
Dedicated to Dragoš Cvetković on the occasion of his 75th birthday

Applicable Analysis and Discrete Mathematics
available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. x (xxxx), xxx–xxx. doi:10.2298/AADMxxxxxxxx

RESISTANCE DISTANCES ON NETWORKS

A. Carmona, A.M. Encinas, M. Mitjana

This paper aims to study a family of distances in networks associated with

effective resistances. Specifically, we consider the effective resistance distance

with respect to a positive parameter and a weight on the vertex set; that is,

the effective resistance distance associated with an irreducible and symmetric

M–matrix whose lowest eigenvalue is the parameter and the weight function

is the associated eigenfunction. The main idea is to consider the network

embedded in a host network with additional edges whose conductances are

given in terms of the mentioned parameter. The novelty of these distances

is that they take into account not only the influence of shortest and longest

weighted paths but also the importance of the vertices. Finally, we prove

that the adjusted forest metric introduced by P. Chebotarev and E. Shamis

is nothing else but a distance associated with a Schrödinger operator with

constant weight.

1. INTRODUCTION

Because of its structural meaning, the resistance distance has become a useful tool
to analyze structural properties of graphs, or more generally of networks, such as
robustness, see for instance [13]. In this context, a network is a connected graph
in which each edge has been assigned a positive value, named the conductance of
the edge. In contrast with the standard geodesic distance, defined as the length of
the shortest path between vertices, the resistance distance takes into account all
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paths between vertices. The high sensibility of this metric with respect to small
perturbations, makes it suitable to compare different network structures. This
is one of the main reasons for which effective resistances and the corresponding
Kirchhoff Index, the sum of all of them, have emerged as a structure–descriptor in
the framework of Organic Chemistry, where the topology of chemical compounds is
conventionally represented by a molecular network where edge weights correspond
to bond properties, see for instance [15] and references therein. Effective resistances
can be expressed in terms of the group inverse of the Laplacian matrix.

In this work we associate a positive value to each node of the network, that
will be called a weight on the network. Then, we define a one parametric family of
resistance distances associated with each weight function. In fact, each distance of
this family is defined throughout a positive semi–definite Schrödinger operator on
the network where the parameter is the lowest eigenvalue and the weight function
is the associated eigenfunction. Therefore, the main properties of these distances
can be analyzed within the framework of potential theory. From the matrix point
of view, this is equivalent to define the effective resistance associated with an irre-
ducible and symmetric M–matrix, see [2].

For a fixed weight function, we prove that the associated effective resistance
distances are continuous and monotone decreasing with respect to the parameter
and they are upper bounded by the weighted geodesic distance of the network.
Moreover, the effective resistance with respect to a parameter and a weight coincides
with the weighted geodesic distance iff the parameter is null and the network is a
tree. In addition, the resistance distance associated with a positive semi–definite
Schrödinger operator is graph geodetic iff the operator is singular, see next section
for the definition of graph geodetic distance.

We prove that for each weight function, the corresponding one parametric
family of resistance distances can be understood as the effective resistance on a
host network associated with a singular positive semi–definite Schrödinger operator.
The initial network is embedded in the host network that consists in a new vertex
joined with any former vertex by an edge whose conductance is the product of
the parameter by the weight. This explains the monotonicity property of the one
parametric family in the sense that the larger the parameter the lower the resistance.
We illustrate this property through a simple example of a graph with three vertices.
Moreover, in the case of constant weight, we apply some electrical equivalences to
show that the one–parametric family of effective resistances can be seen the effective
resistance associated with the combinatorial Laplacian of a complete network. This
property, can be generalized for arbitrary weights by considering an appropriate
embedding on the host network, see [6].

For any network with constant weight on the vertices, the one parametric
family of distances corresponds to the effective resistance associated with symmetric
and diagonally dominant M–matrices with constant diagonal excess. We show
that these resistance distances coincide with the so–called adjusted forest metrics
introduced by P. Chebotarev and E. Shamis at the late 90’s; see [8]. They interpret
these metrics as a measure of the accessibility from a vertex to another and they
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form a one–parametric family of distances, where the parameter determines the
proportion of taking into account long and short routes between vertices.

