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ABSTRACT 

 “Is transactional memory useful?” is the question that cannot be answered until we provide 

substantial applications that can evaluate its capabilities. While existing TM applications can partially 

answer the above question, and are useful in the sense that they provide a first-order TM experimentation 

framework, they serve only as a proof of concept and fail to make a conclusive case for wide adoption by 

the general computing community. 

This work presents QuakeTM, a multiplayer game server; a complex real life TM application that 

was parallelized from the serial version with TM-specific considerations in mind. QuakeTM consists of 

27,600 lines of code spread among 49 files and exhibits irregular parallelism and coarse-grain 

transactions with large read and write sets. In spite of its complexity, we show that QuakeTM does scale, 

however more effort is needed to decrease the overhead and the abort rate of current software 

transactional memory systems. We give insights into development challenges, suggest techniques to solve 

them and provide extensive analysis of transactional behavior of QuakeTM, with an emphasis and 

discussion of the TM promise of making parallel programming easy.  

                                                 
* Affiliated with Universitat Politecnica de Catalunya 
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1. INTRODUCTION 

Recently, processor manufacturers have executed a right-hand turn away from increasing single 

core frequency, complexity and heat density to packing multiple processing cores on a chip. In this era of 

Chip Multiprocessors, efficient parallel programming becomes critical if the new design is to be 

successful. One of the key technologies that promise to open up practical parallel programming to the 

masses is Transactional Memory (TM). In this paper, we describe our conclusions, based on code 

descriptions and examples as well as a through performance evaluation, whether this promise looks 

realistic. We use a complex gaming application, Quake, as the case study.   

As we discuss in Section 2, existing TM benchmarks are either simple data-structure micro-

benchmarks, or TM versions of existing concurrent programs, often derived automatically, or semi-

automatically from lock-based implementations.  For one to really address the issue of whether TM is an 

enabler technology to make parallel programming easier, we need to start with the serial version of a 

highly complex application. We wanted to investigate how TM could be used to parallelize a real, 

complicated, concurrent application.  To do this we started from the serial version of the Quake server 

application and, using OpenMP and transactional memory, we derived QuakeTM, a parallel version 

which consists of 27,600 lines of code spread in 49 files. It exhibits irregular parallelism and long 

transactions contained within six different atomic blocks with large read and write sets. 

Our idea was not to pursue performance per se, but to discover if it is possible to achieve good 

results with a coarse grained parallelization approach. This decision was driven by one of the founding 

principles of TM, to make parallel programming easy by abstracting away the complexities of using locks 

and achieving performance similar to that of the fine grain lock implementation. 

In concurrent work we have been investigating what is involved in making a lock-based 

implementation of the Quake server perform well using TM. Comparing that approach with the current 

paper gives us a new perspective on how the use of “atomic” blocks in new parallel code might compare 

with their use as a replacement for lock-based critical sections.  We discuss this further in Section 7.5 
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In this paper, we present the development process of QuakeTM, comment on the challenges of 

parallelizing a complex serial application using TM, and provide extensive performance analysis results 

that provide further insight into the question: “Is parallel programming easier with TM?” 

 

2. RELATED WORK 

SPLASH-2 [1] and PARSEC [2] are parallel benchmarks written using Pthreads or OpenMP and 

are useful in analyzing parallel systems in general, but their applicability to TM systems is limited due to 

the regular nature of algorithms and short critical sections. When converted to transactional counterparts, 

these applications are unable to sufficiently stress the underlying TM system.  

Lee-TM [5] is a kernel application based on Lee’s routing algorithm implemented in a sequential, 

lock-based, and transactional manner. The authors claim that it exhibits a fair amount of parallelism, 

complex contention behavior, and a variety of transaction durations and sizes, even though it has only 

about 800 lines of code. Unfortunately, we are not presented with a characterization of the serial version, 

and we lack information about the time spent in critical sections and the sizes of the read and write sets. 

The performance evaluation, reported by the authors, shows that the transactional version behaves worse 

than the coarse-grain version which highlights the need for complex benchmarks to stress TM systems.  

Delaunay mesh refinement and agglomerative clustering [7, 22, 26] is another kernel application. 

It comprises [26] of 3200 lines of code and 24 source files and implements 3 atomic blocks which in total 

protect only 320 lines of code along with the function calls contained inside them. It’s no wonder that the 

global lock and fine grain lock versions perform equally given the size of critical sections.  

STMBench7 [3] is represented by only one synthetic application which can execute four 

operations on a complex data structure. Varying the parameters, it is possible, to a greater or lesser extent, 

to stress the underlying STM implementation. STMBench7 is aimed more towards the object-oriented 

domain and its downside is that the data structure is highly regular, even though it is complex. The size of 

the application is about 5000 lines of code. 
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Haskell STM benchmark suite [6], consist of nine Haskell applications of different sizes, which 

target different aspects of an underlying TM system. While it is good for its domain, the Haskell STM 

benchmark suite is not widely applicable.  

