
QuakeTM: Parallelizing a Complex Serial Application

Using Transactional Memory

Vladimir Gajinov*

Barcelona Supercomputing Center
vladimir.gajinov@bsc.es

Adrian Cristal

Barcelona Supercomputing Center
adrian.cristal@bsc.es

Ferad Zyulkyarov*

Barcelona Supercomputing Center
ferad.zyulkyarov@bsc.es

Eduard Ayguade*

Barcelona Supercomputing Center
eduard.ayguade@bsc.es

Osman Unsal

Barcelona Supercomputing Center
osman.unsal@bsc.es

Tim Harris

Microsoft Research UK
tharris@microsoft.com

Mateo Valero*

Barcelona Supercomputing Center
mateo.valero@bsc.es

ABSTRACT

 “Is transactional memory useful?” is the question that cannot be answered until we provide

substantial applications that can evaluate its capabilities. While existing TM applications can partially

answer the above question, and are useful in the sense that they provide a first-order TM experimentation

framework, they serve only as a proof of concept and fail to make a conclusive case for wide adoption by

the general computing community.

This work presents QuakeTM, a multiplayer game server; a complex real life TM application that

was parallelized from the serial version with TM-specific considerations in mind. QuakeTM consists of

27,600 lines of code spread among 49 files and exhibits irregular parallelism and coarse-grain

transactions with large read and write sets. In spite of its complexity, we show that QuakeTM does scale,

however more effort is needed to decrease the overhead and the abort rate of current software

transactional memory systems. We give insights into development challenges, suggest techniques to solve

them and provide extensive analysis of transactional behavior of QuakeTM, with an emphasis and

discussion of the TM promise of making parallel programming easy.

* Affiliated with Universitat Politecnica de Catalunya

 1

mailto:vladimir.gajinov@bsc.es
mailto:adrian.cristal@bsc.es
mailto:ferad.zyulkyarov@bsc.es
mailto:eduard.ayguade@bsc.es
mailto:osman.unsal@bsc.es
mailto:tharris@microsoft.com
mailto:mateo.valero@bsc.es

1. INTRODUCTION

Recently, processor manufacturers have executed a right-hand turn away from increasing single

core frequency, complexity and heat density to packing multiple processing cores on a chip. In this era of

Chip Multiprocessors, efficient parallel programming becomes critical if the new design is to be

successful. One of the key technologies that promise to open up practical parallel programming to the

masses is Transactional Memory (TM). In this paper, we describe our conclusions, based on code

descriptions and examples as well as a through performance evaluation, whether this promise looks

realistic. We use a complex gaming application, Quake, as the case study.

As we discuss in Section 2, existing TM benchmarks are either simple data-structure micro-

benchmarks, or TM versions of existing concurrent programs, often derived automatically, or semi-

automatically from lock-based implementations. For one to really address the issue of whether TM is an

enabler technology to make parallel programming easier, we need to start with the serial version of a

highly complex application. We wanted to investigate how TM could be used to parallelize a real,

complicated, concurrent application. To do this we started from the serial version of the Quake server

application and, using OpenMP and transactional memory, we derived QuakeTM, a parallel version

which consists of 27,600 lines of code spread in 49 files. It exhibits irregular parallelism and long

transactions contained within six different atomic blocks with large read and write sets.

Our idea was not to pursue performance per se, but to discover if it is possible to achieve good

results with a coarse grained parallelization approach. This decision was driven by one of the founding

principles of TM, to make parallel programming easy by abstracting away the complexities of using locks

and achieving performance similar to that of the fine grain lock implementation.

In concurrent work we have been investigating what is involved in making a lock-based

implementation of the Quake server perform well using TM. Comparing that approach with the current

paper gives us a new perspective on how the use of “atomic” blocks in new parallel code might compare

with their use as a replacement for lock-based critical sections. We discuss this further in Section 7.5

 1

In this paper, we present the development process of QuakeTM, comment on the challenges of

parallelizing a complex serial application using TM, and provide extensive performance analysis results

that provide further insight into the question: “Is parallel programming easier with TM?”

2. RELATED WORK

SPLASH-2 [1] and PARSEC [2] are parallel benchmarks written using Pthreads or OpenMP and

are useful in analyzing parallel systems in general, but their applicability to TM systems is limited due to

the regular nature of algorithms and short critical sections. When converted to transactional counterparts,

these applications are unable to sufficiently stress the underlying TM system.

Lee-TM [5] is a kernel application based on Lee’s routing algorithm implemented in a sequential,

lock-based, and transactional manner. The authors claim that it exhibits a fair amount of parallelism,

complex contention behavior, and a variety of transaction durations and sizes, even though it has only

about 800 lines of code. Unfortunately, we are not presented with a characterization of the serial version,

and we lack information about the time spent in critical sections and the sizes of the read and write sets.

The performance evaluation, reported by the authors, shows that the transactional version behaves worse

than the coarse-grain version which highlights the need for complex benchmarks to stress TM systems.

Delaunay mesh refinement and agglomerative clustering [7, 22, 26] is another kernel application.

It comprises [26] of 3200 lines of code and 24 source files and implements 3 atomic blocks which in total

protect only 320 lines of code along with the function calls contained inside them. It’s no wonder that the

global lock and fine grain lock versions perform equally given the size of critical sections.