2. PRELIMINARIES

Given a finite set V , the set of real valued functions on V is denoted by C(V ). The
standard inner product on C(V ) is denoted by 〈·, ·〉 and hence, if u, v ∈ C(V ), then
〈u, v〉 =

∑
x∈V

u(x) v(x). For any x ∈ V , εx ∈ C(V ) stands for the Dirac function at

x and 1 is the function defined by 1(x) = 1, for any x ∈ V . On the other hand,
ω ∈ C(V ) is called a weight if it satisfies that ω(x) > 0 for any x ∈ V and moreover
〈ω, ω〉 = n = |V |. The set of weights on V is denoted by Ω(V ).

The triple Γ = (V,E, c) denotes a finite network; that is, a finite connected
graph without loops nor multiple edges, with vertex set V , whose cardinality equals
n, and edge set E, in which each edge {x, y} has been assigned a conductance
c(x, y) > 0. So, the conductance can be considered as a symmetric function c : V ×
V −→ [0,+∞) such that c(x, x) = 0 for any x ∈ V and moreover, vertex x is
adjacent to vertex y iff c(x, y) > 0.

Denote by Pxy =
{
x = x1 ∼ x2 ∼ · · · ∼ xk = y

}
a path joining vertices x and

y, the length of the weighted path Pxy is `c(Pxy) =
k−1∑
i=1

1

c(xi, xi+1)
. The geodesic

distance between two vertices x and y is defined as the least resistive path; that is,

dc(x, y) = min
{
`c(Pxy) : Pxy is a path from x to y

}
.

The function dc determines a distance on the network that fulfills the property
that the triangular inequality is an equality when the central node separates the
two others; that is, dc(x, y) = dc(x, z) + dc(z, y) if every path from x to y passes
through z. In general a distance, d, on a network is called graph geodetic when
d(x, y) = d(x, z) + d(z, y) if and only if every path from x to y passes through
z. This kind of distances are also called cutpoint additive, see [9]. In general, the
geodesic distance is not graph geodetic in the mentioned sense. We point out that
some authors used the notion of geodetic distance in a weaker sense, see [12, page
278].

The combinatorial Laplacian or simply the Laplacian of the network Γ is the
endomorphism of C(V ) that assigns to each u ∈ C(V ) the function

(1) L(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
, x ∈ V.

Given q ∈ C(V ), the Schrödinger operator on Γ with potential q is the endo-
morphism of C(V ) that assigns to each u ∈ C(V ) the function Lq(u) = L(u) + qu,
where qu ∈ C(V ) is defined as (qu)(x) = q(x)u(x); see for instance [1, 4]. For any
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ω ∈ Ω(V ), the potential associated with ω is qω = − 1

ω
L(ω). It is well–known that

any Schrödinger operator is self–adjoint and moreover, it is positive semi–definite
iff there exist ω ∈ Ω(V ) and λ ≥ 0 such that q = qω + λ; see [1]. In addition, Lq is
singular iff λ = 0, in which case 〈Lqω (v), v〉 = 0 iff v = aω, a ∈ R. In any case, λ is
the lowest eigenvalue of Lq and its associated eigenfunctions are multiples of ω.

The connection between positive semi–definite Schrödinger operators and
irreducible, symmetric M–matrices can be explained as follows. Suppose that
V = {x1, . . . , xn} and consider cij = c(xi, xj) = cji. Then, each u ∈ C(V ) is

identified with
(
u(x1), . . . , u(xn)

)T ∈ Rn and the combinatorial Laplacian of Γ is
identified with the irreducible matrix

L =


κ1 −c12 · · · −c1n
−c21 κ2 · · · −c2n

...
...

. . .
...