The STAMP benchmark suite [4] consists of eight applications: bayes, genome, intruder, kmeans, 

labyrinth, ssca2, vacation, and yada. These applications span a variety of domains and runtime 

transactional characteristics due to differences among applications in transaction lengths, read and write 

set sizes and amounts of contention. The previous version of STAMP, consisting of three applications: 

genome, kmeans   and vacation, was widely used for evaluation of TM systems.  The downside of these 

applications is the fact that they were manually optimized, with an application level knowledge before 

hand, which enabled authors to manually implement the optimal number of read/write barriers in the 

code. As it turns out [9] two common code patterns are repeatedly observed in STAMP: (1) the use of a 

transaction-aware memory allocator and (2) awareness of shared data structures that remain constant after 

initialization at the program startup. These two patterns are hard to detect by the compiler which 

instruments the code with unnecessary transactional barriers. This doesn't help the effort to prove the 

primary goal of TM which is to make multithread programming easy. If programmers are required to 

manually instrument the code in order to achieve basic performance then TM is not the solution. As it was 

pointed out  by Dalessandro et al. [27] library interfaces can remain a useful tool for systems researchers, 

but application programmers are going to need language and compiler support. 

 

3. QUAKE DESCRIPTION 

Quakeworld is the multiplayer mode of Quake 1, the first person shooter game released under the 

GNU license by ID Software. It is a sequential application, built as a client-server architecture, where the 

server maintains the game world and handles coordination between clients, while the clients perform 

graphics update and implement user-interface operations.  

The server executes in an infinite loop, where an iteration represents the calculation of a single 

frame. It blocks on the select system call waiting for client requests. If the requests are present on the 

receiving port, it starts the execution of the new frame. It is possible to distinguish three stages of the 
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frame execution: world physics update (P), request receiving and processing (R) and reply stage (S). 

Upon the end of execution of all three stages the server frame ends and the process is repeated.  

Generally, the server will send replies only to clients which were active in the current frame, namely 

those who have sent a request. All replies are sent after all requests have been processed. This clear 

separation of the frame stages simplifies the parallelization as we present later in the paper. 

The Quake game world is a polygonal representation of the 3D virtual space in which all objects, 

including players, are referred to as entities. Each entity has its own specific characteristics and actions it 

can perform, and during the update, the server will send information only for those entities which are of 

interest to the client.  Nevertheless, the server has to simulate and model, not only player’s actions, but 

also the effects induced by these actions, such as when the player hits some object. In such a case it is 

necessary to determine the applied force, the weight of the object, its shape, the original position, the 

environment etc. in order to present as realistic view as possible.  Thus, server processing is a complex, 

compute intensive task, and it increases superlinearly with the number of players [13]. 

Top view 

 
Figure 1: Constructing areanode tree from the BSP map volume. Adapted from [13] 

 
3.1 Map description 

A map of the Quake world is represented as a BSP file which holds the binary space partition 

implementation of the 3D world with all the details relevant to draw and position the objects in the world, 

such as planes, vertices, nodes, visibility data, texture information, models, brushes etc. [15, 16]. The 

LEVEL 4 

Areanode tree 
LEVEL 1 

LEVEL 2 

LEVEL 3 

LEVEL 5 
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level of details contained within the BSP tree is large, therefore BSP trees are hard to maintain for 

dynamic scenes. If the server wants to generate a quick list of the objects that an entity may interact with, 

traversing the BSP tree is inefficient, and since this is a common operation involved in each move 

command, the server constructs and maintains a secondary binary-tree structure, called areanode tree.  

This is a 2D representation of the BSP tree, constructed during server initialization by dividing the 3D 

volume in the x-y plane. Starting from the root, which corresponds to the entire world, the space is 

divided in two equal parts to form nodes on the next level of the tree. Each division is done using the 

alternate plane, and after four divisions, an areanode tree with 5 levels, 31 areanodes, and 16 leaves in the 

lowest level is constructed. Figure 1 demonstrates the building process. The size of the tree can be 

changed by redefining the maximum depth, but using bigger trees has a minor effect on the performance 

of the server [14]. The structure of the areanodes has no correlation with the rooms in the world, and 

likewise the division planes do not correlate with walls or ceilings. All the objects in the game world are 

either contained within an areanode that is a leaf, or they intersect more than one leaf which means that 

they cross the division plane, in which case these objects are contained within areanodes on the higher 

level of the tree. Each areanode has an associated list of objects contained within space defined by that 

areanode.  When an object is moved during gameplay, it is necessary to update the areanode tree to reflect 

the new position of the object. This is done by removing the object from the original list, and inserting it 

into the list of the areanode that corresponds to the destination of the object. 

