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ABSTRACT 

A methodology to transform dense to 
band matrices is presented in this paper. 
This transformation, is accomplished by 
triangular blocks partitioning, and allows 
the implementation of solutions to 
problems with any given size, by means of 
contraflow systolic arrays, originally 
proposed by H.T. Kung. Matrix-vector and 
matrix-matrix multiplications are the 
operations considered here. 

The proposed transformations allow the 
optimal utilization of processing elements 
(PEs) of the systolic array when dense 
matrix are operated. Every computation is 
made inside the array by using adequate 
feedback. The feedback delay time depends 
only on the systolic array size. 

1 . -  INTRODUCTION 

The systolic array processors allow 
attainment of very high throughput from 
the high degree of parallelism and 
pipelinlng they can support. Most part of 
the systolic systems so far developed, are 
tailored to some applications. A 
particular design is made to meet one (or 
several related) algorlthm(s) and to suit 
the size of a given data structure size. 

The situation in many practical cases 
is that the number of PEs and the 
interconnection topology are fixed, but 
several similar problems with dimensional 
variations are to be solved in the 
systolic array processor. In such cases, 
some transformations of the original data 
structures are needed. 

This work was supported by the Minis- 
tery of Education of Spain (CAICYT) under 
Grant Number 2906-83 C03-03 and by CTNE. 

In order to minimize the global 
computational time it is of great 
importance: 
a) to have data transformations with low 

generation difficulties, 
b) to reach a maximum operations rate in 

the array, and 
c) to get a simple attainment of final 

results from the partial values 
computed inside the array system. 

Clearly matrix calculations belong to 
an application field that requires this 
kind of transformations /I/. 

Several authors have focused attention 
on this problem. K. Hwang and Y.H. Cheng 
have worked on this direction /2/, 
proposing matrix partitioning for VLSI 
arithmetic systems. H.Y. Chuang and G. He 
presented in /3/ a design methodology of 
problem size independent systolic array 
systems, taking into account algorithms 
without data contraflow. For band matrix 
operations, good efficiency is achieved 
with the contraflow systolic arrays 
proposed by H.T. Kung /4/,/5/, but these 
systems suffer a throughput decrease when 
dense matrices are operated. Based upon 
Kung's design, R.W. Priester and others 
/6/ present a matrix transformation 
yielding to a 50% size reduction of the 
systolic array, with no overhead in the 
algorithm time under certain conditions. 

To evaluate the system efficiency, the 
utilization factor of each PE in the 
array, can be used. This measure, ~ , is 
expressed as N/AT, where N is the number 
of operations required by the algorithm, A 
is the number of PEs in the array, and T 
is the number of steps needed to execute 
the algorithm in the system. 

In the present work, we propose a 
method to transform dense matrices of any 
dimension into band matrices. The 
transformed matrix may have variable 
bandwidth, so that an easy and adequate 
matching to the dimensions of Kung's 
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systolic arrays is achieved. Maximum 
efficiency is obtained because every array 
operation cycle is useful, due to the fact 
that the transformed matrix band is filled 
(no empty position) with elements from the 
original matrix. The data transformation 
is simple enough, and no computation 
outside the array is needed. Feedback of 
partial results obtained inside the 
system, is provided. This fact yields to 
minimize the algorithm's execution time. 

In section 2 two types of data trans- 
formation are proposed and developped. We 
shall name these transformations as DBT 
(Dense to Band matrix transformation by 

Triangular blocks partitioning). To solve 

the problem of Matrix-Vector multiplica- 
tion, an algorithm, D B T - b y - r o w s ,  i s  
proposed in section 2. rAnother algorithm, 
DBT-transposed-by-rows, is used in section 
3, to solve the problem of Matrlx-Matrlx 

multlplicatlon. 

2.- MATRIX-VECTOR MULTIPLICATION. 

a r e  not integer multiples of w, A is 
e x t e n d e d  with zero-valued elements in 
rows and/or columns. 

b) Every submatrix Alj(w,w ) is, in turn, 

split into triangular submatrices. Let 
us call them Uij (upper) and Lij 

(lower). The main diagonal of Aij may 

belong to any of them. Let us suppose, 
without lack of generality, that it 
b e l o n g s  to Uij. 

c) The resulting band matrix, A, is formed 

by submatrices Uk and Lk" We obtain 

this matrix if submatrices U i j  and Lra 

of a are appended together inside the 
band. 