−cn1 −cn2 · · · κn


where κi =

n∑
j=1

cij , i = 1, . . . , n. Clearly, this matrix is symmetric and diagonally

dominant and hence it is positive semi–definite. Moreover, it is singular and 0 is
a simple eigenvalue whose associated eigenvectors are constant. Observe that the
matrix associated with a positive semi–definite Lq is

Lq =


κ1 + q(x1) −c12 · · · −c1n
−c12 κ2 + q(x2) · · · −c2n

...
...

. . .
...

−c1n −c2n · · · κn + q(xn)


which is an irreducible and symmetric M–matrix but not necessarily diagonally
dominant, see [1].

If Lq is positive definite, then it is invertible and its inverse is called the Green
operator. On the other hand, when Lq is positive semi–definite and singular the
operator that assigns to each function f ∈ C(V ) the unique u ∈ C(V ) such that
Lq(u) = f − 1

n 〈ω, f〉ω and 〈u, ω〉 = 0 is called the Green operator. In any case, the
Green operator is denoted by Gq, see [2]. Moreover, the function Gq : V ×V −→ R,
defined as Gq(x, y) = Gq(εy)(x), for any x, y ∈ V , is called the Green function.
Observe that Gq(ω) = λ†ω, where λ† = λ−1 when λ > 0 and λ† = 0 when λ = 0.
Moreover, Gq is self-adjoint as a consequence of the Fredholm Alternative and Gq
is a symmetric function. Observe that, in the singular case, the Green operator is
nothing else but the group inverse of Lq.

3. RESISTANCE DISTANCES
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In [2], the authors introduced a generalization of the concept of effective resistance
with respect to a value λ ≥ 0 and a weight ω ∈ Ω(V ). Specifically, from the
functional on C(V ) defined as

(2) Jx,y(u) = 2

[
u(x)

ω(x)
− u(y)

ω(y)

]
− 〈Lq(u), u〉

where q = qω + λ, we defined the generalization of the effective resistance.

Definition 3.1. Given x, y ∈ V , the effective resistance between x and y with
respect to λ and ω, is the value

Rλ,ω(x, y) = max
u∈C(V )

{Jx,y(u)}.

In the sequel we omit the expression with respect to λ and ω when it does
not lead to confusion. When λ = 0 we usually drop the subindex λ in the above
expressions and when ω is constant we also omit the subindex ω. Therefore, R is
nothing else than the standard effective resistance of the network.

Since the matrix associated with the Schrödinger operator Lq is an irre-
ducible, symmetric M–matrix and conversely, each irreducible, symmetric M–
matrix appears as associated with a Schrödinger operator, we can assign an ef-
fective resistance function to any irreducible, symmetric M–matrix. Notice that λ
is the lowest eigenvalue, both of the matrix and the Schrödinger operator, and ω is
its corresponding eigenfunction. Therefore, our study includes all the irreducible,
symmetric M–matrices, not necessarily diagonally–dominant.

From now on we consider the function τxy = ω−1(εx − εy). The following
result can be found in [2] and allows us to express the effective resistances in terms
of the solution of a Poisson equation. In particular, these expressions will be useful
to prove the main properties of the effective resistances.

Proposition 3.2. If u ∈ C(V ) is a solution of the Poisson equation Lq(u) = τxy,
then

Rλ,ω(x, y) = 〈Lq(u), u〉 =
u(x)

ω(x)
− u(y)

ω(y)
.

Therefore, Rλ,ω is symmetric, non–negative and moreover Rλ,ω(x, y) = 0 iff x = y.
In addition,

Rλ,ω(x, y) =
Gq(x, x)

ω2(x)
+
Gq(y, y)

ω2(y)
− 2Gq(x, y)

ω(x)ω(y)
.

Using the so–called Doob transform we can rewrite the expression for the
quadratic part of the functional that defines the effective resistance, in the following
way:

(3) 〈Lq(u), u〉 =
∑
x,y∈V

c(x, y)ω(x)ω(y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

+ λ
∑
x∈V

u2(x).
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If 0 = λ1 < λ2 ≤ · · · ≤ λn are the eigenvalues of Lqω and {uj}nj=1 ⊂ C(V ) is

an orthonormal basis of eigenfunctions, where u1 = 1√
n
ω, then

Gqω (v) =

n∑
i=2

1

λi
〈v, ui〉ui.