STMBench7 [3] is represented by only one synthetic application which can execute four

operations on a complex data structure. Varying the parameters, it is possible, to a greater or lesser extent,

to stress the underlying STM implementation. STMBench7 is aimed more towards the object-oriented

domain and its downside is that the data structure is highly regular, even though it is complex. The size of

the application is about 5000 lines of code.

 2

Haskell STM benchmark suite [6], consist of nine Haskell applications of different sizes, which

target different aspects of an underlying TM system. While it is good for its domain, the Haskell STM

benchmark suite is not widely applicable.

The STAMP benchmark suite [4] consists of eight applications: bayes, genome, intruder, kmeans,

labyrinth, ssca2, vacation, and yada. These applications span a variety of domains and runtime

transactional characteristics due to differences among applications in transaction lengths, read and write

set sizes and amounts of contention. The previous version of STAMP, consisting of three applications:

genome, kmeans and vacation, was widely used for evaluation of TM systems. The downside of these

applications is the fact that they were manually optimized, with an application level knowledge before

hand, which enabled authors to manually implement the optimal number of read/write barriers in the

code. As it turns out [9] two common code patterns are repeatedly observed in STAMP: (1) the use of a

transaction-aware memory allocator and (2) awareness of shared data structures that remain constant after

initialization at the program startup. These two patterns are hard to detect by the compiler which

instruments the code with unnecessary transactional barriers. This doesn't help the effort to prove the

primary goal of TM which is to make multithread programming easy. If programmers are required to

manually instrument the code in order to achieve basic performance then TM is not the solution. As it was

pointed out by Dalessandro et al. [27] library interfaces can remain a useful tool for systems researchers,

but application programmers are going to need language and compiler support.

3. QUAKE DESCRIPTION

Quakeworld is the multiplayer mode of Quake 1, the first person shooter game released under the

GNU license by ID Software. It is a sequential application, built as a client-server architecture, where the

server maintains the game world and handles coordination between clients, while the clients perform

graphics update and implement user-interface operations.

The server executes in an infinite loop, where an iteration represents the calculation of a single

frame. It blocks on the select system call waiting for client requests. If the requests are present on the

receiving port, it starts the execution of the new frame. It is possible to distinguish three stages of the

 3

frame execution: world physics update (P), request receiving and processing (R) and reply stage (S).

Upon the end of execution of all three stages the server frame ends and the process is repeated.

Generally, the server will send replies only to clients which were active in the current frame, namely

those who have sent a request. All replies are sent after all requests have been processed. This clear

separation of the frame stages simplifies the parallelization as we present later in the paper.

The Quake game world is a polygonal representation of the 3D virtual space in which all objects,

including players, are referred to as entities. Each entity has its own specific characteristics and actions it

can perform, and during the update, the server will send information only for those entities which are of

interest to the client. Nevertheless, the server has to simulate and model, not only player’s actions, but

also the effects induced by these actions, such as when the player hits some object. In such a case it is

necessary to determine the applied force, the weight of the object, its shape, the original position, the

environment etc. in order to present as realistic view as possible. Thus, server processing is a complex,

compute intensive task, and it increases superlinearly with the number of players [13].

Top view

Figure 1: Constructing areanode tree from the BSP map volume. Adapted from [13]

3.1 Map description

A map of the Quake world is represented as a BSP file which holds the binary space partition

implementation of the 3D world with all the details relevant to draw and position the objects in the world,

such as planes, vertices, nodes, visibility data, texture information, models, brushes etc. [15, 16]. The

LEVEL 4

Areanode tree
LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 5

 4

level of details contained within the BSP tree is large, therefore BSP trees are hard to maintain for

dynamic scenes. If the server wants to generate a quick list of the objects that an entity may interact with,

traversing the BSP tree is inefficient, and since this is a common operation involved in each move

command, the server constructs and maintains a secondary binary-tree structure, called areanode tree.

This is a 2D representation of the BSP tree, constructed during server initialization by dividing the 3D

volume in the x-y plane. Starting from the root, which corresponds to the entire world, the space is

divided in two equal parts to form nodes on the next level of the tree. Each division is done using the

alternate plane, and after four divisions, an areanode tree with 5 levels, 31 areanodes, and 16 leaves in the

lowest level is constructed. Figure 1 demonstrates the building process. The size of the tree can be

changed by redefining the maximum depth, but using bigger trees has a minor effect on the performance

of the server [14]. The structure of the areanodes has no correlation with the rooms in the world, and

likewise the division planes do not correlate with walls or ceilings. All the objects in the game world are

either contained within an areanode that is a leaf, or they intersect more than one leaf which means that

they cross the division plane, in which case these objects are contained within areanodes on the higher

level of the tree. Each areanode has an associated list of objects contained within space defined by that

areanode. When an object is moved during gameplay, it is necessary to update the areanode tree to reflect

the new position of the object. This is done by removing the object from the original list, and inserting it

into the list of the areanode that corresponds to the destination of the object.

3.2 Move execution

ce the gameplay by sending the move command, which specifies various

paramet

Clients influen

ers related to the player and his intentions. Those are: (i) angles of the players view, (ii) forward,

sideways, and upwards motion indicators, (iii) flags for buttons and jumping and (iv) time to run the

command in milliseconds. The move command functionally can be broken into the motion of player's

figure and the other interactions the player may initiate with the move command, like firing a gun, or

starting an elevator. Using the motion indicators, the origin of the player and the time to run command,

the server constructs the bounding box of the player's motion, thus defining the region of the world it can

 5

affect. Then it traverses the areanode tree to find and associate with the move command all the objects

contained within this bounding box. It then simulates the move, and upon completion, removes the

player's object from the old position in the game world and links it to the new one.

