RAT Radio Access Technologies

RB Resource Block

RBF Radial Basis Function

RBG Resource Block Group

RBM Restricted Boltzmann Machine

REM Radio Environment Map

RET Remote Electrical Tilt

RF Random Forest

RL Reinforcement Learning

RLC Radio Link Control
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RLF Radio Link Failure

RMSE Root Mean Squared Error

RNTP Relative Narrowband Transmit Power

RRC Radio Resource Control

RRM Radio Resource Management

RS Reference Signal

RSRP Reference Symbol Received Power

RSRQ Reference Symbol Received Quality

RSSI Reference Signal Strength Indication

SDN Software Defined Network

SG Stochastic Games

SGSN Serving GPRS Support Node

SH Self Healing

SIMO Single-input Multiple-output

SINR Signal to Interference and Noise Ratio

SL Supervised Learning

SLA Service Level Agreement

SM Saturation Mode

SO Self-Organisation

SOCRATES Self-Optimisation and self-ConfiguRATion in wirelEss networkS

SOFOCLES Self-Organised FemtOCeLls for broadband sErviceS

SOM Self Organising Map

SON Self-Organising Network

SOS Self Organised System
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SPCA Sparse Principal Component Analysis

SS Solution Sets

sub-MDP Markov decision sub-processes

SVM Support Vector Machine

SVR Support Vector Regression

TA Timing Advance

TBS Transport Block Size

TCE Trace Collection Entity

TCP Transmission Control Protocol

TD Temporal Difference

TTI Transmission Time Interval

TTT Time to Trigger

TXP Transmission Power

UDN Ultra Dense Network

UDP User Datagram Protocol

UE User Equipment

UL Unsupervised Learning

UM Unacknowledged Mode

UMTS Universal Mobile Telecommunications System

UTRAN UMTS Universal Terrestrial Radio Access Network

WCQI Wide-band Channel Quality Indicator

WLAN Wireless Local Area Network
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