Moreover, for λ > 0, the eigenvalues of Lq are λ = λ+ λ1 < λ+ λ2 ≤ · · · ≤ λ+ λn,
whereas the eigenfunctions are the same. Hence, for q = qω + λ

Gq(v) =
1

nλ
〈ω, v〉ω +

n∑
i=2

1

λi + λ
〈v, ui〉ui.

From this expression we get the following result whose proof can be found in [3].

Proposition 3.3. [3, Proposition 3.4] For any x, y ∈ V it is verified that

Rλ,ω(x, y) =

n∑
i=2

n

λ+ λi

(
ui(x)

ω(x)
− ui(y)

ω(y)

)2

.

The next result contains the main properties of the effective resistances as-
sociated with Schrödinger operators.

Theorem 3.4. If Γ is a connected network, the effective resistance with respect to
a parameter and a weight satisfies the following properties:

(i) The effective resistance Rλ,ω determines a distance on the network. Moreover,
Rλ,ω(x, y) = Rλ,ω(x, z) +Rλ,ω(z, y) iff λ = 0 and z separates x and y.

(ii) If 0 ≤ λ̂ ≤ λ and q̂ = qω + λ̂, then Rλ,ω ≤ Rλ̂,ω ≤ Rω.

(iii) Rλ,ω(x, y) ≤ dĉ(x, y), where ĉ(x, y) = c(x, y)ω(x)ω(y), with equality iff λ = 0
and there exists a unique path from x to y.

(iv) lim
λ→+∞

Rλ,ω = 0 and lim
λ→0

Rλ,ω = Rω.

Proof. (i) The proof can be found in [2, Corollary 4.4].

(ii) It is enough to keep in mind the expression for the effective resistance
given in equation (3).

(iii) Let us firstly show that if x ∼ y; i.e., c(x, y) > 0 then Rω(x, y) ≤ 1

ĉ(x, y)
.

Let u be a solution of the Poisson equation Lqω (u) = τxy, then

Rω(x, y) =
u(x)

ω(x)
− u(y)

ω(y)
= 〈Lqω (u), u〉

=
∑
z∼t

ĉ(z, t)

(
u(z)

ω(z)
− u(t)

ω(t)

)2

≥ ĉ(x, y)

(
u(x)

ω(x)
− u(y)

ω(y)

)2

= ĉ(x, y)Rω(x, y)2.
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Keeping in mind that Rω(x, y) 6= 0, we get that

Rω(x, y) ≤ 1

ĉ(x, y)
.

Moreover, Rω(x, y) =
1

ĉ(x, y)
iff

u(z)

ω(z)
is constant in each connected component of

Γ \ {exy}. Therefore, x and y cannot be in the same connected component, since

otherwise
u(x)

ω(x)
=
u(y)

ω(y)
and hence Rω(x, y) = 0. In this case, Rω(x, y) =

1

ĉ(x, y)
=

dĉ(x, y) iff there exists a unique weighted path from x to y.

Consider now x, y ∈ V arbitrary vertices. From (ii), it is enough to prove
that Rω(x, y) ≤ dĉ(x, y). Let Pxy = {x = x1 ∼ x2 ∼ · · · ∼ xk = y, xi ∈ V } be a
shortest weighted path from x to y. Then, from the triangular inequality and the
case of adjacent vertices we get that

Rω(x, y) ≤ Rω(x, x1) + · · ·+Rω(xk−1, y) ≤ 1

ĉ(x, x1)
+ · · ·+ 1

ĉ(xk−1, y)
= dĉ(x, y).

In particular, Rω(x, y) = dĉ(x, y) iff any of the above inequality are equalities;
i.e., there exists a unique path from x to y. Moreover, from (3) we also obtain
Rλ,ω(x, y) = dĉ(x, y) if in addition λ = 0.