3.3 Shared data

gameplay, there are three types of shared data structures: message buffers, areanode

tree and

ject lists

associat

e

move e

During the

 game objects (entities). Among the buffers we further distinguish the global state buffer and per-

player reply buffers. The global state buffer, updated in the physics update stage and the request stage,

holds the updates that reflect the actions of all the players involved in the game session. In the reply stage

this buffer is added to the player's buffer for reliable communication which is repeatedly sent in each

frame until server gets the acknowledgment from the client that the message has been received.

Accesses to the areanode tree are in the form of linked list operations on the ob

ed with each areanode. The access pattern for the request stage has been already covered in the

explanation of the move command. A similar pattern is observed in the physics update stage, since

physical influences, that may affect an object, can change its position and hence its areanode container.

Game objects are updated in the physics update stage and the request processing stage. During th

xecution, all the objects that are touched are updated in a global shared part of the memory. This

memory is statically allocated and populated during the server initialization or change of the map. Quake

1 is the first game which used the concept of interpreted core of the game. This means that the essence of

the game is coded in a special interpreted language called QuakeC [17]. Using QuakeC, a programmer is

able to customize Quake to a great extent by adding weapons, changing game logic and physics, and

programming complex scenarios. QuakeC source code is compiled into a byte code kept in a file called

progs.dat. During the server initialization this file is loaded into the memory, and appropriate pointers are

set according to the layout of the file. It is possible to distinguish the following regions of the file: (1)

strings, (2) functions, (3) statements, (4) field definitions, (5) global definitions (6) globals and (7)

entities. Once loaded into the memory, specific parts of the engine are accessed using pointers and

 6

statically defined offsets. As an example, we present bellow the usual way to execute PutClientInServer

program function, which is called from regular C code to spawn the player into the game:

 pr_global_struct->time = sv.time;

 pr_global_struct->self = EDICT_TO_PROG(sv_player);

 PR_ExecuteProgram (pr_global_struct->PutClientInServer);

The PR_ExecuteProgram() function acts like an interpreter for the QuakeC code that was previously

compiled and loaded into the memory. It determines the function, and accesses the part of the program

memory that defines the start address for function arguments and local variables, number of parameters

and their size, and the address of the first statement. These are all integer values representing previously

mentioned offsets. It allocates the space for parameters and local variables on the internally defined stack

and starts the execution of the first statement. Important thing to notice here is that only the entity part of

the program memory has to be shared. Other parts can be thread-private to achieve better concurrency.

 Figure 2: (a) The frame execution algorithm, (b) The main loop Table 1: Execution breakdown of
 from SV_ReadPackets function. the sequential server (8 clients)

4. PARALLELIZATION

Parallelization of the Quake server has already been done using Pthreads in [14]. Our work

doesn’t build on top of the Pthread version, but implements a different parallelization strategy. The goal

was to start from the sequential application and parallelize it using OpenMP and transactional memory, in

Stage Time [%]

Request Processing 87.8

Reply 3.1

Physics Update 2.1

Measuring and Info 5.3

Other 1.7

Process

Read

Physics

SELECT

Reply

Yes

No

Tx

Rx

while (NET_GetPacket ()) {
 // Filter packets

 if (connection related packet) {
 SV_ConnectionlessPacket ();
 continue;
 }

 // game play packets
 for (i=0 ; i<MAX_CLIENTS ; i++) {
 // Do some checking here
 SV_ExecuteClientMessage ();
 }
}

(b) (a)

 7

order to test one of the promises of transactio emory, which is to make multithreaded programming

easy. In this section we describ

orithm of the fr execution breakdown of the serial

Quake server is given in Table me is spent in the request processing

se, and even ugh physics update exhibits similar shared data access patterns, its operations seem to

be significantly less involved. allelization of the request processing

stage. T ri for this stage is presented in Figure 2b.

Since we are not aware of the number of requests that are pending on the receiving port, we

cannot use the omp parallel for directive. In such cases it is natural to use a tasking model. The problem

which arises here is that the condition for the loop execution is the return value of the function that, at the

same time, receives the packet. If there is a packet pending, it will be received in the global buffer and

NET_GetPacket() function will return true, which will immediately start processing phase of that packet.

 all packets will return false and the request processing stage will

le appli n of the tasking model, it is necessary to change the way in which the loop

of the loop. Therefore, we separate the receiving

phase from the processing phase, and receive all packets first, storing them into a temporary list.

or the loop exit. There are two justifications for such an approach: (1) it

would be more complicated to privatize global receiving buffer once the worker thread starts working on

the dequeued

interactive IO which would serialize transactions in

a system

nal m

e our approach.

The alg ame execution is given in Figure 2a. An

 1. It is clear that the majority of ti

pha tho

Therefore we concentrate on the par

he algo thm

Otherwise, if have been processed it

finish. To enab catio

execution is controlled, and receive packets outside

Afterwards, the list is traversed and a processing task created for each packet in the list, making the end of

the list marker the condition f

 task, especially having in mind that this buffer is used throughout different code modules;

given our approach privatization is already done and (2) profiling information tells us that the time needed

to receive all packets is negligible compared to the time needed to process them. Figure 3 illustrates our

approach. The connection related messages are processed as soon as they are received, because they are

rare enough and, more importantly, they may involve

 which implements irrevocability, or even worse, produce irreversible effects in system that

doesn’t support IO inside transactions.