Several ways to obtain A may be 
devised. Of greater interest will be those 
leading to raise the efficiency in the 
global processing of transformation, 
operation, and attainment of resulting 
values. 

In what follows, we suppose A to be 

the original m-by-m matrix and A is the 

transformed band matrix, with bandwith w 
equal to the array size of the linear 
matrix-vector multiplication array /5/. 

Let us assume that we need to solve 
the operation yffiAx+b, where A is an n-by-m 
matrix. The original computation must be 
accomplished by means of the transformed 

operation yfAx+b. 

The general method that we are 

proposing, to map A into A, is based upon 

the three following points (see flg.l): 

a) To split the original matrix, A(n,m), 

into nm submatrices A i (w w) where 

~ = B / 4  and ~=[m/w].  j ' ' When n and/or m 

I n  t h e  f i g .  1 . a  we s h o w  a d i a g r a m  o f  
t h i s  o p e r a t i o n  t o  b e  p e r f o r m e d ,  t o g e t h e r  
w i t h  t h e  A m a t r i x  d e c o m p o s i t i o n  i n t o  
t r i a n g u l a r  s u b m a t r i c e s  U i j  a n d  L i j  , a n d  o f  

t h e  x , b  a n d  y v e c t o r s .  T h e  x ,  b a n d  y 

v e c t o r s  a r e  s p l i t  i n t o  m, n a n d  
sub-vectors, respectively, all with w 
elements. 

LO, 1 X~. ~, LO,~-I \ 

LI,1 ~ ~. L1,~-1\ 
\ \ \ 

\ \ \ 
UR-I,0 UR-I,1 

\ \ 
LR.I,0 LR-I,1 \ \ 

a) A 

n 0 n 
xo bo Yo 

Lo,~,'.,\ H H H 
UI.R~-I 

Xl bt Yl 

U~-1,~-1 
L~>=.I,,.,,., x~-I b~-I Y~-I 

, U U U 

x b y 

b) 

Fig.1 Block structure of matrix-vector multiplication. 
a) Original problem Ax + b = y, b) Transformed problem ~,~. ÷b • 

0 n n 
xo bo Yo 

H H H 
xl bl Yl 

H H H 
x2 b2 Yz "H'I=H 
H u u 

~ U 
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The transformation of this problem to 
one with band matrices can be seen in fig. 
l.b. We have assumed, without loss of 
generality, that the transformed matrix is 

of the upper-band type (Aij = 0 for i>]). 

A lower band transformed matrix could be 

considered in a similar way (Aij = 0 for 
i<J). 

The following conditions are to be 
satisfied, in order to obtain the required 
matrix transformation: 

-- Uk Uij' I) For 0 ~ k < nm, if is equal to 

Lk must then be equal to Li, p for any 

p such that 0 ~ p < m. 

2) For 0 ~ k < nm-l, if Lk is equal to 

UiJ' Uk+l must then be equal to Up,j 

for any p such that 0 ~ p < n. 

3) Only one single copy of the original 

submatrlces Uij and Lij must exist in 

the A matrix. 

The transformed vector, x, must be 

composed by nm+l sub-vectors (x0, Xl,... , 

.., x~) such that the nm first of them 

have w elements and the last one, x~, has 

w-I elements. The total number of elements 

in i is ~w+w-l. 

The g and y v e c t o r s  a r e  f o r m e d  by nm 
sub-vectors, each with w elements. The 

transformed vectors, x, b and 7, have its 
structure dependent on the chosen 
transformation algorithm. 