(iv) From Proposition 3.3, for any x, y ∈ V ,

Rλ,ω(x, y) =

n∑
i=2

n

λ+ λi

(
ui(x)

ω(x)
− ui(y)

ω(y)

)2

.

Therefore,

lim
λ→+∞

Rλ,ω(x, y) = 0 and lim
λ→0

Rλ,ω(x, y) = Rω(x, y).

Observe that property (i) means that the effective resistances with respect to
a weight and a parameter are graph geodetic iff λ = 0. Moreover for fixed weight,
ω, we can define a one–parametric family of distances given by Rλ,ω. This family
is continuous and monotone decreasing with respect to λ.

The interpretation of the effective resistance with respect to a non–negative
parameter and a weight was raised in [2], through a commonly used technique in
the context of electrical networks and Markov chains, see [10, 11]. The goal was
to generalize the Fiedler characterization of irreducible, symmetric and diagonally
dominantM–matrices as resistive inverses, see [14], to all irreducible and symmetric
M–matrices or equivalently, to all positive semi–definite Schrödinger operators.

Given a positive–definite Schrödinger operator on Γ, Lq, the method consists
in embedding the given network into a suitable host network. The new network
is constructed by adding a new vertex, that represents a grounded vertex or an
absorbing state in the context of Markov chains. The new vertex is joined with each
vertex in the original network through a new edge whose conductance is the diagonal
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x

Γ

λω(x)

x̂

Figure 1: Host network

excess of the original M–matrix after the application of the Doob transform; see
Figure 1.

Given λ > 0, ω ∈ Ω(V ) and x̂ 6∈ V , we consider the network Γλ,ω = (V ∪
{x̂}, c

λ,ω
) where cλ,ω(x, y) = c(x, y) when x, y ∈ V and cλ,ω(x̂, x) = cλ,ω(x, x̂) =

λω(x) for any x ∈ V . We denote by Lλ,ω its combinatorial Laplacian and by
ω̂ ∈ Ω(V ∪ {x̂}) the weight given by ω̂(x) = ω(x) when x ∈ V and ω̂(x̂) = 1.

In [2, Corollary 4.6 ] it was proved that the effective resistance with respect
to a parameter and a weight equals the effective resistance in the host graph for
the associated singular operator; that is,

Rλ,ω(x, y) = R̂ω̂(x, y).

This interpretation confirms the monotonicity property of the resistance distances,
since the larger the parameter the lower the resistance.

We illustrate the procedure with a small example. Let Γ be the path on
three vertices is V = {x1, x2, x3} whose non null conductances are c(x1, x2) = c1
and c(x2, x3) = c2. We consider its host network Γλ,ω = ({x1, x2, x3}∪{x̂}, cλ,ω ) as
defined above. We set cλ,ω(xi, xj) = c(xi, xj) when i, j = 1, 2, 3 and cλ,ω(x̂, xi) =
λω(xi) for any i = 1, 2, 3. Then computing the group inverse of Lλ,ω and using
Proposition 3.2 we get that

R̂ω̂(x1, x2) =
λω3(ω2

1 + ω2
2) + 3c2ω2

ω1ω2ω3 (c1λω2
1 + c1λω2

2 + λ2ω1ω2) + ω1ω2c2 (3c1ω2 + 3λω1 − λω3
1)

R̂ω̂(x2, x3) =
λω1(ω2

2 + ω2
3) + 3c1ω2

ω1ω2ω3 (c2λω2
3 + c2λω2

2 + λ2ω2ω3) + ω2ω3c1 (3c2ω2 + 3λω3 − λω3
3)

R̂ω̂(x1, x3) =
λω2(ω2

1 + ω2
3) + 3c1ω1 + 3c2ω3

ω1ω2ω3 (λ2ω1ω3 + 3c1c2) + ω1ω3λ (3c1ω3 + 3c2ω1 − c1ω3
3 − c2ω3

1)
.