 8

Figure 3: Pseudocode for the parallelized request processing stage.

Figure 4: Pseudocode for the function that executes the move command

with transactional block markers.

while (NET_GetPacket ()) {
 // Filter packets

 if (connection related packet){

 continue;

}

 #pragma intel omp task captureprivate(packetlist)

 // Do some checking here

 packetlist = packetlist->next;

 SV_ConnectionlessPacket ();

 }

 AddPacketToList();
 CopyBuffer();

#pragma intel omp parallel taskq shared(packetlist, ...)
 {
while (packetlist != NULL) {

{
 NET_Message_Init(..);
 // check for packets from connected clients
 for (i=0, cl=svs.clients ; i<MAX_CLIENTS ; i++,cl++) {

 SV_ExecuteClientMessage (cl);
 }
 }

}

void SV_RunCmd (usercmd_t *ucmd)

 . . .
 PR_ExecuteProgram (pr_global_struct->PlayerPreThink);
 . . .
 SV_RunThink (sv_player);

 // prepare pmove structure
TRANSACTION_END
. . .

 TRANSACTION

 TRANSACTION_END

 TRANSACTION
 PlayerMo

{

 TRANSACTION

 . . .

 AddLinksToPmove (sv_areanodes);

ve ();
 TRANSACTION_END
 . . .
 TRANSACTION
 // link into place and touch triggers
 SV_LinkEdict (sv_player);

 // touch other objects
 . . .
 PR_ExecuteProgram (ent->v.touch);
 TRANSACTION_END
}

T4

T2

T3

T1

 9

To synchronize the request processing between threads, our idea was to execute the

SV_ExecuteClientMessage() function inside a transaction. This would be a coarse-grained solution since,

for the whole re nsaction block. Since the number of

retries† was over ore than 98% of all transactions aborting, we were forced to switch to a

medium-grained approach and break the one big transaction into six smaller, but still substantially large

atomic blocks.

SV_Exe es the request message and executes commands. The most

common is a move d() function, presented in the Figure 4

together with th transa ional updated in the request

processing stage erPreThink program in the

PR_ExecuteProg call, at the beginning of the SV_RunCmd() function. Then the

SV_RunThink() function executes a “thinking” code for the client. This is a special feature of Quake to

register an action that needs to be carried out, in regard to the client, in the future. This is not specific to

the client implement actions that exceed the duration of a single

frame. For example if some object falls from the high altitude, the server will need more than one frame

to simulate it ons form the

preparation ned inside one transactional block. The

server continu exec e() function which is used to determine which

entities could ve command. Starting with the origin of the player, the

areanode tree e areanode lists observed to check if their position

falls into the all into this area are added to the pmove structure for

further proces ove() function. For the player entity and each entity from the pmove

entity list, a m ed from the player's original position to its

potential des on, u ng the move command extracted from the received message.

If the player's g along the trajectory line, that

quest processing stage, we would have only one tra

whelming with m

cuteClientMessage() pars

command which is executed in the SV_RunCm

e ct block markers. Physics for the client entities is

, rather then in the physics update stage, by executing Play

ram() function

entities, but overall this is the way to

s fall. Along with pmove (player move) structure initialization, these acti

for the actual move execution, and can be contai

es ut ith the AddLinksToPmovion w

be affected by the current mo

is traversed and linked objects from th

 maximum affected area. Those that do f

sing in the PlayerM

odel box is assigned, and the trajectory is follow

tinati si parameters from the

 model box clips a model box of the other entity movin

 is equivalent to abor is to be distinguished † In this paper retry from the

Haskell retry construct [28].
t, following the Intel nomenclature. It

 10

means t

5. EVA

length. Both machines are PowerEdge 6850, with four dual-core 64-bit Intel® Xeon™ processors running

 cache memory per processor unit, running SUSE LINUX 10.1.

here is collision between them. Depending on the various parameters of the collided objects and

the environment that surrounds them (air, water, solid area, etc.) the final position of the player is

calculated. Based on this calculation the player object will be later re-linked in the areanode tree, in the

SV_LinkEdict() function call. Since the areanode tree is not traversed during PlayerMove() call it is safe

to define transactional blocks in the way presented in Figure 4.

LUATION

For testing purposes, we have developed an automatic trace client called TraceBot. We have used

the regular client code, and changed its structure to implement a state machine which controls the client’s

behavior. We also had to implement certain changes on the server side to be able to synchronize the

client’s actions with the server response. Namely, each map has a number of spawn points where clients

start after joining the game, or restart after being killed. In order to execute the correct trace we have to

send the spawn spot information to the TraceBot. On the client side, after TraceBot starts, we have to

recognize the right moment to start reading the trace file. We introduced a new string command in the

protocol, and when it is parsed from the server packet, we take the spawn spot information, and start

randomly one of the traces for that spawn spot. From that point on, TraceBot is just sending messages at

the server frame rate until it dies, as a result of actions of the other connected players, or until the end of

the trace, when it commits suicide. After TraceBot dies, it sends another special string command whose

function is to respawn the client into the game world, and the process is repeated. The traces are recorded

using VideoClient, which is similar to TraceBot, with the addition of graphics. To record traces we use the

original, sequential Quake server, and connect VideoClient to play the game, producing traces that

represent recorded human gameplay actions.