The rules defining the correspondence 

between the sub-vectors of x, b and y and 
the xl, bf, Yf sub-vectors of x, b and y, 

are as follows: 

I) For 0 4 k < nm, if Uk=Uij then 

x k = xj 

b i if k = min (I i) 

bk = R 
Yl otherwise, where R=max (J~) 

Yk = {Yi if k=max (I i) 

y~ otherwise 
% 

k 
I i and Ji are the set of indices 

r 

I i = { q,N! I - Ui.p with o p < g] 

J i  k = { q f: N, I Yp = Yq w i t h  0 ~< p < k } 

2) If L--nm-I = Li, J. then Xnm = X~ where x~ 

is the sub-vector formed by the (w-l) 
first elements of the xj block. 

Note that data from the original b i 

vector, as well as previously computed 
R 

partial results, Yi' are inputs to the 

array system. By using this type of 
feedback, final results are obtained 
without need of any calculation external 
to the array processor. 

We can see, from the expressions 
above, that several optimal DBT transfor- 
mations can be devised. We refer to the 
optimality with regard to the required 
computational time or EP's utilltation. 
From those transformations, in this 
section we choose and present now one that 
allows simple and regular transformed 
structures, and with a constant time value 
of the required feedback. A D B T - b y - r o w s ,  
accomplishing the above stated 
requirements, will be presented in the 
following paragraphs. 

The rules to define such a transfor- 
mation are as follows: 
a) Attainment of A from A. 

For 0 ~< k < nm 

Lkq Uk = Ur,s with r = I and s = k mod m 

Lk = Lr,s with r = [kl~J and 

s = (k mod m+l) mod m 

b) Attainment of x, [~, and y from x,b, and 
y. 

For 0 ~< k < nm 

Xk = Xk mod m and Xmn ffi X~ 

u Ek= f bk/m if k mod m = 0 

k-I YLk/~ j o t h e r w i s e  

( - - Y(k+l)/m if (k+l) mod m = 0 

Yk = k Y[k / gj otherwise 

The PRT transformation proposed by 
R.W. Prfester et al. /6/ is a_partlcular 
case of the DBT-by-rows when n=m=l. 

In a DBT-by-rows, the number of steps 
to have the required feedback equals the 
array size, w, and can be implemented with 
w registers. This implementation is very 
modular and qasily expandible. 
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n n n  
xo bo Yo 

Lo.o -- \ 'o, -- \ Lo,, \ • H + H = H 
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a) A xz b y 

L.J 

b) ~. 

Fig.2 Block structure of matrix-vector multiplication for ~ .  2. • m 3 
a) Original problem, b) Transformed problem through the DBT.by.rows algorithm. 

D D D 
xo bo y~ 
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x2 y41 Yl 
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U 

Let us thlnk now of a particular and 
practical case, wlth n=6, m=9 and w=3. The 
block level original data structures can 
be seen in fig. 2.a; the corresponding 
transformed data structures are shown in 
fig. 2.b. In fig. 3 the data coming in and 
out of the systolic array in every one of 
the 39 required computational cycles, are 
shown. 

The value of the PE's utilization can 
be raised 100% by grouping every 2 PEs in 
I, or overlapping the execution of several 
problems, or partitioning the transformed 
problem into two disjoint sub-problems. 
The dotted line in fig. 2.b shows the 
optimal partitioning for the concrete case 
we are considering. 

In a general case, the number of tlme 
units required to solve the problem, with 

no overlapping is: T = 2wnm+2w-3. If 
overlapping is used, the number of steps 

is: T = wnm+2w-2. 

The processor utilization, ~ , is 
given by 

n . m  1 
m 

AT 9 3 
2+ --- - 

nm wnm 

with no overlapping, 

and 1 
2 2 

I+ 
n m  w n m  

with overlapping. 

When the value of the product nm is 
large, the PE's utilization aproaches to 
I/2 and I, respectively. 

In the next section beside the above 
presented transformation, another one is 
to be used. This new transformation, named 
D B T - t r a n s p o s e d - b y - r o w s ,  yields to 
attainment of a lower-band transformed 
matrix. The method consists in transposing 
the matrix resulting from the application 
of a DBT-by-rows transformation to the 
transposition of the original matrix; that 
is: 

DBT t r a n s p o s e d - b y - r o w s  (A)= 

= DBT (A T) T 
b y - r o w s  

3.- MATRIX-MATRIX MULTIPLICATION. 