 
3.2 Move execution 

ce the gameplay by sending the move command, which specifies various 

paramet

Clients influen

ers related to the player and his intentions. Those are: (i) angles of the players view, (ii) forward, 

sideways, and upwards motion indicators, (iii) flags for buttons and jumping and (iv) time to run the 

command in milliseconds.  The move command functionally can be broken into the motion of player's 

figure and the other interactions the player may initiate with the move command, like firing a gun, or 

starting an elevator. Using the motion indicators, the origin of the player and the time to run command, 

the server constructs the bounding box of the player's motion, thus defining the region of the world it can 
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affect. Then it traverses the areanode tree to find and associate with the move command all the objects 

contained within this bounding box. It then simulates the move, and upon completion, removes the 

player's object from the old position in the game world and links it to the new one.  

 
3.3 Shared data 

gameplay, there are three types of shared data structures: message buffers, areanode 

tree and

ject lists 

associat

e 

move e

During the 

 game objects (entities). Among the buffers we further distinguish the global state buffer and per-

player reply buffers. The global state buffer, updated in the physics update stage and the request stage, 

holds the updates that reflect the actions of all the players involved in the game session. In the reply stage 

this buffer is added to the player's buffer for reliable communication which is repeatedly sent in each 

frame until server gets the acknowledgment from the client that the message has been received.  

Accesses to the areanode tree are in the form of linked list operations on the ob

ed with each areanode. The access pattern for the request stage has been already covered in the 

explanation of the move command. A similar pattern is observed in the physics update stage, since 

physical influences, that may affect an object, can change its position and hence its areanode container. 

Game objects are updated in the physics update stage and the request processing stage. During th

xecution, all the objects that are touched are updated in a global shared part of the memory. This 

memory is statically allocated and populated during the server initialization or change of the map. Quake 

1 is the first game which used the concept of interpreted core of the game. This means that the essence of 

the game is coded in a special interpreted language called QuakeC [17]. Using QuakeC, a programmer is 

able to customize Quake to a great extent by adding weapons, changing game logic and physics, and 

programming complex scenarios. QuakeC source code is compiled into a byte code kept in a file called 

progs.dat. During the server initialization this file is loaded into the memory, and appropriate pointers are 

set according to the layout of the file. It is possible to distinguish the following regions of the file: (1) 

strings, (2) functions, (3) statements, (4) field definitions, (5) global definitions (6) globals and (7) 

entities. Once loaded into the memory, specific parts of the engine are accessed using pointers and 
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statically defined offsets. As an example, we present bellow the usual way to execute PutClientInServer 

program function, which is called from regular C code to spawn the player into the game: 

  pr_global_struct->time = sv.time; 

  pr_global_struct->self = EDICT_TO_PROG(sv_player); 

  PR_ExecuteProgram (pr_global_struct->PutClientInServer); 

The PR_ExecuteProgram() function acts like an interpreter for the QuakeC code that was previously 

compiled and loaded into the memory. It determines the function, and accesses the part of the program 

memory that defines the start address for function arguments and local variables, number of parameters 

and their size, and the address of the first statement. These are all integer values representing previously 

mentioned offsets. It allocates the space for parameters and local variables on the internally defined stack 

and starts the execution of the first statement. Important thing to notice here is that only the entity part of 

the program memory has to be shared. Other parts can be thread-private to achieve better concurrency. 

    

    Figure 2: (a) The frame execution algorithm,  (b) The main loop         Table 1: Execution breakdown of 
                            from SV_ReadPackets function.                                       the sequential server (8 clients) 

4. PARALLELIZATION 

Parallelization of the Quake server has already been done using Pthreads in [14]. Our work 

doesn’t build on top of the Pthread version, but implements a different parallelization strategy. The goal 

was to start from the sequential application and parallelize it using OpenMP and transactional memory, in 

Stage Time [%] 

Request Processing 87.8 

Reply 3.1 

Physics Update 2.1 

Measuring and Info 5.3 

Other 1.7 

 

Process 

Read 

Physics 

SELECT 

Reply 

Yes 

No 

Tx 

Rx 

while (NET_GetPacket ()) { 
     // Filter packets 
 
     if (connection related packet) { 
          SV_ConnectionlessPacket (); 
                continue; 
          } 
  
          // game play packets 
          for (i=0 ; i<MAX_CLIENTS ; i++) { 
               // Do some checking here 
 SV_ExecuteClientMessage (); 
          } 
} 

(b) (a) 
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order to test one of the promises of transactio emory, which is to make multithreaded programming 

easy. In this section we describ

orithm of the fr execution breakdown of the serial 

Quake server is given in Table me is spent in the request processing 

se, and even ugh physics update exhibits similar shared data access patterns, its operations seem to 

be significantly less involved. allelization of the request processing 

stage.  T ri  for this stage is presented in Figure 2b. 