We run the server on one machine, and the clients on the other, to simulate the real game

environment, since network latency and bandwidth are not critical [14]. The server and client’s frame

rates are synchronized and set to 100 ms which is enough time for the worst case transactional frame

at 3.2 GHz, with 16MB L3

 11

In this work we are using the prototype version of the Intel STM C/C++ compiler [10, 11, 12].

The underlying STM implementation is an extended version of the McRT-STM system [8]. The compiler

implements both optimistic and pessimistic concurrency control, and provides single lock atomicity

semantics and weak atomicity guarantees. Serial execution mode is also provided to support system calls

and I/O operations inside transactions. To optimize function calls within transactions the compiler

troduces function annotations: tm_callable, tm_pure and tm_unknown. Nesting is supported in a closed

attening; a data conflict rolls back to the outermost level and re-executes the

transact

es.

in

nesting fashion via fl

ion. It uses cache-line granularity conflict detection and implements strict two-phase locking for

writes. Writes update values in-place and generate undo log entries. Transactions validate the read set at

commit time, and if necessary during the read operation, which means that transaction can abort any time

during the execution when it encounters a conflict.

6. RESULTS

In order to compare and test various aspect of STM performance, we collect results for four different

configurations: (1) sequential, (2) global lock, (3) global lock with STM and (4) STM. The global lock

with STM implementation is used to measure the overhead of running a transaction (starting the

transaction and bookkeeping) since the global lock prevents any possibility of the transaction abort. For

the parallel setups we vary the number of threads from 1 to 8. We also vary the number of clients from 1

to 16, and run each test five times to get the average result. Each test runs for 2000 frames which

translates to 200 seconds of real time. The results are collected for the last 1000 frames in order to avoid

server initialization time and player connection tim

We measure the number of cycles between two events using the rdtsc instruction and translate

that value into milliseconds. We present the results and charts for the request processing stage only, since

it is the most complex stage in the frame execution and the most challenging, and leave the parallelization

of other two stages for the future work.

 12

Normalized Overhead - 1 thread

1

1.5

2.5

3

4

4.5

1 2 4 8 16

Number of clients

O
ve

r
ea

d

2

3.5

h
lock

lock+TM

TM

TM_coarse

(tm_coarse - only one transaction which processes the whole packet).

 implementations normalized against the results of the

equential server for non-optimized code‡ and for the parallel section which is in this case the request

rocessing stage. We consider the results for one thread only, to avoid contention in parallel designs.

o contention, the lock version introduces almost no overhead. On the other hand, the

al lock version doesn't scale and the transaction

overhea

 execution time. The speedup for eight threads is 1.51 which is a

Figure 5: Overhead of parallel implementations normalized against the results of the sequential server

Figure 5 shows the overhead of the parallel

s

p

Since there is n

overhead of the lock+TM version goes from 2.4 times for one client to 3.6 times for sixteen clients and

for the transactional version from 2.9 for four clients to 4.2 for one client. These results correspond with

the findings of Wang et al. [18] for non optimized version of STM. For microbenchmarks the authors

report an overhead of non-optimized STM code from 2.4 to 4.5 times over a fine-grain locking

implementation. For the SPLASH-2 benchmarks the reported overhead doesn't exceed 20%, but it is a

measure across the entire execution, which hides the fact that little time is spent in critical sections.

Figure 6 shows the comparative performance of all three parallel configurations for different

numbers of connected clients. As expected, the glob

d remains approximately 3x-4x. The transactional version doesn't scale until the workload

becomes sufficient, which happens with eight connected clients. When we run the application with 16

clients, then we start to notice a considerable speedup. Figure 7a gives a better view of this case. The

values are normalized to a single thread

‡ All configurations were compiled with optimization level 0. Higher optimization levels introduce problems with
function call annotations and transaction serialization.

 13

good initial result, considering that this is the first real application to test TM capabilities, but it is still not

enough to cover the costs of running transactions. Figure 7b shows the scalability of the transactional

Quake server running with 16 clients. It is obvious that the TM version scales, but it still performs worse

than the global lock version.

Comparative performance

4.0
5.0

7.0
8.0
9.0

10.0

6.0

0.0
1.0
2.0
3.0

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 client 2 clients 4 clients 8 clients 16 clients

Ti
m

e
[m

s] lock

lock+TM

TM

(Y-axes represent the average time to execute request processing stage)
Figure 6: Comparative performance of parallel configuration

TM Speedup - 16 clients

1.3

1.6

du
p

1

1.1

21.

1.4

1.5

Threads

S
pe

e

2 threads
4 threads
8 threads

Scalability - 16 clients

6.0

8.0

10.0

e
[m

s

0.0

2.0

4.0

Threads

m
]

1 2 4 8

Ti

lock
lock+TM
TM

Figure 7: Transactional server running with 16 clients: (a) Speedup, (b) Scalability.

(a) (b)

 14

Clients Transactions Retries Retry rate
[%]

Mean
[KB]

Serialized Max
[KB]

Total
transactions [MB]

Reads 3.5 127 114
1 34683 0 0.0 2.2

Writes 0.5 18 16
Reads 4.1 1247 304

2 80031 3692 4.4 4.8
Writes 0.6 204 43
Reads 5.2 1593 734

4 147043 21990 13.0 11.2
Writes 0.7 245 99
Reads 6.5 1778 1805

8 293326 125138 29.9 28.2
Writes 0.8 237 233
Reads 7.0 2397 2358

16 351379 221062 38.6 59.8
Writes 0.8 309 280

Table 2: Transactional statistic of TM server running with 8 threads.