In thls section we are directed to 
solve the problem C=A*B, using the w-by-w 
hexagonal matrix-matrix multiplication 
array /5/. A, B and C are matrices of 
(n,p), (p,m) and (n,m) dimensions 

respectively, n, p and m are the 
coefficients that relate the problem and 
array dimensions, as follows: 

= B/wl, P =~/4 and m =[m/w] 

To achieve this problem's solutions, 
the B matrix is divided in column 
submatrlces of width w. The C matrix is 
attained by succesively multiplying the A 
matrix by each column submatrix of B 
matrix. By using this algorithm, the 
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Clock: 0 •2  • 4  •6  • 8  •10 • 12 •14 •16 •18 •20 •22 •24 •26 •28 •30 •32 •34 •36 *38 •40 

x 0 • x  I • x 2 • x  3 • X 4 • X  5 • X 6 • X  7 • X 8 • X  0 • X 1 • X  2 • X 3 • X  4 • X 5 • X  6 • X 7 • X  8 • X 0 • X  1 • 

• • • • • Y0 • Yl • Y2 • Y0 • Yl • Y2 • Y0 • Yl • Y2 • Y3 • Y4 • Y5 • Y3 • Y4 • YS • Y3 • Y4 • YS 

• • b0 • bl  • b2 • Y0 • Yl • Y2 • Y3 * Yl • Y2 • b3 • b4 • b5 • Y3 • Y4 • Y5 • Y3 * Y4 • Y5 

Fig.3 Input and output data f low for the problem ~.x + ~ = ~ with r~ = 6, m = 9, w = 3. 

transformed problem is now C=A*B (see fig. 

4.a), and the matrices A and B are defined 
as follows: 

I) Algorithm to obtain the transformed 

matrix A can be expressed as follows: 

a) To apply a DBT-by-rows to matrix A. 

This step yields to matrix ~h. 

b) To juxtapose m blocks A b and one 
triangular block U' This step 

yields to matrix A. The block U' is 

composed by the first (w-l) rows and 

(w-l) columns of A b. 

Consequently, A is a square matrix of 

dimension pnm+w- 1 . 

2) The matrix B has the same dimension as 

. An algorithm to obtain the 

transformed matrix B can be expressed 
as follows: 

a) The B matrix is divided into m 
column sub-matrices, with p-by-w 
elements each. Let us name these 

sub-matrices by BO, BI,... , Bm_ I. 

b) A DBT-transposed-by-rows is applied 

to each B i. This step yields to a 
b 

band matrix, B i. 

b 
c) By Juxtaposition of n blocks Bi, the 

d 
band matrix B i is attained. 

d) By Juxtaposition of m matrices 
B d d d 
O' B I, . . . , B~_ 1 and appending at 

the end the main sub-matrix L' the 
matrix is attained. L' is formed 

by the first (w-l) rows and columns 
b 

of B 0 . 

Now, we will describe the process of 
attainment of matrix C, starting from the 
partial results produced by the systolic 
array system, when it operates to make the 

multiplication C=A*B. 

The partial results matrix, C, is 
shown in fig 4, where the C matrix can be 
also seen. Both matlces are decomposed as 
square w-by-w matrices. Each square matrix 
is split into three blocks, named U, L and 
D. The subscript indices notation in 
reflects its correspondence with matrix C, 
and the superscript indices express the 
computational sequence of partial results 
attainment. To obtain the blocks for 
matrix C, we must compute: 

p-1 
= , j ;  U i ,  = ~ U t L = 2 ~ u t  

J t=O i,j; rs t 0 r,s 

Lot 

L11 

L01 ~ L02 

L 1 0 ~ ' ~ 1  ~ ' ~  12 
L. \ L12 \ 

A B 

Uoo\~ Uol ~ Uoz 
Doo DO1 DO2 

LO0 ~ LOl ~ L o z  x ~  

Dr0 D l l  D12 
L10 " ~  L11 ~ \  L12 " ~  

C 

Fig. 4.a Block structure of the original problem AB = C 
withR =2,~= 2 , ~ -  3. 
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Band o f  
matrix A 

O0 

L01 

. LO0 

. Lll 

/ 

,-<. 