Since we are not aware of the number of requests that are pending on the receiving port, we 

cannot use the omp parallel for directive. In such cases it is natural to use a tasking model. The problem 

which arises here is that the condition for the loop execution is the return value of the function that, at the 

same time, receives the packet. If there is a packet pending, it will be received in the global buffer and 

NET_GetPacket() function will return true, which will immediately start processing phase of that packet. 

 all packets will return false and the request processing stage will 

le appli n of the tasking model, it is necessary to change the way in which the loop 

of the loop. Therefore, we separate the receiving 

phase from the processing phase, and receive all packets first, storing them into a temporary list. 

 

or the loop exit. There are two justifications for such an approach: (1) it 

would be more complicated to privatize global receiving buffer once the worker thread starts working on 

the dequeued

interactive IO which would serialize transactions in 

a system

nal m

e our approach. 

The alg ame execution is given in Figure 2a. An 

 1.  It is clear that the majority of ti

pha  tho

Therefore we concentrate on the par

he algo thm

Otherwise, if have been processed it 

finish. To enab catio

execution is controlled, and receive packets outside 

Afterwards, the list is traversed and a processing task created for each packet in the list, making the end of

the list marker the condition f

 task, especially having in mind that this buffer is used throughout different code modules; 

given our approach privatization is already done and (2) profiling information tells us that the time needed 

to receive all packets is negligible compared to the time needed to process them. Figure 3 illustrates our 

approach. The connection related messages are processed as soon as they are received, because they are 

rare enough and, more importantly, they may involve 

 which implements irrevocability, or even worse, produce irreversible effects in system that 

doesn’t support IO inside transactions. 
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Figure 3: Pseudocode for the parallelized request processing stage. 

 
Figure 4: Pseudocode for the function that executes the move command  

with transactional block markers. 

while (NET_GetPacket ()) { 
 // Filter packets 
 
 if (connection related packet){ 

  continue; 

} 

 #pragma intel omp task  captureprivate(packetlist)  

   // Do some checking here 

 packetlist = packetlist->next; 

  SV_ConnectionlessPacket (); 

 } 
 
 AddPacketToList(); 
 CopyBuffer(); 

 
#pragma intel omp parallel taskq shared(packetlist, ...) 
 { 
while (packetlist != NULL) { 

{ 
  NET_Message_Init(..); 
  // check for packets from connected clients 
  for (i=0, cl=svs.clients ; i<MAX_CLIENTS ; i++,cl++) {  

   SV_ExecuteClientMessage (cl); 
  }  
 } 
 

} 

void SV_RunCmd (usercmd_t *ucmd) 

 

  . . . 
  PR_ExecuteProgram (pr_global_struct->PlayerPreThink); 
  . . . 
  SV_RunThink (sv_player); 

  // prepare pmove structure 
TRANSACTION_END 
. . . 

 TRANSACTION 

 TRANSACTION_END 
 
 TRANSACTION 
  PlayerMo

{ 

 TRANSACTION 

  . . . 

  AddLinksToPmove ( sv_areanodes ); 

ve (); 
 TRANSACTION_END 
 . . . 
 TRANSACTION  
  // link into place and touch triggers 
  SV_LinkEdict (sv_player); 
 
  // touch other objects 
  . . . 
  PR_ExecuteProgram (ent->v.touch); 
 TRANSACTION_END 
} 

T4 

T2 

T3 

T1 
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To synchronize the request processing between threads, our idea was to execute the 

SV_ExecuteClientMessage() function inside a transaction. This would be a coarse-grained solution since, 

for the whole re nsaction block. Since the number of 

retries† was over ore than 98% of all transactions aborting, we were forced to switch to a 

medium-grained approach and break the one big transaction into six smaller, but still substantially large 

atomic blocks.  

SV_Exe es the request message and executes commands. The most 

common is a move d() function, presented in the Figure 4 

together with th transa ional updated in the request 

processing stage erPreThink program in the 

PR_ExecuteProg call, at the beginning of the SV_RunCmd() function. Then the 

SV_RunThink() function executes a “thinking” code for the client. This is a special feature of Quake to 

register an action that needs to be carried out, in regard to the client, in the future. This is not specific to 

the client implement actions that exceed the duration of a single 

frame. For example if some object falls from the high altitude, the server will need more than one frame 

to simulate it ons form the 

preparation ned inside one transactional block.  The 

server continu  exec e() function which is used to determine which 

entities could ve command. Starting with the origin of the player, the 

areanode tree e areanode lists observed to check if their position 

falls into the all into this area are added to the pmove structure for 

further proces ove() function. For the player entity and each entity from the pmove 

entity list, a m ed from the player's original position to its 

potential des on, u ng the  move command extracted from the received message. 