To discover the reasons why the transactional version doesn't perform better, it is necessary to

look at the statistical data which is provided by the Intel compiler. Table 2 presents these statistics for the

TM configuration running with eight threads. All statistical values increase when we increase the number

of clients connected simultaneously, but the most important, from the performance perspective, is the

transaction abort rate. In the case of sixteen connected clients, 38.6% of transactions retry introducing a

significant amou times before it

eventually committed. This leads not only to the waste of processor cycles to re-execute the transactional

code. During an execution with sixteen clients, a single threaded server reads 1.4 GB and writes 215 MB

of data in total, while the server running with 8 threads reads 2.34 GB and writes 280 MB of data. Table 2

also shows that even though the mean value of the read set is about 7 KB there are cases when it grew to

2.4 MB. This is an important factor which could stress the design of any hardware transactional memory.

In order to study the above mentioned problems, we compare the results for three different TM

cases: (1) TM_coarse - coarse grained transaction case, having only one transaction which processes the

whole packet (surrounding the SV_ExecuteClientMessage() function from Figure 3), (2) TM - middle

grained TM implementation, which is the case we studied so far and (3) TM_small - the sam

implementation as in the nd case, only running an extremely small map to increase contention. Figure

8 shows the scalability of these three cases, for eight and sixteen connected clients, and Table 3 presents

the corresponding transactional statistics. It is clear that the performance is strongly influenced by the

nt of wasted work. There are examples when a transaction aborted 136

e

 seco

 15

transaction abort rate. For example ll s well with eight connected clients, when the

abort rate is still bearable, but with sixteen clients, when the te is , the p ance to

suffer and scalability is lost. In the TM_coarse case, we see ost al nsactions abort, leading to

98.6% abort ch in c xtrem large re and

write sets, re a poo man

, TM_sma setup scale

 abort ra 58% erform starts

that alm l tra

rate with sixteen connected clients, whi ombination with e ely ad

sults in r perfor ce.

TM comparative scalability

12.0

18.0

14.0
16.0

Ti
e

[m
s

0.0
2.0
4.0
6.0
8.0

10.0

1 2 4 8 1 2 4 8

m
] TM_coarse

8 clients 16 clients

TM

TM_small

implementation running with the small map (TM_small).

Figure 8: Scalability of coarse grained (TM_coarse), medium grained (TM) and mediume grained

Clients Transactions Retries Retry rate
[%]

Reads
[mean]
[KB]

Writes
[mean]
[KB]

8 293326 125138 29.9 6.5 0.8 TM

16 351379 221062 38.6 7.0 0.8

8 145448 139204 48.9 8.4 1.8 TM_small
16 206568 285118 58.0 9.4 1.7

8 15979 632175 97.5 121.6 102.6 TM_coarse

16 21772 1484730 98.6 100.5 57.2

running with 8 threads.

In this section we describe the parallelization and language design issues we faced while porting

the Quake server, and present our ideas how to improve the TM programming experience.

Table 3: Transactional statistics for TM, TM_small and TM_coarse configurations

7. DISCUSSION

 16

7.1 Removing the Object from the Read Set

If we take another look at Figure 4, and recall the function algorithm, we can identify the source

of the extremely high abort rate in the TM-coarse case shown in Table 3. Let’s assume that we are

running with two threads, and that transactions T1 from thread 1 and T2 from thread 2 are simultaneously

processing packets from two different clients which are close to each other in the gameworld. Both

transactions will traverse the areanode tree in the function AddLinksToPmove(), and latter on, most

probably change the list structure for the same node in the tree, either by inserting or removing some

objects, in the SV_LinkEdict() function. Since in both functions, the whole list for the particular node is

traversed, all list elements will be added to the read sets of both transactions. Therefore any change to the

list will abort the other transaction. For the execution with eight threads this leads to a scenario similar to

livelock, where transactions abort each other, even though they eventually commit. We think that a

solution for this kind of scenario could be to have an explicit language construct, TM_Unread, which

could be used to remove an object from the transaction read set, similar to the solution suggested by

Sonmez et al. [19]. Sinc e program, it would be

the programmer’s responsibility to use it in a correct way. Furthermore, k that ould be a

performance enhancement feature, targeted for expert programmers, and not something used by general

programming community, llowing mline of the tm_waiver language construct [1

7.2 Parallelization Issues and ReachPoints

ne of the m in goals of his work was to test the holy grail of transactional memory [21], the

promise of making multit ded pro ing e ad no prior knowledge of the application itself,

so we too itable for

parallelization, using profile information and by studying the program structure. The process of adding

 pragmas and transactional boundaries was then straightforward and simple, if we

disregard occasional proble

as to identify

which of the global data structures and variables must be shared and which can be re-structured as thread-

e such a construct could easily break the correctness of th

we thin this sh

 fo the strea 1].