-< 

J l l /  

/ 

J -.< 
Ull 

J 

Ab 

Ab 

Ab 

Band of_ 
matrix B 

. LO0 ! 
/ ' 

. L I O  BI 

LO0 
Bdo • 

~ t- 'HI 
Bt 

/ 

~_ L l l  
Bi 

U01 > 

/ 
,~ L01 

/ 
Bdl 

U01 / 

/ 
i 

h .  U12 ~ / 

Bb ~ L12 

Uo2 > 

/ 
\ L02 

Bd2 
U12 ~" / 

L12 
Bb 

U02 / 

i 0, 

Band of_ 
mat r ix  C 

LOlO D01O U11O 

U111 

Fig. 4.b Block structure of the transformed problem AB = C 
with ~ = 2,~=2, ~=3 .  

Fig. 5 shows a feedback topology 
suited to complete the above computations. 
In /7/ the systolic arrays with this kind 
of feedback scheme are named "spiral 
systolic arrays" The main diagonal is 
"auto-feedbacked", and the sub-diagonals 
are feedbacked in pairs, in such a way 
that the number of processing elements in 
the loop equals w. 

In the computation of Uij and Lrs, the 

feedback delay time equals w, except in 
some special cases where this delay time 
is greater than w. These irregularities in 
the feedback delay time arise because we 
aim to minimize the computational time 
required. Nevertheless, a regular delay 
time can be reached, and therefore a 
simplification of the control section 
attained, at the expense of increasing the 
global computational time. To achieve thls 
goal of regularity, the original problem 

should be, partitioned into m subproblems, 
each subproblem consisting of 
multiplication of matrix A by every column 
submatrix of B. The transformed problems, 
from these subproblems, cannot be linked 
together without a loss of efficiency; to 
maintain the calculations, separation of 
subproblems with zero value blocks is 
needed /8/. 

For the case we are considering, three 
types of irregularities in the feedback 
delay time can be recognized. One of these 
types arise when the blocks UOj are 

feedbacked. The other two types arise when 
feedback of blocks L- is used. 

n-l,j 

Fig. S. Interconnection topology of the Hexagonal Systolic 
Array Processor with spiral feedback. 
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To calculate blocks U 0,j, a partial 

result is first computed: 

2p-2 
t 

Z7 Uoj 
t=O 

with a feedback delay time of partial 
results equals w. The feedback delay of 

the last partial result is 6(w-l)(n-l)p+w. 

The calculation proces for Lp-l,0 is 

the same as for U0,j; but now the required 

feedback delay of the last partial result 

i s  6(np)(m-l)(w-l)+w. 

When calculating L~_I,j, with J#0, the 

feedback delay of the first partial result 

is 6(w-l)(n-l)p+w. Once the second partial 
result has been obtained, the following 
ones are obtained every w cycles. 

To use feedback with constant delay 
time makes necessary a number of 2w and w 
memory elements, for the main diagonal and 
sub-diagonals, respectively. With regard 
to the irregular feedbacks, w(w-l)3/2 
memory elements are needed. 

Taking into account these features, as 
well as the feedback topology, a modular 
and easily expandible design is possible 
for the systolic array system. 

The number of steps required to solve 

the problem is: T = 3wpnm + 4w - 5. The 
processor utilization is given by 

n.m.p = 1 
AT 3+ 4 5 

prim wpnm 

A formal description of the data flow 
that must feed the array, can be found in 
the Appendix of this paper. The input of 
data must be according to the diagonals 
direction, to attain the computation of 
C--A*B+E without need of any operation 
outside the array. The description of the 
data flow is made and presented at a D, L 
and U blocks level. 

4.- CONCLUSIONS 

A matrix structure transformation 
method has been presented in this paper. 
The aim is to use, with a maximum 
efficiency, the fixed size systolic arrays 
proposed by H.T. Kung, for arbitrarily 
sized matrices. The 
method consists in the transformation of a 

dense matrix, A, into a band matrix, A; 
this band matrix has a bandwidth equal to 
the array size. To achieve this goal, A is 
split into triangular sub-matrices. Later, 
a general juxtaposition algorithm (DBT) 
for triangular sub-matrices, is used, and 
the transformed matrix is obtained. 