If the player's g along the trajectory line, that 

                         

quest processing stage, we would have only one tra

whelming with m

cuteClientMessage() pars

command which is executed in the SV_RunCm

e ct block markers. Physics for the client entities is 

, rather then in the physics update stage, by executing  Play

ram() function 

entities, but overall this is the way to 

s fall. Along with pmove (player move) structure initialization, these acti

for the actual move execution, and can be contai

es ut ith the AddLinksToPmovion w

be affected by the current mo

is traversed and linked objects from th

 maximum affected area. Those that do f

sing in the PlayerM

odel box is assigned, and the trajectory is follow

tinati si  parameters from the

 model box clips a model box of the other entity movin

                        
 is equivalent to abor  is to be distinguished † In this paper retry from the 

Haskell retry construct [28]. 
t, following the Intel nomenclature. It
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means t

5. EVA

length. Both machines are PowerEdge 6850, with four dual-core 64-bit Intel® Xeon™ processors running 

 cache memory per processor unit, running SUSE LINUX 10.1.  

here is collision between them. Depending on the various parameters of the collided objects and 

the environment that surrounds them (air, water, solid area, etc.) the final position of the player is 

calculated. Based on this calculation the player object will be later re-linked in the areanode tree, in the 

SV_LinkEdict() function call. Since the areanode tree is not traversed during PlayerMove() call it is safe 

to define transactional blocks in the way presented in Figure 4. 

 

LUATION 

For testing purposes, we have developed an automatic trace client called TraceBot. We have used 

the regular client code, and changed its structure to implement a state machine which controls the client’s 

behavior. We also had to implement certain changes on the server side to be able to synchronize the 

client’s actions with the server response. Namely, each map has a number of spawn points where clients 

start after joining the game, or restart after being killed. In order to execute the correct trace we have to 

send the spawn spot information to the TraceBot.  On the client side, after TraceBot starts, we have to 

recognize the right moment to start reading the trace file. We introduced a new string command in the 

protocol, and when it is parsed from the server packet, we take the spawn spot information, and start 

randomly one of the traces for that spawn spot.  From that point on, TraceBot is just sending messages at 

the server frame rate until it dies, as a result of actions of the other connected players, or until the end of 

the trace, when it commits suicide. After TraceBot dies, it sends another special string command whose 

function is to respawn the client into the game world, and the process is repeated. The traces are recorded 

using VideoClient, which is similar to TraceBot, with the addition of graphics. To record traces we use the 

original, sequential Quake server, and connect VideoClient to play the game, producing traces that 

represent recorded human gameplay actions. 

We run the server on one machine, and the clients on the other, to simulate the real game 

environment, since network latency and bandwidth are not critical [14]. The server and client’s frame 

rates are synchronized and set to 100 ms which is enough time for the worst case transactional frame 

at 3.2 GHz, with 16MB L3
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In this work we are using the prototype version of the Intel STM C/C++ compiler [10, 11, 12]. 

The underlying STM implementation is an extended version of the McRT-STM system [8].  The compiler 

implements both optimistic and pessimistic concurrency control, and provides single lock atomicity 

semantics and weak atomicity guarantees. Serial execution mode is also provided to support system calls 

and I/O operations inside transactions. To optimize function calls within transactions the compiler 

troduces function annotations: tm_callable, tm_pure and tm_unknown. Nesting is supported in a closed 

attening; a data conflict rolls back to the outermost level and re-executes the 

transact

 

es. 

in

nesting fashion via fl

ion. It uses cache-line granularity conflict detection and implements strict two-phase locking for 

writes. Writes update values in-place and generate undo log entries. Transactions validate the read set at 

commit time, and if necessary during the read operation, which means that transaction can abort any time 

during the execution when it encounters a conflict. 

 

6. RESULTS 

In order to compare and test various aspect of STM performance, we collect results for four different 

configurations: (1) sequential, (2) global lock, (3) global lock with STM and (4) STM. The global lock 

with STM implementation is used to measure the overhead of running a transaction (starting the 

transaction and bookkeeping) since the global lock prevents any possibility of the transaction abort. For 

the parallel setups we vary the number of threads from 1 to 8. We also vary the number of clients from 1 

to 16, and run each test five times to get the average result. Each test runs for 2000 frames which 

translates to 200 seconds of real time. The results are collected for the last 1000 frames in order to avoid 

server initialization time and player connection tim

We measure the number of cycles between two events using the rdtsc instruction and translate 

that value into milliseconds. We present the results and charts for the request processing stage only, since 

it is the most complex stage in the frame execution and the most challenging, and leave the parallelization 

of other two stages for the future work. 
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(tm_coarse - only one transaction which processes the whole packet). 