This result coincides with the one obtained in [5, Corollary 5.5] except for a mul-
tiplicative constant due to the normalization factor of the weight.
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x̂

1
λ

R1 R2

R3

1
c1

1
c2

x1 x3

x2 1
λ

1
λ

1
c1

1
c2

x1 x3

x2
x1 x3

x2

(a) (b) (c)

(d) (e) (f)

x1 x3

x2

R∗
1 R∗

2

R3

x1 x3

x2
Rλ,ω(x1, x2) Rλ,ω(x2, x3)

Rλ,ω(x1, x3)

1
c1

1
c2

Figure 2: Interpreting the resistance Rλ,ω

We consider now the above case with ω(xi) = 1 for any i = 1, 2, 3. We
interpret the effective resistance of the path, Fig 2(a), with respect to a non negative
parameter, λ, and a weight ω, using the host network, Fig 2(b). We have written the
inverse of the conductance of each edge, since we are interested in the resistances of
the network. From the ∆–Star transform we obtain the network in Fig 2(c) whose
new (gray) resistances are

R1 = R2 = R3 =
3

λ
.

Next, using parallel transformation, we get an electrically equivalent network, Fig
2(d), with resistance

R∗1 =

(
λ

3
+ c1

)−1

and R∗2 =

(
λ

3
+ c2

)−1

.

This can be seen as a complete network whose conductances have been increased

by
λ

3
. Again, after series, Fig 2(e), and parallel, Fig 2(f), transforms we get

Rλ,ω(x1, x2) =
2λ+ 3c2

3c1c2 + 2c1λ+ 2c2λ+ λ2
,

Rλ,ω(x1, x3) =
2λ+ 3c1 + 3c2

3c1c2 + 2c1λ+ 2c2λ+ λ2
,

Rλ,ω(x2, x3) =
2λ+ 3c1

3c1c2 + 2c1λ+ 2c2λ+ λ2
.

Finally, let us consider the particular case in which ω is the constant weight
and λ > 0 in an arbitrary network. In [7, 8] Chebotarev et. al. introduced two
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parametric families of distances in a network: the so–called forest distance between
x and y and the adjusted forest distance between x and y. Both families are defined
by emulating the expression for the classical effective resistance in terms of the
inverse of the combinatorial Laplacian. Our purpose now is to show that these
families are nothing else but the effective resistances with respect to a parameter
λ > 0, and hence all the properties can be directly obtained.

In this case, the associated Schrödinger operator will be Lλ = L+λI. Denote
by Gλ the Green function associated with Lλ. As this operator is invertible we know
that Gλ = L−1

λ .

In [7, 8] the authors introduced the matrices Qα, for a parameter α > 0,
where

Qα = (I + αL)−1.

The parameter α determines the proportion of considering long and short walks
between vertices. Using this matrix they introduced the mentioned forest distance,
dα, and adjusted forest distance, ρα, between i and j defined as the values

dαij =
1

2

(
qαii + qαjj − qαij − qαji

)
, ραij = α

(
qαii + qαjj − qαij − qαji

)
,

once the set of vertices V has been labeled. Observe that, if we take λ = α−1, then

Lλ = (L+ λI) = α−1(αL+ I)

and hence
Qα = λGλ.

Therefore,

dαij =
λ

2
Rλ(i, j) and ραij = Rλ(i, j).

This relation explains the factor
1

α
introduced by Chebotarev et al. for the adjusted

forest metric. The authors realized that for the forest distance lim
α→∞

dαij = 0, which

has no sense, whereas lim
α→∞

ραij = R(i, j). In [8], the authors introduced the notion

of α–extension that is similar to the notion of host graph, in order to prove that the
adjusted forest metric is the resistance distance for the combinatorial Laplacian of
the α–extension.

The generalized effective resistance distances are distances that take into
account not only the proportion of short and long path between x and y but also
the importance of the vertices x and y in the network, read in terms of the weight
ω.
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