O a t

hrea gramm asy. We h

k some time to understand the code. We have identified the parts of application su

OpenMP parallelization

ms with the compiler, which is normal, having in mind that both OpenMP and

STM are new programming models under constant development. The real challenge w

 17

local data. From a performance perspective this is crucial, since a lot of sharing, especially unnecessary

one, leads to bad performance. Even though we dedicated significant time to manually identify global

data which could be thread-private, for unmanaged code written in a sequential programming style, where

vast amount of data is global, like in our case, it was not enough. The whole work took ten men-months to

finish, and we spent the last two months, once we had testing environment ready, trying to boost

performance. In the process, we came up with a solution, which we call ReachPoints, that helped us

identify the rest of the global variables which could be thread private, and discover the problems that

arose from TM cache-line granularity conflict detection implementation.

igure 9, consists of allocating an array of counters for

each thr

Figure 9: ReachPoints: Simple solution for discovering conflicting regions

 of the transactional code.

int reachpoints[NumThreads][x*16]

TM_PURE
void PointReached(int check) {
 reachpoints[ThreadId][check]++;
}

int main () {

 TRANSACTION

 statement_1;

 TRANSACTION_END
 . . .
}

 . . .

 PointReached (1);

 PointReached (2);

The ReachPoints solution, presented in F

ead, taking in account cache line granularity (x*16 elements for each thread where x=1,2,... and

cache line size of 64 bytes). At the end of execution, when we print the state of counters, the difference

between two counters pinpoints the region of the code where transactions abort. Analyzing that region, it

is possible to discover causes for the aborts. Simple as it may be, we found ReachPoints very valuable

and useful. As already stated, it even helped us discover sources of false conflicts [20] referred to as false

sharing [9], which occur mostly within structured data and are the consequence of the fact that two

different variables or structure fields reside in the same cache line. Assuming that only one of them is

written, say variable A, under the cache line granularity conflict detection system, a read-only variable B

 18

is also causing conflicts, since the writes to A are treated as writes to B. When we used cache padding for

such cases, we noticed a significant performance improvement, due to the decrease in the number of

aborts. This solution is specific for eager conflict detection, since in TM systems with lazy conflict

detection transactions can be aborted anytime, regardless of the read or write issued in the moment of the

abort. It should be said that one could think of better mechanisms to detect which data access is causing

conflicts, and one of them is certainly debugger support.

7.3 Drawbacks of Flattening the Nested Transaction

In Section 4, we said that we were unable to

use coarse gr high abort rate. Using

ReachPoints we were also abl t areanode operations, executed in the

functions AddLinksToPmove() and SV_LinkEdict(), are the main cause for aborts. Before we switched to

the medium grained implementa sert nested transactions in the same way shown in

Figure 4, but there were no impr his is the consequence of the

closed nesting implementation o ansactions, causing aborts of

the outermost transaction and re performance as before. We believe that a different

nesting implementation, i.e. one which wouldn’t publish the read set of the nested transaction to the

outermost transaction, leading to partial e more useful for programmers.

7.4 Things We Cannot See

At times, not having the source code of the Intel STM compiler created issues. For example, we

were unable to discover further details regarding the overhead of transactions and to measure the time

spent for starting a transaction, bookkeeping and executing instrumented reads and writes. We are in

contact with Intel developers for the possibility of including some of those statistics in the next version of

the compiler

Also we cannot conclude what percentage of aborts is caused by false conflicts between addresses

from different cache lines [9], which are the consequence of the transaction record aliasing imposed by

when we were explaining our parallelization method,

ain transaction for the request processing stage due to an extremely

e to prove our assumption tha

tion, we tried to in

ovements in the performance or abort rate. T

f the Intel compiler, which flattens nested tr

sulting in the same

 aborts [23, 24, 25], would b

 19

the limited size of the ownership table. In the Intel compiler implementation, the hash function utilizes 14

bits out of a 32 bit address to generate a hash value (16K entries). If the program is running with eight

threads, the possibility of the false conflict when each thread touches 10 cache lines in an uniform

distribution is 15.7% and in a case of 25 cache lines it grows to 66.8%. Given the size of the read and

write sets from the Table 2, we suspect this to be a significant cause for aborts in QuakeTM. In such case,

in order to decrease local-induced conflicts (if either of the two conflicting addresses is thread-local) it

ould be necessary to avoid instrumentation of thread-local memory accesses.

7.5 Comparing Tw

TM

ith the lock-converted Quake is out of the scope of this paper. Here, we concentrate on introducing and

akeTM.

ns. We also plan to modify certain structures, especially areanode lists, in order to decrease

the abor

w

o Parallelization Approaches

 In concurrent work, we have used fine grain lock implementation of the Quake server to produce a

transactional version by converting locks to transactions [29]. Comparing these two parallelization

approaches, we can conclude that the solution presented in this paper, one that is derived from the serial

implementation, results in a coarser grained parallelization with atomic blocks and read and write sets that

are an order of magnitude bigger than in the lock-converted version. Moreover, the scalability obtained is

competitive with the lock-converted version. Finally, the code is more structured as a result of not having

to deal with the problems inherited from the unstructured use of locks. Given these observations, we

believe that this work corresponds with the intended use of transactional memory and presents the way

the regular programmer might use TM to parallelize applications. A detailed comparison of Quake

w

analyzing the performance of Qu

8. FUTURE WORK

 Beside the fact that negligible time is spent in execution of other two stages in the frame, we plan

to parallelize them because they exhibit different patterns and could be useful for testing TM

implementatio

t rate and hopefully enable use of coarser transactions. The source code for QuakeTM will soon

 20

be publicly available, and we encourage TM implementers to download and use the application to test

their TM systems.