 implementations normalized against the results of the 

equential server for non-optimized code‡ and for the parallel section which is in this case the request 

rocessing stage. We consider the results for one thread only, to avoid contention in parallel designs. 

o contention, the lock version introduces almost no overhead. On the other hand, the 

al lock version doesn't scale and the transaction 

overhea

 execution time. The speedup for eight threads is 1.51 which is a 
                                                

Figure 5: Overhead of parallel implementations normalized against the results of the sequential server 

Figure 5 shows the overhead of the parallel

s

p

Since there is n

overhead of the lock+TM version goes from 2.4 times for one client to 3.6 times for sixteen clients and 

for the transactional version from 2.9 for four clients to 4.2 for one client. These results correspond with 

the findings of Wang et al. [18] for non optimized version of STM. For microbenchmarks the authors 

report an overhead of non-optimized STM code from 2.4 to 4.5 times over a fine-grain locking 

implementation. For the SPLASH-2 benchmarks the reported overhead doesn't exceed 20%, but it is a 

measure across the entire execution, which hides the fact that little time is spent in critical sections.  

Figure 6 shows the comparative performance of all three parallel configurations for different 

numbers of connected clients. As expected, the glob

d remains approximately 3x-4x. The transactional version doesn't scale until the workload 

becomes sufficient, which happens with eight connected clients. When we run the application with 16 

clients, then we start to notice a considerable speedup. Figure 7a gives a better view of this case. The 

values are normalized to a single thread
 

‡ All configurations were compiled with optimization level 0. Higher optimization levels introduce problems with 
function call annotations and transaction serialization. 

 13



good initial result, considering that this is the first real application to test TM capabilities, but it is still not 

enough to cover the costs of running transactions. Figure 7b shows the scalability of the transactional 

Quake server running with 16 clients. It is obvious that the TM version scales, but it still performs worse 

than the global lock version.  

Comparative performance
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3.0

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
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m

e 
[m

s] lock

lock+TM
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(Y-axes represent the average time to execute request processing stage)  
Figure 6: Comparative performance of parallel configuration  
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Figure 7: Transactional server running with 16 clients: (a) Speedup, (b) Scalability. 

 

(a) (b) 
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Clients Transactions Retries Retry rate 
[%]   

Mean 
[KB] 

Serialized Max 
[KB] 

Total 
transactions [MB] 

Reads 3.5 127 114 
1 34683 0 0.0 2.2 

Writes 0.5 18 16 
Reads 4.1 1247 304 

2 80031 3692 4.4 4.8 
Writes 0.6 204 43 
Reads 5.2 1593 734 

4 147043 21990 13.0 11.2 
Writes 0.7 245 99 
Reads 6.5 1778 1805 

8 293326 125138 29.9 28.2 
Writes 0.8 237 233 
Reads 7.0 2397 2358 

16 351379 221062 38.6 59.8 
Writes 0.8 309 280 

 

Table 2: Transactional statistic of TM server running with 8 threads. 

To discover the reasons why the transactional version doesn't perform better, it is necessary to 

look at the statistical data which is provided by the Intel compiler. Table 2 presents these statistics for the 

TM configuration running with eight threads. All statistical values increase when we increase the number 

of clients connected simultaneously, but the most important, from the performance perspective, is the 

transaction abort rate. In the case of sixteen connected clients, 38.6% of transactions retry introducing a

significant amou times before it 

eventually committed. This leads not only to the waste of processor cycles to re-execute the transactional 

code. During an execution with sixteen clients, a single threaded server reads 1.4 GB and writes 215 MB 

of data in total, while the server running with 8 threads reads 2.34 GB and writes 280 MB of data. Table 2 

also shows that even though the mean value of the read set is about 7 KB there are cases when it grew to 

2.4 MB. This is an important factor which could stress the design of any hardware transactional memory. 

In order to study the above mentioned problems, we compare the results for three different TM 

cases: (1) TM_coarse - coarse grained transaction case, having only one transaction which processes the 

whole packet (surrounding the SV_ExecuteClientMessage() function from Figure 3), (2) TM - middle 

grained TM implementation, which is the case we studied so far and (3) TM_small - the sam

implementation as in the nd case, only running an extremely small map to increase contention. Figure 

8 shows the scalability of these three cases, for eight and sixteen connected clients, and Table 3 presents 

the corresponding transactional statistics. It is clear that the performance is strongly influenced by the 

 

nt of wasted work. There are examples when a transaction aborted 136 

e 

 seco
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transaction abort rate. For example ll s well with eight connected clients, when the 

abort rate is still bearable, but with sixteen clients, when the te is , the p ance  to 

suffer and scalability is lost. In the TM_coarse case, we see ost al nsactions abort, leading to 

98.6% abort ch in c xtrem large re and 

write sets, re a poo man

, TM_sma setup scale

 abort ra 58% erform starts

that alm l tra

rate with sixteen connected clients, whi ombination with e ely ad 

sults in r perfor ce. 