Matrix transformation algorithms that 
have been presented in this paper are of 
two kinds: b y - r o w s  and transpose-by-rows. 
These algorithms allow utilization of 
systolic arrays without any efficency loss 
when solving problems of the classes 
matrix-vector and matrix-matrix 
multiplication. The number of memory 
elements required depends only on the 
array size. The topology of feedback flows 
is regular and fixed for a given system. 
Moreover, all the computations are made 
inside the systolic system, and modular, 
expandible structures are adequate to this 

purpose. 

From the proposed transformations, 
some other related types of 
transformations are easily deduced, and 
simplification of the feedback scheme are 
attained, at the cost of a lower 
optimization of the PE's utilization 

In the case of computing with matrices 
of a known degree of sparsity, 
transformation algorithms can be devised 
and developed, to exclude the need of 
zero-valued elements sub-matrices. A 
reduction of computational time would be 
the consequence of using such algorithms. 

The methodology that has been 
presented in this paper has been also 
applied to solve the problems: Triangular 
systems of linear and matrix equations, 
Gauss-Seidel iterative method, L-U 
decomposition and inverses of triangular 
and dense matrices /8/. Other types of 
matrix algorithms are presently in study, 
and the hardware design of a prototype 
system is under execution. 

A P P E N D I X  

The flow of data that must feed the 
array system to accomplish the computation 
C=A*B+E, without any external operation, 
is expressed now. 

A band matrix with a value of width 
equal to 2w-l, is formed from the data 
introduced through the array diagonals; 
let us name this matrix as I (input). 
These data are partialy processed inside 
the array system, and another matrix is 
formed at the array output; let us name 
this matrix as 0 (output). We divide these 
two matrices, I and O, into square 
sub-matrices with w-by-w elements, and 
each one of these sub-matrices is again 
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~" I • I 

.___', , ,,j ..... 

i\ 
\ .  .... 

Fig. 6 Notation of row block i for matrices 
I (Input) and O (Output). 

divided into lower triangular blocks (L), 
diagonal blocks (D), and upper triangular 
blocks (U). 

To denote the sub-matrices in the band 
of every row of blocks, subscript indices 
are used as shown in Fig. 6. Each 
sub-matrlx name receives one superscript 
index, denoting the matrix to which it 
belongs. 

A input matrix I, is formed from the 
data matrix E and from the feedbacked 
array output, O. 

I 
Uk,o 

Matrix I c a n  be  c o m p o s e d  as follows: 

For 0 ~ k 6 nm 

U O _ _ 
k - p ( n - l ) - l , l  

E 
" Uk/~ rood ~ ~/~j 

0 
U k - l , l  

if k rood pm= 0 

if k rood p = 0 

and k rood pn ~& 0 

otherwise 

L I 
k,0 

L 0 _ - -- k-p(n-l)-l,l i f  (k+p) mod pn = 0 

and k # p(n-1) 

L E _ k/p mod n, k/pn if k mod p ffi 0 

and (k+p) mod pn ~ 0 

0 otherwise Lk-l,l 

I DE _ I k/p mod G,Lk/ G j if k mod P = 0 

Dk = 0 otherwise 
Dk- I 

I uE 
ul . o ,  k/~G 
k,l U0 

k,0 

if k mod i~ . 0 

otherwise 

I 
Lk ,  I = 

L 9- i f  k = pnG-I 
pn-l,0 

L E -- ~-I, (k+l)Ip~ if (k+l)mod pn = 0 

and k #pnm 

0 otherwise Lk,0 

The submatrlces from the result matrix 
C are attained, at the array output, as 
follows: 

For 0 ~ i, < ~ 0 ~ J < 

L~-- if (i,J) = (~-I O) 
npm-l,l 

L c ~ if i = ~-I J > 0 i,J ffi L(j+l)pn_l,O 

LO(i+Jn+l)p-l,l 

D c 
i,J = D?i+J~+l)~-1 

otherwise 

I o 
uc = j u~j+1)~G, 0 if i = o 

i,J ~ 0 
U(I+jG+I)~_I, I otherwise 
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