9. CONLCUSION

In this paper, we have introduced QuakeTM, the first complex real-world TM application that

was transactionalized from a serial version of the Quake application. We have made a detailed description

of the tranactification process, and provide extensive analysis of performance, isolating the overhead of

the STM implementation. We have shown that even though it scales, the TM implementation still falls

behind the global lock version. As a result, we were surprised by the amount of programmer time

investment, wherever appropriate we have also commented on the challenges involved in the paper. TM

is touted to make parallel programming easier; our QuakeTM experience stresses the importance of tool

support (compiler, debugger, runtime) to realize this goal in the future.

Multi-Processing , In IISWC '08

arvis, Mikel Luján, Chris Kirkham, and Ian Watson. Lee-TM: A Non-trivial
Benchmark for Transactional Memory. In ICA3PP 2008.

] C. Perfumo, N. Sonmez, et al. Dissecting transactional executions in Haskell. In TRANSACT ’07

 al. Optimistic parallelism requires abstractions. In PLDI ’07

 Bratin Saha

Implementation of Transactional Constructs for C/C++, in OOPSLA08

[12] Adam Welc . Bratin Saha, Ali-Reza Adl-Tabatabai , Irrevocable transactions and their applications. In SPAA 2008.

REFERENCES

[1] S. C. Woo, M. Ohara, et al. The SPLASH2 Programs: Characterization and Methodological Considerations. In ISCA 1995.

[2] C. Bienia, S. Kumar, et al. The parsec benchmark suite: Characterization and architectural implications. Tech. Rep. TR-811-
08,, Princeton University, 2008.

[3] Rachid Guerraoui, Micha l Kapa lka, and Jan Vitek. STMBench7: A benchmark for software transactional memory. In
EuroSys ’07: Proceedings of the 2nd European Systems Conference, pages 315–324. ACM Press, March 2007.

[4] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , STAMP: Stanford Transactional Applications for

[5] Mohammad Ansari, Christos Kotselidis, Kim J

[6

[7] M. Kulkarni, K. Pingali, et

[8] , Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin Hertzberg. McRT-STM: a high
performance software transactional memory system for a multi-core runtime. In PPoPP 2006.

[9] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha, Ali-Reza Adl-Tabatabai, Hsien-Hsin S. Lee, Kicking the tires of
software transactional memory: why the going gets tough. In SPAA 2008.

[10] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy, B. Saha, and T. Shpeisman. Compiler and runtime support for
efficient software transactional memory. In PLDI 2006.

[11] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkowits, James Cownie, Robert Geva, Sergey
Kozhukow, Ravi Narayanaswamy, Jeffrey Olivier, Serguei Preis, Bratin Saha, Ady Tal, Xinmin Tian, Design and

 21

 [13] A. Abdelkhalek, A. Bilas, and A. Moshovos, Behavior and performance of interactive multi-player game servers. In Proc.
of the 2001 International IEEE Symposium on Performance Analysis of Systems and Software (ISPASS01), Nov. 2001.

[14] A. Abdelkhalek, A

. Bilas, Parallelization and Performance of Interactive Multiplayer Game Servers, In IPDPS 2004

5] Fuchs, Henry., et. al. Near Real-Time Shaded Display of Rigid Objects, Computer Graphics, 17(3), 65-69.

 Max McGuire, Quake 2 BSP File Format, http://www.flipcode.com/archives/Quake_2_BSP_File_Format.shtml

pedia.org/wiki/QuakeC

[18] Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin Saha, Ali-Reza Adl-Tabatabai, Code Generation and Optimization for
Transacti

[21] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free data structures. In ISCA 1993.

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 207{216.

[25] J. R. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool, 2006.

on with Transactions and Barriers,
Benchmarks track, IEEE Intl. Symp. on Workload Characterization , Boston, MA, IISWC 2007.

7] L. Dalessandro, V. J. Marathe, M. F. Spear, and M. L. Scott, Capabilities and Limitations of Library-Based Software
Transactional Memory in C++, TRANSACT 2007.

aser, Language support for lightweight transactions, OOPSLA '03

s

[1

[16]

[17] QuakeC, http://en.wiki

onal Memory Constructs in an Unmanaged Language, CGO '07

[19] Nehir Sonmez, Cristian Perfumo, Srdjan Stipic, Adrian Cristal, Osman S. Unsal, and Mateo Valero, UnreadTVar: Extending
Haskell Software Transactional Memory for Performance, in 8th Symposium on Trends in Functional Programming (TFP 2007)

[20] C. Zilles and R. Rajwar. Implications of false conflict rate trends for robust software transactional memory. In IISWC’07.

[22] M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-concurrent transactional objects. In 13th

[23] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen, Mark D. Hill, Ben Liblit , Michael M. Swift, David A.
Wood, Supporting nested transactional memory in logTM, ASPLOS 2006

[24] J. Eliot B. Moss, Open Nested Transactions: Semantics and Support, http://www.cs.utah.edu/wmpi/2006/final-
version/wmpi-posters-1-Moss.pdf

[26] M. L. Scott, M. F. Spear, L. Dalessandro, and V. J. Marathe. Delaunay Triangulati

[2

[28] Tim Harris, Keir Fr

[29] Ferad Zyulkyarov, Vladimir Gajinov, Osman Unsal, Adrian Cristal, Eduard Ayguade, Tim Harris, Mateo Valero, Atomic
Quake: Use Case of Transactional Memory in an Interactive Multiplayer Game Server, To Appear in Symposium on Principle
and Practice of Parallel Programming (PPoPP), February 2009

 22