TM comparative scalability
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implementation running with the small map (TM_small). 

 

Figure 8: Scalability of coarse grained (TM_coarse), medium grained (TM) and mediume grained 

Clients Transactions Retries Retry rate 
[%] 

Reads 
[mean] 
[KB] 

Writes 
[mean] 
[KB] 

       
8 293326 125138 29.9 6.5 0.8 TM 

16 351379 221062 38.6 7.0 0.8 
       

8 145448 139204 48.9 8.4 1.8 TM_small 
16 206568 285118 58.0 9.4 1.7 

       
8 15979 632175 97.5 121.6 102.6 TM_coarse 

16 21772 1484730 98.6 100.5 57.2 
 

running with 8 threads. 

In this section we describe the parallelization and language design issues we faced while porting 

the Quake server, and present our ideas how to improve the TM programming experience. 

Table 3: Transactional statistics for TM,  TM_small and TM_coarse  configurations 

7. DISCUSSION 
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7.1 Removing the Object from the Read Set 

If we take another look at Figure 4, and recall the function algorithm, we can identify the source 

of the extremely high abort rate in the TM-coarse case shown in Table 3. Let’s assume that we are 

running with two threads, and that transactions T1 from thread 1 and T2 from thread 2 are simultaneously 

processing packets from two different clients which are close to each other in the gameworld. Both 

transactions will traverse the areanode tree in the function AddLinksToPmove(), and latter on, most 

probably change the list structure for the same node in the tree, either by inserting or removing some 

objects, in the SV_LinkEdict() function. Since in both functions, the whole list for the particular node is 

traversed, all list elements will be added to the read sets of both transactions. Therefore any change to the 

list will abort the other transaction. For the execution with eight threads this leads to a scenario similar to 

livelock, where transactions abort each other, even though they eventually commit. We think that a 

solution for this kind of scenario could be to have an explicit language construct, TM_Unread, which 

could be used to remove an object from the transaction read set, similar to the solution suggested by 

Sonmez et al. [19]. Sinc e program, it would be 

the programmer’s responsibility to use it in a correct way. Furthermore, k that ould be a 

performance enhancement feature, targeted for expert programmers, and not something used by general 

programming community, llowing mline of the tm_waiver language construct [1

 
7.2 Parallelization Issues and ReachPoints 

ne of the m in goals of his work was to test the holy grail of transactional memory [21], the 

promise of making multit ded pro ing e ad no prior knowledge of the application itself, 

so we too itable for 

parallelization, using profile information and by studying the program structure. The process of adding 

 pragmas and transactional boundaries was then straightforward and simple, if we 

disregard occasional proble

as to identify 

which of the global data structures and variables must be shared and which can be re-structured as thread-

e such a construct could easily break the correctness of th

we thin  this sh

 fo  the strea 1]. 

O a  t

hrea gramm asy. We h

k some time to understand the code. We have identified the parts of application su

OpenMP parallelization

ms with the compiler, which is normal, having in mind that both OpenMP and 

STM are new programming models under constant development.  The real challenge w
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local data. From a performance perspective this is crucial, since a lot of sharing, especially unnecessary 

one, leads to bad performance. Even though we dedicated significant time to manually identify global 

data which could be thread-private, for unmanaged code written in a sequential programming style, where 

vast amount of data is global, like in our case, it was not enough. The whole work took ten men-months to 

finish, and we spent the last two months, once we had testing environment ready, trying to boost 

performance. In the process, we came up with a solution, which we call ReachPoints, that helped us 

identify the rest of the global variables which could be thread private, and discover the problems that 

arose from TM cache-line granularity conflict detection implementation.  

igure 9, consists of allocating an array of counters for 

each thr

 
Figure 9: ReachPoints: Simple solution for discovering conflicting regions 

 of the transactional code. 

int reachpoints[NumThreads][x*16] 
 
TM_PURE 
void PointReached(int check) { 
 reachpoints[ThreadId][check]++; 
} 
 
int main () { 

 TRANSACTION 

  statement_1; 

 TRANSACTION_END 
 . . . 
} 

 . . . 

  PointReached (1); 

  PointReached (2); 

The ReachPoints solution, presented in F

ead, taking in account cache line granularity (x*16 elements for each thread where x=1,2,... and 

cache line size of 64 bytes).  At the end of execution, when we print the state of counters, the difference 

between two counters pinpoints the region of the code where transactions abort. Analyzing that region, it 

is possible to discover causes for the aborts. Simple as it may be, we found ReachPoints very valuable 

and useful. As already stated, it even helped us discover sources of false conflicts [20] referred to as false 

sharing [9], which occur mostly within structured data and are the consequence of the fact that two 

different variables or structure fields reside in the same cache line. Assuming that only one of them is 

written, say variable A, under the cache line granularity conflict detection system, a read-only variable B 
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is also causing conflicts, since the writes to A are treated as writes to B. When we used cache padding for 

such cases, we noticed a significant performance improvement, due to the decrease in the number of 

aborts. This solution is specific for eager conflict detection, since in TM systems with lazy conflict 

detection transactions can be aborted anytime, regardless of the read or write issued in the moment of the 

abort. It should be said that one could think of better mechanisms to detect which data access is causing 

conflicts, and one of them is certainly debugger support. 

 

7.3 Drawbacks of Flattening the Nested Transaction  

In Section 4, we said that we were unable to 

use coarse gr  high abort rate. Using 

ReachPoints we were also abl t areanode operations, executed in the 

functions AddLinksToPmove() and SV_LinkEdict(), are the main cause for aborts. Before we switched to 

the medium grained implementa sert nested transactions in the same way shown in 

Figure 4, but there were no impr his is the consequence of the 

closed nesting implementation o ansactions, causing aborts of 

the outermost transaction and re performance as before. We believe that a different 

nesting implementation, i.e. one which wouldn’t publish the read set of the nested transaction to the 

outermost transaction, leading to partial e more useful for programmers.  

 
7.4 Things We Cannot See 

At times, not having the source code of the Intel STM compiler created issues. For example, we 

were unable to discover further details regarding the overhead of transactions and to measure the time 

spent for starting a transaction, bookkeeping and executing instrumented reads and writes. We are in 

contact with Intel developers for the possibility of including some of those statistics in the next version of 

the compiler 

Also we cannot conclude what percentage of aborts is caused by false conflicts between addresses 

from different cache lines [9], which are the consequence of the transaction record aliasing imposed by 

when we were explaining our parallelization method, 

ain transaction for the request processing stage due to an extremely

e to prove our assumption tha

tion, we tried to in

ovements in the performance or abort rate. T

f the Intel compiler, which flattens nested tr

sulting in the same 

 aborts [23, 24, 25], would b
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the limited size of the ownership table. In the Intel compiler implementation, the hash function utilizes 14 

bits out of a 32 bit address to generate a hash value (16K entries). If the program is running  with eight 

threads, the possibility of the false conflict when each thread touches 10  cache lines in an uniform 

distribution is 15.7% and in a case of 25 cache lines it grows to 66.8%. Given the size of the read and 

write sets from the Table 2, we suspect this to be a significant cause for aborts in QuakeTM. In such case, 

in order to decrease local-induced conflicts (if either of the two conflicting addresses is thread-local) it 

ould be necessary to avoid instrumentation of thread-local memory accesses. 

7.5 Comparing Tw

TM 

ith the lock-converted Quake is out of the scope of this paper. Here, we concentrate on introducing and 

akeTM.  

 

ns. We also plan to modify certain structures, especially areanode lists, in order to decrease 

the abor

w

 
o Parallelization Approaches 

            In concurrent work, we have used fine grain lock implementation of the Quake server to produce a 

transactional version by converting locks to transactions [29]. Comparing these two parallelization 

approaches, we can conclude that the solution presented in this paper, one that is derived from the serial 

implementation, results in a coarser grained parallelization with atomic blocks and read and write sets that 

are an order of magnitude bigger than in the lock-converted version. Moreover, the scalability obtained is 

competitive with the lock-converted version. Finally, the code is more structured as a result of not having 

to deal with the problems inherited from the unstructured use of locks. Given these observations, we 

believe that this work corresponds with the intended use of transactional memory and presents the way 

the regular programmer might use TM to parallelize applications. A detailed comparison of Quake

w

analyzing the performance of Qu

8. FUTURE WORK 

 Beside the fact that negligible time is spent in execution of other two stages in the frame, we plan 

to parallelize them because they exhibit different patterns and could be useful for testing TM 

implementatio

t rate and hopefully enable use of coarser transactions. The source code for QuakeTM will soon 
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be publicly available, and we encourage TM implementers to download and use the application to test 

their TM systems. 

 

9. CONLCUSION 

In this paper, we have introduced QuakeTM, the first complex real-world TM application that 

was transactionalized from a serial version of the Quake application. We have made a detailed description 

of the tranactification process, and provide extensive analysis of performance, isolating the overhead of 

the STM implementation. We have shown that even though it scales, the TM implementation still falls 

behind the global lock version. As a result, we were surprised by the amount of programmer time 

investment, wherever appropriate we have also commented on the challenges involved in the paper. TM 

is touted to make parallel programming easier; our QuakeTM experience stresses the importance of tool 

support (compiler, debugger, runtime) to realize this goal in the future. 
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